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Abstract

We identify fundamental tradeoffs between statistical utility and privacy under local models
of privacy in which data is kept private even from the statistician, providing instance-specific
bounds for private estimation and learning problems by developing the local minimaz risk. In
contrast to approaches based on worst-case (minimax) error, which are conservative, this allows
us to evaluate the difficulty of individual problem instances and delineate the possibilities for
adaptation in private estimation and inference. Our main results show that the local modulus
of continuity of the estimand with respect to the variation distance—as opposed to the Hellinger
distance central to classical statistics—characterizes rates of convergence under locally private
estimation for many notions of privacy, including differential privacy and its relaxations. As
consequences of these results, we identify an alternative to the Fisher information for private
estimation, giving a more nuanced understanding of the challenges of adaptivity and optimality.

1 Introduction

The increasing collection of data at large scale—medical records, location information from cell
phones, internet browsing history—points to the importance of a deeper understanding of the
tradeoffs inherent between privacy and the utility of using the data collected. Classical mechanisms
for preserving privacy, such as permutation, small noise addition, releasing only mean information,
or basic anonymization are insufficient, and notable privacy compromises with genomic data [37] and
movie rating information [44] have caused the NIH to temporarily stop releasing genetic information
and Netflix to cancel a proposed competition for predicting movie ratings. Balancing the tension
between utility and the risk of disclosure of sensitive information is thus essential.

In response to these challenges, researchers in the statistics, databases, and computer science
communities have studied differential privacy [55, 33, 29, 28, 34, 25, 21] as a formalization of dis-
closure risk limitation. This literature discusses two notions of privacy: local privacy, in which data
is privatized before it is even shared with a data collector, and central privacy, where a central-
ized curator maintains the sample and guarantees that any information it releases is appropriately
private. The local model is stronger and entails some necessary loss of statistical efficiency, yet its
strong privacy protections encourage its adoption. Whether for ease of regulatory compliance, for
example with European Union privacy rules [32]; for transparency and belief in the importance of
privacy; or to avoid risks proximate to holding sensitive data, like hacking or subpoena risk; major
technology companies have adopted local differential privacy protections in their data collection
and machine learning tools. Apple provides local differential privacy in many of its iPhone sys-
tems [3], and Google has built systems supplying central and local differential privacy [30, 1]. The
broad impact of privacy protections in billions of devices suggest we should carefully understand
the fundamental limitations and possibilities of learning with local notions of privacy.

To address this challenge, we borrow from Cai and Low [10] to study the local minimaz com-
plexity of estimation and learning under local privacy. Worst-case notions of complexity may be
too stringent for statistical practice, and we wish to understand how difficult the actual problem we
have is and whether we can adapt to this problem difficulty, so that our procedures more efficiently



solve easy problems—as opposed to being tuned to worst-case scenarios. Our adoption of local
minimax complexity is thus driven by three desiderata, which Cai and Low [10] identify: we seek
fundamental limits on estimation and learning that (i) are instance specific, applying to the partic-
ular problem at hand, (ii) are (uniformly) attainable, in that there exist procedures to achieve the
instance-specific difficulty, and (iii) have super-efficiency limitations, so that if a procedure achieves
better behavior than the lower bounds suggest is possible, there should be problem instances in
which the procedure must have substantially worse behavior. We provide characterize the local
minimax complexity of locally private estimation of one-dimensional quantities, showing that this
benchmark (nearly) always satisfies desiderata (i) and (iii). Via a series of examples—some specific,
others general—we show that there are procedures whose risk is of the order of the local minimax
risk for all underlying (unknown) populations. As an essential part of this program is that the com-
plexity is (ii) attainable—which, to our knowledge, remains open even in the non-private case—we
view this paper as an initial foray into understanding problem-specific optimality in locally private
estimation.

1.1 Contributions, outline, and related work

Our development of instance-specific complexity notions under privacy constraints allows us to
quantify the statistical price of privacy. Identifying the tension here is of course of substantial
interest, and Duchi et al. [25, 24] develop a set of statistical and information-theoretic tools for
understanding the minimaz risk in locally differentially private settings, providing the point of
departure for our work. To understand their and our coming approach, we formalize our setting.

We have i.i.d. data X1,..., X, drawn according to a distribution P on a space X. Instead of
observing the original sample {X;}, however, the statistician or learner sees only privatized data
{Z;}, where Z; is drawn from a Markov kernel Q(- | X;) conditional on X; (following information-
theory, we call @ the privacy channel [15]). We allow the channel to be sequentially interactive [25],
meaning that Z; may depend on the previous (private) observations Z1, ..., Z;_1, i.e.

Zi| Xi=a,Z1,...,Zi-1 ~ Q(- | ¢, Z1:i—1). (1)

This notion of interactivity is important for procedures, such as stochastic gradient methods [25]
or the one-step-corrected estimators we develop in the sequel, which modify the mechanism after
some number of observations to more accurately perform inference.

The statistical problems we consider are, abstractly, as follows. Let P be a family of distribu-
tions, and let § : P — © C R? be a parameter we wish to estimate and belonging to ©, where
O(P) denotes the target parameter. Let L : R — R, be a symmetric quasiconvex loss, where
we assume that L(0) = 0. A typical example is the mean 6(P) = Ep[X] with squared error
L(0—0(P)) = (0 —Ep[X])?. Let Q be a collection of private channels, for example, e-differentially
private channels (which we define in the sequel). The private minimaxz risk [25] is

M, (L,P,Q) == inf supEgop [L(A(Zl, e Zn) — O(P)) 2)
0,QeQ PeP

where @) o P denotes the marginal X; ~ P and Z; drawn conditionally (1). Duchi et al. [25] provide
upper and lower bounds on this quantity when Q is the collection of e-locally differentially private
channels, developing strong data processing inequalities to quantify the costs of privacy.

The worst-case nature of the formulation (2) gives lower bounds that may be too pessimistic for
practice, and it prohibits a characterization of problem-specific difficulty. Accordingly, we adopt



a local minimaz approach, which builds out of the classical statistical literature on hardest one-
dimensional alternatives that begins with Stein [48, 6, 18, 19, 20, 10, 13]. To that end, we define
the local minimaz risk at the distribution P, for the set of channels O as

~

M(Py, L,P,Q) = sup _inf max Eqop |LO(Z1,..., Zn) — 0(P))] . (3)
PieP§,Qeg PE{Po, 1}

The quantity (3) measures the difficulty of the loss minimization problem for a particular distri-
bution Py under the privacy constraints O characterizes, and at this distinguished distribution, we
look for the hardest alternative distribution P; € P. As we shall see, the definition (3) indeed
becomes local, if P; is far from Py, then it is easy to develop an estimator ) distinguishing Py and
Py, so that (for large n) the supremum is essentially constrained to a neighborhood of Fj.

To situate our contributions, let us first consider the non-private local minimax complexity,
when Q = {id} (the identity mapping). Throughout, we will use the shorthand

< (Po, L. P) = M (P, L, P, {id})

for the non-private local minimax risk. We wish to estimate a linear function v”'@ of the parameter
6 with (projected) square loss Lsq,(t) = (vTt)%. In the classical setting of a parametric family
P = {Py}pco with Fisher information matrix Iy, then (as we describe more formally in Section 2.2)
the Fisher information bound for the parameter 6y is

1
M (Pagy Logr P {id}) < ~E | (07 2)°] for 2 ~N(0,13.)), (4)

where =< denotes equality to within numerical constants. More generally, if we wish to estimate a
functional 6(P) € R of P, Donoho and Liu [18, 19, 20] show how the modulus of continuity takes
the place of the classical information bound. Again considering the squared error Lgq(t) = t2, define
the Hellinger modulus of continuity of 0(-) at Py € P by

whel(é;Po,P) = IEUI;D{W(P()) — Q(Pl)‘ s.t. P € P,dhel(Po,Pl) < (5} (5)
1€

where d2.,(Po, P1) = 1 [(v/dPy — v/dP;)?. In the local minimax case, characterizations via a local
modulus are available in some problems [10, 13], where 91 ( Py, Lgq, P) < wi  (n~/2; Py, P), while
under mild regularity conditions, the global modulus sup pcp whel(9; P, P) governs non-private global
minimax risk: (often) one has M, (Lsq, P) =X supp,cp whet(n~Y2; Py, P) [6, 18, 19, 20].

In contrast, the work of Duchi et al. [25, 24] suggests that for e-locally differentially private
estimation, we should replace the Hellinger distance by wvariation distance. In the case of higher-
dimensional problems, there are additional dimension-dependent penalties in estimation that local
differential privacy makes unavoidable, at least in a minimax sense [25]. In work independent of and
contemporaneous to our own, Rohde and Steinberger [47] build off of [25] to show that (non-local)
minimax rates of convergence under e-local differential privacy are frequently governed by a global
modulus of continuity, except that the variation distance ||Py — Pi||py = supy |Po(A) — Pi(A)]
replaces the Hellinger distance dpe. They also exhibit a mechanism that is minimax optimal for
“nearly” linear functionals based on randomized response [55, 47, Sec. 4]. Thus, locally differentially
private procedures give rise to a different geometry than classical statistical problems.

We are now in a position for a high-level description of our results, which apply in a variety
of locally private estimation settings consisting of weakenings of e-differential privacy, whose def-
initions we formalize in Section 2.1. We provide a precise characterization of the local minimax
complexity (3) in these settings. If we define the local modulus of continuity at Py by

w1y (0P, P) = sup {[0(Fy) = 6(P)] sit. [P = Polyy <5}
S



then a consequence of Theorem 1 is that for the squared loss and e-locally private channels Q.,
M(Py, Loy Py Q) = whv ((ne?) ™% Py, P).

We provide this characterization in more detail and for general losses in Section 3. Moreover, we
show a super-efficiency result that any procedure that achieves risk better than the local minimax
complexity at a distribution Py must suffer higher risk at another distribution P;, so that this
characterization does indeed satisfy our desiderata of an instance-specific complexity measure.

The departure of these risk bounds from the typical Hellinger modulus (5) has consequences for
locally private estimation and adaptivity of estimators, which we address for parametric problems
and examples in Section 4 and for general estimation in Section 5. Instead of the Fisher infor-
mation, an alternative we term the L'-information characterizes the complexity of locally private
estimation. A challenging consequence of these results is that, for some parametric models (includ-
ing Bernoulli estimation and binomial logistic regression), the local complexity (3) is independent
of the underlying parameter: nominally easy problems (in the Fisher information sense) are not so
easy under local privacy constraints. Our proofs rely on novel Markov contraction inequalities for
divergence measures, which strengthen classical strong data processing inequalities [14, 16, 25].

Developing procedures achieving the local minimax risk (3) is challenging, but we show that
locally uniform convergence is asymptotically possible in a number of cases in Sections 4 and 5,
including well- and mis-specified exponential family models, using stochastic gradient methods
or one-step corrected estimators. An important point of our results (Sec. 5.3) is that the local
private minimax risk—sometimes in distinction from the non-private case—depends strongly on
the assumed family P, making the development of private adaptive estimators challenging. We use
a protein expression-prediction problem in Section 6 to compare our locally optimal procedures
with minimax optimal procedures [25]; the experimental results suggests that the locally optimal
procedures outperform global minimax procedures, though costs of privacy still exist.

Notation: We use a precise big-O notation throughout the paper, where for functions f,g: X —
R4, g(x) = O(f(z)) means that there exists a numerical (universal) constant C' < oo such that
g(z) < Cf(x); we use g(x) < f(x) to mean the same. We write Oy(-) when the constant C' may
depend on an auxiliary parameter t. We write g(z) < f(z) if both g(z) < f(z) and f(z) < g(z).
If g(x) = o(f(z)) as * — o, we mean that limsup, ., g(x)/f(z) = 0. We let LP(P) be the
collection of g : X — R¢ with [ |lg(z)|”? dP(x) < oo, where p = oo is the set of essentially bounded
g; the dimension d is tacit. For a sequence of distributions P,,, we write convergence in distribution

Xn i>pn X to mean that for any bounded continuous f, Ep, [f(X,)] = E[f(X)].

2 Preliminaries

We begin in Section 2.1 with definitions and some brief discussion of the definitions of privacy we
consider. To help situate our approach, we discuss local minimax complexity without privacy in
Section 2.2. There are several plausible notions of attainment of the local minimax risk—all related
to desideratum (ii) in the introduction that the risk be achievable—so we conclude in Section 2.3
by giving several related results, including an asymptotic and locally uniform convergence guar-
antee that will be what we typically demonstrate for our procedures. In spite of the (sometimes)
asymptotic focus, which builds out of Le Cam’s quadratic mean differentiability theory and various
notions of efficiency in semiparametric models [38, 39, 45, 52, 5], we will typically achieve optimality
only to within numerical constants—getting sharp constants appears challenging when we allow
arbitrary privatization schemes and sequential interactivity (1).



2.1 Definitions of Local Privacy

With the notion (1) of sequentially interactive channels, where the ith private observation is drawn
conditionally on the past as Z; | X; = x, Z1,...,Z;—1 ~ Q(- | , Z1.i—1), we consider several privacy
definitions. First is local differential privacy, which Warner [55] proposes (implicitly) in his 1965
work on survey sampling, and which Evfimievski et al. [33] and Dwork et al. [29] make explicit.

