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Abstract: “How strong is this Lewis acid?” is a question
researchers often approach by calculating its fluoride
ion affinity (FIA) with quantum chemistry. Here, we
present FIA49k, an extensive FIA dataset with 48,986
data points calculated at the RI-DSD-BLYP-D3(BJ)/
def2-QZVPP//PBEh-3c level of theory, including 13
different p-block atoms as the fluoride accepting site.
The FIA49k dataset was used to train FIA-GNN, two
message-passing graph neural networks, which predict
gas and solution phase FIA values of molecules
excluded from training with a mean absolute error of
14 kJmol�1 (r2=0.93) from the SMILES string of the
Lewis acid as the only input. The level of accuracy is
notable, given the wide energetic range of 750 kJmol�1

spanned by FIA49k. The model’s value was demon-
strated with four case studies, including predictions for
molecules extracted from the Cambridge Structural
Database and by reproducing results from catalysis
research available in the literature. Weaknesses of the
model are evaluated and interpreted chemically. FIA-
GNN and the FIA49k dataset can be reached via a free
web app (www.grebgroup.de/fia-gnn).

Introduction

Lewis acids are omnipresent in all branches of chemistry,
including fundamental research and synthesis, industrial-
scale production, and bio-related processes.[1] The fluoride

ion affinity (FIA) has developed into one of the most
common measures to quantitatively assess Lewis acidity in
its thermodynamic sense (global Lewis acidity).[2] The FIA is
defined as the negative reaction enthalpy of the binding
between a fluoride anion and a given Lewis acid (Fig-
ure 1A). As the experimental determination of absolute
FIA values requires highly sophisticated techniques,[2b,3] they
are almost exclusively obtained through quantum chemical
computations. To avoid the explicit treatment of the naked
fluoride anion, the FIA is typically calculated with the help
of a quasi-isodesmic anchoring scheme, such as the
fluorotrimethylsilane system (Figure 1B).[2c,d]

Access to accurate FIA data is indeed the linchpin for
the steady progress in the design and application of Lewis
acids. For example, Kirschner et al. used the FIA of organo-
boranes to develop phase-transfer catalysts in nucleophilic
fluorination reactions.[4] The List group correlated FIA
values with the activity of their Lewis acidic
organocatalysts.[5] Computed FIAs are also commonly
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Figure 1. A) Definition of the fluoride ion affinity (FIA) and example
values. B) Quantum chemical calculation scheme of FIA values with
the help of the fluorotrimethylsilane anchoring system. The reaction
enthalpy of the second reaction was calculated at the CCSD(T)/CBS
level of theory and was taken from the literature.[2c] C) This work:
compilation of an FIA dataset with 48,986 data points, training of
machine learning models, and application in different case studies.
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considered in studies on weakly coordinating anions[2d,6] and
in the closely related field of Lewis superacidity;[7] not least
by some of us.[8] The FIA has further been compared to
multiple other Lewis acidity scales, such as the global
electrophilicity index (GEI)[9] and others.[10]

In recent years, data-driven and statistical models have
gained ever-increasing attention in chemical research.[11]

Machine learning (ML) approaches are ideally suited to
circumvent the execution of quantum chemical calculations
of molecular or reaction properties.[12] An overwhelming
number of ML regressors was trained for the prediction of
various quantities. However, while predictors for Mayr’s
electrophilicity parameter[13] and BF3 affinities of organic
Lewis bases[14] exist, a statistical model for the prediction of
Lewis acidity has not been reported. This lack might be
explained by the high complexity of the task, which requires
the description of a variety of chemical bond types while
capturing deformation energy contributions that are ex-
tremely important for Lewis pair formation[15] and heavily
depend on intricate ligand structures and constraints.

In this work (Figure 1C), we present broadly applicable
ML models that can predict the gas and solution phase
(dichloromethane) FIA values of a chemically diverse set of
neutral p-block atom-based molecules comprising 13 differ-
ent elements (B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, Bi,
and Te) with a mean absolute error of around 14 kJmol�1

(r2=0.93). A large dataset of 48,986 FIA values (the largest
to date) was compiled to train and test the regressors. We
demonstrate the applicability of the best models in four case
studies. The entire dataset and all models are publicly
available on GitHub (https://github.com/GrebGroup/fia-
gnn) and figshare (https://figshare.com/projects/FIA-GNN/
187050), respectively, and FIA-GNN can be used free of
charge at www.grebgroup.de/fia-gnn.

