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ABSTRACT

Quantitative measurements produced by tandem mass spectrometry proteomics experiments typi-
cally contain a large proportion of missing values. Missing values hinder reproducibility, reduce statistical
power, and make it difficult to compare across samples or experiments. Although many methods exist for
imputing missing values, in practice, the most commonly used methods are among the worst performing.
Furthermore, previous benchmarking studies have focused on relatively simple measurements of error,
such as the mean-squared error between imputed and held-out values. Here we evaluate the performance
of commonly used imputation methods using three practical, “downstream-centric” criteria. These cri-
teria measure ability to identify differentially expressed peptides, generate new quantitative peptides,
and improve peptide lower limit of quantification. Our evaluation comprises several experiment types
and acquisition strategies, including data-dependent and data-independent acquisition. We find that
imputation does not necessarily improve the ability to identify differentially expressed peptides, but that
it can identify new quantitative peptides and improve peptide lower limit of quantification. We find that
MissForest is generally the best performing method per our downstream-centric criteria. We also argue
that existing imputation methods do not properly account for the variance of peptide quantifications and
highlight the need for methods that do.

KEYWORDS: Quantitative mass spectrometry, proteomics, imputation, machine learning, statistics, dif-
ferential expression, lower limit of quantification

1 INTRODUCTION

The quantitative accuracy and sensitivity of tandem mass spectrometry proteomics has increased dramat-
ically in the past decade. In spite of this trend, proteomics experiments are still limited by excessive
“missingness,” which refers to peptides that are present in the sample matrix but are not assigned an
abundance value. Missingness can be attributed to a variety of technical factors including ion suppression,
co-eluting peptides, the lower limit of quantification of the instrument, and the failure to confidently as-
sign peptides to all observed spectra.1,2 Although low abundance peptides are generally more likely to be
missing, peptides may be missing across the entire range of intensities. Missingness decreases the statistical
power of proteomics experiments, hinders reproducibility, and makes it difficult to compare across batches
or experiments.1,2

Imputation is a bioinformatic solution to the missingness problem. Imputation refers to using statistical
or machine learning procedures to estimate missing values in a data set. While still relatively new within
the proteomics community, imputation has long been standard practice for analysis of gene expression,3

clinical and epidemiological data,4 and more recently astronomy5,6 and single-cell transcriptomic data.7,8

Imputation methods for proteomics data (Table 1) fall into three broad categories: “single-value replacement”
methods, in which all missing values are filled in with a single replacement value; “local similarity” methods,
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Method Type Description Examples
Zero replacement S Replace missing values with zeros
Mean replacement S Replace missing values with the mean peptide intensity for a

peptide or sample
Low value replacement S Replace missing values with the lowest observed intensity in

any sample (sample minimum) or peptide (peptide minimum)
Gaussian random sample S Randomly sample from a Gaussian distribution centered

around the lowest observed intensity
Perseus9

Regression L Linear regression is used to estimate missing values lm, glm
kNN L Weighted average intensity of k most similar peptides impute.knn,3 VIM10

MissForest G Nonparametric method to impute missing values using a ran-
dom forest classifier trained on the observed parts of the data
set, repeated until convergence

MissForest11

PCA G Run principal component analysis, impute missing values with
the regularized reconstruction formulas and repeat until con-
vergence

pcaMethods,12 miss-
MDA13

Table 1. Existing proteomics imputation methods. Descriptions of generalized imputation strategies
and examples of specific tools that implement each strategy. The “Type” column indicates whether the
method uses single-value replacement (S), local similarity (L), or global similarity (G).

which use statistical models to learn patterns of local similarity in the data, for example between subsets of
similar peptides or runs; and “global similarity” methods, which learn broad patterns of similarity across all
peptides and runs.

It is not always clear what imputation method is best for a given proteomics data set. A number of studies
benchmark imputation methods and offer guidelines for selecting an appropriate method.1,2, 14,15,16,17 A
general recommendation is that single-value replacement strategies rarely work well. Another is that the
optimal imputation method depends on the structure of missingness in the data. Mass spectrometry-based
proteomics experiments exhibit two major forms of missingness: missing completely at random (MCAR)
and missing not at random (MNAR). MCAR describes missingness that does not depend on any observed
variable, that is, missingness occurs independent of peptide intensity or relationships between samples. For
MNAR, missingness is dependent on some observed variable. For example, in mass spectrometry-based
proteomics, missingness is often a function of peptide intensity, with more missingness occurring in peptides
closer to the instrument’s lower limit of quantification (LLOQ).