Definition 1. The channel Q is e-locally differentially private if for all i« € N, z,2/ € X, and
211 € 271,

e.

sup QA |z, z1:-1)
A€o(Z) Q(A | 39,) Zl:i—l)

IN

The channel Q is non-interactive if for all 21,1 € Z! and A € o(Z2),
Q(A | lU,Zl:zel) = Q(A | CU)

Duchi et al. [25] consider this notion of privacy, developing its consequences for minimax optimal
estimation. An equivalent view [56] is that an adversary knowing the data is either x or 2’ cannot
accurately test, even conditional on the output Z, whether the generating data was x or 2’ (the sum
of Type I and II errors is at least H#eg) To mitigate the consequent difficulties for estimation and
learning with differentially private procedures, researchers have proposed weakenings of Definition 1,

which we also consider.! These repose on a-Rényi-divergences, defined for o > 1 by

1 dP\*“
D (PIQ) = 1 1os [ (G de

For a = 1 one takes the limit « | 1, yielding D, (P|Q) = Dy (P]|@), and for & = oo one has
apP

Do (P|Q) = esssuplog 5. Mironov [43] then proposes the following definition:
Definition 2. The channel Q is («, €)-Rényi locally differentially private (RDP) if for all z, 2’ € X,
and z1.,_1 € Z, we have

Do (Q(- | 2, 21:-1)|Q(- | 2/, 21:-1)) <ee.

This definition simplifies concentrated differential privacy [27, 9] by requiring that it hold only for
a single fixed «, and it has allowed effective private methods for large scale machine learning [1].
The choice @ = 2 in Definition 2 is salient and important in our analysis. Consider a prior
on points z, 2, represented by 7w(z) € [0,1] and 7(z') = 1 — «(x), and the posterior w(z | Z)
and m(a’ | Z) after observing the private quantity Z ~ Q(- | ). Then (2,¢)-Rényi privacy is
equivalent [43, Sec. VII| to the the prior and posterior odds of x against 2’ being close in expectation:

m(z | Z)/=(" | Z)
m(z)/m ()

for all two-point priors 7, where the expectation is taken over Z | z. (For e-differential privacy, the
inequality holds for all Z without expectation). As Rényi divergences are monotonic in « (cf. [53,
Thm. 3]), any (a,e)-Rényi private channel is (o/,¢)-Rényi private for o/ < «. Thus, any lower
bound we prove on estimation for (o = 2, ¢)-local RDP implies an identical lower bound for o/ > 2.

The definitions provide varying levels of privacy. It is immediate that if a channel is e-
differentially private, then it is («,)-Rényi locally private for any «. More sophisticated bounds

E

| x| <e°

We ignore (e, §)-approximate differential privacy, as for locally private estimation, it is essentially equivalent to
e-differential privacy [e.g. 21, Appendix D.1].



are possible. Most importantly, e-differential privacy (Definition 1) implies (o, 2ce?)-Rényi differ-
ential privacy (Definition 2) for all « > 1. For a = 2, we can tighten this to (2, min{%sQ, 2e})-RDP.
We therefore write our lower bounds to apply for (2,£2)-Rényi differentially private channels; this
implies lower bounds for all (a,&?)-RDP channels, and (as differential privacy is stronger than
Rényi privacy) implies lower bounds for any e-locally differentially private channels.

2.2 A primer on local minimax complexity

We briefly review local minimax complexity to give intuition for and motivate our approach. The
starting point is Stein [48], who considers estimating a nonparametric functional 6(P), proposing
that the “information” about 6 at Py should be the least Fisher information over all one-dimensional
subfamilies of distributions that include Py, leading to the local minimax risk (3) with @ = {id}.
Specializing to the squared error Lyq, in the non-private case, one then defines

MO (Py, Leq, P) 1= inf Ep [(6 — 6(P))?]. 6
5o, Loqy P) = sup inf | e Ep [0 —0(P))?] (6)

Then the Hellinger modulus (5) typically characterizes the local minimax risk (6) to numerical con-
stants [19, 10], as the next proposition shows (we include a proof for completeness in Appendix A.1).

Proposition 1. For each n € N and any Py € P,

Viol,
—w

8\/§ hel

Whenever the modulus of continuity behaves nicely, the upper bound shows that the lower is tight

to within constant factors. For example, under a polynomial growth assumption that there exist
B, 8 < oo such that wpe(cd; Py, P) < BcPwye(5; Py, P) for all ¢ > 1, then

(n_l/z/Q;Po,P) < SDT};)C(PO,LSCI,P) < sup {wﬁel(r;Po,P) exp(—m"g)}.
r>0

MRy, P) < (B2 12) 2y (Y022 Py, P) (7)

(cf. Appendix A.1). The global modulus of continuity of the parameter 6(P) with respect to
Hellinger distance also characterizes global minimax error for estimation of linear functionals on
convex spaces of distributions [6, 18, 19] and gives lower bounds generically.

These calculations are abstract, so it is instructive to specialize to more familiar families, where
we recover the information bound (4). Consider a parametric family of distributions P := { Py }yco,
© C R? with dominating measure p. We assume P is quadratic mean differentiable (QMD) at
0 [52, Ch. 7.1], meaning there exists a score 5 : X — R? such that

1 . 2
[ (vies = Vi = o) d = ol ®)
as h — 0. Most classical families of distributions (e.g. exponential families) are QMD with the

familiar score fg(z) = Vglogpg(z) (cf. [40, 52]). The Fisher information I = [ fgf} pgdp € R4
then exists, and we have the asymptotic expansion

1
dier(Posn, Py) = ghTfeh +o(||h])?). 9)

When the parameter 6 is identifiable, the local minimax risk (6) coincides with the standard Fisher
information bounds to within numerical constants. Indeed, consider the following identifiability



Assumption Al. For § > 0, there exists v > 0 such that |0 — 6o|| > & implies d2 (P, Py,) > 7.
We can then make the approximation (4) for estimating v” 6y rigorous (see Appendix A.2):

Claim 2.1. Let P = {Py}gco be quadratic mean differentiable at 0y with positive definite Fisher
information Ip,, assume that © is bounded, and that 6y is identifiable (A1). Then for large n € N,

1 1
—_— *'UTIG_OlfU S mi?c(Pe(ﬂqu,’U?P) S

9 1
21 n e

T7-1
. EU IHO v.
We cannot expect to achieve the correct numerical constants with the two-point lower bounds in

the local minimax risk [12], but Claim 2.1 recovers the correct scaling in problem parameters.

2.3 Measuring attainment of the local minimax risk

As we note in the introduction, we would like a procedure that uniformly achieves the local minimax
benchmark, that is, for a given loss L, returning to the more general notation (3), we would like

~

Ep [L(6n — 0())]

su 1.
QOPoIéP WIT?C(P(),L,'P, Q) ~

Achieving this generally is challenging (and for many families P, impossible [5]); indeed, a major
contribution of Cai and Low [10] is to show that it is possible to achieve this uniform benchmark
for the squared error and various functionals in convexity-constrained nonparametric regression.
As a consequence, we often consider a weakening to achieve the local minimax risk (to within
numerical constants). We describe this precisely at the end of this section, first reviewing some of
the necessary parametric and semi-parametric theory [52, 5]. In parametric cases, P = {FPp}gco,

we consider sequences of scaled losses, taking the form L, (0, — 0(F)) = L(v/n(0n — 0(F))). An
estimator 0, is asymptotically local minimaz rate optimal if

~

sup limsup  sup EP90+h[L(\/ﬁ(9n_(90+h)))] -
¢ nooo |n<e/va  (Pap, Ln, P {id})

(10)

for all g € int ©. Le Cam’s local asymptotic normality theory of course allows much more, even
achieving correct constants [38, 39, 45, 52]. We emphasize that while many of our ideas build out
of semiparametric efficiency, typically we only achieve optimality to within numerical constants.

We will generally demonstrate procedures that achieve the (private) local minimax risk in some
locally uniform sense, and with this in mind, we review a few necessary concepts in semi-parametric
estimation on regularity, sub-models, and tangent spaces [cf. 52, Chapters 8.5 & 25.3] that will be
important for developing our asymptotics. Let P be a collection of distributions, and for some
Py € P let Psyb,o := {Pn}perd C P be a sub-model within P indexed by h € R?, where we assume
that Psyb,o is quadratic mean differentiable (QMD) (8) at Py for a score function g : X — R4
(usually this score will simply be g(x) = Vj logdPy(x)|,_,) [52, Ch. 25.3], that is,

1 2
[ a7 = an = S gary| = o(inl?) )

as h — 0. Considering different QMD sub-models h — P, around P, yields the tangent set Py,
which is a collection of mean-zero score functions g : X — R¢ with g € L?(P). Then a parameter



0 : P — R" is differentiable relative to Py if there exists a mean-zero influence function 0y : X — RF,
where for each submodel Pgup 0 = {Ph}1ere and associated score g : & — R¢,2

0(Pn) =9(Po)+/90(1f)<9($)>h>dPo(w)+0(Hh|)- (12)

We turn now away from properties of the parameter 6 to properties of estimators that will be
useful. An estimator 6, is reqular for 6 at Py if for all h and sequences h,, — h € R,

N d
hn /v
for a random variable Z (which is identical for each h); such estimators are classically central [52]. In
our constructions, the (private) estimators 6,, depend both on the variables X; and, as we construct
Zi ~ Q(- | Xiy,Z1:-1), we can assume w.l.o.g. that there is an independent sequence of auxiliary

random variables &; i » ux Ssuch that @n = an(le,{l;n). Then under the sampling distribution
Py x Paux, we shall often establish the asymptotic linearity of 6,, at Py X P,ux, meaning

Vi, — 0(Po)) = ;ﬁ > 00(Xi) + ;ﬁ > Gaux(&) + opy (1), (13)
=1 =1

where E[éo(X)] = E[¢aux(§)] = 0, and Cov(éo) = Yo and Cov(Paux) = Laux. Such expansions, with
¢aux = 0, frequently occur in classical parametric, semi-parametric, and nonparametric statistics [cf.
52, Chs. 8 & 25]. For example, in parametric cases with P = { Py }pceo, standard score by = Vg log pp,
and Fisher information Iy = Eg[é@ég], if 6,, is the MLE (without privacy), then ¢,ux = 0 and
0o(z) = —1y, 1@90 (). We have the following regularity result, which essentially appears as [52,
Lemmas 8.14 & 25.23], though we include a proof in Appendix A.3.

Lemma 1. Let Poupo = {Phltpere C P be a QMD (8) sub-model at Py with score g, and assume

that 0 : P — R¥ is differentiable (12) relative to Py at Py. Let 0, be asymptotically linear (13) at
Py X Paux. Then for any sequence hy, — h € R%,

o~ d

Additionally, for any bounded continuous L : R¥ = R, and any ¢ < oo,

lim sup Ep,, - [L(\/ﬁ(ﬁn —0(Fy, ﬁ)))} —E[L(Z)] where Z ~N(0, %0+ Sau).
"7l <e
We use Lemma 1 to describe the local uniform convergence we seek. Define the rescaled losses
L, (t) = L(y/n-t). We say an estimator 6, and channel @ € Q are local minimaz rate optimal if
for all Py € P with QMD submodel Py 0 = {Pr} C P passing through Py with score function g,

~

. EQOPh[L(\/ﬁ(On(Zb“wZn) _G(Ph)))]
sup limsup sup
c<oo n—0o0 ||h||<c/v/n 93@?0(1307 Lnu Pa Q)

<, (14)

where the constant C' is a numerical constant independent of L and F,. Our general recipe is now
apparent: demonstrate an asymptotically linear (14) locally private estimator 6,, with covariance
Yo+ Zaux. Then for any collection of losses { L} for which we can lower bound 91°¢( Py, L,,, P, Q) >
E[L(Z)] when Z ~ N(0, 3¢ + ¥aux), we obtain the convergence (14).

*Recalling [52, Ch. 25.3] and the Riesz representation theorem, the existence of this influence function is equivalent
to the exists of a continuous linear map ¢ : L?(Py) — R* such that 0(P,) — 0(P) = p(hTg) + o(||h]]).



3 Local minimax complexity and private estimation

We turn to our main goal of establishing localized minimax complexities for locally private esti-
mation. We focus first on the squared error for simplicity in Section 3.1, giving consequences of
our results. Instead of the Hellinger modulus (5), we show upper and lower bounds on the local
minimax minimax complexity for private estimation using a local total variation modulus. We then
give several example calculations, and provide a super-efficiency result. In Sections 3.2 and 3.3, we
generalize to show how a total variation modulus characterizes local minimax complexity for nearly
arbitrary losses, making our initial results on squared error corollaries.

