
116

CIM: A Novel Clustering-based Energy-Efficient Data

Imputation Method for Human Activity Recognition

DINA HUSSEIN and GANAPATI BHAT,Washington State University, USA

Human activity recognition (HAR) is an important component in a number of health applications, including

rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR

approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches

typically assume that data from all sensors are available for runtime activity recognition. However, data from

one or more sensors may be unavailable due to malfunction, energy constraints, or communication chal-

lenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting

quality of service to users. A common approach for handling missing data is to train classifiers or sensor data

recovery algorithms for each combination of missing sensors. However, this results in significant memory

and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this

paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set

of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a

mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the

stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the

identified cluster is then used as imputation to perform activity classification. We also provide a method to

obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Ex-

periments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing

data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1%with

imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to

100% energy savings compared to state-of-the-art generative approaches.

CCS Concepts: •Computer systems organization→ Embedded systems; •Computingmethodologies

→ Machine learning; • Human-centered computing→ Mobile devices;

Additional KeyWords and Phrases: Human activity recognition, wearable electronics, missing data detection,

data imputation, clustering, health monitoring

ACM Reference format:

Dina Hussein and Ganapati Bhat. 2023. CIM: A Novel Clustering-based Energy-Efficient Data Imputation

Method for Human Activity Recognition. ACM Trans. Embedd. Comput. Syst. 22, 5s, Article 116 (Septem-

ber 2023), 26 pages.

https://doi.org/10.1145/3609111

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2023.

This work was supported in part by NSF CAREER award CNS-2238257.

Authors’ address: D. Hussein and G. Bhat,Washington State University, P.O. Box 642752, Pullman,Washington, USA, 99164-

2752; emails: {dina.hussein, ganapati.bhat}@wsu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1539-9087/2023/09-ART116 $15.00

https://doi.org/10.1145/3609111

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

https://orcid.org/0000-0002-1914-7526
https://orcid.org/0000-0003-1085-2189
https://doi.org/10.1145/3609111
https://doi.org/10.1145/3609111
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609111&domain=pdf&date_stamp=2023-09-09

116:2 D. Hussein and G. Bhat

1 INTRODUCTION

Wearable devices are transforming several applications, including health monitoring, rehabilita-
tion, and fitness [8, 13, 24, 27, 31, 38]. Human activity recognition (HAR) forms an important com-
ponent of wearable health applications as it is crucial to identify what a person is doing before
performing a more detailed analysis. For example, in Parkinson’s disease monitoring, knowing
activity patterns of the patient is critical to prescribing personalized therapy [8, 27, 35]. Similarly,
in fitness monitoring, duration and intensity of various activities aid in determining appropriate
fitness schedules [43, 45]. In addition to these applications, HAR is also useful in gait analysis and
smart homes [16, 23].
Recent HAR algorithms leverage data from multiple sensors mounted on the body to either im-

prove activity classification accuracy or complexity of activities [3, 36, 40]. For instance, the Shoaib
et al. [40] dataset uses five accelerometers to perform HAR. Multiple sensors offer complementary
informationwhen placed at appropriate locations. For example, the w-HAR dataset [3] uses stretch
sensor on the knees and accelerometer on the ankles. Stretch sensor provides movement of knees
as users perform activities while the accelerometer provides acceleration along the three direc-
tions of motion. Combining the two sensors allows us to achieve accuracy of 98% while accuracy
with individual sensors are 90% and 89%, respectively. Similarly, authors of the Shoaib et al. [40]
show that multiple sensors are required for activities such as walking upstairs and downstairs.
In general, several recent studies have performed HAR with multiple sensors and concluded that
multiple sensors offer benefits in accuracy and robustness [1, 5, 30]. One of the key assumptions
made by multi-sensor HAR approaches is that data from all sensors are available at runtime for
activity classification [14]. However, sensor data may be unavailable due to energy constraints,
sensor malfunction, or user error [14, 21, 22, 25]. For example, batteries on one or more sensors
may be exhausted due to limited battery capacity in wearable devices. Users may also forget to
place sensors at the appropriate location for accurate HAR [17]. Missing data from sensors can
significantly degrade the classification accuracy [18]. Indeed, our experiments show that classifi-
cation accuracy can degrade by more than 30% when two or more sensors are missing, as shown in
Figure 1. Therefore, there is a strong need to develop approaches that are able to recover accuracy
in HAR applications in presence of missing data.
Generative networks have been recently used to impute missing data in wearable applica-

tions [15, 26, 41, 44]. These approaches aim to use generative adversarial networks (GANs) to
impute missing data. GANs first learn the joint distribution of sensor observations during training.
Then, at runtime the generator is used to obtain imputation conditioned upon observed data [44].
While GANs have shown good accuracy in imputing data, they incur high memory and execu-
tion time overhead, which is not feasible for low-power wearable devices. Training sensor-suite
specific models is also not feasible since we need to store a model for each possible missing data
scenario. That is, in a system withM sensors, we need up to 2M − 2 models to handle all potential
missing data scenarios. Storing multiple models and switching between them at runtime also leads
to memory and execution time overhead. Training classifiers with missing data is also challenging
because it requires prior knowledge of missing data patterns for all scenarios, which may not be
feasible for all datasets or users. Finally, prior imputation approaches for HAR do not include any
detection mechanism for missing data [15, 44]. This is an important component since accurate
detection of missing sensors is the first step towards imputation. Therefore, there is a strong need
for energy-efficient and low overhead methods for data imputation.
This paper presents an energy-efficient clustering-based imputation (CIM) for missing data de-

tection and imputation in wearable HAR applications. Our approach is guided by two key insights
as follows. First, for a given set of activities, each sensor has a repetitive pattern with potential

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:3

Fig. 1. Comparison of accuracywithmissing sensors for (a) PAMAP2, (b) w-HAR and (c) Shoaib et al. datasets.

We assume that missing data are observed as Gaussian noise with zero mean and unit variance. Baseline

accuracy with no missing data is shown with a green reference line.

variations across different instances of the same activity. For instance, the set of sensor data pat-
terns for sitting is different and separable from walking. Using this insight, we can learn a set of
clusters for each sensor and store a single pattern that is representative of all activity windows in a
cluster. Secondly, we can learn the inter-relationship and mapping between clusters of all sensors
through offline analytics. By learning the mapping between sensors, we are able to predict the
cluster information of missing sensors through clusters of available sensors. The representative
window for the predicted cluster is used at runtime to efficiently impute missing data while main-
taining accuracy. We also propose to utilize sensor data clusters to detect missing data at runtime.
Specifically, for each cluster of a sensor, we define a validity region for real data. If the data ob-
served at runtime falls outside the valid region, we flag it as missing. Overall, the proposed CIM
approach enables energy-efficient and low-overhead imputation at runtime.
One of the key challenges with data imputation is that uncertainty in classification results in-

creases with the number of missing sensors. As such, providing a single activity label may lead to
lower classification accuracy. To overcome this limitation, we augment HAR training data with ex-
amples that include representative sensor data for each cluster so that the classifier provides high
accuracy with imputed data. In addition to augmentation, we provide a set of possible activity la-
bels when multiple sensors are missing to account for uncertainty in imputation. This is similar to
the concept of conformal prediction where classifiers provide the set of most likely labels [39, 42].
We validate the proposed CIM approach on three publicly available HAR datasets. For each

dataset, we simulate all possible missing data scenarios and use CIM for imputation. Our results
show that the accuracy achieved by CIM for single-label prediction is within 10% of accuracy
with no missing data for one missing sensor. At the same time, our imputation-aware prediction
achieves accuracy within 1% of the baseline accuracy without missing data. We also implement
a generative approach using generative adversarial imputation networks (GAIN) since they have
shown high accuracy in prior work [10, 44]. Accuracy analysis with GAIN shows that they provide
accuracy that is comparable or lower than CIM with significantly higher overhead. For instance,
CIM incurs up to 219 KB of memory overhead, while GANs consume up to 102 MB of memory.
Finally, we implement CIM on the Odroid-XU3 board [12] to measure execution time and energy
overhead. Our real-world measurements on the Odroid-XU3 board show that CIM takes up to 1 ms
per imputation for the largest dataset with about 0.5 mJ energy consumption.
In summary, this paper makes the following contributions:

• A low overhead and energy-efficient approach for sensor data imputation at runtime to han-
dle multiple missing data scenarios. Specifically, CIM handles all possible missing data sce-
narios with a single set of clusters and mapping function.
• Novel algorithm to detect missing data using pre-defined clusters for sensor data.
• Imputation-aware HAR to account for uncertainty in classification with imputed data.
• Extensive experimental evaluation with three publicly available datasets to evaluate the ef-
ficacy of CIM.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:4 D. Hussein and G. Bhat

The rest of the paper is organized as follows: Section 2 reviews the related work, while Section 3
introduces preliminaries for HAR and sets up the data imputation problem. Section 4 introduces
the proposed CIM approach for missing data detection and imputation at runtime. We provide the
experimental results with three datasets in Section 5 and finally conclude the paper with some
future research directions in Section 6.

