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Abstract—With the growth of big data in the past few decades,
compression has become inseparable from data generation. The
data generated daily across different platforms are correlated:
friend networks on Facebook and Instagram, contact networks
in subsequent days, and many more. This raises the question
of compressing a dataset using another correlated dataset. For
instance, can we compress the Facebook graph of friends when
we know Instagram’s graph? This can be cast as the classical
problem of source coding with side information, and the answer
is known to be positive when the graphs are “labeled” and/or
aligned, meaning we need to know the node corresponding to
Jon Doe in both Facebook and Instagram graphs. The classical
idea is to utilize joint typicality to decide whether two graphs are
correlated or not. In practice, graphs are often not aligned and/or
the labels are concealed to keep the identity of the users private.
In these scenarios, classical ideas are no longer applicable as joint
typicality highly depends on the ordering of sequences. In this
work, we prove for the first time the existence of lossless graph
compression schemes that utilize unlabeled side information and
improve the compression rate. In order to do that, we design
binning along with a novel testing criterion that relies on graph
matching, the closely related quadratic assignment problem and
its asymptotic properties.

I. INTRODUCTION

Graphical representations and graph databases have
emerged in all scientific disciplines, with graphs representing
the interaction and relationship between objects, events, and
situations. Examples include knowledge graphs in search en-
gines and recommendation systems, protein-protein interaction
networks, and genome graphs in biological systems. With the
huge amount of data that is collected and generated in the past
decade, their compression is of paramount importance.

Compression of graphical data goes beyond conventional
image data in the distinction that may be made between the
graph structure (semantics) and the graph labels. While labels
are an integral part of conventional data, there are various
applications where we need to work with unlabeled graphical
structures. In [1], fundamental limits and efficient algorithms
are devised for compressing random Erdös-Rényi (ER) graphs
up to their structures.

In this work, we ask the following novel question: In
compressing graphs, can one benefit from unlabeled graph
side information to reduce the rate of compression? Consider
correlated graphs G1 and G2; G2 may be deemed as side
information on G1. A permuted version of G2, say Gπ

2 when
the permutation is unknown, is referred to as the unlabeled side
information for G1. We wish to compress G1 and describe it

to a decoder as W , the decoder has access to the unlabeled
side information of G1, Gπ

2 . See Fig. 1.
Let us briefly discuss some applications. Consider the

knowledge graph that describes users’ movie ratings. Various
similar graphs with common semantics exist through Netflix,
IMDB, etc and the common practice is to remove labels
from the graph to ensure users’ privacy [2], [3]. In order to
compress the structural graph of Netflix’s dataset, we ask if
side information about IMDB’s database could help improve
rates of compression. Here, the Netflix graphical data is G1

and the side information graph Gπ
2 is the IMDB graphical data.

Permutation π captures the fact that the two datasets may be
anonymized and not aligned. As a second example, consider
the protein-protein interaction network across different species.
Since there are many common protein interactions between
proteins among different species, their corresponding networks
are correlated but unlabeled in the sense that the underlying
alignment between the two is not known [4]. We ask if such
data can be jointly compressed at a rate that is less than the
rate needed to compress each individually.

In this paper, we formulate the problem of graph compres-
sion with unlabeled side information and provide upper and
lower bounds on the rate of compression.

A. Related Work

Graph compression. In its simplest form, graph compres-
sion can be viewed as compressing a sequence of

(
n
2

)
edges

that describe the graph. In particular, in the lossless settings,
it can be viewed through the standard lens of compressing
binary sequences and traditional results hold [5]. In recent
years, three directions have been explored: (i) universality in
graph compression [6]–[9] (ii) locality in graph compression
[10], [11] where novel metrics of distortion are considered
to ensure the local structure is preserved, and (iii) structural
graph compression [1] where a graph is to be recovered up to
isomorphism. Our work is closest to the last in formulation.