Results and Discussion

Dataset Construction

As a sufficiently large collection of FIA values[2c] was not
available previously, we compiled such a dataset according
to the following principles:
* Only neutral Lewis acids were included. Atoms with

formal charges were not considered.
* 13 different atoms from the p-block of the periodic table

were included as the direct fluoride ion acceptors. Group
14 and 15 elements were used in two different oxidation
states, resulting in 21 different central atom classes (Fig-
ure 2A).

* Ligands were built from H, C, N, O, S, F, Cl, Br, and I
(Figure 2B). Bonds between heteroatoms within the
ligand (e.g., O-O, N-O) were disallowed.

* Mono-, bi-, and tridentate ligands were considered. The
bi-, and tridentate ligands were further categorized with
respect to the size of the ring system formed when the
ligand is installed at the central atom (Figure 2C). Bi- and
tridentate ligands were not used within the same mole-
cule.

* Cases of intramolecular precoordination with available
neutral donor groups and bond rearrangements upon
fluoride anion binding were excluded (Figure 2D).

With these guidelines at hand, we initially attempted to
use the Cambridge Structural Database (CSD)[16] to acquire
starting structures for the FIA dataset. However, large
imbalances with respect to the central atom and ligand
denticity classes were faced after data extraction (see
Chapter S9 in the Supporting Information for details). As
this would severely bias subsequent ML models toward
certain regions of chemical space, we substantially aug-

Figure 2. Design principles of the compiled FIA44k dataset. A) Included central atom classes. B) Atom types used to build up the ligands. C)
Included types of ligand structures. The given maximum atom counts of the ligands include hydrogen atoms. D) Exclusion of intramolecularly
saturated Lewis acidic centers and of bond rearrangements upon F� binding.
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mented the extracted CSD set with molecules constructed
from scratch.

For that, we developed autoPAMS (automatic genera-
tion of p-block atom-based molecular structures, part of the
fia-gnn Github repository), an RDKit-based implementation
of a modular design strategy for the automatic generation of
three-dimensional molecular structures of Lewis acids and
respective FIA datasets.[17] Within the rules described above,
autoPAMS sampled from over 2,500 unique building blocks,
which were manually curated. By this procedure, we arrived
at a dataset as balanced as possible with respect to the
central atom, ligand denticity class, and further criteria. The
three-dimensional starting structures of the Lewis acids were
generated with RDKit.[18] The initial structures of the
fluoride adducts were obtained geometrically from the
optimized Lewis acid structures. This was done to avoid a
second RDKit embedding step, which often tended to fail
for the fluoride adducts. A detailed description of all
computational routines is given in the Supporting Informa-
tion (Chapters S3–S6).

The three-dimensional starting structures were submit-
ted to CREST (GFN2-xTB).[19] The lowest energy con-
former obtained was then used to calculate FIAgas at the
benchmarked[2c] RI-DSD-BLYP-D3(BJ)/def2-QZVPP//
PBEh-3c level.[20] The conformer ensembles were spot-
checked with DFT (see Chapter S4 in the Supporting
Information). Solvent corrections for dichloromethane were
calculated with the COSMO-RS scheme (BP86/TZP).[21]

FIAgas values were obtained as shown in Figure 1B, and
from those, the solvation-corrected FIAsolv following

FIAsolv ¼ FIAgas � DHcorr FAð Þ � DHcorr LAð Þ � DHcorr F
�ð Þð Þ:

With the described computational workflow, 44,877
FIAgas and the corresponding FIAsolv values were calculated.
This part of the entire dataset is named FIA44k. Further-
more, the FIA values for 2,389 entries of the CSD were
computed (FIA2k-CSD, see the Supporting Information for
details).

Dataset Analysis I: Composition and Balance

At first, the composition of the FIA44k dataset was analyzed
with respect to the design principles described above. The
dataset is evenly distributed among all central atom classes
(Figure 3A). The P(III) and Pb(IV) classes are slightly
underrepresented, as FIA calculations had a much higher
propensity to fail. P(III)-based molecules intrinsically show
relatively low FIA values, which often resulted in dissocia-
tion of the fluoride adduct. Molecules with Pb(IV) atoms
tended to undergo reductive elimination to give Pb(II). The
low-valent group 14 molecules contribute less to FIA44k
because they cannot have tridentate ligands. Also, the
dataset is evenly distributed among the denticity classes
“mono-”, “bi-”, and “tridentate” with overall relative shares
of 32, 40, and 28%, respectively (Figure 3B).