2 RELATEDWORK

HAR forms an important component of several health applications such as rehabilitation, move-
ment disorders, and fitness monitoring [8, 24, 27]. Recent HAR approaches have multiple sen-
sors mounted on the body to enable recognition of complex activities and improve HAR accu-
racy [36, 40]. Addition of multiple sensors for HAR makes the system susceptible to missing data
from one or more sensors due to energy constraints, user error, malfunction, or communication
challenges [14, 21, 22, 25]. Therefore, there is a need to develop approaches that handle missing
data at runtime in an energy-efficient manner.
Several statistical and machine learning (ML) approaches have been proposed to handle missing

data in HAR and other time series applications [15, 33, 34, 37]. Popular statistical methods include
mean, median, and regression-based imputation [6, 10, 34, 37]. While these methods are useful,
they are able to handle only isolated instances of missing data where real sensor data are available
to perform statistical analysis. For instance, mean imputation methods substitute the missing data
with mean of data around the missing time instance. Due to this limitation, statistical methods are
generally not suitable for long sequences of missing data.
Recent approaches have used machine and deep learning approaches to recover longer se-

quences of missing data [28, 33, 37, 44]. The method in [33] uses the k-nearest neighbor (KNN)
algorithm to impute missing data. However, KNN algorithms must store entire training data on
the device to obtain imputation, thus making them unsuitable for low-power wearable devices.
Generative methods are also becoming popular for data imputation at runtime. The CNNAE [41]
approach aims to employ single variational autoencoder architecture to recover missing data in
brain recording data from multiple users. The key limitation of variational autoencoders is their
large size and resulting overhead. For instance, our initial experiments show that variational au-
toencoders require memory in the order of hundreds of megabytes, which is not feasible for im-
plementation on wearable devices. GAIN [44] is another generative training approach for data
imputation. The key idea behind GAIN is that we can learn relationships between different sen-
sors during training. The goal of the generator in GAIN is to accurately reproduce data while the
discriminator aims to identify if each data point is missing or not. During runtime, GAIN defines
a mask for missing sensor values and generates data for both available and missing sensors. The
mask is then used to extract imputation for missing sensors. While the GAIN is useful, it suffers
from accuracy drop when more than one sensor is missing. Overall, prior approaches for imputa-
tion either suffer from low accuracy or high overhead, making them unsuitable for our use case.
In strong contrast to prior approaches, this paper proposes CIM, a clustering-based imputation

approach for HAR. CIM obtains clusters for sensor data along with representative windows for
each cluster to enable energy-efficient missing data detection and imputation at runtime. Our ex-
periments with three HAR datasets show that CIM achieves, on average, 55% higher accuracy with
two missing sensors while having close to 100% lower energy when compared to GAIN.

3 BACKGROUND AND PROBLEM SETUP

3.1 HAR Background

HAR classifier design typically involves four major steps. The first step involves data collection
from a suite of sensorsmounted on a user’s bodywhile they perform activities of interest, as shown

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:5

Fig. 2. Overview of offline and online steps in the proposed CIM approach.

in Figure 2. Commonly used sensors for HAR include accelerometers, gyroscopes, bend, heart rate,
and stretch sensors. The data from all sensors are aggregated at a host device or one of the wearable
nodes to perform activity classification. Aggregation of data at a host device is required since each
sensor might be located on different parts of the body with no connection between them. The data
goes through the following steps once it is aggregated at a host or wearable device.

Segmentation: Streaming sensor data must be divided into distinct activity segments to enable
seamless classification at runtime. Prior HAR approaches use either fixed or variable-length seg-
ments [3, 40]. Fixed-length windows in HAR ensure that the input length to k-means is constant.
Variable length windows offer fine-grained information on activities, however, classification and
clustering algorithms expect fixed length time series data. As such, the variable length windows
are passed through a filter to obtain equal lengthwindows. For example, walking activity has an av-
erage length of about 100 samples in the w-HAR dataset, while sitting activities have 183 samples.
These are passed through a resampling filter to obtain windows with 64 samples for both walking
and sitting activities. Ensuring fixed-length windows is critical because classification algorithms
expect inputs to be of fixed length for learning. In this work, we re-use fixed-length (PAMAP2 and
Shoaib et al.) or resampled windows (w-HAR) provided by respective datasets to perform k-means
clustering and classification. We refer to each activity segment as a window.

Feature Generation and Classification:After segmentation, the sensor data are passed through
a feature generation block to obtain a set of features for use inMLmodels. The feature set and activ-
ity labels are used to train supervised learning models to enable classification at runtime. Common
classifiers for HAR include multilayer perceptrons (MLP), random forest, and convolutional neu-
ral networks (CNN) [2, 3, 24]. In this paper, we use 1-dimensional CNNs for activity classification
while noting that any supervised learning classifier can be used with CIM.

3.2 Problem Setup

Let us consider a systemwithM sensors on the user’s body for HAR, as shown in Figure 2.Without
loss of generality, we can assume that each activity window consists ofT samples from each sensor.
In some scenarios, we may have unequal samples from each sensor due to differences in sampling
rates. However, we assume T to be same across all sensors for ease of notation and exposition.
Once sensor data are aggregated, we can represent the data for each window t using a M × T
matrix Xt = {X1,X2, . . . ,XM } ∈ RM×T , where Xi (1 ≤ i ≤ M) is the data vector from the i th sensor.
Using the above notation, we can represent a training dataset Dtrain with multiple windows as
X = {X1,X2, . . . ,XN }, where N is the number of training windows. The data matrix is passed
through a feature generation function to obtain labeled feature and activity a∗ pairs. The feature

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:6 D. Hussein and G. Bhat

and activity pairs are used in a supervised learning algorithm to train an activity classifier Fθ ,
where θ denotes the classifier parameters. At runtime, we use the trained classifier Fθ to predict
current activities as ât .
Now consider that k (1 ≤ k ≤ M − 1) of theM sensors are unavailable at runtime for an activity

window t . The number of missing sensors goes from 1 toM − 1 since we can ignore the case of no
sensors missing and all sensors missing. Since the HAR classifier expects data from all sensors for
classification, the missing sensor values will get substituted with zeros, a constant value, or noise.
We denote the data matrix with missing sensor data byXm . The missing data causes a mismatch in
the feature values, leading to inaccurate classification by the HAR classifier Fθ . Recoveringmissing
data at runtime to obtain accurate classification is a challenging problem because there are 2M − 2
missing data scenarios. Two scenarios corresponding to k = 0 and k = M are excluded since the
case of no missing data does not need imputation and it is not possible to impute data if all sensors
are missing. To overcome the drop in accuracy due to missing data, our goal is to obtain a missing
data detection function f ∗

d
and recovery function f ∗r to efficiently detect and recover missing data.

We describe key requirements and challenges for each of these functions below.

Missing data detection function f ∗
d
: The goal of f ∗

d
is to take observed sensor data in each win-

dowXt and specify if any of the sensors are missing. Specifically, the output of f ∗
d
is aM ×1 vector

with each element denoting whether the corresponding sensor is missing. We set an element to
one if the sensor is missing, otherwise it is set to zero. The missing data detection function f ∗

d
is

challenging to design because it must balance accuracy of detection while avoiding false positives.
Specifically, f ∗

d
must avoid flagging actual observed data as missing data while maintaining high

accuracy for cases when data are missing. False positives for missing data detection may hamper
accuracy since the observed data gets substituted with imputed data. Therefore, our goal is to de-
sign a detection function that accurately identifies missing sensors while avoiding false positives.

Missing data recovery function f ∗r : The objective of f
∗
r is to leverage data from available sensors

to recover data that are unavailable. Specifically, f ∗r : R(M−k)×T → Rk×T maps the data fromM −k
available sensors to data for k missing sensors. The recovery function f ∗r must ensure that the
imputed data recovers accuracy of classification with minimal overhead. Design of the recovery
function is challenging since it must work for all missing data scenarios since storing multiple
functions leads to additional memory overhead for wearable devices.

4 PROPOSED CLUSTERING-BASED IMPUTATION APPROACH

4.1 High-level Overview of CIM

We provide a high-level overview of CIM in Figure 2. CIM starts by obtaining clusters for each
sensor used in HAR and trains a baseline activity classifier Fθ . Next, we obtain a representative
window for each cluster and distance thresholds for missing data detection. The cluster informa-
tion and representative windows are then used to obtain an offline mapping table that learns the
inter-relationship between sensors. The mapping table is used at runtime to predict clusters for
missing sensors. Since our goal is to obtain high classification accuracy at runtime, we augment the
training data with representative windows and re-train the activity classifier to obtain F ∗

θ
. At the

end of the offline design stage CIM provides the set of representative windows, cluster centroids,
distance thresholds, mapping table, and reliable classifier F ∗

θ
as outputs.

At runtime, we obtain sensor data from user activities with the potential for missing sensors.
Therefore, as a first step, CIM performs missing data detection to obtain the set of missing sensors.
Then, it uses the mapping table to predict clusters for missing sensors and imputes missing data
with representative windows. Finally, CIM performs activity classification with imputed data and
provides it to the user. We provide details of each step in the following sections.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:7

4.2 Sensor Data Clustering

The first step in the proposed CIM approach is partitioning data from each sensor into clusters. The
goal of clustering is to ensure that distinct activity patterns are separated into their own clusters.
The key insight behind clustering is that human activities are generally repeatable in nature, with
variations across users and time. For instance, the general walking pattern for a majority of healthy
users is similar, with differences due to a person’s height, limb length, or weight. The repeatability
of activities, in turn, leads to repeatability of sensor data patterns. Secondly, different classes of
activities have distinct sensor data patterns. For example, accelerometer sensor data for sitting and
walking are distinct and easily separable. Sitting shows a relatively constant acceleration, while
walking has variable acceleration as the user moves. Following this insight, we obtain clusters of
sensor data where each cluster contains sensor data patterns that are close to each other. The data
from clustering are used at runtime to both detect and impute missing sensors.
We employ the commonly used k-means clustering algorithm [19] to obtain distinct clusters of

sensor data. The input to the k-means algorithm is data from each sensor Xj (1 ≤ j ≤ M) and the
number of desired clusters c j for the j

th sensor. The output of clustering for each sensor is a set of
centroids for c j clusters and mapping of each window to its respective cluster. The centroids are
used at runtime to infer the clusters for new, unseen data. At the end of clustering, we obtain a set
of clusters C = {c1, c2, . . . , cM } for allM sensors.