When comparing performance of imputation methods, it is commonplace to use relatively simple criteria that
are easy to compute but not necessarily relevant to most proteomics researchers. One example is calculating
the mean squared error (MSE) between imputed and ground truth peptides quantifications for a withheld
set of matrix entries. As an alternative, we introduce “downstream-centric,” criteria focused on differential
expression, peptide LLOQ, and the total number of quantitative peptides in an experiment. We argue that
these downstream-centric criteria are more relevant to the questions proteomics researchers typically seek
to answer. Furthermore, we observe that the best-performing imputation methods per traditional criteria
often differ from the best performing methods per our downstream-centric criteria.

To decide which imputation methods to include in our study, we carried out a systematic literature review.
All Journal of Proteome Research articles published between January 1, 2019, and January 31, 2023, were
searched for the following terms: “impute,” “imputed,” “imputation.” For this survey we excluded method-
ological and benchmarking studies. On the basis of the resulting citation counts (Figure 1), we selected four
of the most popular imputation methods: k-nearest neighbor (kNN),3 MissForest,11 Gaussian sampling,9

and low value replacement. We also include a non-negative matrix factorization (NMF) imputation method,
which has recently been proposed for proteomics.18,19,20 By focusing on only the most commonly used
imputation methods, our aim is to provide a practical comparison that will be beneficial to experimental
proteomicists. For this reason, seldom used R packages (e.g., imp4p, impSeqRob, QRLIC) have been omitted
from our analysis. We also omit PCA-based methods, as they did not come up in our literature review.

Additionally, we choose to conduct our analysis primarily on peptide-level quantifications. Our reason for
this is severalfold: (i) summarizing peptide quantifications at the protein level reduces often-critical data
heterogeneity,21 (ii) protein roll-up can introduce statistical bias,22 and (iii) imputation may perform better
at the peptide level.15
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Figure 1. Identifying the most commonly used proteomics imputation methods. Results of a
literature survey of Journal of Proteome Research articles from January, 2019 – January, 2023 are shown.
Methods labeled “Other” appear in just a single publication, and refer to the imp4p and QRLIC R packages,
as well as methods based on Euclidean distances and randomly drawing from the entire peptide intensity
range. The full results of this literature search, including the names and DOIs of the identified studies, are
included as Data 1.

We evaluate performance of the five imputation methods with both traditional and downstream-centric
criteria. The latter include the ability to: (i) identify differentially expressed peptides, (ii) generate new
quantitative peptides, and (iii) improve peptide LLOQ. Our benchmarking study comprises a variety of
experiment types including serial dilution series, data-dependent acquisition (DDA), data-independent ac-
quisition (DIA), label-free, and isobaric labeled experiments. Critically, we include an unimputed condition
in all three downstream-centric evaluation experiments, for evaluating whether imputation should be per-
formed at all. Our findings suggest that imputation may not improve detection of differentially expressed
peptides, but that it can identify new quantitative peptides and improve peptide LLOQ.

We also demonstrate that the variance among measured peptide intensities is greater than expected. Pep-
tide quantifications from ion-counting mass spectrometers are often assumed to be well approximated by
Poisson statistics.23,24,25 We demonstrate that peptide quantifications are overdispersed relative to a Pois-
son model, for multiple mass spectrometry acquisition strategies. Furthermore, we demonstrate that the
commonly used logarithmic transformation does not result in uniform variance of peptide quantifications.
These findings suggest that the statistical assumptions made by several prominent imputation methods are
not met in proteomics data. They also suggest the need for methods that employ variance stabilization prior
to imputation, similar to strategies taken in genomics.26,27,28

2 METHODS

2.1 Data sets

For this study, we used 12 public quantitative proteomics data sets (Table 2). Eight of the 12 data sets were
accessed via the Proteomics Identification Database (PRIDE, https://www.ebi.ac.uk/pride/),29 and
are indicated with their ProteomeXchange (PXD) labels.30 Two data sets were obtained from the National
Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) data portal (https://proteo
mic.datacommons.cancer.gov/pdc/).31 The remaining two data sets, PXD034525 and PXD014815, were
obtained from Panorama (https://panoramaweb.org/home/project-begin.view). Additional details on
data set acquisition are provided by Data 2.