Side information. When side information Y about the
source X is provided at the decoder, classical results such as
[12] have proved that rate reduction is possible. Generaliza-
tions to distributed lossless and lossy source coding are studied
in [13]–[17]. Fundamentally speaking, the rate reduction is
built on the statistical knowledge of the joint distribution of
(X,Y ) and is captured through joint typicality of n i.i.d.
realizations of Xn and Y n. Once one of these sequences is
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permuted, all existing frameworks fall short of answering the
question of whether side information is still useful. To the best
of our knowledge, this work is the first to tackle this question.

Graph matching. The problem of graph matching does not
study compression, but it asks a question that is implicitly
relevant to our problem. Given two graphs that are jointly
generated according to a joint distribution but have undergone
permutations of the nodes, how can we recover the mapping
that aligns them? This problem is known to be related to the
Quadratic Assignment Problem (QAP) [18]–[21]. In the past
decade, a great body of work in information theory [22]–[27]
and computer science [19], [28]–[30] have led to optimal
polynomial-time algorithms for correlated random ER graphs
that discover the mapping with high probability. Furthermore,
[18], [19], [22] have shown that the graph matching problem
has a close connection to the following hypothesis testing
problem: Given two permutated graphs, determine whether
they are instances of an independent probabilistic model or
a joint probabilistic model.

It may appear, at first glance, that a hypothesis testing
algorithm, as discussed above, along with a joint typicality test,
as used in compression schemes with side information, would
provide an optimal compressor for compressing graphs with
unlabeled side information. However, we argue in Section III
that schemes based on the above ideas would not improve the
compression rate because the error in the hypothesis testing
problem of [18], [19] vanishes only polynomially in n. This
is why we have to resort to other methods.

II. PROBLEM SETUP

A. Notations

We show graphs with n nodes as binary vectors G =
(e1, . . . , em) where m =

(
n
2

)
and each ek represents the

edge between two nodes i, j in the graph, i.e. ek is one
if there is an edge between i and j, and the graph has no
self-loop. The adjacency matrix is also denoted by a matrix
An×n = {ai,j}1≤i,j≤n with binary elements where ai,j = 1
iff there is an edge between nodes i, j. We show small
constants as δ and ε with or without subscripts. We show
permutations as bijective functions π : [n] → [n], so there
are n! of them. A permutation π on a graph G is defined
as Gπ = (eπ1 , . . . , e

π
m) where eπk is the edge after permuting

nodes i, j, i.e. the edge between π−1(i) and π−1(j). We show
the number of common edges of G1 and G2 with |G1 ∩G2|.

B. Problem formulation

Two random graphs G1 = (e1, . . . , em) and G2 =
(e′1, . . . , e

′
m) with n nodes are generated jointly as follows.

The edges ei, e
′
i are random variables defined by ei = XiYi

and e′i = XiZi where Xi is a Bernoulli random variable with
parameter p and Yi and Zi are independent Bernoulli random
variables with parameter γ. For two distinct i, j, all Xi, Xj ,
Yi, Yj , and Zi, Zj are independent of each other. We denote the
resulting joint pmf on the pair of edges (ei, e′i) by pcorr

e,e′ and the
marginals by pe, p′e which are both Bernoulli with mean pγ.
This model was introduced in [31] and has since been studied

Encoder Decoder

Graph Generator

G1 Gπ
2

W Ĝ1

Fig. 1: Compression Scheme

vastly [18], [19], [27]. If e and e′ are generated independently,
we denote the corresponding pmf by pindep

e,e′ = pe × pe.
The encoder (Alice) is given graph G1 and the decoder

(Bob) has access to a permutated version of G2, i.e. Gπ
2 ,

see Fig 1. The encoder puts out message W = f(G1) of
rate R where f is the encoding function and its range W
is of cardinality |W| = 2

(n
2

)
R. Message W is received at

the decoder who also has access to Gπ
2 for an unknown

permutation π. The decoder outputs

Ĝ1 = g(W,Gπ
2 ). (1)

The goal is to design functions f, g such that

lim
n→∞

Pr(Ĝ1 6= G1) = 0. (2)

We are interested in the minimum rate R that allows reliable
recovery of G1 per (2).