3.1 Local minimax squared error and the variation distance modulus

We begin with a somewhat simplified setting, where we wish to estimate a parameter §(P) € R
of a distribution P € P, a collection of possible distributions, and we measure performance of an
estimand @ via the squared error Lg (0, P) = (0 — 6(P))?. For a family of distributions P, the
modulus of continuity with respect to the variation distance at distribution Py is

wrv(8; By, P) i= sup {|9(P) = 0(Po)] st. |P = Polly < 3} (15)
S

As we shall see, this modulus of continuity fairly precisely characterizes the difficulty of locally

private estimation of functionals. The key is that the modulus is with respect to wvariation dis-

tance. This is in contrast to the classical results we review in the introduction and Section 2.2 on

optimal estimation, where the more familiar modulus of continuity with respect to Hellinger dis-

tance characterizes problem difficulty. As we illustrate, the difference between the Hellinger (5) and

variation (15) moduli leads to different behavior for private and non-private estimation problems.
With this, we come to a corollary of our Theorem 1, to come in Section 3.2:

Corollary 1. Let Q. be the collection of (2,%)-locally Rényi private channels (Definition 2). Then

MO(Py, Lsq, P, Q) > %w%v (N;L?;PO,P> :

An identical bound (to within numerical constants) holds for e-locally differentially private channels,
as (recall Section 2.1) any e-differentially private channel is (2, O(1)e?)-Rényi private. In (nearly)
simultaneous independent work to the original version of this paper on the arXiv, Rohde and
Steinberger [47] provide a global (2) minimax lower bound via a global modulus of continuity with
respect to variation distance, extending [18, 19, 20] to the private case. The main difference is our
focus: while they, similar to [25], demonstrate that private minimax rates depart from non-private
ones, our focus is on instance-specific bounds. Consequently, Rohde and Steinberger study linear
functionals 6(P), designing estimators to achieve the global minimax risk, while we allow nonlinear
functionals and develop estimators that must achieve the refined local minimax complexity, with the
hope that we may calculate practically useful quantities akin to classical information bounds [52, 39].
(As an aside, we also provide lower bounds for weaker forms of privacy.)

We can provide a converse to Corollary 1 that (nearly) characterizes the local minimax error
by the modulus of continuity. Indeed, Proposition 2 to come implies that for ¢ < %, we have

Corollary 2. Let Q. be all non-interactive e-differentially private channels (Def. 1). Then

5\/§T 2
MO Py, Leq, P, Q) < 2supwiy | ——=; Py, P | e .
n ( 0 sq 5) TZIS TV \/@ 0



Exactly as in inequality (7), whenever the modulus wry grows at most polynomially—so that there
exist B, 8 < oo such that wyv(cd; Py, P) < BcPwry(8; Py, P) for ¢ > 1, we have

C
loc 2 1
< .
mn (P07 LS(PP’ Q) — CB,ﬁwTV (\/TEQ’ PO)P>
where C is a numerical constant and Cp g depends on B, 8 only. We note that we have thus far
characterized the local minimax benchmark but have provided no estimator uniformly achieving it.

3.1.1 Example moduli of continuity

It is instructive to give examples of the local modulus and connect them to estimation rates. We
give three mean estimation examples—a fully nonparametric setting, a collection of distributions
‘P with bounded variance, and a Bernoulli estimation problem—where we see that the variation
modulus (15) is essentially independent of the distribution Py, in distinction with the Hellinger
modulus (5). After these, additional examples will highlight that this is not always the case.
Example 1 (Bounded mean estimation): Let X C R be a bounded set and P := {P : supp P C X'}
be the collection of distributions supported on X'. Using the shorthand 6y = 6(Fy) = Ep,[X], we
claim the following upper and lower bounds:

d - sup |z — Op| < wrv(d; Py, P) <26 - sup |x — b, (16)
zeX xeX
so that the local modulus is nearly independent of Py. To see the lower bound (16), for any = € X,
define P, = (1 — )Py + ¢ - 1, where 1, denotes a point mass at . Then ||P, — Py|lpy < 6, so
wry(0) > sup,ex |60 — 0(FPr)| = 6 - sup,cx | — 0p|. The upper bound (16) is straightforward:

|6(P) — 6| = ’/(fﬂ — 00)(dP(x) — dPy(x))| < 2 sup [z = 0ol [|P = Pollpy

for all P € P, by the triangle inequality, which is our desired result.

On the other hand, the Hellinger modulus (5) (asymptotically) smaller. Let P be any collection
of distributions with uniformly bounded fourth moment. We claim (see Appendix A.4 for proof)
that there exist numerical constants 0 < ¢y < ¢; < oo such that for all small enough § > 0,

. whel(d; P, P)
cov/ Varp, (X) - 0 < wpet(0; Py, P) < c1y/Varp (X) -6 and lim ——————— = 1. 17
oV/Vars, (X) -3 < wna(8: Py, P) < exy/Varr, (X) s (17)

The variance Varp,(X) of the distribution Py thus determines the local Hellinger modulus (5). <

Example 2 (Means with bounded variance): We specialize Example 1 by considering distributions
on X with a variance bound o2, defining P := {P : supp P C X, Varp(X) < 0?}. We consider
the case that Varp,(X) < o2; we claim that the bounds (16) again hold for small § > 0. The
upper bound is immediate. The lower bound follows by noting that if P, = (1 —0)Py+J - 1,, then
Varp, (X) = Varp, (X — 0y) = (1 — §)Varp,(X) + §(1 — 6)(x — 6p)?, so that for small enough § we
have Varp, (X) < o2 and the identical lower bound (16) holds. <

Example 3 (Modulus of continuity for Bernoulli parameters):  We further restrict to binary
random variables, so that the problem is parametric. Let Bern(#) be the Bernoulli distribution with
mean 0, and P = {Bern(0)}gc(o,1)- We have || Py, — Ppy|[Tv = |6 —0p| and for § < 2, wrv(8; Py, P) =
. On the other hand, Eq. (17) shows that wi,(8; Pg,, P) = 8#;0)(1 + o(1)). The Hellinger
modulus is local to 6y, while the local variation modulus is global. <

10



Summarizing examples 1-3, in each case the local TV-modulus (15) of distributions supported
on X must scale as the diameter of X—essentially identical to a global modulus of continuity over
the full set P = {P : supp P C X'}—while the Hellinger modulus (5) scales linearly in /Varp, (X).
This lack of locality in the local modulus for variation distance has consequences for estimation,
which we can detail by applying Corollary 1:

Corollary 3 (Locally private mean estimation). Let X be bounded, let P be any of the collections of

distributions in Ezamples 1-3, and let Q. be the collection of (2,£2)-Rényi locally private channels.

There exists a numerical constant ¢ > 0 such that for any Py € P (where in the case of Example 2
we require Varp,(X) < o), for all large enough n

diam(X)?  Varg(X

dam(@)? | Varo(X)

: 2
< M(Py, L, P, Q) < diam(X) n Var(X).

ne n 2ne? n

Standard mechanisms [25] achieve the upper bound in Corollary 3: letting Z; = X; + dL%(X)T/Vi for
W; M la p(1) gives an e-differentially private view of X;; define the estimator 0, = % >oiy Z;. This
highlights the difference with the non-private case, where the matching upper and lower bounds
are Varp,(x)/n, while in the private case the diameter of X" is central.

Yet the local total-variation (private) modulus can depend strongly on the distribution Py and
set P of potential alternatives, a point to which we will return later. Two simple examples illustrate.
Example 4 (Modulus of continuity for a normal mean): Let P = {N(6,0?)}ser for a known
variance o2. Letting ¢ and ® be the standard normal p.d.f. and c.d.f., respectively, for any pair
00,01 € R with A = |0y — 61|, we then have |[N(6,0?) — N(01,02)||Tv = ®(A/20) — ®(—A/20).
Solving for the modulus gives that for any Py € P,

wrv (8; Py, P) = ;;g)u +0,(5))

as 6 — 0. It is possible but tedious to extend this to cases with an unknown variance, so that

P ={N(0,0%)}pcr o2 <o0, in Which case we obtain wpv (5; Py, P) < y/Varp, (X)d as § — 0. &

Other parametric families also have stronger dependence on the local distribution P.
Example 5 (Exponential distributions): Let pg(z) = §exp(—%)1{z > 0} be the density of an
exponential distribution with scale 6, and P be the collection of such distributions. Let 7,6 > 0,
and set x, = ;’_—Zlogg. The variation distance between two exponential distributions is then

Py — Pr|lpy = |e”®/% —e=+/7|. For § = 7+ § (or 7 =  — §), we thus obtain that

6 1 1 _1 [16]
Py — Pp_sllpy = exp | —21 lz et B 0y
and || Py — Py—s||py is monotonic in |4|. Eliding details, we thus find that

wrv(0; Py, P) = 06 - (e + Og(9)),

which evidently is local to 6. <

3.1.2 Super-efficiency for squared error

To demonstrate that the local modulus of continuity is the “correct” lower bound on estimation, we
consider the third of the desiderata for a strong lower bound that we idenfity in the introduction: a
super-efficiency result [8, 10, 49] showing that any estimator substantially outperforming the local
minimax benchmark at a given distribution Py necessarily suffers higher expected error for some
other distribution P;. As a corollary of Proposition 3 to come, we establish the following result.

11



Corollary 4. Let Q be a sequentially interactive (2, £2)-Rényi-private channel (Def. 2). If for some
n € [0,1] the estimator 6 satisfies

-~

Egor [(0(Z1m) — 00)7) < sy ;PO,P> ,

(Vi

then for all t € [0,1] there exists a distribution P, € P such that

~ 1 (1-12 1 [tlogi
. — 2 > — 2 24 =M. .
Eqor [(0(Z1:0) — 0(FP1))"] 2 ¢ [1 n 2 ]+WTV<4V P

Unpacking the corollary by ignoring constants (e.g., set t = %), we see (roughly) the following
result: if an estimator achieves expected squared error less (by a factor n < 1) than the squared
modulus of continuity at Fp, it must have squared error scaling with the modulus for a radius

log %—times larger. For example, considering the sample mean examples 1-3, we see that in any

of the settings, there exists a numerical constant ¢ > 0 such that if 5n is locally private and

diam(X)?

Er, [(0n — 0(P0))?] <=

ne

for some 0 < n < 1, then there exists P; € P such that for all large enough n,

diam(X)? 1

Ep, (60— 0(P))?| > ¢ log .

ne

3.2 Local private minimax risk for general losses

We return to prove our local minimax upper and lower bounds for general losses, along the way
proving the claimed corollaries. Recall that we use any symmetric quasiconvex loss L : R? — R,
satisfying L(0) = 0. Then for a family of distributions P, the modulus of continuity associated
with the loss L at the distribution P, is

0(Fp) —6(P)

wrrv(6; o, P) i= sup {L (2) st |P = Pollgy < 5}, (18)
PeP

where the normalization by % is convenient for our proofs. We then have our first main theorem,
which lower bounds the local minimax risk using the modulus (18) in analogy to Proposition 1.

We defer the proof to Section 7.2, where we also present a number of new strong data-processing
inequalities to prove it.

Theorem 1. Let Q be the collection of (2,e2)-locally Rényi differentially private channels (Defini-
tion 2). Let cecony = 1 if L is convex and 2 otherwise. Then for any distribution Py, we have

loc 1 1 .

mn (P(),L,P, Q) Z 4cconva7Tv <W,P0,’P> .
Corollary 1 is then immediate: for the squared error, L(3(6(Py)—0(P1))) = $(6(Py)—6(P1))?. Note
also, as in the discussion after Corollary 1, that this implies the lower bound wy, v (O(1)/vne2; Py, P)
on any e-locally differentially private procedure.

An upper bound in the theorem is a somewhat more delicate argument, and for now we do not
provide procedures achieving the lower bound. Instead, under reasonable conditions on the loss, we
can show the (partial) converse that the modulus wy, tv describes the local minimax complexity.

12



Condition C.1 (Growth inequality). There exists v < oo such that for all t € R,
L(t) < ~vL(t/2).

For example, for the squared error we have L (t/2) = t2/4 = Ly (t)/4, giving v = 4. In Ap-
pendix B.1, we prove the following partial converse to Theorem 1.

Proposition 2. Let Condition C.1 on the loss L hold. Let € > 0 and . = ﬁ 5, and let Q be
the collection of non-interactive e-differentially private channels (Definition 1). Then

m}r?C(PoaLvP7 Q) < 27 sup WL, TV \[7- i Py, P _72 .
720 (5 f

The proposition as written is a bit unwieldy, so we unpack it slightly. We have 6. > min{£, 1/3},
so for each P, € P there exists a non-interactive e-DP channel ) and estimator 6 such that

~ 3\/57’ 2
max E [L 7. ,P]§2 . Supw P, P e
peliy Epe [L8m) P)| < 2y - supwity <\/nmin{952/25,1} ’ )

Typically, this supremum is achieved at 7 = O(1 ) so that Proposition 2 shows that the modulus (18)
o )

including the following condition on the modulus of continuity, allow more precision.

Condition C.2 (Polynomial growth). For each Py, there exist a, 8 < oo such that for all ¢ > 1
wr,Tv(cd; Py, P) < (Be)*wr,Tv(d; o, P).

Condition C.2 is similar to the typical Holder-type continuity properties assumed on the modulus
of continuity for estimation problems [18, 19]. It holds, for example, for nonparametric mean esti-
mation problems (recall Example 1), and we make this more concrete after the following corollary.