For experiments processed with MaxQuant, we used the “peptides.txt” output files to generate peptide-by-
run intensity matrices by selecting only the “Sequence” and “Intensity” columns. For the CPTAC experi-
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Identifier Peptides Runs % Missing Quantification Software Experiment Type Citation
PXD016079 32999 31 45 MaxQuant, MBR DDA, LFQ 32

PXD006109 38124 20 17 MaxQuant, MBR DDA (BoxCar) 33

PXD014525 17208 36 92 MaxQuant DDA, LFQ 34

PXD034525 40346 10 13 EncyclopeDIA, Skyline DIA 35

PXD014815 24204 42 29 EncyclopeDIA, Skyline DIA 36

PXD013792 2224 12 72 MaxQuant DDA, LFQ 37

PXD014156 697 20 55 MaxQuant DDA, LFQ 38

PXD006348 10362 24 72 MaxQuant DDA, LFQ 39

PXD011961 23415 23 46 MaxQuant, MBR DDA, LFQ 40

CPTAC-S047 40000 30 54 Philosopher DDA, TMT 41

CPTAC-S051 40000 30 41 Spectrum Mill DDA, TMT 42

PXD007683 38921 11 0 Custom pipeline DDA, TMT 43

Table 2. Data set characteristics. Description of the proteomics data sets used in this study. The two
CPTAC data sets were downsampled by randomly selecting 40,000 peptides and 30 runs each. “MBR”
stands for “match between runs,” “LFQ” for “label-free quantification,”, and “TMT” for “tandem mass
tag.” References for quantification software: MaxQuant,44 EncyclopeDIA,45 Skyline,46 Philosopher.47

ments, we obtained peptide-spectral match files (.psm) from the CPTAC data portal and converted them to
matrix format with custom scripts (available at https://github.com/Noble-Lab/2023-prot-impute-ben
chmark). The peptide-by-run matrices from these CPTAC studies were large (S047: 110,000 peptides × 226
samples; S051: 291,000 peptides × 35 samples). For efficiency, we downsampled these matrices by randomly
selecting 40,000 peptides and 30 runs from each.

For the two DIA data sets, peptide quantification matrices were obtained directly from Panorama.

2.2 Traditional evaluation measures

We first used a traditional machine learning-style train/test setup to evaluate the performance of imputation
methods. With this approach, the values in the peptide-by-run matrix were randomly partitioned into two
groups: a training set and a test set. The imputation method was trained on the training set values and we
measured how well the method imputed the values in the test set. For each data set, peptides with fewer
than four present values in the training set were removed prior to imputation.

The train/test partitioning was performed with two different procedures: MCAR and MNAR. For MCAR,
25% of the present (i.e., non-missing) matrix entries were randomly selected for the test set. The remaining
matrix entries were used as the training set. For MNAR, we took a similar approach to the one described
by Lazar et al.15 For a given peptide-by-run matrix, we constructed an equally sized thresholds matrix
filled with values sampled from a Gaussian distribution centered about the 30th percentile of the distribution
of quantifications, with standard deviation 0.6. For each element Xij in the peptide-by-run matrix, if the
corresponding thresholds matrix element Tij < Xij , then Xij was assigned to the training set. Otherwise,
a single Bernoulli trial with probability of success 0.75 was conducted. If the Bernoulli trial was successful,
then Xij was assigned to the test set. Otherwise Xij was assigned to the training set. The Bernoulli success
probability and the Gaussian distribution mean and standard deviation were selected in such a way that
25% of present matrix entries were ultimately assigned to the test set. The remaining 75% were assigned
to the training set. The distributions of the training and test set values following the MCAR and MNAR
partitions are shown in Supplementary Figure 1, for experiment PXD034525.

Once the peptide-by-run matrices were partitioned into train/test, imputation was performed with five
procedures: NMF, kNN, MissForest, low value replacement (run minimum) and Gaussian sample impute.
A custom PyTorch model was used for NMF imputation. This model used an MSE loss function and
stochastic gradient descent to converge on an ideal matrix factorization. This model is available at https:
//github.com/Noble-Lab/MSFactor. For kNN, we used the KNNImputer implementation from scikit-
learn. MissForest version 1.5 was used (https://CRAN.R-project.org/package=missForest).11 Custom
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code was used for the low value replacement and Gaussian sample impute procedures. For Gaussian sample
impute we replicated the procedure taken by Perseus.9 For low value replacement, we filled in missing values
with the lowest measured peptide intensity for each run. NMF and kNN were performed with four latent
factors and neighbors, respectively. MissForest was performed with 100 trees, the default setting.

Following imputation, we computed the MSE between observed and imputed values for each test set (Figure
2).