The number of clusters must be found through a design space exploration since k-means is an
unsupervised learning approach. The number of clusters in CIM is driven by the following factors:

• Similarity of sensor data patterns in the cluster. We would like the data patterns to be similar
in each cluster so that the representative window could be used for imputation.
• The clusters should not be sparse with a small number of windows. Small number of win-
dows in a cluster could indicate too many clusters for a dataset. Therefore, we aim to avoid
sparse clusters during the k-means clustering step.
• Label purity, i.e., number of unique activity labels in a cluster is another consideration when
choosing the number of clusters for a dataset. Label purity is helpful since different activities
may have distinct patterns and must be in different clusters. At the same time, label purity is
not a primary consideration since multiple activities may have similar patterns. For instance,
stand and lie down have similar patterns for stretch sensor in the w-HAR dataset, leading
to windows of both activities being in the same cluster.

Overall, we use similarity of sensor data patterns in a cluster as the primary factor in deciding
the number of clusters, followed by sparsity of clusters and label purity.

Representative window for each cluster: The k-means clustering divides sensor data into c j
clusters for the jth sensor. Each cluster consists of multiple windows from the training data. As
such, it is infeasible to store every window from a cluster for data imputation at runtime. Therefore,
we propose to identify a single window that is representative of all windows in the cluster. The
representative window must fulfill two goals: (1) it must provide high accuracy when it is used to
impute missing data, (2) it must be representative of all data for a sensor in the cluster. That is, it
must be an ‘average’ case of data in the cluster.
Algorithm 1 shows the procedure of identifying the representative window for each cluster.

Inputs to the algorithm include data for all windows in the cluster, number of windows, and base
activity classifier Fθ . Given these inputs, the algorithm first calculates themean pairwise Euclidean
distance from each window to all other windows and stores it in an arrayD. The pairwise distance
from a windoww to others is given by the vector dw as:

dw = {| |X j,w − X j,k | |���k ∈ (1, 2, . . . ,W) & k � w }, 1 ≤ w ≤W (1)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:8 D. Hussein and G. Bhat

ALGORITHM 1: Representative window for each cluster

1 Input:Windows in current cluster of a sensor j (c j), Number of windowsW , Activity classifier Fθ
2 Initialize aW × 1 empty array to store pairwise distances D
3 Initialize aW × 1 empty array to accuracies with representative windows A
4 for w = 1, 2, . . . ,W do

5 dw ← Pairwise from windoww to all other windows in c j
6 Dw ← mean(dw)

7 end

8 Dsor ted ← Sort D in ascending order

9 for k = sorted order in Dsor ted do

10 Replace sensor j data with candidate representative window k

11 Ak ← Classification accuracy with candidate representative window k using Fθ
12 end

13 Representative window for c j← argmax(Ak)

14 Return: Window with the highest accuracy as the representative window for cluster c j

where X j,w are the data from sensor j in window w . k is a dummy variable that iterates over all
possible windows in the cluster except forw . A large pairwise distance means that the window is
likely to be an outlier, whereas a small distance means it is close to all other windows. For instance,
if we consider that all windows in a cluster form a T -dimensional ball, the windows near surface
of the ball are further away from other windows compared to windows near center of the ball. As
such, our goal is to find windows that are close to center of a cluster. After obtaining mean dis-
tances, we sort them from smallest to largest for selection of the representative window that offers
highest classification accuracy. Specifically, our goal is to maintain high classification accuracy
when a candidate representative window is used instead of observed data for feature generation
and classification. This emulates a real-world situation where missing data are substituted with the
corresponding representative window. To this end, we obtain the classification accuracy for activi-
ties in the cluster using Fθ while substituting each candidate representative window for the target
sensor. That is, if the current candidate representative window belongs to sensor j, we substitute
the jth sensor data in Xt . We note that the baseline classifier training does not use representative
windows.

The classification accuracies in the cluster are given by the vector A as:

A = Accuracy
(
Fθ ([X1,k ,X2,k , . . . , X̃i,k ,Xi+1,k , . . . ,XM,k])

)
1 ≤ k ≤W (2)

where we use the classifier function Fθ to perform classification on imputed data. Specifically,

sensor j data are substituted with the candidate window X̃ j,k . The accuracy vector contains clas-
sification accuracy for allW windows in a given cluster. We note that the accuracy analysis can
be optimized by considering a small number of windows with the lowest mean distances. This
is achieved by modifying line 9 in the algorithm to consider windows that have the smallest dis-
tances. The algorithm description goes over all windows in sorted order to maintain generality.
Finally, the window that offers the highest classification accuracy is chosen as the representative
window:

X
c j
r = argmaxA (3)

whereX
c j
r is the chosen representative window for cluster c j .X

c j
r is returned by the algorithm and

appended to list of representative windows of a sensor. Set of representative windows are used at
runtime for data imputation, as we describe in the following sections.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:9

Cluster centroids as representative windows:We note that cluster centroids can also be used
as representative windows. We do not use them as representative windows since our goal is to sub-
stitute missing data with real sensor data from observations during training. Moreover, centroids
may not always achieve higher accuracy when compared to using real, observed data as represen-
tative windows. Consequently, we do not use cluster centroids as representative windows.

4.3 Runtime Missing Data Detection

Missing data detection is an important component of enabling reliable HAR algorithms. In general,
we can divide missing data patterns into two classes depending on the data unavailability. We
provide brief descriptions of the two classes and our problem setting below.

Randommissing data:Randommissing data occurswhen the device encounters isolatedmissing
samples. The missing samples are not clustered around a time instance. Prior work has proposed
methods to impute isolated missing data using statistical methods, such as mean or median [6, 33].
Randommissing data are easier to handle since we have observed data around the missing samples
that can be used as a reference point for imputation.

Blockmissing data: Block missing data occurs when sensor data are unavailable for longer inter-
vals of time, such as multiple activity windows. Block missing data typically occurs due to energy
limitations, sensor malfunction, or communication channel challenges. It is challenging to recover
block missing data since there are no reference observations for the missing sensors. In this paper,
our goal is to detect and impute sensor data in the block missing scenario.
One of the key considerations in missing data detection is observed data when a sensor is un-

available. The type of missing data filling is typically device dependent and each wearable device
may choose one of the following mechanisms for filling missing data.

Zero-filling: In this case if a sensor is unavailable, corresponding observations for the sensor are
filled with zeros. This is a reasonable assumption since sensor data are typically read into proces-
sors through memory buffers that may be initialized with zeros.

Constant data or average filling: Another common scenario for observed missing data is that the
sensor value remains stuck at the previously observed value. A corollary to filling with previously
observed value is average filling where the data are filled with an ‘average’ case value whenever
a sensor is available. In both cases, observed sensor data remains at a constant value.

Random noise filling: The last case we consider is when missing sensor data are filled with random
noise from either a Gaussian or uniform distribution. This can be attributed to noise from the
power supply or communication channels. In this paper, we primarily consider that random noise
is drawn from a Gaussian distribution with zero mean and variable variance.
Next, we describe our approach to missing data detection for each of the above scenarios. The

missing data detection algorithm runs once a window of data have been accumulated from the
sensors. That is, we run the missing data detection algorithm once a window has been identified
for classification. As such, the missing data detection algorithm will be able to handle windows
with missing data block at any point in the window. Indeed, our experiments in later sections
show that the proposed approach handles both block and random missing scenarios with a single
algorithm.

4.3.1 Detecting Zero-filled or Constant Missing Data. First two cases of missing data filling con-
tain constant data: zeros or constant non-zero data. It is typically easier to detect missing data
with constant values. Specifically, we propose to calculate the finite difference and variance in the
window to determine if the data are constant. If the algorithm detects that data in a window for a

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:10 D. Hussein and G. Bhat

given sensor are constant, it is flagged as missing data. This approach is ideal for zero or average
data filling since it is highly unlikely that real, observed data are constant for an entire window.

4.3.2 Detecting Missing Data with Random Noise. It is more challenging to detect missing data
filled with random values since we are unable to employ finite differences to check for a constant
value. Indeed, random noise may appear to be real-world sensor data on visual inspection. There-
fore, we need a principled approach that accurately classifies noise as missing data.
We propose to leverage sensor data clusters to detect random missing data at runtime. During

the data clustering step, we analyze the distance of all windows in a cluster to the cluster centroid.
That is, for each cluster, we obtain the set of distances from the centroid for each window as:

S = [|y1 − yc j ∗ |2, |y2 − yc j ∗ |2, . . . , |yj − yc j ∗ |2, . . . , |yW − yc j ∗ |2] (4)

where yi represents the data for a given sensor in a window i , while yc j ∗ is the centroid for the
cluster c j . The range of distances represents valid region of windows for a given cluster. Any
window that falls outside the valid region is an outlier for the cluster. Moreover, given a set of
centroids obtained from k-means classification, inferred cluster label for a new window is the
centroid closest to it. Consequently, we can store the validity region bounds for each cluster and
classify any window that falls outside of the valid region as missing data. Our approach is based on
the key insight that offline clustering of training data allows us to learn valid regions of real-world
sensor observations and classify windows outside the region as missing data.
The missing data detection algorithm can be tuned by varying the threshold for distance that

is classified as missing data. Specifically, the missing data threshold is a hyperparameter that can
be tuned to balance false positives and accuracy. The algorithm is more sensitive if we choose
50th percentile of the distance as the threshold, while it has higher flexibility if we choose 95th

percentile as the threshold. The threshold must be chosen through a design space exploration
with detection and classification accuracies as objectives. In our experiments, we vary the thresh-
old from 95th percentile of the distances in Equation (4) to 1.05 times the maximum distance.
The design space exploration with these threshold values shows that w-HAR and Shoaib et al.
achieve higher accuracy with 95th percentile while PAMAP2 has higher accuracy with 1.05 times
the maximum distance. Therefore, we choose missing detection threshold of 95th percentile for
w-HAR and Shoaib et al. and 1.05 for PAMAP2. Choosing 95th percentile marks 5% of windows
missing when actual data are available. This is acceptable because k-means algorithms are heuris-
tic in nature and windows at the boundary of a cluster are generally outliers for the respective
cluster.