Note that π is not known by Bob. If it was, Bob would
simply apply π−1 to his graph and reduce the problem
to the classical setting of lossless source coding with side
information in which case, the optimal rate is known to be

h(e1|e′1) = pγh(γ) + (1− pγ)h(
pγ(1− γ)

1− pγ
) (3)

where h is the binary entropy function. As a matter of fact,
(3) is a lower bound to our problem. As assuming π is not
attainable, we believe better lower bounds can be achieved.

In the classical setting, (3) is achieved by random binning
and joint typicality tests within the bins [12]. This is rooted in
the assumption that the binary edge sequences that represent
G1 and G2 are aligned and hence joint typicality tests can
be performed. When π is unknown and the sequences that
represent G1 and G2 are unaligned, however, testing joint
typicality seems impossible. To overcome the issue, we design
an alternative testing strategy within the bins. Our approach
builds on asymptotic properties of the Quadratic Assignment
Problem (QAP) as briefly discussed next.

C. Preliminaries

The quadratic assignment problem (QAP) is a combinatorial
optimization problem that appears in many applications. In this
problem, for given matrices An×n ∈ R+

n×n and Bn×n ∈ R+
n×n

we want to find a permutation π that maximizes∑
aijbπ(i),π(j). (4)

Although the QAP problem is hard to solve [32], [33], its
asymptotic behavior is well-known when the input is random
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and large enough [34]. In [34], they show the cost of the best
and worst solutions get close to each other as n gets large.

More precisely, [34] considers a set of combinatorial opti-
mization problems with parameter n defined on finite ground
sets En. The set of feasible solutions Tn are defined as
subsets of En, so a feasible solution S ∈ Tn of the
problem is simply a subset of En. Furthermore, there is a
cost function cn : En → R+ and the cost of a solution
S is

∑
e∈S cn(e). As an example, let’s see how the QAP

problem fits into this scheme. For the QAP problem, we
have En = {(i, j, p, q) | i, j, p, q = 1, 2, . . . , n} and a feasible
solution Sπ ∈ Tn of a QAP is a subset of the form Sπ =
{(i, j, π(i), π(j)) | i, j = 1, 2, . . . , n} for all permutations
π and therefore |S| = n2 and |Tn| = n! [34]. If we take
the matrices A and B into account, the cost function for the
QAP problem is simply cn(i, j, π(i), π(j)) = aijbπ(i)π(j). By
treating A and B as the adjacency matrices of two graphs, the
QAP problem becomes equivalent to maximizing the number
of common edges:∑

i,j

cn(i, j, π(i), π(j)) =
∑
i,j

aijbπ(i)π(j), (5)

over all permutations π. As ∀i : aii = 0, we assume that the
size of the solution is m =

(
n
2

)
from now on. The following

result is proved in [34].

Theorem 1. [34] Let cn(e), e ∈ S, S ∈ Tn, n ∈ N be
identically distributed random variables in [0, 1] with expected
value E := E(cn(e)) and variance σ2 := σ2(cn(e)) > 0. For
given ε > 0, let ε0 fulfill

0 < ε0 ≤ σ2 and 0 <
E + ε0
E − ε0

≤ 1 + ε.

Furthermore, let the following three conditions be satisfied:
1) cn(e), e ∈ S, are independently distributed for every

fixed S ∈ Tn, n ∈ N.
2) All S ∈ Tn have the same cardinality for fixed n, i.e.

|S| = |Ŝ| for all S, Ŝ ∈ Tn, n fixed.
3) λ0|S| − log|Tn| → ∞ as n → ∞ where λ0 is defined

by λ0 := 2
(
ε0σ/

(
ε0 + 2σ2

))2
.