2.3 Downstream-centric evaluation measures

2.3.1 Differential expression

For differential expression analysis we obtained data from PXD034525, a DIA study of Alzheimer’s dis-
ease.35 Clinical samples had previously been assigned to experimental groups based on several genetic,
histopathological and cognitive criteria. We compared differentially expressed peptides between (i) autoso-
mal dominant Alzheimer’s disease dementia and (ii) high cognitive function, low Alzheimer’s disease neu-
ropathologic change. Both experimental groups were composed of nine patient samples and 32,614 detected
peptides.

Ground truth differentially expressed peptides were determined by performing two-sample t-tests between
experimental groups for each detected peptide. P-values were corrected for multiple hypothesis testing using
the Benjamini-Hochberg procedure.48 Peptides with corrected p-values < 0.01 were considered ground truth
differentially expressed.

MCAR and MNAR partitioning was performed similar to above, but this time we created three disjoint
sets: training, validation and test. For the MCAR partition, 15% of matrix entries were randomly selected
without replacement for the validation set, and a separate 15% were selected for the test set. For the MNAR
partition, matrix entries corresponding to successful Bernoulli trials were assigned in an alternating fashion
to either the validation or the test set. The Bernoulli success probability and Gaussian distribution mean
and standard deviation were tuned so as to generate a 70%/15%/15% train/validation/test split.

The validation sets were used to select the optimal hyperparameters for NMF and kNN. For MissForest a
full hyperparameter search proved computationally unfeasible, so we again selected the default value of 100
for the n trees parameter. None of the other methods have tunable hyperparameters. The following values
were included in our hyperparameter searches for n latent factors and k neighbors: [1, 2, 4, 8, 16, 32].

Following hyperparameter selection, imputation was performed with each method. Differentially expressed
peptides were determined for the imputed matrices as previously described. Precision-recall curves comparing
ground truth to imputed differentially expressed peptides were generated with scikit-learn (Figure 3). For
the unimputed condition, the differential expression calculation was performed as previous, while simply
ignoring the missing matrix entries. That is, the differential expression test was performed on training set
values only.

We performed an additional differential expression experiment for PXD034525 in which we varied the miss-
ingness fraction from 25% to 30% to 50% (Supplementary Figure 2). For MNAR, this was accomplished
through tuning the Bernoulli success probability and Gaussian distribution mean and standard deviation
parameters in order to achieve the desired missingness fraction.

The differential expression procedure was repeated for a TMT data set, CPTAC-S04741 (Supplementary
Figure 3). This was a study of pediatric brain cancer. We compared clinical samples annotated as “Low-
grade glioma/astrocytoma” to “Ependymoma”. 23 patient samples were used for each condition, and 26,923
detected peptides. We performed a 70%/15%/15% train/validation/test split.

The differential expression test was repeated for protein-level quantifications from PXD034525 (Figure 4).
Once again, we performed a 70%/15%/15% train/validation/test split. 4,999 proteins were included in this
analysis.
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2.3.2 Quantitative peptides

To examine the effects of imputation on the number of quantitative peptides in a proteomics experiment,
we obtained data from PXD014815.36 This was a serial dilution experiment in which peptides were succes-
sively diluted by increasing concentrations of a matched background matrix. As a result, the total protein
concentration in each sample was known. The authors then used a custom statistical model to fit the rela-
tionship between observed and expected signal, and to determine whether increases in signal corresponded
to proportional increases in peptide abundance. Peptides in which increase in signal did indeed correspond
to increases in quantity across a linear range were considered quantitative.

We used this statistical model to assess the number of quantitative peptides before and after imputation
of the serial dilution series data set (Figure 5). MCAR partitioning was performed as described above.
Hyperparameter tuning for kNN and NMF was performed as described above. The peptide-by-run matrix
was imputed with each method, and quantitative peptides were identified in the imputed matrices. The
UpsetR package was used to generate Figure 5.49

2.3.3 Lower limit of quantification

We used the serial dilution experiment from PXD014815 to examine the effects of imputation on peptide
LLOQ (Figure 6). We again used the statistical model from Pino et al.36 to determine the LLOQ of
each detected peptide before and after imputation. One-sided binomial tests were performed to determine
whether each imputation method decreases the LLOQ for significantly more peptides than it increases.
Binomial p-values were corrected with the Benjamini-Hochberg procedure.