Missing data detection algorithm summary: Algorithm 2 summarizes the runtime missing
data detection procedure used in this paper. The inputs to the algorithm are data from the sensor
that is potentially filledwith zeros, constant value, or noise. It also includes a set of cluster centroids
for the sensor and distance thresholds for each cluster. Using these inputs, we first check if the data
in the input window are constant by taking finite difference of the elements. The finite difference
of the window is given by:

Δ(X j) = X j [k + 1] − X j [k] 1 ≤ k ≤ T − 1 (5)

where Δ(X j) is a (T −1)×1 vector containing the finite difference of samples inX j . If all elements in
Δ(X j) are zero, it means that the sensor data are constant. Therefore, we flag it as missing. Next, if
the data are not constant, the algorithm uses the set of centroids to assign a cluster to the window
and calculate distance from the closest centroid. If the distance d is greater than the pre-defined
cluster threshold cthreshj from Equation (4), we flag the data as missing. Specifically, we obtain a

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:11

missing data flat fm as:

fm =
⎧⎪⎨⎪⎩
1 if d ≥ cthreshj

0 if d < cthreshj

(6)

The intuition behind the algorithm is that the inferred cluster for sensor data is the cluster that
is closest to X j . Therefore, if the distance from the inferred cluster centroid is higher than the
threshold, we can classify it as missing data. The algorithm is run for each sensor used for HAR
and its output is a vector of zeros and ones indicating if data in each sensor are missing or not.

4.4 Data Imputation with Sensor Clusters

The next step after missing data detection is imputation of sensors that are missing. We propose
to use stored representative windows and cluster mapping across sensors to impute missing data.
Our approach is based on the following key insights:

• Given a set of sensors and their respective clusters, we can learn the mapping between clus-
ters across sensors. The learned mapping can then be used to predict the cluster of missing
sensors at runtime.
• After predicting cluster for missing sensors, we can use representative window of the pre-
dicted cluster to impute missing data. Since the representative window is an ‘average’ case
of sensor observations for a cluster, we can use it as the most likely data pattern for missing
sensors.
• The imputed data does not have to exactly match real-world observed data as long as it
preserves the general data pattern and classification accuracy. Preserving classifier accuracy
improves user satisfaction while providing the most likely pattern for missing data allows
for a deeper analysis by health experts or classifier developers.

Based on the above insights, we use the following steps to design an imputation algorithm.

4.4.1 Mapping Table Construction. Using the first insight above, we obtain a table that contains
the cluster information of each sensor for all windows in the training set. Each row in the table
records cluster for the corresponding sensor. Since the data has repetitions of all activities in the
training data, initial table of clusters will have repeated rows. Storing all repetitions of rows for
runtime usage leads to higher overhead. Therefore, we reduce the table by obtaining all unique

ALGORITHM 2: Missing data detection

1 Input: Current sensor j data observations X j , Cluster centroids for sensor j, Missing data distance

thresholds for all clusters in sensor j
2 Obtain finite difference of data in X j

3 if X j is constant then

4 Flag missing data

5 end

6 else

7 Use centroids to obtain cluster for X j

8 Calculate distance d from X j to classified cluster centroid

9 if d > Distance threshold for current cluster then

10 Flag missing data

11 end

12 end

13 Return: Missing data flag for X j

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:12 D. Hussein and G. Bhat

Table 1. Data Format for Each Row in the

Mapping Table

Sensor 1
cluster

Sensor 2
cluster

· · · SensorM
cluster

Count

combinations of clusters and recording the number of occurrences of each combination. Each row
of the reduced table contains the elements shown in Table 1 to capture the cluster mapping across
sensors and count of occurrences for each unique mapping. Intuitively, the mapping table captures
the inter-relationship between observations in each sensor. For instance, if data of sensor 2 is
generally flat when sensor 1 has a repetitive pattern, respective cluster mappings of the sensors
will reflect the relationship in the table. This is similar to capturing the joint probability of sensors
without utilizing expensive generative networks.

4.4.2 Runtime Imputation usingMapping Table. At runtime one ormore sensorsmay bemissing
and we must find the appropriate imputation for each missing sensor. We use the mapping table to
predict corresponding clusters for each missing sensor. The algorithm starts by obtaining clusters
for sensors that are available. The clusters for available sensors are then used as keys to find
corresponding rows in the mapping table obtained in the previous section. The matching row is
used to predict the cluster for missing sensors based on observations made during design time. For
example, in a system with three sensors, consider that sensor 1 is missing and other sensors map
to clusters 1 and 2, respectively. We use (_, 1, 2) as a key to find a potential table row (3, 1, 2). Given
this, we predict the cluster for the missing sensor as cluster 3. Finally, the stored representative
window for the predicted cluster is used as imputation for the missing sensor.

Resolution formultiplemapping table entries: Table lookupwith clusters of available sensors
may find more than one matching row when data from multiple sensors are unavailable. In such
cases, wemust choose one of thematching rows for predicting the clusters of missing sensors. This
is a challenging problem because we do not have any information about missing sensor to obtain
the imputation in an energy-efficient manner. Since the goal of CIM is to find the most likely data
pattern missing sensors, we choose the row with highest count for our prediction.
Choosing the row with highest count is reasonable since the mapping is observed with highest

frequency in the training data. If multiple rows have the same count, we use the representative win-
dows from all rows for imputation. Then, we choose the row that provides classification with the
highest logit value as the imputation row. This ensures that the row which has higher confidence
for classification is chosen as the representative window for missing data recovery. After predict-
ing clusters for missing sensors, we use the respective representative windows as imputation and
perform activity classification.
Choosing the row with highest count can result in incorrect clusters for some windows. This

can result in one of the following two conditions:

• Wrong cluster is chosen for imputation, however, the classification result is correct. This
happens when two clusters are close to each other and imputation with either cluster results
in correct classification.
• Wrong cluster is chosen for imputation, which also results in incorrect classification. These
instances could possibly be avoided by choosing rows that do not have the highest count.

In our experiments, we observe that there are some instances of the second scenario that re-
sult in incorrect classification due to choosing the row with highest count. Resolving these errors
would require using more complicated algorithms for the mapping function, such as generative

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:13

neural networks. The neural network can take data of available sensors as input and provide the
appropriate output cluster as the output. However, this results in higher overhead of running neu-
ral networks at runtime. Since our goal is to provide low overhead imputation and classification
we use the rows with highest count for imputation. Choosing the row with highest count is also
reasonable since the mapping is observed with highest frequency in the training data.

4.5 Training Data Augmentation for Reliable Classification

Data imputation with representative windows provides high accuracy for most activity windows.
However, using representative windows instead of actual data may result in misclassifications for
a small number of cases. We can improve the accuracy for these cases by training the classifier to
recognize representative windows so that it is able to obtain accurate activity classification with
missing sensors. To this end, we propose to augment training data by substituting observed data
with representative windows. Specifically, we first obtain the cluster for observed data and then
replace it with the respective representative window. The augmentation is done for one sensor
at a time so that new training examples contain at most one representative window at a time.
The HAR classifier is re-trained with the augmented data to improve reliability of classification.
We denote the re-trained classifier with F ∗

θ
. We note that we can also perform augmentation for

specific activities if classification accuracy after imputation is lower for certain activities.

4.6 Imputation-Aware Activity Classification

The uncertainty in classification and sensor data increases when we perform imputation for miss-
ing data. However, most prior approaches for data recovery in HAR provide a single activity label
after imputing data. The single label does not capture uncertainty in the sensor data. Instead, pro-
viding a single label assigns the highest confidence to the label even when the model is not certain
of the outcome. To overcome this challenge, we propose to provide imputation-aware prediction
sets for activities to capture uncertainty in classification with imputed data.
CIM leverages mapping tables in Section 4.4 to obtain imputation-aware classification sets. Let

us consider that a lookup in the mapping table with clusters of available sensors yields R matching
rows. For each of these rows, we impute missing data with respective representative windows and
use the activity classifier to obtain normalized logits. That is, for each row ri , we obtain logits as:

Lri = [l1,i , l2,i , . . . , lA,i] 1 ≤ i ≤ R (7)

where Lri is the set of normalized logits for ith row, A is the number of activities, and lk,i (1 ≤
k ≤ A) is the logit value for k th activity. The logit values for each row add to one since we use
normalized values. Repeating classification for all matching rows results in a matrix with R rows
and A columns. Next, we add logits for each activity across all the rows and normalize it to obtain
the overall logit value of each activity as:

L =
[R∑
i=1

l1,i ,
R∑
i=1

l2,i , . . . ,
R∑
i=1

lA,i

] /
R (8)

Intuitively, each value in Equation (8) represents probability of each activity across the R matching
rows. Given these probabilities, we can define a desired confidence level α and use it to obtain a
set of predictions. Specifically, we sort the vector of probabilities in Equation (8) and add activities
into the prediction set until desired confidence level α is achieved. The imputation-aware activity
classification is similar to conformal prediction, which is being widely used to quantify uncertainty
in machine learning models [39, 42].

We note that imputation-aware prediction presents a trade-off in terms of the runtime overhead
and classification accuracy. In particular, obtaining prediction sets requires multiple rounds of

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:14 D. Hussein and G. Bhat

classification, which increases overhead when compared to obtaining a single classification. We
can lower the overhead by using a subset of R rows for classification. Specifically, CIM can perform
classification with R rows with highest counts in the mapping table while using the counts as
weights. This avoids performing classification with all possible matching rows in the mapping
table, thus lowering the overhead. Using counts as weights in imputation-aware classification also
gives higher priority to activity labels observed with higher frequency during training. Overall,
prediction sets significantly improve the accuracy with slightly higher overhead.