The distribution of atoms directly bound to the central
atoms is shown in Figure 3C. An even distribution of atom

types of non-monoatomic ligands exists. The monoatomic
ligands (hydrogen, halogens) have a lower contribution as
they were treated within a general “monoatomic” class from
which ligands were sampled during the generation of the
dataset. This was done because monoatomic ligands bring
much less potential for molecular complexity and diversity
compared to polyatomic groups.

FIA44k has a diverse set of functional groups in the
ligands. 5,265 different substructures and 2,987 different ring
systems were identified. A more detailed analysis is given in
the Supporting Information in Chapter S7. With respect to
stereochemistry, fluoride adducts with pentavalent central
atoms (e.g., Si(IV)-based molecules) have a (distorted)
trigonal bipyramidal structure around the central atom and
therefore, can adopt two different conformations (cf. Fig-
ure 9 and Chapter S8 in the Supporting Information). The
fluoride can either be in apical or equatorial position. The
FIA44k dataset includes both coordination modes in a 1 :3
ratio in favor of structures with the added fluoride in apical
position. This is of relevance (case study 4) since the mean
FIA values of these two groups considerably differ by
around 37 kJmol�1.

Dataset Analysis II: Trends and Correlations

The calculated FIAgas values span a total range of
753 kJmol�1, with a minimum value of 10, a maximum value
of 763, and a mean value of 309 kJmol�1. For FIAsolv, the
range is essentially identical (744 kJmol�1), with the extrema
at �201 and 543 kJmol�1 shifted toward lower affinities due
to solvation damping. The mean FIAsolv value is
124 kJmol�1. A more detailed analysis is given in Chapter

Figure 3. Composition of the FIA44k dataset with respect to A) the 21
different central atom and three ligand denticity classes, B) the overall
distribution among the three denticity classes, and C) the atom types
directly binding to the central atoms.
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S14 in the Supporting Information. As FIAgas and FIAsolv are
strongly linearly correlated (see Figure S11A and S12 in the
Supporting Information), the ensuing discussion is limited to
FIAgas.

Generally, the FIA distributions get sharper within a
group of the periodic table with increasing atomic numbers
(Figure 4A). The highest FIA values are found for group 13
molecules, with aluminum being the most Lewis acidic (on
the FIA scale) with a mean FIAgas of 471 kJmol�1. Boron, as
the only central atom class of the second period of the
periodic table, is clearly separated from the other group 13
molecules.[22]

For group 14 molecules, the low-valent central atom
classes have higher FIA values compared to the high-valent
cases, and in general, the FIA decreases with increasing
atomic number. This is a notable finding, since previous
research on neutral group 14 Lewis acids focused on the
high-valent congeners. For molecules with central atoms
from group 15, this situation is inverted. The low-valent
central atom classes have a lower FIA compared to their
high-valent counterparts. Also, the FIA increases with the
atomic number. The analysis of the FIA values with respect
to the three denticity classes shows an increase in FIA as
well as an increasingly wider distribution with higher ligand
denticity (Figure 4B). Accordingly, the highest FIA values
are achieved with tridentate ligands.

As mentioned, the linear correlation between FIAgas and
FIAsolv is high (r2=0.921, Figure 5A). On average, FIAsolv

(calculated for dichloromethane) is 185 kJmol�1 lower than
FIAgas, and a reasonable estimate of FIAsolv (�16 kJmol�1)
could be obtained from FIAgas for neutral Lewis acids with

FIAsolv ¼ 0:9077 � FIAgas � 157 kJ mol�1:

The correlation of the FIA with the intrinsic Lewis
acidity descriptors LUMO energy and GEI was investigated
(Chapter S7). In short, there is no correlation between any

of these quantities and FIAgas, which confirms that global
and intrinsic Lewis acidity express two different aspects.[2c]

Machine Learning Models

The splitting of the FIA49k dataset in train, test, and
validation portions is described in the Supporting Informa-
tion in Chapter S15. As baseline models, random forest
(RF) regressors[23] with 100 trees were trained using Morgan
fingerprints (calculated for the whole molecules) of radius 3
and length 2048 as features. This resulted in a FIAgas model
that made predictions for the test set with an MAE of
32.2 kJmol�1 (r2=0.660). For FIAsolv, the model’s accuracy
was slightly higher (MAE=29.7 kJmol�1, r2=0.665). Chang-
ing to a LightGBM regressor[24] with 2000 boosting rounds
and early stopping slightly increased the accuracy for both
the FIAgas (MAE=28.3 kJmol�1, r2=0.738) and FIAsolv

model (MAE=27.1 kJmol�1, r2=0.728). These results in-
dicate that molecular fingerprints (in the fashion they were
applied) are features of only moderate quality for FIA
prediction.