2.4 Runtime evaluation

We used Python’s time module to compare runtimes of the various imputation methods (Figure 7). NMF,
kNN, low value replacement, Gaussian sample and MissForest were run on 14 public proteomics data sets
accessed from PRIDE. This experiment was performed on a dual CPU Intel Xeon E5-2620 machine with
32 GB RAM, running CentrOS 7.6. NMF was specified to run on a maximum of 10 cores, and the remaining
methods were run on a single core. This was because the kNN implementation we used, scikit-learn’s
KNNImputer, does not support multiprocessing, nor do our custom implementations of low value replacement
and Gaussian sample impute. MissForest does support multiprocessing, though in our experience, the
parallelized version of MissForest proved nearly impossible to run to completion. Thus, we choose to limit
MissForest to a single core.

3 RESULTS

3.1 Evaluating with traditional criteria

We began by assessing the performance of popular imputation methods with a traditional machine learning
criterion: prediction error on a withheld test set. Accordingly, we obtained peptide-level quantifications
for seven of the experiments shown in Table 2. These included DIA, DDA and TMT experiments, with a
missingness range of 0 to 92%. We assessed the ability of the imputation methods to reconstruct missing
values after MCAR and MNAR procedures were used to simulate an additional 25% missingness in each
data set.

Our results (Figure 2) demonstrate that the relative performance of imputation methods depends on the type
of missingness. MissForest and NMF perform the best for all seven data sets in the MCAR condition. In the
MNAR condition, the two single-value imputation methods—Gaussian sample and low value replacement—
appear to work the best, though MissForest also performs well for some data sets. In both conditions, the two
TMT data sets—CPTAC-S047 and CPTAC-S051—yield lower reconstruction errors across all imputation
methods when compared to the DDA and DIA data sets.
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Figure 2. Evaluating imputation methods with traditional criteria. Test set reconstruction error
(MSE) for imputation with five methods is shown, for seven proteomics data sets. MCAR and MNAR
procedures were used to simulate missing values.

3.2 Evaluating with downstream-centric criteria

Although traditional machine learning-style evaluations such as Figure 2 are informative, we argue that
prediction error on a held-out set is neither the most convincing nor the most relevant metric for most
proteomics researchers. Additionally, good performance per traditional evaluation criteria may not translate
to good performance on downstream analysis tasks. Furthermore, recent benchmarking studies have made
the assumption that imputation will improve performance on downstream analysis tasks relative to no
imputation. This assumption is generally unfounded, as imputation can introduce bias even when used
appropriately.50,51 With these considerations in mind, we compared the performance of five commonly
used imputation methods on three downstream analysis tasks that we argue are more congruent with the
questions proteomicists typically seek to answer.

3.2.1 Differential Expression

We began with differential expression analysis. We obtained peptide-level quantifications from a DIA-based
clinical study of Alzheimer’s disease.35 Patient-derived brain samples had been assigned to experimental
groups based on several genetic, histopathological and cognitive criteria. We compared samples belong-
ing to two experimental groups: (i) autosomal dominant dementia and (ii) high cognitive function, low
Alzheimer’s disease neuropathologic change. These experimental groups represent opposite ends of the spec-
trum of Alzheimer’s disease severity and Merrihew et al. found significant biological heterogeneity between
them.

We compared the abilities of imputation methods to identify differentially expressed peptides after simulating
missingness with either MCAR or MNAR (Figure 3). To perform this experiment, we identified ground
truth differentially expressed peptides in the low-missingness Alzheimer’s disease DIA data set, simulated
30% missingness, then imputed with various methods and identified differentially expressed peptides in the
imputed matrices. We also included an unimputed condition in which differentially expressed peptides were
identified directly from the unimputed training set. The sharp elbows in the MNAR precision-recall curves
are due to the fact that an alpha value of 0.01 was used for determining significantly differential peptides for
both ground truth and imputed matrices. It is likely that many peptides had p-values very close to the 0.01
threshold but were not considered differentially expressed, resulting in sharp decreases in precision as soon
as this threshold was crossed.

In the MCAR condition, MissForest, kNN and no imputation all performed well, with areas under the
curve (AUCs) of 0.80, 0.78 and 0.76, respectively. In the MNAR condition, kNN, no imputation and NMF
performed the best, with respective AUCs of 0.87, 0.86 and 0.82. While the two single-value imputation
methods performed well in the MNAR condition of the traditional evaluation experiment (Figure 2), they
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Figure 3. Comparing the abilities of imputation methods to identify differentially expressed
peptides. Precision-recall curves are shown, for MCAR and MNAR simulated missingness. Data were
obtained from PXD034525, a DIA study of Alzheimer’s disease. Differentially expressed peptides were
identified between two clinically annotated Alzheimer’s disease groups.35 The areas under the precision-
recall curves (AUCs) for MCAR and MNAR are indicated.
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performed poorly on the differential expression test, with the lowest AUCs for both MCAR and MNAR. In
both conditions, no imputation performed nearly the same or better than the five imputation methods.