Corollary 5. In addition to the conditions of Proposition 2, let Condition C.2 hold. Then

M (Py, L, P, Q) < yB%e2lo8 2oy 1y ( v2 Poﬂ’) :
i 5 \/7
Proof. We apply Proposition 2. For 7 < 1, it already gives the result; otherwise, we use the growth
condition C.2 to obtain Eo[L(0—0(Fp))]+E1[L(0—0(P1))] < 2’7wL’TV(%; Py, P)B* sup, s, e T

Noting that sup, > e = (a/2)*/2e~/2 gives the result. O

We generally expect Condition C.2 to hold, so that the modulus describes the risk. Indeed, for
any loss L : R? — R, satisfying Conditition C.1, we immediately obtain condition (C.2) whenever
wrv(+) satisfies the condition, which it does for each of Examples 1-3 and (locally) 4-5.

3.3 Super-efficiency

We provide our general super-efficiency result via a constrained risk inequality [8, 22]. Our result
applies in the typical setting in which the loss is L(t) = ®(||6 — §(P)||,) for some increasing function
® : R,y — Ry, and we use the shorthand R(@, ,P) = Ep[¢(||§(Z) — 0]|2)] for the risk (expected
loss) of the estimator 0 under the distribution P. We build off the approach of Brown and Low |8,
Thm. 1], who show that if 9 has squared error for a parameter # under a distribution Py, then its
risk under a distribution P; close to Py may be large (see also [49, Thm. 6]). The next proposition,
whose proof we provide in Section 7.3, extends this to show that improvement over our modulus of
continuity lower bound at a point P, implies worse performance elsewhere.
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Proposition 3. Let Q be a sequentially interactive (2,e%)-Rényi private channel (Def. 2) with
associated marginal distributions M () = [Q(- | z1.0)dP}(x1.). Let Condition C.1 hold with
parameter . If for some n € [0,1] the estimator 0 satisfies

1
VAane2

then for all t € [0, 1] there exists a distribution Py € P such that

N 1 (1-1)12 1 tlogl
R@ 000D > - [1 -] ey (150 ).
(0,6(P1) 1)_27 n 2 +WL,TV<4 a2 it P

The proposition depends on a number of constants, but roughly, it shows (for small enough
71, where we simplify by taking ¢ = 1/2) that if an estimator # is super-efficient at Py, in that
R(é\, 0o, MY) < n-wr,rv(l/V4ne?; By), then there exists ¢ > 0 such that for some P; we have
R(8, 01M7) > c-wprv(y/log(1/n)/V32ne2; Pp). In this sense, our bounds are sharp: any estimator
achieving much better risk than the local modulus at a distribution Py must pay elsewhere.

R(§7 007M6L) S TIWL,TV < 7P077)> )

4 The private information

The ansatz of finding a locally most difficult problem via the local variation modulus of continu-
ity (15) gives an approach to lower bounds that leads to non-standard behavior for a number of
classical and not-so-classical problems in locally private estimation. In this section, we investigate
examples in several one-dimensional parametric problems, showing how local privacy leads to a
different geometry of local complexities than classical cases. Our first step is to define the L' in-
formation, a private analogue of the Fisher Information that governs the complexity of estimation
under local privacy. We illustrate the private L' information for several examples, including of
the mean of Bernoulli random variable, the scale of an exponential random variable, and in linear
and logistic models (Sec. 4.2), showing the consequences of (locally) private estimation in one di-
mension. Our last two sections develop locally private algorithms for achieving the local minimax
risk. The first of these (Sec. 4.3) describes private stochastic gradient algorithms and their (locally
uniform) asymptotics, while the last (Sec. 4.4) develops a new locally private algorithm based on
Fisher scoring to achieve the L' information in one-dimensional exponential families.

4.1 Private analogues of the Fisher Information

Our first set of results builds off of Theorem 1 by performing asymptotic approximations to the
variation distance for regular parametric families of distributions. One major consequence of our
results is that, under the notions of locally private estimation we consider, the classical Fisher
information is mot the right notion of complexity in estimation, though an analogy is possible.
Again we emphasize that we hope to characterize complexity only to numerical constant factors,
seeking the problem-dependent terms that analogize the classical information.

We begin by considering parametric families that allow analogues of Le Cam’s quadratic mean
differentiability (QMD) [52, Ch. 7]. Consider a 1-dimensional parametric collection P = {Fy}gco
with dominating measure p and densities pg = dPy/du. Analogizing the QMD definition (8) from
the Hellinger to the variation distance, we say P is L'-differentiable at 0y with score égo X > Rif

/ Do — Doy — hiypay|die = o(|h]). (19)
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For QMD families, L!-differentiability is automatic (see Appendix C.1 for a proof).

Lemma 2. Let the family P := {Py}oco be QMD (8) at the point 6. Then P is L*-differentiable
at Oy with identical score fy to the QMD case.

Recalling (as in Sec. 2.2) that for QMD families (8), the Fisher information is Iy = Ep,[(£5)?],
and 2, (Pyih, Py) = %IghQ + o(h?), by analogy, we define the L!-information as

Toyi= B, o)) = [ i) Py (). (20)
We can then locally approximate the total variation distance by the L!-information:
1
| Porn — Pollpy = §J6‘h| + o(|hl).

We consider a somewhat general setting in which we wish to estimate the value () of a
functional 1 : © — R, where 1 is C! near fy. We measure our error by L(1(0) — ¥(6p)), and give
a short proof of the next proposition via Theorem 1 in Appendix B.3.

Proposition 4. Let P = {Py}oco be L'-differentiable at 0y with score 590, and EQOHéQOH > 0.
Let Q. be the family of (2,e%)-Rényi locally private sequentially interactive channels. Then for an
N = N(¢,00,P,e) depending only on 1,6y, the family P, and privacy level e, for alln > N

1 1
W}SC(PQ()’L>,P7 Qz—:) > g L (5@ ’ J901¢,(90)) .

To obtain a matching upper bound we require the identifiability assumption Al. We make
a simplifying assumption that the loss L is reasonably behaved, in that there exists a numerical
constant C' < oo and 8 € Ry such that L(at) < Ca’L(t) for all a > 1. Then, even when Q. is
the collection of e-locally differentially private non-interactive channels (which, by the discussion
following Definition 2, is more limiting than channels in Proposition 4), we can upper bound the
local minimax risk.

Corollary 6. Let the family P = {Py}gco be L' differentiable at 0y with score é@o and ]Ego[\égoﬂ >0
and additionally let the above assumptions hold. Let € < 2. Then there exists a numerical constant
C < oo and a &y = do(1, 00, P) depending only on 1,0y, and the family P such that

Y'(0) 1

M (Pyy, L, P, Qc) < C max {(5/26)5/21; <
Joo ne?

) Ddiam(w©)e .

The proof (see Appendix B.2) is a straightforward modification of that of Claim 2.1. Proposition 4
and Corollary 6 show that for a (one-dimensional) parametric family P = {Py}yce, the L' informa-
tion describes the local modulus to within numerical constants for small §: for the modulus (15),
there are numerical constants 0 < cjow < Cpign < 00 such that

0
wTv((S; Pgo, {P@}gee) S [Clovw Chigh] . T for all small § > 0.
0o
(A more general result holds; see Theorem 2 to come.) In analogy with Claim 2.1, where the
Fisher information Iy, characterizes the local minimax squared error in non-private estimation,
the L' information is an alternative characterization—to within numerical constants—of the local
minimax risk in the locally private case.
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As an alternative way to understand the proposition and corollary, we can rescale the losses (in
analogy with the local asymptotic approach [52, Ch. 7]), and consider the sequence Ly, (t) = L(y/n-t),
where for simplicity we take L(t) = min{t*, B} for some k, B < oo (more generally, we could allow
L to be bounded and nondecreasing). Then under the conditions of Corollary 6, for Q a collection
of e-locally private channels,

/ !/
L <W> S MR (Pyy, Ln, P, Q) S L (‘“90))

J906 J906

for all large n. The analogous bounds in the non-private case are L(I@_0 1/ 21// (60)), the local asymp-
totic complexity for one-dimensional functionals [52, Ch. 7]. Using Lemma 2, we have

. . 1/2
Joo = Ego 1oy} < o [33,1"% = I/,

so the L' information is at most the Fisher information. In some cases, as we shall see in Sec. 4.2,
it can be much smaller, while in others the information measures are equal to numerical constants.

4.2 Examples and attainment

We consider the local minimax complexity and L!-information in four different examples—estimation
of Bernoulli and logistic the scale of an exponential random variable, and a 1-dimensional linear re-

gression problem—which are particularly evocative. In each, we derive the L!-information, applying

Proposition 4 and Corollary 6 to characterize the private local minimax complexity. Throughout

this section, we let Q. be the collection of e-locally differentially private channels, where ¢ = O(1)

for simplicity. To keep the examples short, we do not always provide algorithms, but we complete

the picture via a private stochastic gradient method in Section 4.3.

Example 6 (Example 3 continued): For Py = Bern(f), the score is fy(x) = 9(’”17_;09), giving L!-

information Jp = %Eg“é@“ =1 for all @ and Fisher information Iy = Eg[(3] = 0(1179). Thus

1
ne

migc(‘[:bO? LSQ7 7)7 QE) =
for e = O(1). The lower bound is Proposition 4, For the upper bound, consider the randomized-
response mechanism [55] that releases Z; = X; with probability 15;% and Z; = 1 — X; otherwise,
_ (1+4e5)Zp—1
- ef—1

which is e-differentially private. The plug-in estimate é\n is unbiased for 6y and has

1+ et
e —1

€12
L A+e)” 1
~ 4n(ef —1)% ™ ne?

2
Eo[(6, — 60)?] = Varg(6,,) = < ) Var(Z,,)

The sample mean achieves risk M, so the gap in efficiency between private and non-private

estimation grows when 6y(1 — 6y) — 0. Roughly, the noise individual randomization introduces
(the statistical cost of privacy) dominates the non-private (classical) statistical cost. <

As a brief remark, the paper [41] gives optimal asymptotics for Bernoulli problems with randomized
response channels; such precise calculations are challenging when allowing arbitrary channels Q..
Example 7 (Private one-dimensional logistic regression): A similar result to Bernoulli estima-
tion that may be more striking holds for logistic regression, which is relevant for modern privacy
applications, such as learning a classifier from (privately shared) user data [30, 1, 3]. To see this,
let Py be the distribution on pairs (z,y) € {—1,1}? satisfying the logistic regression model

1 1

Py | 2) = ;
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Here we wish to construct a classifier that provides good confidence estimates p(y | z) of a label y
given covariates x. We expect in the logistic regression model (21) that large parameter values
should make estimating a classifier easier, as is the case without privacy. To make this concrete,
we measure the error in estimating the conditional probability py(y | x),

Lpred(97‘90) = EPO HPH(Y | X) — Do, (Y | X)H .

A calculation gives Lpred(8, 00) = [¢(0) —¢(0o)|, where ¢(t) = 1/(1+€') is the logistic function. The
Fisher information for the parameter 6 in this model is Iy = ¢(0)p(—6), so a change of variables
gives Iy = Ip/(¢'(0 ))?, and as 0 < Lpred < 1, the non-private local minimax complexity is thus

loc 1 1 —|00]/2
M2 (Po, Lpred, P, {id}) = f Mo = ka e~ Ifol/ (22)
by Proposition 1 (and an analogous calculation to Claim 2.1). The delta method shows that the
standard maximum likelihood estimator asymptotically achieves this risk.
The private complexity is qualitatively different. Noting that XY € {£1} is a sufficient statistic
for the logistic model (21), then applying Example 6 via Proposition 4 and Corollary 6 to the loss
Lpred, we obtain numerical constants 0 < ¢y < ¢; < oo such that for all large enough n,

1
< loc <
\/? ~ Dﬁ (P07 pred)Pu Qa) ~ 77,82'
By comparing this private local minimax complexity with the classical complexity (22), we see
there is an exponential gap (in the parameter |6y|) between the prediction risk achievable in private
and non-private estimators—a non-trivial statistical price to pay for privacy. <

While these examples have parameter-independent L!-information, this is not always the case.