Choosing single vs imputation-aware classification: The choice between single and
imputation-aware classification approaches typically depends on user preferences and application.
If a user wishes to obtain a single classification albeit with a lower accuracy, they may choose the
single activity label. This is useful when we would like to get exact information about a user’s
activity, such as the time spent in walking. In these scenarios, it is beneficial to obtain a single ac-
tivity label with the knowledge that some of the classifications may be incorrect in case of multiple
missing sensors. Similarly, imputation-aware classification provides a set of possible activities with
a high probability of containing the actual activity. The classification sets allow higher accuracy
while noting that the true activity is one of the predicted activities. In general, imputation-aware
classification is superior since it provides both activities and an indication of uncertainty in clas-
sification. As such, we envision that imputation-aware classification will be used as the default
option in CIM. Single activity classification is also provided as an option for users, if needed.

4.7 CIM Summary

In summary, CIM first performs the following offline steps to train clusters and classifiers.

(1) Train a baseline classifier with actual sensor data.
(2) Obtain clusters for each sensor used for HAR and mapping between sensors.
(3) Utilize Algorithm 1 to find representative window for each cluster for all sensors.
(4) Calculate missing data threshold for each cluster.
(5) Train reliable classifier with data augmentation.

Using the trained clusters and classifiers, CIM performs following steps at runtime.

(1) Detect the set of missing sensors using Algorithm 2.
(2) Predict clusters for missing sensors using mapping table and impute with representative

windows using the approach in Section 4.4.2.
(3) Obtain either a set of activities using imputation-aware classification in Section 4.6 or a

single activity label using reliable activity classifier F ∗
θ
.

Training complexity: The training complexity consists of the k-means clustering, obtaining rep-
resentative windows for each cluster, calculation of threshold for missing data detection, and map-
ping across clusters. The first step during training is k-means clustering. In general, k-means clus-
tering is a NP-hard problem to obtain the optimal solution. However, most real-world heuristics
are able to converge with significantly lower iterations. In our implementation, we utilize the
Lloyd’s algorithm for clustering, which has an average case complexity ofO (kNI) where N is the
number of windows, k is the number of clusters, and I is the number of iterations [11]. We exe-
cute k-means with maximum of 300 iterations, however, in practice k-means is able to converge
in significantly fewer iterations. Next, CIM training executes Algorithm 1 to find representative
windows for each cluster. The key step in representative window selection is the pairwise dis-
tance calculation between windows in a cluster. The complexity of this step is given byO (T ∗W 2)
whereT is the number of samples in a window andW is the number of windows in a cluster. The
missing data detection threshold computations can also be performed along with representative

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:15

window selection since it depends on pairwise distance between windows. Finally, the mapping
table generation requires a linear search through all training windows in a dataset. This results in
a complexity ofO (N) for obtaining the mapping table. Combining all steps, the overall complexity
for CIM training is in the order of O (T ∗W 2), since it is the dominant factor.

Runtime complexity:We evaluate the runtime complexity of imputation-aware CIM since it has
higher complexity among the two CIM versions. The missing data detection requires obtaining
clusters for available sensor data, which in turn requires calculation of distance for each centroid.
ConsideringM sensors, this results in a complexity ofO (M ∗Cmax), whereCmax is the maximum
number of clusters. Next, CIM obtains the matching rows in the mapping table as a function of the
sensor data clusters. This requires a linear search through the mapping table, resulting in a com-
plexity of O (lM) where lM is length of the mapping table. Finally, CIM obtains classification with
eachmatching row of themapping table. In theworst case, this results in lM classificationswhen all
rows of the table are matching. Since each classification takes a constant time, the complexity for
classification is O (lM). Overall, considering all steps, the dominant step is classification, resulting
in a complexity of O (lM) for runtime imputation. We note that these are worst case complexities
and the execution times are significantly lower in practice.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

5.1.1 Wearable Device Model. We use the Odroid-XU3 development board [12] to implement
CIM for runtime imputation. Odroid-XU3 integrates four high-performance ARM Cortex-A15
cores and four low-powerARMCortex-A7 cores. The board also includes sensors tomeasure power
consumption of A15 and A7 cores. We choose the Odroid-XU3 board for implementation since it
provides sufficient memory to implement a generative approach as a baseline comparison.
We measure the execution time and energy consumption of CIM by running it on the A7 cores.

A7 cores are chosen for measurements since our goal is to perform energy-efficient imputation.
Moreover, A7 cores are closer to processors used in commercial wearable devices, such as Apple
watch [7], when compared to A15 cores. We also note that CIM is not dependent on a particular
processor and any other embedded processor can be used to evaluate CIM.

5.1.2 Datasets. We use three publicly available HAR datasets for evaluating CIM. Brief descrip-
tions for each dataset are provided below.

w-HAR [3]: w-HAR is a multi-modal HAR dataset that provides sensor data from a wearable
stretch sensor and a 3-axis accelerometer. w-HAR includes data from 22 users for 8 activities:
{Jump, lie down, sit, stand, walk, stairs up/down, and transition}. The w-HAR dataset is unbalanced
and number of examples for stairs up/down and transition are significantly lower. Therefore, we
use five activities for our analysis while leaving out stairs up/down and transition.
We simulate missing data in w-HAR by making individual axes of the accelerometer or stretch

sensor unavailable at runtime. For instance, in one of the scenarios, it is assumed that x-axis is
unavailable while other axes of the accelerometer and stretch sensor are available. We choose to
implement missing data for individual axes in w-HAR since it only includes two sensors. Overall,
we obtain 14 missing data scenarios for w-HAR by making one, two, or three axes missing.

Shoaib et al. [40]: The dataset from Shoaib et al. [40] includes data from five accelerometers
while 10 users perform seven activities: {Biking, Down stairs, Jogging, Sitting, Standing, Up stairs,

and Walking}. The sensors are mounted in the left pocket, right pocket, wrist, belt, and upper arm.
The number of missing sensors for Shoaib dataset is varied from one to four, resulting in a total of
30 scenarios. We assume that all three axes of a sensor are missing for Shoaib et al. dataset.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:16 D. Hussein and G. Bhat

Table 2. Summary of 1D-CNN Parameters for Three Datasets

Dataset Input Conv1 Conv2 Conv3 FC1 FC2

PAMAP2 (3, 1536) (8, 1536) (16, 768) (32, 384) 64 5
w-HAR (4, 64) (8, 64) (16, 32) (32, 16) 64 5
Shoaib et al. (5, 600) (8, 600) (16, 300) (32, 150) 64 7

PAMAP2 [36]: The PAMAP2 dataset includes data from three accelerometers for nine users per-
forming five activities: {lying, sitting, walking, running and cycling}. The sensors are placed on the
wrist of the dominant arm, chest, and the dominant side’s ankle. The number of missing sensors
is varied from one to two, resulting in a total of 6 missing data scenarios.
We use the window lengths specified in each dataset to evaluate CIM. Specifically, window

length for w-HAR is 64 samples, while it is 200 × 3 and 512 × 3 samples for Shoaib et al., and
PAMAP2 datasets, respectively.

5.1.3 CIM Training and Scalability. Training CIM involves obtaining sensor data clusters and
their respective representativewindows. CIM also learns themapping between sensor data clusters
for imputation at runtime. We perform the training process offline on a Nvidia T4 GPU [29] unit
using the Pytorch library [32]. The number of clusters used for sensors in each dataset are as
follows: PAMAP2 – 5, w-HAR – 16, Shoaib et al. – 8. The training process for all three datasets
takes less than 11 minutes, highlighting the fact that CIM has minimal training overhead.
In general, the number of clusters may increase with the number of classes in a dataset. How-

ever, the learning complexity for CIM is primarily dependent on the number of sensor data clusters
in the dataset. Specifically, CIM must learn representative windows for multiple clusters and re-
lationship between them. The complexity of this process increases with the number of clusters
since CIM has to process additional representative windows. The number of clusters, in turn, de-
pends on the distribution of data for the dataset. For instance, a sensor that exhibits high degree
of variations among activities and users may result in more clusters compared to a sensor that
does not exhibit high variations. As such, the learning overhead of CIM does not directly depend
on the number of activities. Our evaluations show that training CIM with as many as 40 clusters
for each sensor takes less than 20 minutes on a Nvidia T4 GPU. The training cost is acceptable
since it is a one-time offline cost. Once trained, CIM does not need any updates at runtime. Overall,
these evaluations show that CIM is able to scale to larger number of clusters with minimal offline

training cost.

5.1.4 HAR Classifier Representation. We employ a 1-D CNN as the HAR classifier. The 1D-CNN
includes three convolutional layers and three maxpool layers followed by two fully connected
layers with ReLU activation for activity classification. Table 2 shows the details of 1D-CNN for
each dataset. We note that the core architecture is same for all three datasets with the exception of
input and output layers due to changes in window length and number of activities. Raw data from
sensors are used as input to the 1D-CNN classifier. We utilize 60% of the data for training and 40%
is reserved for testing. The Adam optimizer [20] is used for 10 epochs to train both standard and
reliable HAR classifiers. The baseline training accuracy for each dataset without any missing data
is as follows: w-HAR – 97.2%, Shoaib et al. – 97.5%, PAMAP2 – 98.7%.