We also performed differential expression experiments for a TMT (Supplementary Figure 3) and a label-free
DDA (Supplementary Figure 4) data set. For the TMT data set, no imputation performed the best for
MCAR, and was slightly outperformed by kNN for MNAR. For the label-free DDA data set, no imputation
performed the best for both MCAR and MNAR. For the label-free DDA data set the single-value impute
methods were the worst performing for both MCAR and MNAR.

We revisited the Alzheimer’s disease DIA data set to perform a final differential expression experiment for
protein-level quantifications (Figure 4). In both MCAR and MNAR conditions, the single-value imputation
strategies performed the worst. Interestingly, the AUCs of the non-single value imputation strategies were
all in the range of 0.87–0.9. This indicates that, for this particular DIA data set, differential expression
analysis was more accurate at the protein level. We again observed that no imputation performs remarkably
well relative to commonly used imputation methods, with AUCs of 0.88 and 0.89 for MCAR and MNAR,
respectively.

3.2.2 Quantitative Peptides

Next, we assessed whether imputation can generate additional quantitative peptides. While peptide detection
rates have increased significantly over the past decade, not every detected peptide is necessarily quantitative.
For a peptide to be considered quantitative, increases in measured signal must correspond to increases in
peptide abundance, across a linear range.36 We obtained data from a serial dilution series experiment
(PXD014815) in which the protein concentration was known for each sample. We used a statistical model
developed by Pino et al. to determine whether each detected peptide was quantitative before and after
imputation.36

The results of this experiment (Figure 5) show that several imputation methods produce new quantitative
peptides. MissForest, kNN and NMF each generated large sets of peptides that were quantitative only
after imputation (2,768 for MissForest; 1,050 for kNN; 1,128 for NMF). However, MissForest was the only
method that increased the total number of quantitative peptides relative to no imputation, producing 10,475
quantitative peptides relative to the 7,707 obtained with no imputation.

3.2.3 Lower limit of quantification

We also assessed whether imputation can improve peptide LLOQ, which refers to the minimum abundance
at which a peptide can be considered quantitative. For this analysis, we again used the serial dilution data
set from Pino et al.. We found that while imputation did indeed decrease the LLOQ for many peptides,
it also increased the LLOQ for some peptides, which was the opposite of the intended effect. Strikingly,
MissForest was the only method that decreased the LLOQ of significantly more peptides than it increased
(Figure 6, one-sided binomial p-value corrected with Benjamini-Hochberg < 0.01).

3.3 Runtime

For imputation methods to be incorporated into existing proteomics data processing workflows, they must
be runnable in a reasonable time frame. With this in mind, we compared the runtimes of our five imputation
methods (Figure 7). The two simplest methods, Gaussian sample and low value replacement, ran in a matter
of seconds; NMF and kNN ran in a matter of minutes; MissForest took several hours to complete. Thus,
with the possible exception of MissForest, runtime should not present a barrier for incorporation into data
processing workflows.

3.4 Variance in quantitative proteomics data

We investigated the statistical assumptions underlying several imputation approaches. Peptide quantifica-
tions are often modeled with Poisson statistics.23,24,25 One feature of a Poisson distribution is that variance
is equivalent to the mean. Additionally, it is commonplace to logarithmically transform quantifications
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prior to analysis. One assumption with a logarithmic transformation is that variance of the transformed
quantifications will be uniform. Parametric imputation methods with a Gaussian prior include least-squares
regression, the Gaussian sample impute method, and standard NMF.

To empirically investigate the variance of peptide quantifications, we obtained data from four experiments,
each of which contained technical replicates (Table 2). We used three DDA experiments and one DIA. We
calculated the means and variances of peptide quantifications across technical replicates, for each detected
peptide, for each experiment. We found that peptide quantifications are overdispersed relative to the Poisson
distribution (Figure 8, left); that is, for nearly every peptide, the variance across replicates was greater than
the mean intensity across replicates. Log transformation resulted in more uniform variance across intensities,
but many peptides still displayed extraordinarily high variances (Figure 8, right).

We found that for multiple data sets obtained with both DDA and DIA acquisition strategies, neither Poisson
nor Gaussian assumptions hold. This suggests that parametric imputation methods with implicit Gaussian
assumptions may be ill-suited for these data.