Example 8 (Exponential scale, Example 5 continued): Let pg(z) = §exp(—%)1{z > 0} be the
density of an exponential distribution with scale 6, and 73 = {Pg}a<9<b, where a < b are any
finite positive constants The standard score is é@( ) = 80 logpp(x) = 9 + 52, yielding Fisher
information Iy = 92, so that the classmal local minimax complexity for the squared error (recall

Claim 2.1) is 9°°( Py, Leq, P, {id}) =< ;. In this case, the private local minimax complexity satisfies
02

ol

To see this, note that the L'-information (20) is Jp = Eg[|X/6?—1/6]], s0 5 < Jp < . Proposition 4

and Corollary 6 then give the bounds. Thus, the private and non-private local minimax complexities

differ (ignoring numerical constants) by the factor 1/¢2. In distinction from Examples 6 and 7,
problems that are relatively easy in the classical setting (6 near 0) continue to be easy. <

fmfc(f’e, qua P) Qa) =

Example 9 (One-dimensional linear regression): Consider a linear regression model where the
data come in independent pairs (X;,Y;) satisfying

Y; = 0X; + W; where W; ~ N(0,0?)

and the target is to estimate § € R. Fixing the distribution of X and letting © C R be a compact
interval, we let P = {Py}gco. We have negative log-likelihood ¢y(x,y) = 202 (x0 — y)? and score
lo(z,y) = %x(mﬁ —y), 50 Lo, (x,y) = Zy for the noise w = y — z6. Calculating the L' information
Jop = +/2/7E[|X|]/o and applying Proposition 4 and Corollary 6 yields

0.2

W}SC(PQO,LSQ,'P, QE) = WH){HQ

(23)
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Comparing the rates (23) with the non-private local minimax rate is instructive. Claim 2.1 shows
that M2°(Py,, Lsq, P, {id}) = 15fxay-
through E[|X ]2, while the non-private complexity above depends inversely on E[X?]. Thus, as X
becomes more dispersed in that the ratio E[X2]/E[|X|]? grows, the gap between private and non-
private rates similarly grows. Intuitively, a dispersed X requires more individual randomization to
protect private information in X, increasing the statistical price of privacy. <&

The local private minimax complexity (23) depends on X

4.3 Attainment by stochastic gradient methods

The second of our major desiderata is to (locally) uniformly achieve the local minimax risk, and
to that end we develop results on a private (noisy) stochastic gradient method, which rely on
Polyak and Juditsky [46]; recall also Duchi et al.’s (minimax-optimal) private stochastic gradient
method [25]. We prefer (for brevity) to avoid the finest convergence conditions, instead giving
references as possible; we show how to attain the rates in Examples 8 and 9.

We wish to minimize a risk Rp(0) := Ep[¢(0, X)]|, where £ : © x X — R is convex in its first
argument. A noisy stochastic gradient algorithm iteratively updates a parameter 0 for ¢ =1,2,...,

Ot =01 — (VL0 X;) + £, (24)

where £ is i.i.d. zero-mean noise, we assume X; i P, and n; = 19i~? are stepsizes with § € (%, 1)
and 19 > 0. Then under appropriate conditions [46, Thm. 2 and Lem. 2],2 for * = argmin, Rp(6),

1 &, 1< ;
— ) (0" =0")=—=) V*Rp(0*) N (VL0*, X;) + & 1). 25
7L =0 = =V RRE) (VA X) + ) +onl) (25)
The average 9" = % Yoy 6" is asymptotically linear (13), so it satisfies the regularity properties
we outline in Lemma 1. The key is that VZRp(0*)"1V£(0*, X;) is typically the influence function
for the parameter 6 (see [23, Proposition 1 and Lemma 8.1]), and we thus call this case regular:

Definition 3. Let Py = {Pr}nere be a sub-model of P around Py, quadratic mean differen-
tiable (8) with score g : X — R at Py. Let Rp,(0) = Ep, [((6, X)] and define ), = argmingeg Ry (6).

The parameter 6y, is reqular if it has influence function y(z) = V2R (6g) ' V£(0o, =), equivalently,
On = 60 + V> Ro(6o) ' Covo(VE(0o, X), (X)) + o([|h]]).
By combining Lemma 1 with the convergence guarantee (25), we obtain the following result.

Proposition 5. Let 0° follow the noisy stochastic gradient iteration (24) and satisfy the conver-
gence (25). Let Psyn o be a sub-model for which the risk Rp is regular (Def. 3) and let

Z ~N(0,V?Rp,(60) " (Covo(VE(0, X)) + Cov(£)) VERp,(6p) 1) .

Then for any bounded sequence h,, € R?, \/ﬁ(gn N, % 7 under X; Y By, yms and for any
bounded continuous L and ¢ < oo,

lim sup Ep, [L(vA(@" - 60)] = E[L(2))
"l <e /v
3 The following suffice: (i) Rp is C? near 6* = argmin, Rp(0) with VZ>Rp(6*) = 0, (ii) there is some fi-
nite C' such that Ep[||V£(6, X)||?] < C(1 + ||6 —6*|°) and |[VRp(8)|| < C(1 + [|6 —6*||) for all 8, and (iii)
limsupy_, o« E[||V£(0, X) — V£(6*, X)|*] = 0.
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We complete Examples 8 and 9 using Proposition 5:
Example (Example 8 continued): We return to the shape parameter in the exponential family.
As the median of X is log2 - 6, estimating 6 is equivalent to estimating med(X), or solving

mini@mizeRpo(G) =Ep[(0,X)] for ((0,z) =10 — z|.

The stochastic gradient iteration (24) is ! = 6" — 1;Z; where Z; = sign(X; — 6%) + i - Lap(1)
is e-differentially private as and Lap(1l) is the standard Laplacian distribution. For P = Exp(6),
RI(t) = Pp(t > X) — Pp(t < X) =1—2e%% and R"(t) = e "%, at t = med(X) = log2- 0 we

obtain R”(med(X)) = %. For any symmetric quasiconvex L : Ry — Ry, define L, (t) = L(y/n - t),
and let 6, = 0" /log2. Applying Example 8 and Proposition 5 yields

splimsup  sup  EAEWn —0)] _ EIL(CLEW)
c<o0 N—oo |0—90|§6/\/ﬁ m}r?C(PG())Ln;P, QE) B L(Coaa—o)

where W ~ N(0, 1) is standard normal and C; are numerical constants. Whenever L is such that
E[L(C1oW)] < L(Cyo)—for example, L(t) = min{t?, B}—the private stochastic gradient method
is local minimax rate optimal. <

Example (Example 9 continued): We have Y = X6y + oW for W ~ N(0, 1), where for simplicity
we assume o is known. We transform the problem into a stochastic optimization problem, taking
care to choose the correct objective for privacy and efficiency. Let ¢ : R — R be any 1-Lipschitz

symmetric convex function with Lipschitzian gradient; for example, the Huber loss ¢(t) = %tQ

for [t| < 1 and ¢(t) = |t| — 3 satisfies these conditions. Choosing loss £(0,z,y) = ‘%lgo(wa_y),
our problem is to minimize the risk Rp(0) := Ep[¢(6, X,Y)]. Evidently ¢ is also 1-Lipschitz with
respect to 0, with #(0,z,y) = sign(z)¢' (6~ (z0 — y)) and £"(0,z,y) = o~ 1" (07 (20 — y)). The

private stochastic gradient iteration (24) is then

; ; 1 ; 1
O = 0" — 0, Z; where Z; = sign(X;)¢’ <(Xi91 - YD) + Q—Lap(l).
o €
Letting Zo, = ¢'(W;) + =Lap(1), a calculation shows that for Py corresponding to 6o,
E[lX]] 1
R, (00) = “ VB ()] and Var(Zeo) = Bl (W) + 51y
We apply Proposition 5 to obtain that along any convergent sequence h, — h,

0_2

VA s mim) (0 (BP0 5) )

Pogthn ) vm

Notably E[¢/(W)?] < 1 as ¢ is 1-Lipschitz, and whenever ¢ is strongly convex near 0, then
E[¢”(W)] > 0 is a positive constant. In particular, the stochastic gradient estimator is local
minimax rate optimal, achieving asymptotic variance O(l)ﬁ uniformly near 6y, which (as in
Example 9) is unimprovable except by numerical constants. <&
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4.4 Asymptotic achievability in one-parameter exponential families

Proposition 4 shows an instance-specific lower bound of (ne?Jj )~!, where Jy, = Eq, [[€6, ] is the L'
information, for the estimation of a single parameter. This section develops a novel locally private
estimation scheme to achieve the lower bound for general one-parameter exponential family models.
Subtleties in the construction make showing that the estimator is regular or uniform challenging,
though we conjecture that it is locally uniform. Let P = {Py}pco be a one parameter exponential
family, so that for a base measure p on &X', each distribution Py has density

po(z) == Cﬁf(z) — exp (0T (x) — A(9)),

where T'(z) is the sufficient statistic and A(#) = log [ /7@ dyu(x) is the log partition function.* Tt
is well known (cf. [7, 40, Ch. 2.7]) that A satisfies A’(f) = Eg[T'(X)] and A”(0) = Varg(T(X)). In
this case, the L!'-information (20) is the mean absolute deviation

Jo = Eg[|T(X) — A(0)[] = Eo[|T(X) — Eo[T(X)][].

We provide a procedure asymptotically achieving mean square error scaling as (neQJez)_l, which
Proposition 4 shows is optimal. Our starting point is the observation that for a one-parameter
exponential family, 0 — Py(T(X) > t) is strictly increasing in 6 for any fixed ¢ € supp{7T'(X)} [40,
Lemma 3.4.2]. A natural idea is to first estimate Py(T'(X) > ¢) and invert to estimate 6. To that
end, we develop a private two-sample procedure, where with the first we estimate ¢ ~ E[T(X)],
using the second sample to approximate and invert Py(T'(X) > f). Now, define ¥ : R? — R, by

U(t,0) = Py(T(X) > t) = / T (@) > t} exp (0T(x) — A0)) du(z). (26)

The private two stage algorithm we develop splits a total sample of size 2n in half, using the
first half of the sample to construct a consistent estimate T}, of the value A’(§) = Eg[T] (Duchi
et al.’s e-differentially private mean estimators provide consistent estimates of E[T(X)] so long as
E[|T(X)|¥] < oo for some k > 1 [25, Corollary 1].) In the second stage, the algorithm uses 7}, and
the second half of the sample in a randomized response procedure: construct V; and private Z; as

~ et +1 Vi w.p. == 1
‘/z:]-{T(XZ)ZTn}v :ef—l[{l—lV WPEH}—66+1:|
f .p-

N

By inspection, this is e-differentially-private and E[Z; | V;] = V;. Now, define the inverse function
H(p,t):=inf{0 e R | Py(T(X) >t) >p}=inf{§ e R| ¥(¢,0) > p}.
Setting Z,, = %Z?Zl Zi, our final e-differentially private estimator is
0, = H(Z,,T,). (27)

We then have a convergence result showing that the estimator (27) has asymptotic variance within
a constant factor of the local minimax bounds. We defer the (involved) proof to Appendix C.2.

“Writing the family this way is no loss of generality. While typically one writes pg(z) = h(z) exp(87 T(z) — A(H)),
we can always include A in the base measure p and push-forward through the statistic 7T'.
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£

Proposition 6. Assume that Varg (T(X)) > 0 and T, > to := Eg,[T(X)]. Define 62 = (egil)z.
Then there exist random variables G,, = \I’(fn, o) € [0,1], En 1, and &, 2 such that under Py,

~

\/ﬁ (971 - 90) = 2*]0701 (gn,l + gn,?) + OP(]-)

where

1 d . -2
Enty =————E — N (0,diag(d;“,1)) . 28
< n,ls Gn(l — Gn) n,2> ( ) lag( e )) ( )
The complexity of the statement arises because the distribution of 7'(X) may be discontinuous,
including at Eq,[T'(X)], necessitating the random variables &, 1, &y 2, and G, for the limit.

5 Private local minimax theory for more general functionals

We broaden our investigation to consider the local minimax approach in semi- or nonparametric
problems with high or infinite-dimensional parameters, but where the target of interest is one-
dimensional. We first present analogues, to within numerical constants, of classical semi-parametric
information lower bounds (Section 5.1). We illustrate the bounds for estimating a functional of an
exponential family parameter, where subtleties distinguish the problem from the non-private case.
Most saliently, as we show, efficiency depends strongly on the model assumed by the statistician:
while in the non-private case, parametric and nonparametric models yield the same efficiency
bounds (as we will revisit), the private parametric and semi-parametric cases are quite different.

5.1 Private information, influence functions, and tangent spaces

Our goal here is to generalize the results in Section 4 to provide private information lower bounds
for semi-parametric estimation problems. Similar to what we did in Section 4, our development
builds off Theorem 1 and Proposition 2 by performing a local expansion of the variation distance.
We parallel some of the classical development in Section 2.3, presenting one-dimensional submodels,
tangent spaces, and an L'-influence function, after which we derive our information bounds.

We begin as usual with a family P of distributions, and we consider one-dimensional sub-
models Pgup 0 C P indexed by h € R. In analogy with quadratic mean differentiability (8) and our
treatment in Section 4, we say h — Py, is L'-differentiable at Py with score g : X — R if

[ 148~ ar — hgan = o(n) (29)

as h — 0. As in Section 2.3, we let h — P}, range over (a collection of) possible submodels
to obtain a collection of score functions {g}, and we define the L'-tangent space 75L1( py) to be
the closed linear span of these scores. In contrast to the tangent space from quadratic-mean-
differentiability (11), which admits Hilbert-space geometry, L'-differentiability gives a different
duality. Moreover, Lemma 2 states that QMD families must be L!-differentiable, so that the L'-
tangent space 75L1( py) always contains the classical tangent space. An example may be clarifying:
Example 10 (Fully nonparametric L' tangents): In the fully nonparametric case—where P
consists of all distributions supported on X—we can identify 75L1( p,) With mean-zero g € LY(Py).
Indeed, for any such g, define the models dP, = [1 + hg], dPy/C},, where C}, = S+ hg], dP.
Then |[1 + hg], — 1| < h|g|, and so by dominated convergence we have 1 < Cj =1+ o(h), as

1 [1+hgl, —1
< — — = B ——— = U.
0< +(Ch—1) / - dP, h_é/ gdPy =0

21



Similarly {dP;}rer has score g at Py because limy o [ + L % hg|dPy = 0 by the dominated

convergence theorem as well. Conversely, for any g € PLl( Po)» We have [ 1dPy, — dPy| < 2, while
o(h) = [|dPy, — dPy — hgdPy| > |h| [|g|dPy — 2, so that g € L'(Fy). That g is mean zero is
immediate, as [ gdPy = %f(dPo + hgdPy — dPy) = o(1) as h — 0.