Next, we calculated all two-dimensional descriptors
available in RDKit[17] and mordred[25] for the molecules of
the FIA49k dataset. After feature reduction (see Chapter
S16 in the Supporting Information for details), a set of 296
features was obtained. When the LightGBM regressor was
retrained with these features, a significant improvement in
accuracy was observed. The new FIAgas model made
predictions for the test set with an MAE of 17.4 kJmol�1

(r2=0.899), and the FIAsolv model with an MAE of
15.8 kJmol�1 (r2=0.902).

Reaching for higher predictive accuracy, message-pass-
ing graph neural networks (GNN) were considered.[26] For
that, the two-dimensional molecular graph was initially
transformed to an atom and bond token vector, respectively,
by following a small number of classification rules: for

Figure 4. Distribution of calculated FIAgas values of the FIA44k dataset with respect to A) the 21 different central atom classes and B) the three
denticity classes. Low-valent group 14 molecules were omitted in B) as they cannot have tridentate ligands. The calculations were done at the RI-
DSD-BLYP-D3(BJ)/def2-QZVPP//PBEh-3c level of theory. The numbers below the violins are the class-specific mean FIA values. See Figure S7 in
the Supporting Information for the analogous plot with FIAsolv as target variable.
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atoms, atom symbol and degree (neighbor count) were used;
for bonds, participating atoms and the bond order were
applied (Figure 5A).

Each token was then used to obtain initial atom and
bond embeddings of length 128, which were sequentially
updated during six rounds of message-passing. The GNNs
were also provided with molecule features: the period and
group of the central atom in the periodic table, its oxidation
state, the number of rings the central atom is part of, and
the number of ligands that are attached to it were used
(Figure 5A). This resulted in a FIAgas model which made
predictions for the test set with an MAE of 13.1 kJmol�1

(r2=0.931), and in a FIAsolv model with an MAE of
12.3 kJmol�1 (r2=0.927).

Ultimately, the GNNs were extended by another input
layer taking in a vector of the shortest bond path length
between a given atom and the central atom. This informs
the models on the concentricity of the problem at hand and
potentially allows to learn the influence of a certain atom
depending on its distance to the central atom. Indeed, this
resulted in a further drop in MAE to 12.1 kJmol�1 (r2=

0.939) for FIAgas and 11.7 kJmol�1 (r2=0.935) for FIAsolv,
the best FIA predictions we obtained. The respective model
is called FIA-GNN, and its architecture is depicted in
Figure 5B.

To put these results into perspective: the MAEs are less
than 2% of the FIA range across the entire dataset, which is
around 750 kJmol�1 (see above) and are on the same order
of magnitude as the error of the quantum chemical method
(RI-DSD-BLYP-D3(BJ)/def2-QZVPP//PBEh-3c) which was
used to construct the dataset.[27] At the same time, FIA-

GNN avoids quantum chemical calculations entirely and
processes only SMILES strings as input.

Before FIA-GNN was applied in different case studies,
its performance with respect to the central atom and ligand
denticity classes was analyzed (Figure 5C). The FIAgas values
of data points with central atoms from group 13 (except for
boron) and the low-valent group 14 atom-based molecules
were most accurately predicted with MAEs below
10 kJmol�1. The largest absolute prediction errors showed
P-based molecules (MAE of 19.6 and 18.4 kJmol�1). Lewis
acids with only mono- or bidentate ligands had lower
prediction MAEs (10.6 kJmol�1) compared to molecular
structures with tridentate ligands (MAE=16.1 kJmol�1).