5.1.5 Baseline ImputationMethods. Weuse generative adversarial imputation networks (GAIN)
and k-nearest neighbor imputation method as baseline approaches for data recovery. In the follow-
ing, we provide brief descriptions of each approach.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:17

Table 3. Summary of Clusters for

Each Dataset

Dataset Number of clusters

PAMAP2 5
w-HAR 16
Shoaib et al. 8

Baseline GAIN model: GAIN [44] uses generative adversarial training to obtain a deep neural
network that takes observed data and a mask of missing sensor instances as input. Given this
input, the generator in GAIN outputs a matrix of imputed sensor values. The primary challenge
with GAIN is high memory requirement for storage of generator parameters and computational
overhead for each imputation. Furthermore, it has been shown that generative networks need
extensive fine-tuning of hyperparameters, which makes their training challenging in nature [4].

k-Nearest neighbors (KNN) imputation: KNN has been widely used for data imputation in
prior work [33]. The KNN algorithm first learns distribution of data and nearest neighbors for
each missing sample. At the end of training, the KNN imputation algorithm stores a set of train-
ing data for runtime usage. At runtime, when there are missing sensors, KNN imputation first
calculates k nearest neighbors for a window with missing data using data from available sensors.
Then, data for missing sensors are recovered using the k neighbors. The number of neighbors k
is a hyperparameter in KNN where higher k generally results in better performance [9]. We im-
plement KNN-based imputation for HAR. We start with a k of 5 and gradually increase it until
there are no further improvements in accuracy. After this analysis we choose the value of k as 10
since we did not observe significant accuracy improvements with higher k . While KNN is useful
and has been used widely, it suffers from high memory and execution time overhead for runtime
usage. Specifically, KNN must store sufficient examples in memory to obtain suitable neighbors,
which increases the memory overhead. KNN must obtain distance for sensor data from all stored
examples, which can also be computationally expensive.

5.1.6 Evaluation Metrics. Classification accuracy and energy overhead are used as the primary
evaluation metrics in this paper since accuracy is crucial for end users, especially in health ap-
plications. In addition to accuracy, we calculate precision, recall, and F1 scores for each dataset.
Similarly, energy overhead determines the overall battery lifetime of wearable devices and energy-
efficient operation can significantly improve adoption of wearable devices [8].

5.2 Analysis of Sensor Data Clusters

We start our experimental validation with an analysis of sensor data clusters and their respective
representative windows. For each dataset, we perform a design space exploration with different
number of clusters in the k-means algorithm to ensure that we obtain balanced and well-separated
clusters. Table 3 shows the number of clusters obtained for each dataset at end of the design space
exploration. Same number of clusters are chosen for each sensor for simplicity and ease of pre-
sentation. Moreover, we note that clusters are obtained at the level of axes for w-HAR since we
consider each axis as a separate sensor. We obtain the largest number of clusters for w-HAR since
it shows higher variability in data patterns. We note that CIM does not depend on a particular
number of clusters and works with variable number of clusters.
After obtaining sensor data clusters, we obtain representative windows for each cluster. Figure 3

shows windows and representative windows for three clusters of y-axis accelerometer data in the
w-HAR dataset. We see that windows of each cluster follow a distinct pattern with some variations.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:18 D. Hussein and G. Bhat

Fig. 3. Illustration of windows in three clusters and their respective representative windows for y-axis in the

w-HAR dataset.

For instance, the cluster in Figure 3(a) has a peak around 1.5 s in each window and flattens after
about 1.75 s. On the other hand, the cluster in Figure 3(b) has peaks around 1.2 s and 2.0 s. The
representative windows for each cluster are shown using a red line with triangle markers. We
see that the representative window closely follows data pattern in the cluster for all three cases.
Consequently, the representative window will be able to substitute windows in the cluster if a
sensor is unavailable at runtime. This shows that our approach is able to separate data into clusters
and identify a single representative window for each cluster. Representative windows are used for
data imputation and classification as we show in the following sections.

5.3 Validation of Missing Data Detection

One of the key aspects of accurate data imputation and classification is missing data detection. The
missing data detection algorithm must identify missing sensors while avoiding false positives. We
analyze the performance of missing data detection when missing sensor values are observed as
Gaussian noise with zero mean and variance that is representative of actual data range. Gaussian
noise is chosen for evaluation since it is more challenging compared to constant data cases. We
choose missing detection threshold of 95th percentile for w-HAR and Shoaib et al. and 1.05 for
PAMAP2.
Figure 4 shows accuracy of missing data detection for all three datasets. For each dataset, we

vary the number of missing channels and variance of Gaussian noise. The variance is chosen as
a function of range of actual observations for each sensor. Each bar in Figure 4 shows the av-
erage detection accuracy with a given number of missing sensors. For instance, the first bar in
Figure 4(a) shows the average detection accuracy for three scenarios of one missing sensor for
PAMAP2 dataset. The accuracy number includes both correct predictions and false positives. That
is, we flag a detection error whenever a missing sensor is not detected and when a sensor is identi-
fied as missing in spite of it being available.We see that the accuracy increases with larger variance
values for all three datasets. The accuracy for w-HAR and Shoaib et al. datasets is more than 80%
for most of the scenarios, including when there are multiple sensors missing. The detection ac-
curacy for w-HAR is lower when variance is 0.5 because the missing data patterns are similar to
actual sensor data. As such, the missing data patterns fall within valid regions of clusters and the
algorithm is unable to detect the missing data. At the same time, we note that lower detection
accuracy does not significantly impact the classification accuracy. This is because the reliable clas-
sifier trained with data augmentation is able to handle small perturbations in data. PAMAP2 has
lower accuracies when compared to w-HAR and Shoaib datasets, especially when the variance is
lower than 10. This is because PAMAP2 has higher range of data values, which makes missing
data detection more challenging with smaller variance. At the same time, we note that classifica-
tion accuracies are not significantly affected since the 1D-CNN is able to handle small variations
in missing data due to our training with augmented data.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:19

Fig. 4. Missing data detection accuracy for (a) PAMAP2 (b) w-HAR and (c) Shoaib et al. datasets with varying

Gaussian noise variance.

Fig. 5. Comparison of classification accuracy for (a) PAMAP2, (b) w-HAR and (c) Shoaib et al. datasets. We

assume that missing data are observed as Gaussian noise with zero mean and unit variance. Accuracy with

no missing data is represented with a green reference line.

5.4 Accuracy with CIM Imputation

The next step after missing data detection is data imputation and classification. The missing data
configuration for each dataset is Gaussian noise with zero mean and unit variance. We use the
proposed mapping table and representative windows to perform imputation for each dataset. This
section analyzes accuracy with a single label prediction and results for imputation-aware classifi-
cation are provided in the next section.
Figure 5 shows a comparison of classification accuracy of CIM against the accuracy with miss-

ing data, GAIN, and KNN for all three datasets. Specifically, each point in the figure shows mean
and standard deviation of classification accuracy over all possible scenarios with a given number
of missing sensors. For example, in the case of two missing sensors in the Shoaib dataset, we ob-
tain the average and standard deviation over (5 choose 2) combinations of possible scenarios. We
also show the classification accuracy with actual data using a green reference line. It is seen that
CIM achieves higher accuracy compared to GAIN and KNN for most of the scenarios. In partic-
ular, as the number of missing sensors increases, the gap between accuracy of CIM and baseline
approaches increases significantly. For instance, with twomissing sensors for the PAMAP2 dataset,
CIM has close to 40% higher mean accuracy than GAIN. Similar accuracy gains are observed with
respect to KNN as well. CIM is able to achieve these accuracies with significantly lower overhead
compared to GAIN, as we show in Section 5.8. The gap between CIM and GAIN is lower for one
missing sensor since GAIN is able to leverage a generator network with a larger number of param-
eters to impute data more accurately. However, GAIN fails once the number of missing sensors
is higher than one. The accuracy for GAIN reduces with increasing number of missing sensors
because GAIN depends on observed sensor data to generate missing values. As the number of
missing sensors increases, available data for GAIN reduces, thus leading to higher error. Similarly,
KNN is unable to find appropriate neighbors in the dataset when multiple sensors are missing,
leading to accuracy drop.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:20 D. Hussein and G. Bhat

Table 4. Comparison of Precision, F1, and Recall Scores for CIM, GAIN,

and KNN for PAMAP2 Dataset

Actual Number of missing sensors

1 2

CIM GAIN KNN CIM GAIN KNN

Precision 0.988 0.800 0.060 0.736 0.829 0.050 0.448

Recall 0.987 0.791 0.080 0.510 0.711 0.076 0.238

F1-score 0.987 0.819 0.196 0.527 0.746 0.190 0.291

Table 5. Comparison of Precision, F1, and Recall scores for CIM, GAIN, and KNN for w-HAR Dataset

Actual Number of missing sensors

1 2 3

CIM GAIN KNN CIM GAIN KNN CIM GAIN KNN

Precision 0.971 0.898 0.800 0.756 0.837 0.163 0.605 0.741 0.136 0.434

Recall 0.971 0.888 0.413 0.628 0.809 0.150 0.420 0.628 0.146 0.268

F1-score 0.971 0.886 0.386 0.641 0.809 0.060 0.395 0.636 0.060 0.222

Table 6. Comparison of Precision, F1, and Recall scores for CIM, GAIN, and KNN for Shoaib Dataset

Actual Number of missing sensors

1 2 3 4

CIM GAIN KNN CIM GAIN KNN CIM GAIN KNN CIM GAIN KNN

Precision 0.975 0.876 0.02 0.651 0.769 0.02 0.559 0.631 0.02 0.464 0.446 0.02 0.330

Recall 0.975 0.869 0.14 0.609 0.759 0.14 0.459 0.608 0.14 0.364 0.428 0.14 0.276

F1-score 0.975 0.864 0.04 0.573 0.743 0.04 0.399 0.570 0.04 0.293 0.357 0.04 0.197

CIM has higher accuracy, on average, compared to classification with observed Gaussian noise.
In particular, for the Shoaib et al. dataset, the accuracy with missing data is less than 40%, which
is a significant degradation. Similar trends are observed for other datasets as well.