In contrast, in the fully nonparametric case for quadratic mean differentiability [52, Exam-
ple 25.16], the tangent set at Py is all mean zero g € L%(F), a smaller set of potential tangents. <

To give a private information for estimating a function 6 : P — R? we consider submodels
{Pn}rer where h — 0(P}) is suitably smooth at h = 0. We say 0(-) is diﬁerentz’able at Py relative
to PL1(p0) if there exists a continuous linear mapping ¢p, : PLI(PO) — R? such that for any L'-
differentiable submodel Py, o with score g at Py,

0(Pn) — 0(Po) = he(g) + o(h).

As g — ¢(g) is continuous for g € 75L1( py)» it has a continuous extension to all of L'(Py) and so by
duality there exists 6y : X — R?, with coordinate functions in L>(Py), such that

0(9) = Ep[0o(X / Oo(x)g(x)dPy ().

We call this 6y the private influence function. Again, contrast with the classical approach is
instructive: there (recall Eq. (12)), the Hilbert space structure of the tangent sets allows one to use
the Riesz representation theorem to guarantee the existence of an influence function 6y € L}(Ry).

The main result of this section gives an information-type lower bound for general estimation
problems where we wish to estimate a functional 1 (6(P)), where ¢ : R? — R is C'. We measure
error by a symmetric quasiconvex L : R — R, suffering loss L(dj Y(0(P))) for an estimate ¢
We then obtain the following generalization of Proposition 4. (See Appendix B.4 for a proof.)

Theorem 2. Let Psubo = {Pr}rer C P be an L'-differentiable submodel at Py with score g and
let 0 : P — R have Ll-mﬂuence function Oy at Py. Let Q. be the family of (2,€2)-locally Rényi
private channels (Def. 2). Then for an N = N (¢, €,0, Psubo) independent of loss L, for alln > N

mti?C(Po,L,Psub,o,Qaz;.L( ! W(‘)O)TEO[‘}O(XMX”)

6v/ne? Eo[lg(X)]]

The quantity J, 0 := Eo[|g(X)|] = [ |g|dPy is the nonparametric analogue of the private informa-
tion (20) in Proposition 4, as the score function g is completely parallel to the parametric case.
Additional remarks show how this result parallels and complements classical local minimax theory.

Recovering the parametric case Theorem 2 specializes to Proposition 4 for one-dimensional
parametric families. Let the family be Ppar = {Pp}oco and L' differentiable at Py,. Then the
private tangent space Pri(p,) is then the linear space spanned by the score fp,, and the influence

function for 6 is 6y = I % 14,, where the Fisher information is Iy, = Eg[fg,(X)?]. Specializing The-
orem 2 gives V1p(00) " Eo[00(X)g(X)]/Eol|g(X)|] = ¥’ (6o)/Eo||€s, (X )|], recovering Proposition 4.

Dualities and classical information bounds As a corollary of the L' /L> duality that privacy
evidently entails in Theorem 2 and Lemma 2, we have the following lower bound.
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Corollary 7. Let the conditions of Theorem 2 hold, and additionally let Paio be a collection of
QMD sub-models with scores g that are dense in L'(Py). Then there exists an N independent of
the loss L such that for allmn > N,

1 .
Py, L. Parn @) = L (g esssup V(60) T do(o)] ).

1
8v/ne?

The local minimax lower bound necessarily depends on the (essential) supremum of the influence
function V1)(0g)Ty(x) over € X; notably, this occurs even when the tangent set Py is dense in
L?(Py). We may compare this with classical (nonparametric) information bounds, which rely on the
Hilbert-space structure of quadratic-mean-differentiability and are thus smaller and qualitatively
different. In the classical setting [52, Ch. 25.3] (and Sec. 2.3), we recall that we may identify P
with mean-zero functions g € L?(P,), and we obtain the analogous lower bound

1 V) (60) T Eo[o(X)g(X)] B 1 . 071/2
L <\/ﬁ . ;5750 Eo[g(X)2]!/2 ) =L (\/ﬁEo [(Vw(ﬁo)Tﬁg(X)) ] ) 7

where we have used that Eq[fy(X)] = 0. This information bound is always (to numerical constants)
smaller than the private information bound in Corollary 7.

5.2 Nonparametric modeling with exponential families

While Section 4 characterizes local minimax complexities for several one-dimensional problems,
treating one parameter exponential families in Section 4.4, it relies on the model’s correct specifi-
cation. Here, we consider estimating functionals of a potentially mis-specified exponential family
model. To formally describe the setting, we start with a d-parameter exponential family {Py}oco
with densities pp(z) = exp(67 2z — A(#)) with respect to some base measure y, where for simplicity we
assume that the exponential family is regular and minimal, meaning that V2A(#) = Covg(X) = 0
for all § € dom A, and the log partition function A(f) is analytic on the interior of its domain [40,
Thm. 2.7.1]. We record a few standard facts on the associated convex analysis (for more, see the
books [7, 54, 36]). Recall the conjugate A*(z) := supg{67x — A()}. Then [cf. 36, Ch. X]

VA*(x) =0, for the unique 6, such that Ey_[X] = z. (30)
In addition, VA* is continuously differentiable, one-to-one, and
dom A* D Range(VA(+)) = {Ep[X] | 0 € dom A}.
Moreover, by the inverse function theorem, we also have that on the interior of dom A*,
V2A*(x) = (V2A(0,)) ™! = Covy, (X)™! for the unique 6, s.t. g, [X] = z. (31)

The uniqueness follows because VA* is one-to-one, as the exponential family is minimal and
V2A(#) = 0. For a distribution P with mean Ep[X], so long as the mean belongs to the range of
VA(0) = Ey[X] as 0 varies, the minimizer of the log loss ¢y(z) = —log pg(z) is

0(P) := argéninEp[Eg(X)] = VA*(Ep[X]).

We consider estimation of smooth functionals 1) : R? — R of the parameters 6, measuring the
loss of an estimated value J by R
Lt — 4 (6(P))),
where L : R — R, as usual is quasi-convex and symmetric. In the sequel, we show local lower
bounds on estimation, develop a (near) optimal regular estimator, and contrast our results and the
possibilities of adaptation in private and non-private cases with somewhat striking differences.
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5.2.1 Private estimation rates

We begin with a local minimax lower bound that almost immediately follows Theorem 2.

Corollary 8. Let Py be such that Ep,[X] € int(Range(VA)), and let Pano be a collection of sub-
models with scores g dense in L'(Py) at Py. Let Q. denote the collection of all (2,?)-locally Rényi
private sequentially interactive channels. Then there exists N = N(Pan, ) independent of the
loss L such that n > N implies

- ess Sup |V (6o VIV2A(G) Y (Ep, [X] — x)‘) .

1
M(Py, L, Pano, Q) > 3 L<

5V 2n
Proof. The exponential family inﬂuence function is fg(x) = V2A(fy) " (z — Eg[X]) [52, Ch. 25.3].

Take g with V¢(90)]ET01%09[(9)0(())”()9(X)] > 3 esssup,, [V(00)TVZA(0y) ! (z — Eo[X])| in Theorem 2. O

Before we turn to private estimation, we compare Corollary 8 to the non-private case. The
maximum likelihood estimator takes the sample mean i, = %Z?:l X; and sets 6, = VA*([in).
Letting 0y = VA*(Ep,[X]), Taylor expansion arguments and the delta-method [52, Chs. 3-5] yield

V(B — 60) 5 N (0, VZA(6p) ' Covo(X)VZA(6) )
and
Vr((8,) — ¥(60)) 3 N (0, Vb (80) T V2 A(89) " Covo(X) V2 A(80) " Vep(6o)) ,

and these estimators are regular (and hence locally uniform). The lower bound in Corollary 8 is
always larger than this classical limit. In this sense, the private lower bounds exhibit both the
importance of local geometry—via V2A(fy) "'V (fy)—and the challenge of privacy in addressing
“extraneous” noise that must be privatized. We will discuss this more in Section 5.3.

5.2.2 An optimal one-step procedure

An optimal procedure for functionals of (possibly) mis-specified exponential family models is similar
to classical one-step estimation procedures [e.g. 52, Ch. 5.7]. To motivate the approach, let us
assume we have a “good enough” estimate fi,, of o := Ep[X]. Then if 6,, = VA*(1,), we have

»(00) = () + Vb(0)" (00 — 0) + O([|6g — n|?)
= () + Vp(0,) T (VA (110) — VA (71n)) + O(|| o — Fin||?)
= 9(0,) + Ve (0,)TV2A(0,) " (1o — fin) + Ollpo — Fin?),

where each equality freely uses the duality relationships (30) and (31). In this case, if g, — po =
op(n~*) and we have an estimator T}, satisfying

Jn (Tn _ vw(én)TVQA(ﬁn)‘luo) 4 N(0,0?),

then the estimator

~

D 2= 0(0n) + T = Vep(0) V2 A(B) i (32)
satisfies \/ﬁ(zz;n — (b)) 4N (0,0?) by Slutsky’s theorems.
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We now exhibit such an estimator. To avoid some of the difficulties associated with estimation
from unbounded data [25], we assume the domain X C R? is the norm ball {z € R? | ||z|| < 1}.
For dual norm ||z||, = sup,j<1 2Tz, the essential supremum in Corollary 8 thus has bounds

esssup [V (00) V() (B X] - )| < |5.2] [V V0. (33)

Let us split the sample of size n into two sets of size nq = [nQ/ 3] and no = n — ny. For the first
set, let Z; be any e-locally differentially private estimate of X; satisfying E[Z; | X;] = X; and
E[HZsz] < 00, so that the Z; are i.i.d.; for example, X; + W; for a random vector of appropriately
large Laplace noise suffices [29, 25]. Define pi,, = n% S™M, Z;, in which case fi,, — o = Op(n~1/3),
and let 6, = VA*(fin). Now, for i =nq +1,...,n, define the e-differentially private quantity

V2 A(0) V()]s s

Z; = Vp(0,) V2A6,) X, + | - . where W; % Lap(1).

Letting X, = % > itn 1 Xi and similarly for W, and Z,,, we find that

Vi (Zn, = V(8)T2AG) " o)

HVZ'A@)”V?&@)H*Wn 4 N(0, 02(P, 1), £))

=V [ V() V2A(0) " (X, — o) +

e

by Slutsky’s theorem, where for 6y = VA*(Ep[X]) we define
o (P, €) := Vip(o) V2 A(By) ™ Cov p(X)V2A(0) " Vib(6o) + HVQA (00) @), (39)

Moreover, the difference above is asymptotically linear (13), so by continuity we have

V2 A(60) Voo (6o) ||,

Vi(tn—=4(0)) = va (60)" V2 A(60) " (Xi—po) + - ZW+ 0R, (1

f

Summarizing, we can apply Lemma 1, because the smoothness of A(-) means that the parameter
fo is regular in that it has influence function fy(x) = V2A(fy) " (z — po) (recall also Definition 3).
Recalling the equivalence (33) between the dual norm measures and essential supremum, we have
thus shown that the two-step estimator (32) is locally minimax rate optimal.

Proposition 7. Let @Zn be the estimator (32), {Pr} be quadratic mean diﬁer@ntmble at Py, 0 =
argmaxy Ep, [logpg(X)], and o*(Po,v,¢) be as in (34). Let Z ~ N(0,0%(Py,,¢) and h, be a

bounded sequence. Then \/ﬁ(zzn - w(ﬁhn/\/ﬁ)) % 7 under X; Ph /yms and for any bounded
continuous L and ¢ < 00,

lim sup Ep, [L(\/ﬁ@n - qp(eh)))] — E[L(Z)].

" Ihl|<e/vn

5.2.3 An extension to functionals of GLM parameters

In our experiments, we will investigate the behavior of locally private estimators for generalized
linear models on a variable Y conditioned on X, where the model has the form

po(y | @) = exp (T(z,y)"0 — A(0 | 2)) (35)
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where A(0 | x) = feT(x’y)Tedu(y) for some base measure p and T : X x Y — R? is the sufficient
statistic. We assume the distribution P on X is known. This assumption is strong, but may
(approximately) hold in practice; in biological applications, for example, we may have covariate
data and wish to estimate the conditional distribution of Y | X for a new outcome Y [e.g. 11]. For
a distribution P on the pair (X,Y), let P denote the marginal over X, which we assume is fixed
and known, P, be the conditional distribution over Y given X, and P = P, P for shorthand.
Define the population risk using the log loss ly(y | ) = — logpg(y | z), b

Rp(0) =Ep[ly(Y | X)] = Ep[-T(X,Y)]"0 + Ep[A(6 | X)] = —Ep[T(X,Y)]"0 + Ap(9),

where we use the shorthand Ap, (6) := Ep,[A(0 | X)]. Let Py be a collection of conditional distri-
butions of Y | X, and for P, € Py, we analogize the general exponential family case to define

0(Pyx) = argénin Rp, p(0) = VAR (Ep, r[T(X,Y)]).