Applications

As the first case study, FIA-GNN was employed to predict
the FIA values of 1,200 molecules extracted from the CSD
(second half of the FIA2k-CSD dataset, Figure 6). Impor-
tantly, these molecules were strictly excluded from any
model selection or training steps. FIAgas and FIAsolv were
predicted with MAEs of 14.4 (r2=0.905) and 13.5 kJmol�1

(r2=0.895), respectively, which is only slightly less accurate
compared to the regressions made for the test set (cf.
Figure 5C). This demonstrates the model’s applicability to a
broad variety of real-world examples, which are beyond the
FIA44k dataset.

We inspected the molecules that showed the largest
prediction errors. While it was not possible to detect
systematic structural features across all poorly predicted

Figure 5. A) Featurization of molecular graphs (obtained from SMILES strings). Atom features for tokenization are atom symbol and degree, bond
features participating atom symbols and bond order. B) FIA-GNN’s model architecture. na means number of atoms, nb number of bonds. “Dense I”
is a set of three fully connected layers (512, 256, and 128 neurons). “Dense II” firstly expands the molecule features to 128 dimensions with a
single layer and after concatenation provides a set of four fully connected layers for read-out (128, 64, 32, and 1 neuron(s)). C) FIA-GNN’s
performance in predicting FIA values of the test set evaluated overall, with respect to the 21 different central atom classes, and the three denticity
classes. The dashed orange lines mark the overall MAEgas. The numeric labels at the bars are the central atom and denticity class-specific r2 values.
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cases, it was found that 5 of the 20 molecules with the
highest error showed significant chemical bond rearrange-
ment upon fluoride binding, a situation that was not
explicitly considered during training (Figure 6, cf. Fig-
ure 2D). These hypercoordinations are within our cutoff
values used for the transformation of xyz structures to
molecular graphs with discrete edges (either bond or no
bond) after structural optimization, however, it seems that
they are not sufficiently represented in the training set to be
adequately accounted for. This means that when substantial
bond rearrangements occur after F� binding, results from
FIA-GNN could be less reliable.

As a second case study, we investigated how FIA-GNN
performs on molecules with structural motifs that are
systematically outside of the training dataset. As examples,
molecules with their central atom embedded in a four-
membered ring or which feature a macrocyclic bidentate
ligand (e.g., 9-BBN) were chosen (Figure 7). Both structural
characteristics are not present in the FIA44k dataset. A

four-membered ring dataset with 911 members (FIA911-
ring4) and a macrocyclic bidentate ligand dataset with 763
data points (FIA763-bimacro) were compiled (see Chapter
S10 and S11 of the Supporting Information for details).
FIA-GNN was more accurate when predicting the data of
the FIA911-ring4 dataset (MAEgas=17.9 kJmol�1, r2gas=
0.897) compared to the FIA763-bimacro set of molecules
(MAEgas=24.1 kJmol�1, r2gas=0.847). Generally, a signifi-
cant degree of predictive ability is conserved. However,
when FIA values of molecular structures much different to
the training and validation set are predicted, results should
be considered with caution. When the prediction results for
the FIA763-bimacro dataset were analyzed with respect to
the central atom classes, it was found that especially the FIA
values of B(III)- and Si(II)-based molecules were under-
estimated by the model (MAEgas of 46.1 and 44.2 kJmol�1).
For the FIA911-ring4 dataset, high-valent group 14 mole-
cules showed the highest prediction errors (MAEgas values
of around 32 kJmol�1).

For the third application case study of FIA-GNN, the
catalysis work of Kirschner et al., mentioned in the intro-
duction, was consulted (Figure 8).[4] They found triethylbor-
ane and a fluoroaryl pinacolatoborane as effective phase
transfer catalysts in their chosen applications and concluded
that “[…] boranes with calculated fluoride affinity of 95–
120 kJmol�1 (vs. Me3Si

+) appear to be suitable candidates as
nucleophilic fluorination catalysts, […].”.[4] We recalculated
the FIA values for 15 boranes that were mentioned in the
study (FIA15-PTCat dataset, see Chapter S13 in the
Supporting Information). Despite a fair prediction error
(28 kJmol�1), FIA-GNN identified BF3 as the most fluoro-
philic molecule within the chosen scope, well beyond the
desired FIA range (Figure 8). We tentatively assign this
error to difficulties in correctly capturing the solvation
stabilization when BF4

� (fluoride adduct of BF3) is trans-
ferred from vacuum to the solution phase. This stabilization

Figure 6. Application of FIA-GNN to predict FIA values of molecules
from the Cambridge Structural Database (CSD). The explicitly shown
molecules were randomly selected from the subset of data points that
was added to the CSD in 2022. All numbers shown are FIAgas values
in kJmol�1. FIA-GNN predictions are given in bold and green, the DFT-
calculated data in brackets. The carbon-bound hydrogen atoms of the
shown molecular structures at the bottom were omitted for clarity.