Then

P

{
maxS∈Tn

∑
e∈S cn(e)

minS∈Tn

∑
e∈S cn(e)

< 1 + ε

}
≥ 1− 2|Tn| exp(−|S|λ0) → 1 as n → ∞. (6)

III. MAIN RESULTS

Our main result is an upper bound on the optimal rate of
graph compression as defined in Section II-B as follows:

Theorem 2. There is a compression scheme with rate R =
(1 + δ)(h(pγ) − λ0), δ = o(1) = n−1/3, λ0 = 2 s2σ2

(s+2)2 ,

σ2 = (pγ)2(1 − (pγ)2), and s = min(1, 1−ε′−p
(1−ε′+p)(1−(pγ)2) ),

for a constant 1− p > ε′ > 0, such that with high probability,
Bob can recover G1 losslessly.

Remark 1. λ0 represents the additional compression brought
about by the side information. Here λ0 ≤ h(pγ). Thus when

pγ → 0 or pγ → 1, λ0 ≤ h(pγ) ≈ 0. Thus, the absolute value
of the additional compression is small. This is also intuitively
expected as in these cases, either the graph is very sparse
or very dense, and only the edges or the pairs which do not
correspond to edges can be stored in a few bits. Thus, there
is not much scope of compression beyond the obvious. Thus,
side information may be useful only when pγ is away from 0
and 1.

Our Method and Ideas: We first discuss an intuitive line
of thought that did not work out but led us to the ideas behind
our solution.

In the classic version of the problem where no permutation
is applied to G2, the optimal rate is achieved by random
binning. In particular, the encoding codebook consists of all
the typical graphs, binned into 2

(n
2

)
R bins. Alice finds the

sequence representing G1 in the codebook and sends the
corresponding bin index. Bob would then receive the bin index
and look for a unique sequence in the bin that is jointly typical
with G2. The rate, and hence the bin size, are set so that only
a single sequence from the bin, namely G1, is found with high
probability and that sequence is output as the estimate.

In our problem where G2 is permutated by an unknown
permutation π, joint typicality cannot be applied because ei
is no longer correlated with e′i but an unknown e′π(i). To get
around joint typicality, one may argue that graph matching and
graph correlation hypothesis testing ideas such as [18], [19]
may help Bob to decide which sequences in the described
bin are correlated with Gπ

2 . In particular, the graph correlation
hypothesis testing problem tackles the following task. Given
unaligned graphs G1 and Gπ

2 , decide whether the two graphs
are instances of a correlated ER model (following pcorr

e,e′ as
introduced in Section II-B) or independent instances of the ER
model (following pindep

e,e′ ). Note that the codebook sequences are
generated iid at random across different codewords and G1,
by design, is the only graph in the bin correlated with Gπ

2 . So
one may propose the following simple idea. Use the hypothesis
testing instead of typicality: for each graph in the bin, check
whether it is correlated with Gπ

2 using the hypothesis testing
algorithms of [18], [19]. It turns out that this scheme would
ensure reliable recovery only if the bin sizes are of polynomial
size, leading to the overall rate h(pγ) which can also be
achieved without using side information. The reason is that
the failure probability of the hypothesis testing algorithms of
[18], [19] goes to zero polynomially in n, whereas the bin
sizes are desired to be exponential to achieve non-trivial rates.

In order to recover graph G1 from the exponentially many
elements of its bin, using the unlabeled side information
graph Gπ

2 , we need to answer the following fundamental
question: Given two independent graphs G and Gπ

2 , what is
the probability that a permutation π∗ exists such that Gπ∗

and
Gπ

2 are jointly typical. To the best of our knowledge, little
is known and there are only results on the reverse regarding
the probability that two jointly typical graphs remain jointly
typical under a permutation [35].