Considering again the loss L(1ZJ\ — P(0(Pyx)) for a smooth functional ¢, Corollary 8 implies

Corollary 9. Let Py be a collection of conditional distributions on'Y | X, Py € Py, and Q. be the
collection of (2,e2)-Rényi-private channels (Def. 2). Then for numerical constants co,c1 > 0 there
exists N = N(Py, 1) independent of the loss L such that n > N implies

imifb’C(Po,L,Py, Q:)>cy sup L

Py x€Py

< Vi (00)" VAR, (60) " (Ep,p[T(X,Y)] — Ep,,p [T (X,Y)])>
C1 5 .

ne

If the set Py and distribution P are such that {Ep p[T] | Px € Py} D {t € R | ||t|| < 7}, then
we have the simplified lower bound

r Hv?Apxwo)—lW@o)H*)

M (P, L, Py, Q) = coL (e 2
ne

An optimal estimator parallels Section 5.2.2. Split a non-private sample {(X;,Y;)} ; into
samples of size nq = { 2/31 and ng =n—nq. Fori=1,...,n1, let Z; be any e-locally differentially
prlvate estlmate of T(X;,Y;) with E[Z; | X;,Yi] = T(X;,Y;) and E[||Zi||] < oo, and define fi,, =

= Z 1 Zi and O, = VA (pin) = argming{— ir0+ Ap, (0)}. Then, for i =nq +1,...,n, let

(V2 Ap, (0n) 'V (00) |-
9

Z; = V(0,) V2 AR (0,) ' T(X;,Y;) + W; where W; % Lap(1),

The Z; are evidently e-differentially private, and we then define the private estimator
B = Dy + Vb(0,)7 (5n - VzApx(gn)‘lﬁn> . (36)

An identical analysis to that we use to prove Proposition 7 then gives the following corollary, which
shows a locally uniform optimal rate of convergence. (We use the shorthand ||z = 27 Cx.)

Corollary 10. Let 1, be the estimator (36) and 6y = VAL (Ep[T(X,Y)]) = argming Rp(0). Then

d
Vi = 000 4 N (0 V24RO oy + 5 24RO )
and convergence is locally uniform over QMD submodels.
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5.3 Model adaptation in locally private exponential family estimation

We conclude this section by highlighting a phenomenon that distinguishes locally private estimation
from non-private estimation, focusing especially on exponential families as in Section 5.2. We
recall Stein [48], who roughly asks the following: given a parameter 6 of interest and a (potentially)
infinite dimensional nuisance GG, can we estimate 6 asymptotically as well regardless of whether
we know G?7 Here, we consider this in the context of G being the full distribution Py, and we
delineate cases—which depend on the channel set Q being either the identity (non-private) or a
private collection—when for a sub-family Pgy, 0 C P containing Py, we have

m}gc(P()?L?Pv Q) xm'lr?c(P()vLapsub,OyQ)- (37)

For exponential families, the non-private local minimax risk is (up to constants) independent of
whether the containing family P of distributions is parametric or non-parametric, while the pri-
vate local minimax risk is larger in the non-parametric than parametric settings, necessitating the
construction of distinct private estimators with different optimality properties that depend on the
overall model the statistician is willing to assume.

For simplicity we study one-dimensional potentially misspecified models with densities py(z) =
exp(fx — A(#)) and base measure . We consider nonparametric and parametric families, making
an assumption (for convenience) that the first has uniformly bounded (arbitrary) fourth moment:

Puon-par := { P : Ep[X] € Range(VA),Ep[|X["] < M < oo} and Ppar := {Ps}oeco-

To avoid issues of infinite loss, we use the truncated squared error Lz (0 —60(P)) = (0—0(P))>AB,
where 0 < B < oo is otherwise arbitrary.

To compare the private and non-private cases, we evaluate their local minimax risks. In the
non-private case, the model class is immaterial, as the efficient influence and score functions for
exponential families are identical in both parametric and nonparametric cases [52, Ch. 25.3], so we
have the equivalence (37) when Q = {id}. We prove the following characterization in Section A.4.1.

Claim 5.1. Let Py = Py, belong to the exponential family above. Then for large enough n,

1

loc : loc :
MO (Py, Ln g, Pronopar, 1id}) = M (Py, Lag, Poar, {id}) =< —————.
n ( 0y, “AB> p {1 }) ( 0 AB 1% {1 }) nVal“o(X)

The risks, by comparison, have different behavior, as the discussion below shows.

Claim 5.2. Let Py = Py, belong to the exponential family above. Let Q. be the collection of (2,€2)-
Rényi differentially private channels and Payg C Pnon-par be a collection of sub-models with scores
g dense in L'(Py) at Py. Then there exist numerical constants 0 < co < ¢1 < oo such that for large
enough n,

1 (Ep,[X] — z)?
loc
mn (P07 Lag, 7>all,Ov Qa) > Co- nigz eSSxSllp V;TW (38&)
and . .
mti?c(Po, L/\Ba Ppara QE) S [CO> Cl} : (38b)

ne? Eol|X — Eo[X][Z’
Additionally, 1/Eo[|X — Eo[X][]? < esssup, (Eo[X] — x)?/Vary(X)?.

An alternative way to view (and prove) the right-hand (variance) quantities in the claims is via
influence and score functions. The efficient influence function in exponential families [52, Ch. 25.3]
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is Og(z) = (z — Eo[X])/Varg(X) = (z — A’'(8)) /A" (6p), with the second equality following because
Py = Py, by assumption. The asymptotic variance [52, Ex. 25.16] in the non-private case becomes
Eo[0o(X)g(X

sup 5

ger2(py)  Eolg(X)?]

1
N Val"o(X) ’

2 .
L 60|22,

attaining the supremum at the parametric score fg,(z) = 2 — Eo[X]. In the private case, we have

“u Eo[00(X)g(X)]? = esssup (BolX] =) Eo[00(X)fo,(X)]* _ 1
o Eollg(X)[? 2 P Var(X)? Eolllg(X)2  Eo[lX — Eo[X]|]?

as in inequalities (38a) and (38b), respectively. (Applying Corollary 8 thus demonstrates the lower
bound (38a), and the preceding display also gives the final result in Claim 5.2. For the bounds (38b),
use Proposition 4 and Corollary 6 with score fg(z) = 2 — A’(#).) This contrast shows how the worst
score ¢ in the nonparametric case depends strongly on whether we have privacy or not; in the
latter, it is simply g = égo, while in the former, the structure is quite different.

6 Experiments on a flow cytometry dataset

We perform experiments investigating the behavior of our proposed locally optimal estimators,
comparing their performance both to non-private estimators and to minimax optimal estimators
developed by Duchi et al. [25] for locally private estimation. We consider the generalized linear
model (35) and estimating the linear functional ¥() = vT6. As motivation, consider the problem of
testing whether a covariate X is relevant to a binary outcome Y € {—1,1}. In this case, the logistic
GLM model (35) is pg(y | ) = exp(yzT0)/(1 + exp(yz’0)), and using the standard basis vectors
v = ej, estimating v1'9 corresponds to testing ; < 0 while controlling for the other covariates.

We investigate the performance of the locally private one-step estimator (36) on a flow-cytometry
dataset for predicting protein expression [35, Ch. 17|, comparing against (global) minimax op-
timal stochastic gradient estimators [25]. The flow-cytometry dataset contains expression level
measurements of d = 11 proteins on n = 7466 cells, and the goal is to understand the network
structure linking the proteins: how does protein j’s expression level depend on the remaining pro-
teins. As the raw data is heavy-tailed and skewed, we perform an inverse tangent transformation
z;j +> tan~ ! (z;;). Letting X € R™*? be the data matrix, to compare the methods and to guarantee
a ground truth in our experiments, we treat X as the full population, so each experiment consists
of sampling rows of X with replacement.

Let = € R? denote a row of X. For i € [d], we wish to predict y = sign(z;) based on z_; € R4~
the remaining covariates, and we use the logistic regression model

Pg(sign(xi) =1 | -ffi)
Py(sign(z;) = =1 | x_)

log = eTxfi + Obiass

so that T(z_;,y) = ylzL, 1]T and A0 | z_;) = log(e?" @=itbias 4 ¢=0TT—i=0vias) where y = sign(z;)
is the sign of the expression level of protein i. We let Gr(ﬁ € R? be the parameter (including the
bias) maximizing the likelihood for this logistic model of predicting x; using the full data X.

We perform multiple experiments, where each is as follows. We sample NV rows of X uniformly
(with replacement) and vary the privacy parameter in € € {1,4}. We perform perform two private

procedures (and one non-private procedure) on the resampled data Xpew € RV*4:

(i) The non-private maximum likelihood estimator (MLE) on the resampled data of size N.
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Sample size N =2n N =38n N =40n
Privacy € e=1l|le=4|le=1|e=4]|e=1|ec=4
vs. initializer 0.501 | 0.82 | 0.791 | 0.848 | 0.825 | 0.852
vs. minimax (stochastic gradient) || 0.321 | 0.677 | 0.659 | 0.79 | 0.777 | 0.817
Table 1. Frequency with which the one-step estimator outperforms initialization and minimax

(stochastic-gradient-based) estimator over 7' = 100 tests, all coordinates j of the parameter and
proteins i = 1,...,d for the flow-cytometry data.

(ii) The minimax optimal stochastic gradient procedure of Duchi et al. [25, Secs. 4.2.3 & 5.2]. In
brief, this procedure begins from §° = 0, and at iteration k draws a pair (x,%) uniformly at
random, then uses a carefully designed e-locally private version Z* of T = T'(x,y) with the
property that E[Z | z,y] = T(z,y) and supj, E[|| Z¥||?] < oo, updating

grrl — gk _ (VAPX(9k) _ Zk) ’

where 7, > 0 is a stepsize sequence. (We use optimal the (o, sampling mechanism [25,
Sec. 4.2.3] to construct Z;.) We use stepsizes n, = 1/(20v/k), which gave optimal performance
over many choices of stepsize and power k=8, We perform N steps of this stochastic gradient

method, yielding estimator géé) for prediction of protein ¢ from the others.

(ili) The one-step corrected estimator (36). To construct the initial 6,,, we use Duchi et al.’s fo

sampling mechanism to construct the approximation i, = n% oy Z; and let gfgt = gn =

VA*(P)(fin). For coordinates i = 1,...,d, we set 1)(0) = vT0 for v =re1,...,eq as in (36).

We perform each of these three-part tests T = 100 times, where within each test, each method uses
an identical sample (the samples are of course independent across tests).
We summarize our results in Figure 1 and Table 1. Figure 1 plots the errors across all coordinates

of 952, t=1,...,d, and all T" = 100 tests of the three procedures, with top whisker at the 99th
percentile error for each. We vary sample sizes N € {2n,8n,40n} and privacy level ¢ € {1,4};
results remain consistent for other sample sizes. As the sample size (or &) grows, the one-step
estimator converges more quickly than the minimax stochastic gradient procedure, though for the
smaller sample size the private SGD method exhibits better performance.

é\-l(:gt, géé), and 55? of the true parameter 91(3 more directly.
For each, we count the number of experiments (of 7') and indices j = 1,...,d for which

In Table 1, we compare the estimators

601, — 053] < |51, — 105015 and | @ — 185,1] < | 891, — 53]
that is, the number of experiments in which the one-step estimator provides a better estimate than
its initializer or the minimax stochastic gradient-based procedure. Table 1 shows these results,
displaying the proportion of experiments in which the one-step method has higher accuracy than
the other procedures. For large sample sizes, the asymptotic optimality of the one-step appears
to be salient, as its performance relative to the other methods improves. Based on additional
simulations, it appears that the initializer gl(fgt is inaccurate for small sample sizes, so the one-step
correction has poor Hessian estimate and performs poorly. The full minimax procedure [25] adds
more noise than is necessary, as it privatizes the entire statistic xy in each iteration—a necessity

because it iteratively builds the estimates gég) —causing an increase in sample complexity.
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Figure 1. Errors |¢ny — UTHI(;“ across all experiments, for v = ej,...,eq and i = 1,...,d, in the

logistic regression model, with medians and interquartile ranges marked.