Figure 7. Application of FIA-GNN to predict FIA values of molecules
with structures outside of the train and validation dataset of the model.
For that, the FIA911-ring4 (molecules with the central atom embedded
in a four-membered ring) and the FIA763-bimacro (molecules with a
macrocyclic bidentate ligand) dataset were used.
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is abnormally large for small anions such as BF4
�. Our

model correctly labeled BPh3 as relatively strong and Ph-
BPin (B in Figure 8) as a relatively weak Lewis acid on the
FIA scale. Both are outside of the desired FIA span and
accordingly, were found to give poor experimental results.[4]

The FIAsolv values of two of the most effective phase transfer
catalysts, BEt3 and 3,5-(CF3)2C6H3-BPin (A in Figure 8)
were predicted with high accuracy by the model. Impor-
tantly, FIA-GNN coped well with the difference between
40% substrate conversion after 24 hours and 99% conver-
sion after 8 hours being less than 20 kJmol�1 on the FIAsolv

scale.
After FIA-GNN was used to study the influence of

different ligands on one central atom (case study 3), it was
employed to explore the impact of a single ligand system
across different central atom classes (case study 4). For that,
the perfluoro- (Fcat) and perchlorocatecholato (Clcat) ligand
were chosen as they have been applied in multiple studies to
prepare strong neutral p-block atom-based Lewis acids
(Figure 9).[8a,c,d,f,28] In all cases, the maximum number of
catecholato ligands was placed at the central atom, while
free valences in molecules with an odd central atom
oxidation state (e.g., in B(III)-based molecules) were
saturated with methyl groups. FIA values were successfully
calculated for 31 of the 42 different combinations (FIA31-
cat dataset, see Chapter S12 in the Supporting Information).
FIA-GNN predicted these accurately with MAEgas values of
8.5 (Fcat, r2=0.963) and 8.6 (Clcat, r2=0.968) kJmol�1. FIAsolv

was equally well predicted (MAE=9.4 kJmol�1, r2=0.945).
It detected the aluminum-based molecules as the clearly
strongest fluoride acceptors. FIAgas values are on average
9.4 kJmol�1 higher for molecules with the Clcat compared to
the Fcat ligand and are also higher across the entire board of
central atoms. When changing to FIAsolv, this difference
decreases significantly (Δ=0.8 kJmol�1). Remarkably, FIA-
GNN was able to qualitatively reproduce this subtle effect
(from Δ=6.0 kJmol�1 for FIAgas to Δ=3.2 kJmol�1 for

FIAsolv). Also, for low-valent group 14 atom-based com-
pounds, the minor change in the qualitative FIA trend (from
Si>Sn>Ge>Pb for FIAgas to Si>Ge>Sn>Pb for FIAsolv)
when going from FIAgas to FIAsolv was correctly modeled.
This demonstrates the applicability of FIA-GNN to study
the influence of a given ligand system on different central
atoms and importantly, also in regard of potentially varying
solvent influences.

Within the predictions of FIA-GNN for the FIA31-cat
dataset, the FIA values of the high-valent group 14 atom-
based molecules (Si(IV) and Ge(IV)) were systematically
underestimated. In fact, pentavalent fluoride adducts can
adopt two different conformations that differ in the location
of the fluoride, being either in equatorial or apical position
(Figure 9, cf. Chapter S8 in the Supporting Information). It
is known from single crystal structure analyses that
bis(catecholato)silanes and -germanes preferentially position
the fluoride in equatorial position.[28a,29]

The “apical FIAgas” of (Fcat)2Si and (Fcat)2Ge were
approximately determined and were found to be signifi-
cantly lower than the equatorial counterparts (Figure 9). We
therefore hypothesize that FIA-GNN even learned the
differentiation between equatorial and apical fluoride

Figure 8. Application of FIA-GNN to predict FIA values of organo-
boranes, some of which were applied by Kirschner et al. as phase
transfer catalysts for nucleophilic fluorination reactions.[4] All numbers
shown are FIAsolv values in kJmol�1. FIA-GNN predictions are given in
bold and green, the DFT-calculated data in brackets.