Precision, recall, and F1-scores:We also analyze the precision, recall, and F1-scores of all meth-
ods for the three datasets as a function of the number of missing sensors. Tables 4–6 show the
precision, recall, and F1-scores for PAMAP2, w-HAR, and Shoaib et al. datasets, respectively. The
scores are grouped as per the number of missing sensors and each entry in the table gives the av-
erage score for the respective missing sensor scenario. We see that the proposed single-prediction
CIM approach is able to achieve consistently higher precision, recall, and F1-scores compared to
GAIN and KNN. In particular, CIM has significantly higher scores compared to GAIN and KNN
when one or two sensors are missing. This is important because the probability of one sensor
missing is higher in practice when compared to other scenarios. CIM also maintains higher perfor-
mance when more than two sensors are missing, as shown in Tables 5 and 6, albeit with a lower
gap in scores. Overall, these results show that CIM is able to provide higher precision, recall, and
F1-scores in addition to higher accuracy. Higher precision and recall imply that CIM obtains better
sensitivity and specificity compared to GAIN and KNN.
In summary, these results show that CIM is able to impute data accurately with low overhead

while GAIN is unable to recover accuracy with more than one missing sensor despite having a
more complex generator network. CIM also outperforms KNN in all scenarios while avoiding the
high memory and computational overhead of KNN.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:21

Fig. 6. Comparison of classification accuracy with single prediction CIM and imputation aware CIM for (a)

PAMAP2, (b) w-HAR and (c) Shoaib et al. datasets. Accuracy with no missing data is represented with a

green reference line.

5.5 Validation of Imputation-Aware Activity Classification

This section analyzes accuracy of imputation-aware classification proposed in CIM. Recall
that due to uncertainty in predictions with data imputation, we provide a set of labels in the
imputation-aware classification. Specifically, we provide a set of labels with a 90% confidence
level by setting α = 0.90. The primary advantage of this method is that it provides a larger set of
activity predictions when uncertainty is higher, which enables users to make informed decisions
from activity labels.
Figure 6 shows the accuracy of imputation-aware CIM and single prediction CIM outlined in

the previous section. We see that for all three datasets, imputation-aware CIM is able to achieve
significantly higher accuracy when compared to the single-prediction CIM. Indeed, for the Shoaib
dataset, accuracy of imputation-aware CIM is close to baseline accuracywith nomissing data. Even
for PAMAP2 dataset where single prediction version already provides high accuracy, imputation-
aware CIM is able to improve the classification accuracy. Our evaluations also show that the pre-
diction set for all three datasets contains, on average, two activities (out of a potential five to seven
activities). Moreover, the activity set consists of at most two labels when a single sensor is missing
for all datasets. The size of the prediction set intermittently increases to three or four when two or
more sensors are missing. Length of the prediction is an important metric because larger predic-
tion sets are not as useful as smaller prediction sets and CIM is able to maintain tight prediction
sets for all three datasets.
In summary, our experimental evaluations show that CIM is able to accurately learn representa-

tive windows for sensor data, detect missing sensors, and provide imputation to enable accurate ac-
tivity classification. CIM is able to achieve significantly higher accuracy than state-of-the-art GAIN
and KNN methods while avoiding expensive computations and memory overhead at runtime.

5.6 CIM Accuracy with Random Missing Data

Experimental evaluations so far have assumed that missing sensors are not available for the entire
window. While this is useful, missing data may occur randomly in real world scenarios. Therefore,
this section evaluates performance of CIM in the random missing data scenario.
The evaluation in this section uses the following configurations for missing data percentage:

{10%, 20%, 30%, 40% and 50%}. The random missing data are applied to all possible missing data
scenarios in all three datasets. That is, in each window we make a randomly chosen set of sam-
ples missing. For instance, 10% of samples in a window are made missing when the missing data
percentage is 10%. Following randommissing data generation, we use the CIM representative win-
dows and classifier to impute missing data and perform classification. That is, we do not re-train
CIM to handle randommissing data.We use both single-prediction and imputation-aware versions
of CIM to evaluate the accuracy with random missing data.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:22 D. Hussein and G. Bhat

Fig. 7. Classification accuracy with single prediction CIMwith randommissing percentages for (a) PAMAP2,

(b) w-HAR and (c) Shoaib et al. datasets.

Fig. 8. Classification accuracy with Imputation-aware CIM with random missing percentages for (a)

PAMAP2, (b) w-HAR and (c) Shoaib et al. datasets.

Figure 7 shows the average accuracy and associated standard deviation with random missing
data for all datasets. Single-prediction CIM is used to impute data and predict activities in the
presence of random missing data. The x-axis denotes the percentage of random missing data in
each window while the y-axis shows the average accuracy and standard deviation. The figure
also shows the baseline accuracy with no missing data using a green line. We take the average of
accuracy across all missing data scenarios in each dataset. For instance, for w-HAR, each point is
an average of 24 − 2 missing data scenarios. The figure shows that CIM is able to handle random
missing data with average accuracies that are within 20% of baseline accuracy even when 50% of
data are randomly missing. Overall, this analysis shows that CIM performs similar or better than
the case of missing data in the entire window.
Next, Figure 8 shows the average accuracy and associated standard deviation with randommiss-

ing data for all datasets when using imputation-aware CIM. Similar to the previous figure, each
point on the figure shows average accuracy across all missing data scenarios with a given per-
centage of random missing data. The figure shows that imputation-aware CIM is able to achieve
accuracy that is within 10% of the baseline accuracy with no missing data for all scenarios. In sum-
mary, analysis in this section shows that CIM is able to handle both block and random missing
data scenarios with just one set of training, making it widely applicable.

5.7 Training Classifiers with Missing Data

Another option to handle missing data is to train classifiers with missing data examples so that
runtime imputation is not needed. To this end, we train a classifier with zero substituted missing
data. Specifically, we augment training data with windows that have zeros substituted for missing
sensors. The trained classifier is used at runtime to recognize activities in the presence of missing
data. Classifier with zeros in training for missing data shows greater than 90% for all datasets. Test
accuracy is also greater than 90% when missing data are represented with zeros. However, if the
missing data distribution changes from training, the accuracy drops, as shown in Figure 9. Specifi-
cally, the figure shows accuracy of classification whenmissing data are observed as Gaussian noise.
The accuracy for all three datasets except one missing sensor in PAMAP2 drops significantly to

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:23

Fig. 9. Accuracy of classifier trained with missing data for (a) PAMAP2, (b) w-HAR, and (c) Shoaib et al.

Fig. 10. Comparison of overhead for (a) execution time and (b) energy overhead for GAIN and CIM. Y-axis is

represented in log scale for parts (a) and (b). (c) Energy savings achieved by CIM when compared to GAIN.

less than 50%. In contrast, CIM is able to maintain higher accuracies, as shown in Figure 5. The
key challenge in training classifier with missing data is that it requires prior knowledge of miss-
ing data patterns for all scenarios. In summary, proposed single-imputation and imputation-aware
CIM approaches are able to both detect and impute missing data before classification, thus provid-
ing reliable classification with missing data.

5.8 Implementation Overhead

We implement the proposed CIM approach on the Odroid-XU3 board to measure execution time,
energy consumption, and memory overhead. We also compare the overhead of CIM with GAIN
to understand potential of energy savings with CIM. The primary execution time and energy con-
sumption overhead for single prediction CIM consists of missing data detection, cluster prediction,
and imputation. Figure 10 shows a comparison of the execution time and energy consumption over-
head per imputation for the three datasets. We see that execution time overhead of CIM is lower
than 1 ms for all three datasets while execution time for GAIN is close to 1 s for PAMAP2 and
Shoaib et al. datasets. Execution time of GAIN for w-HAR is lower since window sizes for w-HAR
are smaller. Similar to execution time, CIM has significantly lower energy consumption compared
to GAIN. For instance, for the PAMAP2 dataset GAIN consumes 372 mJ for each imputation while
CIM consumes just 0.5 mJ. Overall, CIM achieves close to 100% energy savings compared to GAIN,
as shown in Figure 10(a). These savings can significantly increase the operating time of wearable
devices and improve their adoption for health applications.
The energy overhead for imputation-aware CIM is slightly higher since we have to perform

multiple activity classifications to obtain prediction sets. Each classification using the 1D-CNN
takes about 13 ms and 8 mJ of energy. This additional overhead is still lower than GAIN and we
can tune the number of classifications at runtime to lower the overhead, as noted in Section 4.6.
Next, we analyze the memory overhead of CIM and GAIN. Memory overhead for CIM consists

of the mapping table and cluster information. Similarly, the memory overhead for GAIN consists
of generator weights. Table 7 compares the memory overhead for both approaches. We see that
CIM has significantly lower overhead compared to GAIN. For instance, GAIN consumes 43 MB
for the Shoaib et al. dataset, which is more than the memory available in a number of low-power

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

116:24 D. Hussein and G. Bhat

Table 7. Summary of Memory Overhead for CIM and GAIN

CIM

Dataset
Mapping
table (KB)

Cluster
information (KB)

Total (KB) GAIN (MB)

PAMAP2 2 185 187 102
w-HAR 46 45 91 0.33
Shoaib et al. 22 197 219 43

processors. In contrast, the overhead for CIM is only 219 KB, which is almost 200 times lower than
GAIN. The memory savings for w-HAR dataset are lower since the input size for GAIN is smaller
and CIM stores a larger number of clusters. Even with more clusters, CIM is able to have memory
overhead that is about four times lower than GAIN. In summary, CIM outperforms state-of-the-art
imputation approaches in terms of accuracy while having significantly lower overhead.

6 CONCLUSIONS AND FUTURE WORK

HAR forms an important component of several health applications such as movement disorders,
rehabilitation, and fitness monitoring. HAR using multiple sensors is susceptible to missing data
due to energy constraints, user error, or communication challenges. This paper proposed CIM, a
clustering-based imputation method for energy-efficient missing data recovery in HAR. CIM first
defined a set of possible clusters and representative data patterns for each sensor in HAR. Then,
we created and stored a mapping between clusters across sensors. At runtime, when data from a
sensor are missing, we utilized the stored mapping table to obtain the most likely cluster for the
missing sensor. The representative window for the identified cluster is then used as imputation
to perform activity classification. We also proposed an imputation-aware HAR classification that
provides a set of activities due to higher uncertainty with missing data. Experiments with three
HAR datasets showed that single-prediction version of CIM achieves accuracy that is within 10%
of accuracy with no missing data for one missing sensor. The accuracy gap reduces to about 1%
with imputation-aware classification. Energy measurements on the Odroid-XU3 board showed
that CIM has close to 100% energy savings compared to state-of-the-art generative approaches.
Our immediate future work includes extending the approach to other health applications.