We also observed that imputation with NMF and MissForest had little effect on the variance of peptide
quantifications (Supplementary Figure 5). The Gaussian sample method, however, introduced additional
variance. This finding suggests that while NMF and MissForest imputation do not profoundly affect the
underlying distribution of peptide quantifications, single-value impute strategies may do so. In this way,
single-value impute strategies may introduce artifacts into proteomics data when their underlying assump-
tions are not met.
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Figure 8. Variance of peptide quantifications is greater than expected. Means and variances were
calculated across technical replicates for every detected peptide. Each dot corresponds to a peptide. Data
from DIA (PXD034525) and DDA (PXD016079, PXD014525, PXD006109) experiments are plotted.
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4 DISCUSSION

The two most popular imputation methods—Gaussian sampling and low value replacement—performed
poorly in our downstream-centric experiments. These single-value imputation strategies were the worst per-
foming for peptide-level differential expression detection in DIA data (Figure 3), protein-level differential
expression in DIA data (Figure 4), peptide-level differential expression in label-free DDA data (Supplemen-
tary Figure 4), generating quantitative peptides (Figure 5) and decreasing peptide LLOQ (Figure 6).

However, the results of the downstream-centric experiments did not always agree with the traditional evalua-
tion experiment. In particular, the single-value imputation strategies often outperformed the local and global
similarity strategies for the traditional benchmarking experiment shown in Figure 2, especially for MNAR.
This was likely because the single-value imputation strategies assume that missing values are drawn from the
low end of the distribution of peptide quantifications, and this assumption was met in the MNAR condition
of the traditional evaluation experiment. We argue that traditional evaluation experiments such as Figure 2
are misleading because they inflate the performance of single-value impute strategies. Performance on our
downstream-centric criteria is more relevant than test set MSE, because the downstream criteria are more
congruent with questions proteomics researchers typically seek to answer. Thus, we urge the community to
move away from traditional performance evaluations in favor of the downstream-centric criteria presented
here.

Our results suggest that imputation may not be necessary for differential expression analysis. For a DIA
experiment with MCAR and MNAR simulated missingness, no imputation worked roughly as well as the
best imputation methods (Figure 3). In the MCAR condition, the largest AUC value belonged to MissForest
at 0.8, only slightly higher than unimputed at 0.76. In the MNAR condition, kNN had the highest AUC
at 0.87, and unimputed was close behind with 0.86. This result generalized to a label-free DDA data set
(Supplementary Figure 4), in which no imputation outperformed all imputation methods for MCAR and
MNAR. For a TMT data set, no imputation had the highest AUC for MCAR and was tied for the second
highest for MNAR (Supplementary Figure 3).

We found that as the missingness fraction increased, unimputed performed better and better relative to
the five imputation methods (Supplementary Figure 2). For example, in the case of MNAR with a 50%
missingness fraction, unimputed had an AUC of 0.65, whereas the best imputation method was MissForest
with an AUC of 0.55.

We also found that for a DIA experiment, differential expression analysis was more accurate when performed
at the protein level (Figure 4). This makes sense because protein roll-up reduces missingness and hides
variability between peptides of the same protein, therefore making the differential expression identification
task easier.21 Researchers should approach protein-level analysis with caution, however, because protein roll-
up may introduce statistical bias and reduce data heterogeneity.21,22 It should be noted that once again,
the unimputed condition had one of the highest AUC values for both MCAR and MNAR.

Taken together, our differential expression results cast doubt on the practice of imputing missing values
prior to differential expression analysis. We have shown that at the peptide and protein level, for DIA,
label-free DDA and TMT experiments, no imputation generally works as well as the most commonly used
imputation methods. Our results are in line with Wolski et al., who suggest that statistical models of
differential expression that do not impute, but rather explicitly model missingness, tend to outperform
traditional models.52

As we only performed differential expression analysis on three data sets, we do not claim our results will
generalize to all proteomics data. Instead, our results suggest that researchers should empirically evaluate
whether imputation improves accuracy of their differential expression analysis on a case-by-case basis, using
similar procedures to the one we introduce here.

Bai et al. have shown that the choices in normalization procedure and statistical analysis method can affect
differential expression results.53 The normalization procedures used by the data sets we analyzed are provided
as Supplementary Table 1. We acknowledge that differences in normalization may have introduced variation
that cannot be explained by the imputation methods alone. It is also possible that the spectral processing
tools themselves—for example MaxQuant versus Skyline—may have contributed additional variation. Future
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work will aim to repeat our benchmarking analysis with standardized spectral processing and normalization
procedures.