Figure 9. Application of FIA-GNN to predict FIA values of perfluoro-
and perchlorocatecholato-substituted p-block atoms. All numbers
shown are FIAgas values in kJmol�1. FIA-GNN predictions are given in
bold and green, the DFT-calculated data in brackets. For further details,
see Chapter S8 and S12 in the Supporting Information.

Angewandte
ChemieResearch Articles

Angew. Chem. Int. Ed. 2024, e202401084 (7 of 10) © 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

 15213773, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202401084, W

iley O
nline Library on [12/04/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



acceptance while it was trained on the FIA regression task.
Still, this differentiation most likely poses an additional
challenge for the model, which can make predictions for
molecules that result in fluoride adducts that can have
multiple stereoisomers less straightforward.

To test this hypothesis, the final 32-dimensional features
from FIA-GNN (FIAgas) were used to train a binary linear
discriminant analysis (LDA) classifier.[23] Indeed, a model
with 79% prediction accuracy for the relevant part of the
test set of FIA44k was obtained. This points to the presence
of information on the stereochemistry of high-valent group
14 atom-based fluoride adducts in the molecular representa-
tions learned by FIA-GNN. It should be emphasized that
FIA-GNN was trained with the SMILES strings of the Lewis
acids as input, and the described apical/equatorial problem
does not apply to most of the training dataset. Interestingly,
the LDA model correctly classified all four
bis(catecholato)tetrels mentioned before as molecules that
host fluoride anions in the equatorial position.

Conclusion

The fluoride ion affinity (FIA) is among the most popular
descriptors for global (thermodynamic) Lewis acidity. How-
ever, its computation, including the often more meaningful
solvation-corrected values, demands several steps with
dedicated user input and computational requirements. Here-
in, we present a ML tool called FIA-GNN that allows the
prediction of FIAgas and the solvation-corrected FIAsolv

(CH2Cl2) within seconds and with a mean absolute error of
14 kJmol�1 (r2=0.93) based on the Lewis structure of the
compound of interest (in form of a SMILES string) as the
only necessary input. This service, including a graphical
structure editor, is provided at www.grebgroup.de/fia-gnn.
The predictions are made by two message-passing graph-
neural networks that have been trained with FIA49k, a
newly compiled dataset with 48,986 fluoride ion affinities of
neutral p-block atom-based molecules calculated at the RI-
DSD-BLYP-D3(BJ)/def2-QZVPP//PBEh-3c level of theory
for gas and solution phase. While spanning a FIA range of
around 750 kJmol�1, the dataset covers 13 different p-block
atoms as fluoride acceptors and features them in low and
high-valent states, decorated with mono-, bi, or tridentate
ligands.

FIA49k was further used to relate the FIA scale to other
Lewis acidity descriptors and to explore the FIA space of p-
block atom-based Lewis acids. It provides the most up-to-
date general information source to describe Lewis acidity
trends within p-block atom-based molecules.

Applications of FIA-GNN to molecules from the Cam-
bridge Structural Database or catalysis research from the
literature demonstrated the model’s usefulness in real-world
tasks. Molecules that possess intramolecular saturation of
the Lewis acidic center with available donor atoms, can lead
to larger prediction errors. Future work could address this
problem by augmentation of FIA49k with respective data
points – optimally with an active learning strategy.

To be noted, the major portion of FIA-GNN’s training
data was the FIA44k dataset. FIA44k is intended to cover
an as general as possible chemical space of p-block atom-
based molecules – without specifically addressing molecules,
for example, with particularly large FIA values, high degree
of halogenation, or minimal size. Extensions to these areas
will be the objective of future research efforts. Keeping this
in mind, we hope that the herein presented ML model will
help to guide the development of new p-block atom-based
Lewis acids by granting access to their FIA value within a
fraction of a second.
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Predicting Lewis Acidity: Machine Learning
the Fluoride Ion Affinity of p-Block-Atom-
Based Molecules

The fluoride ion affinity (FIA) is among
the most prominent descriptors for
Lewis acidity. This paper presents FIA-
GNN, a machine learning model that
predicts FIA values in gas and solution
(CH2Cl2) phase within a fraction of a
second on a standard personal laptop.
This is several orders of magnitude
faster compared to the conventional
quantum chemical approach. FIA-GNN
is applied in four different case studies
including catalysis research.
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