REFERENCES

[1] Antonio A. Aguileta, Ramon F. Brena, Oscar Mayora, Erik Molino-Minero-Re, and Luis A. Trejo. 2019. Multi-sensor

fusion for activity recognition–a survey. Sensors 19, 17 (2019), 3808.

[2] Muhammad Arif, Mohsin Bilal, Ahmed Kattan, and S. Iqbal Ahamed. 2014. Better physical activity classification using

smartphone acceleration sensor. J. of Med. Syst. 38, 9 (2014), 95.

[3] Ganapati Bhat, Nicholas Tran, Holly Shill, and Umit Y. Ogras. 2020. w-HAR: An activity recognition dataset and

framework using low-power wearable devices. Sensors 20, 18 (2020), 5356.

[4] Eoin Brophy, Zhengwei Wang, Qi She, and Tomas Ward. 2021. Generative adversarial networks in time series: A

survey and taxonomy. arXiv preprint arXiv:2107.11098 (2021), 25.

[5] Seungeun Chung, Jiyoun Lim, Kyoung Ju Noh, Gague Kim, and Hyuntae Jeong. 2019. Sensor data acquisition and

multimodal sensor fusion for human activity recognition using deep learning. Sensors 19, 7 (2019), 1716.

[6] Ton De Waal, Jeroen Pannekoek, and Sander Scholtus. 2011. Handbook of Statistical Data Editing and Imputation.

Vol. 563. John Wiley & Sons.

[7] Paul Dempsey. 2015. The teardown: Apple watch. Engg. & Tech. 10, 6 (2015), 88–89.

[8] Alberto J. Espay et al. 2016. Technology in parkinson’s disease: Challenges and opportunities. Movt. Disorders 31, 9

(2016), 1272–1282.

[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning, Vol. 1. Springer.

[10] Zijian Guo, YimingWan, and Hao Ye. 2019. A data imputation method for multivariate time series based on generative

adversarial network. Neurocomputing 360 (2019), 185–197.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

A Novel Clustering-based Energy-Efficient Data Imputation Method for HAR 116:25

[11] Greg Hamerly and Jonathan Drake. 2015. Accelerating Lloyd’s algorithm for k-means clustering. Partitional Clustering

Algorithms (2015), 41–78.

[12] Hardkernel. 2014. ODROID-XU3. https://www.hardkernel.com/shop/odroid-xu3/ Accessed 11/20/2020. (2014).

[13] Dustin A. Heldman, Denzil A. Harris, Timothy Felong, Kelly L. Andrzejewski, E. Ray Dorsey, Joseph P. Giuffrida, Barry

Goldberg, and Michelle A. Burack. 2017. Telehealth management of parkinson’s disease using wearable sensors: An

exploratory study. Digital Biomarkers 1, 1 (2017), 43–51.

[14] Tahera Hossain, Md Atiqur Rahman Ahad, and Sozo Inoue. 2020. A method for sensor-based activity recognition in

missing data scenario. Sensors 20, 14 (2020), 3811.

[15] Tahera Hossain and Sozo Inoue. 2019. A comparative study on missing data handling using machine learning for

human activity recognition. In 2019 Joint 8th Int. Conf. on Informatics, Electron.& Vision (ICIEV) and 2019 3rd Int. Conf.

on Imaging, Vision & Pattern Recognition (icIVPR). 124–129.

[16] An-LunHsu, Pei-Fang Tang, andMei-Hwa Jan. 2003. Analysis of impairments influencing gait velocity and asymmetry

of hemiplegic patients after mild to moderate stroke. Arch. Phys. Med. Rehabil. 84, 8 (2003), 1185–1193.

[17] DinaHussein, Taha Belkhouja, Ganapati Bhat, and Janardhan RaoDoppa. 2022. Reliablemachine learning forwearable

activity monitoring: Novel algorithms and theoretical guarantees. In Proc. Int. Conf. on Comput.-Aided Des. (ICCAD’22).

1–9.

[18] Dina Hussein, Aaryan Jain, and Ganapati Bhat. 2022. Robust human activity recognition using generative adversarial

imputation networks. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE’22). 84–87.

[19] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning,

Vol. 112. Springer.

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In The Int. Conf. on Learning

Representations (Poster’15).

[21] Linghe Kong, Mingyuan Xia, Xiao-Yang Liu, Min-You Wu, and Xue Liu. 2013. Data loss and reconstruction in sensor

networks. In 2013 Proceedings IEEE INFOCOM. 1654–1662.

[22] Kai Kunze and Paul Lukowicz. 2014. Sensor placement variations in wearable activity recognition. IEEE Perv. Comput.

13, 4 (2014).

[23] Jennifer R. Kwapisz, Gary M.Weiss, and Samuel A. Moore. 2011. Activity recognition using cell phone accelerometers.

SigKDD Explorations News. 12, 2 (2011), 74–82.

[24] Oscar D. Lara and Miguel A. Labrador. 2012. A survey on human activity recognition using wearable sensors. IEEE

Commun. Surveys & Tut. 15, 3 (2012), 1192–1209.

[25] Shengzhong Liu et al. 2020. Handling missing sensors in topology-aware IoT applications with gated graph neural

network. Proc. Interactive, Mobile, Wearable and Ubiquitous Tech. 4, 3 (2020), 1–31.

[26] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, and Xiaojie Yuan. 2018. Multivariate time series imputation with

generative adversarial networks. In Proc. Advances in Neural Information Processing Systems. 1603–1614.

[27] Walter Maetzler, Jochen Klucken, and Malcolm Horne. 2016. A clinical view on the development of technology-based

tools in managing Parkinson’s disease. Movement Disorders 31, 9 (2016), 1263–1271.

[28] Abdullah Mamun, Seyed Iman Mirzadeh, and Hassan Ghasemzadeh. 2022. Designing deep neural networks robust to

sensor failure in mobile health environments. In 2022 44th Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC’22). 2442–2446.

[29] Nvidia. 2022. Nvidia Tesla T4 GPU. [Online] https://www.nvidia.com/en-in/data-center/tesla-t4/, accessed May 28,

2023. (2022).

[30] Henry Friday Nweke, Ying Wah Teh, Uzoma Rita Alo, and Ghulam Mujtaba. 2018. Analysis of multi-sensor fusion for

mobile and wearable sensor based human activity recognition. In Proceedings of the Int. Conf. on Data Proc. and Appl.

22–26.

[31] Mohanad Odema, Nafiul Rashid, and Mohammad Abdullah Al Faruque. 2021. Energy-aware design methodology for

myocardial infarction detection on low-power wearable devices. In Proc. 26th Asia and South Pacific Des. Autom. Conf.

621–626.

[32] Adam Paszke et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Proc. Advances in

Neural Information Processing Systems 32 (2019).

[33] Ivan Miguel Pires, Faisal Hussain, NunoM. Garcia, and Eftim Zdravevski. 2020. Improving human activity monitoring

by imputation of missing sensory data: Experimental study. Future Internet 12, 9 (2020), 155.

[34] Okyza M. Prabowo, Kusprasapta Mutijarsa, and Suhono Harso Supangkat. 2016. Missing data handling using machine

learning for human activity recognition on mobile device. In Proc. Int. Conf. on ICT for Smart Society. 59–62.

[35] Nafiul Rashid, Berken Utku Demirel, and Mohammad Abdullah Al Faruque. 2022. AHAR: Adaptive CNN for energy-

efficient human activity recognition in low-power edge devices. IEEE Internet of Things J. 9, 15 (2022), 13041–13051.

[36] Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked dataset for activity monitoring. In Int. Symp.

Wearable Comput. 108–109.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

https://www.hardkernel.com/shop/odroid-xu3/
https://www.nvidia.com/en-in/data-center/tesla-t4/

116:26 D. Hussein and G. Bhat

[37] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. 2018. Synthesizing and reconstructing missing sensory modalities

in behavioral context recognition. Sensors 18, 9 (2018), 2967.

[38] Farzad Samie, Lars Bauer, and Jörg Henkel. 2016. IoT technologies for embedded computing: A survey. In Proc. Int.

Conf. on Hardware/Software Codesign and System Synthesis. 1–10.

[39] Glenn Shafer and Vladimir Vovk. 2008. A tutorial on conformal prediction. J. Machine Learn. Research 9, 3 (2008).

[40] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and Paul J. M. Havinga. 2014. Fusion of

smartphone motion sensors for physical activity recognition. Sensors 14, 6 (2014), 10146–10176.

[41] Sabera Talukder, Jennifer J. Sun, Matthew Leonard, BingniW. Brunton, and Yisong Yue. 2022. Deep neural imputation:

A framework for recovering incomplete brain recordings. arXiv:2206.08094 (2022).

[42] Chen Xu and Yao Xie. 2020. Conformal prediction for dynamic time-series. arXiv preprint arXiv:2010.09107 (2020).

[43] Hui-Shyong Yeo, Byung-Gook Lee, and Hyotaek Lim. 2015. Hand tracking and gesture recognition system for human-

computer interaction using low-cost hardware. Multimedia Tools and Applications 74 (2015), 2687–2715.

[44] Jinsung Yoon, James Jordon, and Mihaela Schaar. 2018. GAIN: Missing data imputation using generative adversarial

nets. In Proc. Int. Conf. on Machine Learn. 5689–5698.

[45] Zhao Zhao, S. Ali Etemad, and Ali Arya. 2016. Gamification of exercise and fitness using wearable activity trackers.

In Proc. Int. Symp. on Comput. Science in Sports. 233–240.

Received 23 March 2023; revised 2 June 2023; accepted 13 July 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 116. Publication date: September 2023.