Motivated by a well-known result in graph matching that re-
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lates the alignment of graphs to maximizing the common edges
between them [31, Theorem 4.1], we propose to distinguish G1

and the rest of the graphs in the bin by finding the “best permu-
tation” π∗ that maximizes the common edges with Gπ

2 . Note
that without permutation and in expectation, G1 and G2 have
E[|G1∩G2|] =

(
n
2

)
pγ2 edges in common whereas independent

graphs are expected to have
(
n
2

)
p2γ2 edges in common. The

problem of finding the best permutation can be seen as solving
a quadratic assignment problem as mentioned in (5), and we
use its asymptotic properties [34] to analyze our scheme. The
cost function in (5) captures the number of common edges
between any two graphs G and G′ with adjacency matrices
A and B. When G and G2 are independently generated,
Theorem 1 states that with a probability that approaches 1
exponentially fast in n, all permutations return almost the same
value for the cost function. So with high probability, the best
permutation π∗ returns almost the average, which is

(
n
2

)
p2γ2

common edges. On the other hand, the average for G1 and G2

(being correlated) is
(
n
2

)
pγ2. As pγ2 > p2γ2, by setting the

right parameters and testing whether the number of common
edges (between Gπ

2 and the graphs in the bin) for the best
permutation is more than (1 − ε′)

(
n
2

)
pγ2, we rule out all the

independent graphs G in the bin. On the other hand, for G1

and Gπ
2 and for permutation π, by Chernoff bound we show

that the number of common edges is concentrated around its
mean, hence the number is more than (1−ε′)

(
n
2

)
pγ2 with high

probability. We give a concrete proof of the above argument
in the next section.

IV. PROOF OF THEOREM 2
We first use Theorem 1 to get a concentration result for

the number of common edges when the graphs are generated
independently (Lemma 1). Then we use it to provide a
compression scheme and finally optimize the set of parameters.

Lemma 1. For two randomly generated ER graphs G1 and
G2 with parameter pγ, the probability that there exists a per-
mutation π so that Gπ

1 and G2 share more than mpγ2(1−ε′),
where 1− p > ε′ > 0 is a constant , is at most

q = 2−(λ0m−2n logn) (7)

where λ0 = 2 s2σ2

(s+2)2 and s = min(1, 1−ε′−p
(1−ε′+p)(1−(pγ)2) ).

Proof. We prove the lemma using Theorem 1. Let ei’s be the
edges of G1 and e′i’s be the edges of G2. First, we simplify
the parameters used in the theorem. For any π, we have E =
E[eie′π(i)] = (pγ)2, and σ2(eie

′
π(i)) = σ2 = (pγ)2(1−(pγ)2).

Set ε0 = sσ2, 0 < s ≤ 1, then

E + ε0
E − ε0

=
1 + s(1− (pγ)2)

1− s(1− (pγ)2)
≤ 1 + ε.

The first condition of Theorem 1 holds as cn(e) = eieπ(j)
and they are independent of each other by ER property of the
graphs. The second condition also holds as |S| =

(
n
2

)
= m in

our setting. In the third condition, we have

λ0 = 2(
sσ2 · σ

sσ2 + 2σ2
)2 = 2

s2σ2

(s+ 2)2
.

Set 1 + ε = (1 − ε′)/p, this choice becomes clear when we
use it in Theorem 2. Note that as ε′ < 1− p, we have ε > 0.
Then we have

1 + s(1− (pγ)2)

1− s(1− (pγ)2)
≤ 1 + ε = (1− ε′)/p

From the above, we get s ≤ 1−ε′−p
(1−ε′+p)(1−(pγ)2) . Note that s ≤

1, and ( s
s+2 )

2 is increasing in [0, 1]. The largest λ0 is achieved
by setting s = min(1, 1−ε′−p

(1−ε′+p)(1−(pγ)2) ) and, and by the fact
that log n! < 2n log n and replacing it in the formula from
Theorem 1 we get the above lemma.

We are now ready to prove Theorem 2.

Proof. The proof is by random coding. Below, we first
describe the codebook generation, and encoding/decoding
scheme, and then provide the corresponding error analysis.

Codebook construction: generate 2m(1+δ)h(pγ) codewords
G(w, v), w = 1, . . . 2mR, v = 1, . . . , 2m(h(pγ)(1+δ)−R) in-
dependently each consisting m iid binary values following
Bernoulli(pγ). Note that codewords are graphs.