We choose a two-sample sample t-test for differential expression analysis because it represents a simple,
transparent and commonly used procedure.54,43,39,32 Furthermore, the three data sets we analyzed all had
relatively simple experimental designs. For the DIA35 and TMT41 data sets, each analyzed sample came
from a different individual, and serial biopsies and time series data were excluded from our analysis. For
the label-free DDA data set,39 biological replicates from two Brucella species were compared. For simple
experimental designs such as these, differential expression analysis does not require complicated statistical
procedures. For more complex designs we recommend MSstats, which can model a variety of experimental
designs in a statistically rigorous manner.55

We found that imputation can identify new quantitative peptides (Figure 5). As modern proteomics tech-
niques increase the number of identifications, it is important to remember that not all detected peptides are
quantitative. Here we show that MissForest can be used as a post-processing tool to generate additional
quantitative peptides in a proteomics experiment (Figure 5). Additionally, NMF and kNN can produce new
subsets of quantitative peptides, even though they may still decrease the total number of quantitative pep-
tides. Increasing the number of quantitative peptides will increase the statistical power of any downstream
prediction or inference task that relies on peptide abundances. Such tasks include identifying differentially
expressed peptides, clustering samples or peptides, dimensionality reduction and identifying co-expression
modules and protein-protein interaction networks.

Imputation with MissForest can also improve peptide LLOQ (Figure 6). It is worth acknowledging that
while MissForest decreased the LLOQ of significantly more peptides than it increased, it did still increase the
LLOQ for a large number of peptides (3,115/24,204 detected peptides). That said, any proteomics study that
examines biologically important low-abundance peptides may still benefit from MissForest imputation. As
the scale and sensitivity of proteomics experiments increase, MissForest—and future imputation methods—
may help researchers study key peptides derived from ever-smaller sample volumes.

Finally, we provide empirical evidence that peptide quantifications exhibit more variance than can be ex-
plained under Poisson or Gaussian modeling assumptions (Figure 8). While ion counting may be a Poisson
process,23,24,25 it is clear that the resulting quantifications are not Poisson distributed. One property of
a Poisson distribution is that mean and variance are equal. We found that this property was violated by
several proteomics data sets: the variance among peptide quantifications across technical replicates was
greater than the corresponding means (Figure 8). This result held true for both DDA and DIA experiments
and for protein-level quantifications (Supplementary Figure 6). We speculate that this additional variance
may be due to an unaccounted-for noise source such as electrospray ionization. Another assumption is that
log-transformed intensities are roughly Gaussian. Under this model, variance would be uniform across mean
intensities. We show this assumption is also violated in DIA and DDA data: we observed non-uniform vari-
ance after log transformation (Figure 8, right). It is worth noting that the Poisson is a discrete probability
distribution, whereas Gaussian is continuous. From a statistical standpoint, it should not be assumed that
a logarithmic transformation can convert a discrete probability distribution into a continuous one.

Future imputation methods should explicitly model the variance present in proteomics data. One obvious
choice of generating distribution is the negative binomial distribution, which has an additional parameter that
can account for variance independent of the mean. This strategy has been employed previously to model
counts from single-cell RNA sequencing experiments.27,28 Another option could be to perform variance
stabilization prior to imputation. This is the goal with the log transformation; however, as we have shown,
logging does not successfully stabilize variance. VSN, a custom variance stabilizing transformation originally
developed for microarrays, has been shown to stabilize the variance of protein quantifications,56,16 as has
the generalized log transformation.57 However, the proteomics community is yet to broadly adopt these
methods. Proteomics may also benefit from the variance stabilization technique developed by Bayat et al.,
in which a variance stabilizing function is empirically learned from the data.26 Successful modeling and
variance stabilization approaches could benefit not just imputation but data analysis for proteomics more
broadly.

We speculate that the unusual dimensionality of peptide-by-run matrices, generally thousands of peptides
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by less than 100 runs, may cause problems for existing imputation methods. Many proteomics imputa-
tion methods were originally developed for microarrays and relatively square matrices. Future imputation
methods may benefit from explicitly accounting for the dimensionality of peptide-by-run matrices.

The proteomics community would benefit from easy-to-use and broadly applicable imputation methods. As
previously reported,1,2, 14,15 we found that the best choice in imputation method depends on the analysis task
and the details of the experiment. This suggests the need for new imputation methods that are generalizable
enough to accurately handle data from any acquisition strategy and type of missingness. Deep neural
networks have proven highly generalizable in other contexts. Recent “deep” impute methods may be a
step in the right direction,20 though much work remains to be done. In the future, data-driven imputation
methods may be broadly adopted as part of general signal processing workflows for proteomics.
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