Encoder: Alice finds a pair (w, v) so that G1 = G(w, v).
If there is more than one graph, she chooses from a pre-
defined function (w, v) = f1(G1, G(.)). If there is no graph,
she chooses (w, v) = (1, 1). She then sends w using R bits.

Decoder: For a received message w, Bob finds all graphs
G = G(w, v), v = 1, . . . 2m((1+δ)h(pγ)−R) and for each graph
G(w, v), finds π∗ that maximizes t(v) = |Gπ∗

(w, v) ∩ Gπ|.
If there is a unique v satisfying t(v) ≥ mpγ2(1 − ε′) return
G(w, v). Otherwise return G(w, 1).

Analysis: We will bound Pr(G1 6= G(w, v)). We will
bound the following errors:

1) Alice cannot find an index (w, v) such that G1 =
G(w, v).

2) There is an index (w, v) such that G(w, v) 6= G1 and
t(v) > mpγ2(1− ε′).

3) For index (w, v) where G(w, v) = G1, Bob gets t(v) <
mpγ2(1− ε′).

The first error is o(1) by the definition of typical sets and
their properties.

For the second error, by Lemma 1 and the fact that G2

and G 6= G1 are generated independently at random, we get
for a single index (w, v) where G(w, v) 6= G1 the probability
that t(v) > mpγ2(1 − ε′) is at most 2−(λ0m−2n logn) where
λ0 = 2 s2σ2

(s+2)2 and s = min(1, 1−ε′−p
(1−ε′+p)(1−(pγ)2) ). Then the

probability that no such graphs G(u,w) get t(v) > mpγ2(1−
ε′) is

(1− 2−(λ0m−2n logn))2
m(h(pγ)(1+δ)−R))

' exp(−2−n5/3+2n logn) → 1 as n → ∞.

So the probability that there is an index (w, v) with t(v) >
mpγ2(1− ε) is o(1).

For the third and last error, note that by definition of π∗,
|Gπ∗

1 ∩ Gπ
2 | ≥ |Gπ

1 ∩ Gπ
2 |. We will show that |Gπ

1 ∩ Gπ
2 | ≥

mpγ2(1 − ε′) with high probability, hence |Gπ∗

1 ∩ Gπ
2 | ≥

mpγ2(1 − ε′) with high probability. Note that |Gπ
1 ∩ Gπ

2 | =
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Fig. 2: Generalized Compression Scheme

|G1 ∩ G2|, and by a direct application of Chernoff bound
for Si = eie

′
i, where Si’s are independent by ER, and

E[Si] = pγ2, we get

Pr(
∑

Si < (1− ε′)mpγ2) < eΘ(−mpγ2) = o(1).

Observe that
∑

Si = |Gπ
1 ∩ Gπ

2 |, hence the probability that
t(v) < mpγ2(1− ε′) is o(1). Putting them all together would
result in the theorem.

V. EXTENSIONS

A. Distributed Compression of Unlabeled Graphs

In Section II-B, we presented a compression scheme, utiliz-
ing the unlabeled side information graph Gπ

2 at the decoder. A
more general scenario can be considered in which correlated
graphs G1 and G2 are to be compressed in a distributed
manner. More precisely, encoder 1 (Alice) has Gπ1

1 and
encoder 2 (Carol) has Gπ2

2 where G1 and G2 are generated
jointly as before and the permutations π1 and π2 are unknown,
see Fig. 2. Alice and Carol send messages W1 and W2 of rates
R1, and R2, respectively, to the decoder (Bob). Bob aims to
recover (G1, G2) losslessly, i.e.

lim
n→∞

Pr((Ĝ1, Ĝ2) 6= (Gπ1
1 , Gπ2

2 )) = 0.

We are interested in the minimum rates R1, R2 that allow
reliable recovery of (G1, G2) up to the permutations of nodes.
We will draw a proof sketch of the following theorem using
the techniques we have developed so far.

Theorem 3. There is a compression scheme with rate R1 =
R2 = R = (1 + δ)(h(pγ) − λ0/2), δ = o(1) =

n−1/3, λ0 = 2 s2σ2

(s+2)2 , σ2 = (pγ)2(1 − (pγ)2), and s =

min(1, 1−ε′−p
(1−ε′+p)(1−(pγ)2) ), for any constant 1 − p > ε′ > 0,

such that with high probability, Bob can recover (Gπ1
1 , Gπ2

2 ).

Proof sketch. Generate a random codebook per encoder and
randomly bin them into 2mR1 and 2mR2 bins where m =

(
n
2

)
.

Similar to the side information problem, Alice and Carol find
their corresponding graphs Gπ1

1 and Gπ2
2 in the bins and send

the bin’s indices W1 and W2 to Bob. Now Bob has to find the
pair (Gπ1

1 , Gπ2
2 ) where Gπ1

1 is in the first bin (correspondent
to W1) and Gπ2

2 is in the second bin (correspondent to W2).
We propose a scheme where Bob iterates over all pairs (G,H)
where G is in the first bin and H is in the second bin and
finds π∗ that maximizes the common edges |G ∩ Hπ∗ | for

each pair. Setting the threshold (1 − ε′)mpγ2 on the number
of common edges as in Theorem 2, we look for the unique
pair of graphs whose number of common edges passes the
threshold |G∩Hπ∗ | ≥ (1− ε′)mpγ2. If such a unique pair is
found, Bob outputs the pair. Otherwise, error is declared.

Since the probability of two independent random graphs
passing the threshold (1−ε′)mpγ2 is q (see (7)), we set the bin
sizes equal to s so that (1−q)s

2 → 1. Here, we design schemes
where R1 = R2, but one can parameterize based on R1 and
R2. As R1 = R2, the bins that Carol and Alice send have the
same size s. It is not hard to see that by considering the square
root of the bin sizes set in Theorem 2, we again get a proper
lossless compression with high probability. By reducing the
bin size, the improvement in rate would be halved, meaning
the compression scheme still improves the rate R1 = R2 by
a constant compared with no side information.

B. Other Graph Generation Models

In Section II-B, we assumed that the input graphs (G1, G2)
are generated by a correlated ER model. However, one can
consider other models for generating (G1, G2) where the edges
are jointly generated according to a joint pmf, an example can
be Bernoulli random variables with correlation factor ρ as the
edges of the graphs. As long as the generating model satisfies
the conditions of Theorem 1, particularly the first condition,
and there is a proper gap between the average of the cost
function (5) between the correlated and independent pairs of
graphs, one can potentially use the same ideas and scheme to
improve the rate. The threshold can be set in the gap between
the two averages and using concentration tools and Theorem 1
Bob can distinguish G1 from the other graphs in the bin.

VI. CONCLUSION AND FUTURE WORK

Inspired by the real-world application of compressing unla-
beled graphs in which users’ identities are concealed, we intro-
duced the novel problem of graph compression with unlabeled
side information at the decoder. Previous compression tech-
niques that utilize the statistical knowledge of side information
fall short when graphs are unlabeled because joint typicality is
rendered inapplicable as soon as the labels are removed. For
the case where the original graph and the side information
graph are generated from a correlated Erdös Rènyi model, we
provided novel results. In particular, by incorporating ideas
from source coding with side information, graph matching,
and results from classic combinatorial optimization problems,
we proposed novel compression schemes that benefit from the
existence of unlabeled graph side information at the decoder
and we further derived upper bounds on the optimal rate of
compression. We discussed various extensions including the
problem of distributed source coding of unlabeled graphs.

Several questions remain open for further investigation. First
and foremost, it is unclear whether the rates that are achieved
in this work are near-optimal. Another interesting line of work
is to seek compression algorithms of moderate complexity that
can benefit from unlabeled side information.
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