The one-step correction typically outperforms alternative approaches in large-sample regimes,
and such large samples may be more effectively achievable than is prima facie obvious, as locally
private procedures can guarantee strong central differential privacy. Erlingsson et al. [31] consider
privacy amplification in the shuffle model, where the data {X;} are permuted before the sampling
Zi ~ Q(- | Xy, Z1:4-1); other variants [4] randomize and then permute the Z; into Z..,) € Z".
The permuted vector Z(j.,) then achieves (gcen, 0)-differential privacy [4, Corollary 5.3.1] for

. _0(1)66\/min{1,52}log%
cen — .

n

Applying this randomize-then-shuffle approach K < n distinct times, whenever € = O(1), compo-
sition bounds for differential privacy [26, Ch. 3.5.2] guarantee (£cep, 0)-central differential privacy
for ecen = O(1)4/ %. The one-step estimator (36) falls in this framework, and (via a calcula-

tion) achieves e¢en < 1 for N = 40n, ¢ = 1. Consequently, this type of behavior may be acceptable
in natural local privacy applications: situations (such as web-scale data) with large sample sizes or
where resampling is possible, as we may achieve both strong privacy and reasonable performance.
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7 Proofs of main results

We collect the proofs of our main results in this section, as they are reasonably brief and (we hope)
elucidating. The main technical tool underpinning our lower bounds is that our definitions of privacy
imply strong contractions on the space of probability measures. Such contractive properties have
been important in the study of information channels and strong data processing [14, 16] and in the
mixing properites of Markov chains under so-called strong mizing conditions, such as the Dobrushin
condition [17]. Consequently, before turning to the main proofs, we first present a few results on
contractions of probability measures, as they underly our subsequent development.

7.1 Contractions of probability measures

We provide our contractions using f-divergences. For a convex function f: Ry — RU {400} with
f(1) =0, the f-divergence between distributions P and @ is

D;(PIQ) = [ 1 <;lg) a0,

which is non-negative and strictly positive when P # @ and f is strictly convex at the point 1. We
typically consider f-divergences parameterized by k € [1,00) of the form

fu(t) = [t — 1",

Given a channel @, for a € {0,1}, define the marginal distributions

My (S) = / QS | 2)dPy(x).

The goal is then to provide upper bounds on the f-divergence D (My|M;) in terms of the channel
Q; the standard data-processing inequality [15, 42] guarantees Dy (My|Mi) < Dy (Py|Pi). Do-
brushin’s celebrated ergodic coefficient a(Q) := 1 —sup, ./ [|Q(- | ) — Q(- | 2’)|| 1 guarantees that
for any f-divergence (see [14, 16]),

Dy (Mo| M) < Sup 1Q( 12) = Q- | &")|| py Dy (PolP2) - (39)

Thus, as long as the Dobrushin coefficient is strictly positive, one obtains a strong data processing
inequality. In our case, our privacy guarantees provide a stronger condition than the positivity
of the Dobrushin coefficient. Consequently, we are able to provide substantially stronger data
processing inequalities: we can even show that it is possible to modify the underlying f-divergence.

We have the following proposition, which provides a strong data processing inequality for all
channels that are uniformly close under the polynomial f-divergences with f.

Proposition 8. Let f,(t) = |t — 1|F for some k > 1, and let Py and Py be arbitrary distributions
on a common space X. Let Q) be a Markov kernel from X to Z satisfying

Dy, (QC 12)|Q(- | 2) < *
for all z,2' € X and My(-) = fQ( | 2)dP,(z). Then

k
Dy, (M| M) < (26)% || Py — Py|fy -
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See Section 7.1.1 for a proof.

Jensen’s inequality implies that 2% || Py — P1||§V < Dy, (Py|Pr), so Proposition 8 provides a
stronger guarantee than the classical bound (39) for the specific divergence associated with fi(¢) =
|t — 1/¥. Because ||Py — Pi|lpy < 1 for all Py, Py, it is possible that the fg-divergence is infinite,
while the marginals are much closer together. It is this transfer from power divergence to variation
distance, that is, fx to fi(t) = |t — 1|, that allows us to prove the strong localized lower bounds
depending on variation distance such as Theorem 1.

We may parallel the proof of [25, Theorem 1] to obtain a tensorization result. In this context, the
most important divergence for us is the Rényi 2-divergence (Def. 2), which corresponds to the case
k = 2 (i.e. the x*-divergence) in Proposition 8, f(t) = (t—1)?, and D,2(P||Q) = exp(D2(P|Q)) —
Recall the sequentially interactive formulation (1) and let

Qn(s | xl:n) ::/ HdQ Zz | Ly 21— 1)
Z1: nESZ 1

Now, let P,,a = 0,1 be product dibtributionb on X, where we say that the distribution of X;
either follows Py; or Py;, and define MZ(-) = [Q"(- | x1.n)dPs(21.n), noting that dP,(z1.,) =
[1i-, dP,(z;) as P, is a product dlstrlbutlon We have the following corollary.

Corollary 11. Let Q be sequentially interactive and satisfy (2,e2)-Rényi privacy (Def. 2). Then

3

Dy (Mg M) H(+4s2HPo,z-—P1,z-H2TV)—1-

See Section 7.1.2 for a proof. An immediate consequence of Corollary 11 and the fact [50, Lemma
27] that Dy (Pole) < 10g<1 + DXQ (P()le)) yields

n n
Dy (Mg||M7") < log (1 +4e? || Poi — Pl,i||r2fv) <4®Y " ||Poi — Prillgy - (40)
=1 i=1

The tensorization (40) is the key to our results, as we see in the later sections.

7.1.1 Proof of Proposition 8

Let pg and p; be the densities of Py, P; with respect to some base measure y dominating Py, P;.
Without loss of generality, we may assume that Z is finite, as all f-divergences are approximable
by finite partitions [51]; we let m, denote the associated p.m.f. For k > 1, the function t — t' =% is
convex on R;. Thus, applying Jensen’s inequality, we may bound Dy, (Mo|M;) by

m m k
Dy, (Mo|My) = Z| o(2 /I o(2 ZMO e 1)! pu(20)dia(zo)
m k
/ (Z o (z | z0)k- 1)| )p1(xo)d#(x0), (41)
=:W(xo)

It thus suffices to upper bound W (xg). To do so, we rewrite mgy(z) — mq(z) as
mo(z) —ma(z) = /Q(Z | 2)(dPo(x) — dPy(z)) = /((J(Z | 2) = q(z [ 0)) (dPo(z) — dPr()),

32



where we have used that [(dPy — dP;) = 0. Now define the function

q(z | ) = q(z | xo)
q(z | wo)~1/k

Az |z, z0) ==

By Minkowski’s integral inequality, we have the upper bound

B\ 1/k
W (o) /¥ = (Z ] / A(z | @, 20) (po(x) — p1(2))dpa(x) ) (42)

1/k
</ (sz|w,xo><po<x>—p1<m>>\’“> duta) = [ (szwx,xo)\k) [APy(@) = dPi(@)].

Now we compute the inner summation: we have that

Z|A(Z|ZL‘,$ Z‘ ;”;0

Substituting this into our upper bound (42) on W (xg), we obtain that

=

k

q(z | zo) = Dy, (Q(- | 2)|Q( [ o)) -

k
W (o) < sup Dy, (QC [ 2)IQ( [ 0)) 2" [ Po = Pillpv »
x
as [ |dPy — dPy| = 2||Py — Pi|lpy. Substitute this upper bound into inequality (41).

7.1.2 Proof of Corollary 11

We use an inductive argument. The base case in which n = 1 follows immediately by Proposition 8.
Now, suppose that Corollary 11 holds at n — 1; we will show that the claim holds for n € N. We
use the shorthand my(z1.1) for the density of the measure M¥, a € {0,1} and k € N, which we may
assume exists w.l.o.g. Then, by definition of the y?-divergence, we have

m (Zliﬂ) ml( -1 m (Zn | Zl:n—l)

n
Noting that the kth marginal distributions Mg 1 (- | z1.6—1) = | @, 21.6-1)d Py i(x) for a € {0, 1},
we see that for any z1.,—1 € AU

m2(Z1m m2(Zy.m— m2(Zn | Zym—
Dy (MJ| M) +1 =Epy, {%(1)] =E, [MEMI (%( | Z1:n-1) |Zlm_1” .
Ja(
m%( n | 21m-1)
ml( | 21m-1)

EMl |: ‘ Zl:n—1:| =1+ ng (MO,n(' ’ Zl:n—l)HMl,n<' ‘ Zl:n—l))

S 1 + 452 HPO,’IL( ’ Zl:n—l) - Pl,n(' ‘ zl:n—l)”?fv
=1+ 4€*||Pon — Pialay

where the inequality is Proposition 8 and the final equality follows because X, is independent
of Z1.,—1. This yields the inductive step and completes the proof once we recall the inductive

hypothesis and that EMJ%] =D, (My M) +1
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7.2 Proof of Theorem 1

We follow the typical reduction of estimation to testing, common in the literature on lower bounds [2,
25, 50, 57]. For shorthand, let 6, = 6(P,) for v = 0,1 throughout the proof. Define the “distance”

AL (Po, Pr) = inf {L(6 — 0(R) + L(O = 6(P))}

which satisfies dp(Py, P1) = 2L(w) when L is convex and (by quasi-convexity and symmetry)
satisfies dr,(Py, P1) > L(@). By definition of d,, we have the mutual exclusion that for any 6,

1 1
L(9 — 90) < idL(POaPl) implies L(0 — 01) > §dL(P07P1). (43)

Let M and M{* be the marginal probabilities over observations Zi., under Py and P; for a channel
Q € Q. Using Markov’s inequality, we have for any estimator ¢ based on Zi., and any § > 0 that

Engg [L(é— 90)] +Epp [L(?- 91)} > 6 [Mgl(L(a— 0o) > 0) + MP(L(G — 0) > 5)]
- [1 — M (L0 — 60) < 8) + MP(L(O — 61) > 5)} .
Setting § = dg1 := 3dr (P, P1) and using the implication (43), we obtain
Eagg [L(@— 90)} +Epp [L(é— 91)} > bo1 [1 — MP(L(O — 6y) < 6) + MP(L( — 6) > 5)]
> o1 [1 ~MP(L(G— 61) > 8) + MP(L(G — 61) > 5)]
> 001 [1 — || Mg — M7 ||y ], (44)

where in the last step we used the definition of the variation distance.
Now we make use of the contraction inequality of Corollary 11 and its consequence (40) for
KL-divergences. By Pinsker’s inequality and the corollary, we have

2| Mg — M3y < Dy (MFIMY) < log(1+ Dy (M| M) < nlog (1+42% | Py — Pilfhy )

Substituting this into our preceding lower bound (44) and using that 0 is arbitrary and dg; =
%d .(Po, P1), we have that for any distributions Py and P,

—~ 1 n
inf inf Ep |L(O —0(P))| > =di(Py,P)) |1 —+/=1log (14 4e2||Py— P> .
nf ol s B (10— 0(P)] 2 Jau(Bo P [1- [T 10s (1442217 - AR )

Now, for any § > 0, if Zlog(1 + 4¢%6?) < I, or equivalently, 2 < -1y (exp(s) — 1), then 1 —

= 4e2

\/ S log(1 + 4e26%) > % Applying this to the bracketed term in the preceding display, we obtain

1 1
M(Py, L, P, Q) > < sup 3 di(Fo, P) | [Py = Pillgy < 5 e — 1]
8 PeP de
> L sup Lan(p, P 1P — P2y < ——
=3 PleI;D L\£0,41 0 1Ty > Sne?

because ¢* — 1 > x for all z. When L is convex, this is precisely %wLTV( Py, P), while in the

1.
. L V8ne2’
quasi-convex case, it is at least ng’TV(\/W; Py, P).
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7.3 Proof of Proposition 3

Our starting point is a lemma extending [8, Thm. 1]. In the lemma and the remainder of this
section, for measures Py and P; we define the 2-affinity

dPg dPy
Po|Py) =D,z (Py|P\) +1=Ep, |—2| =Ep |-
p (Pol 1) := Dy (Pol[P1) + Py [dplg] Py [dPJ’

which measures the similarity between distributions Py and P;. With these definitions, we have
the following constrained risk inequality.

Lemma 3 ([22], Theorem 1). Let 6y = 0(P), 61 = 0(P1), and define A = (5 [|6p — 61]|5). If the
estimator 0 satisfies R(g, 0o, Py) < & for some § > 0, then

R 2
R(0,01,P1) > |AY2 — (p(P1|Py) - 6)1/2 L

The lemma shows that if an estimator has small risk under distribution Py, then its risk for a

nearby distribution P} must be nearly the distance between the associated parameters 6y and 6.
With Lemma 3 in hand, we can prove Proposition 3. For shorthand let R,(0) = R(0,0,, M)

denote the risk under the marginal M. By Lemma 3, for any distributions Py and P;, we have

2

Ra0) > | (5100- 0l ) = (o 0103 @ 007) ]

and by Corollary 11 we have
n n 2 2 " 2 2
p (M| My) < (1 +4e” || Py — PIHTV) < exp <4n5 Po — PlHTV) :

Let wr,(0; Py) = wr,1v(0; Py, P) for shorthand. For ¢ € [0, 1], let P, be the collection of distributions

P:={ PeP||P— P> log%
={Pe _ <t—1
t ‘ H 0 1HT\/ = 4ne2 [

so that under the conditions of the proposition, any distribution P; € P, satisfies

~

1 (1-1) _ 1/2]2
(@)= [o (G100 -0, ) - wr (1025 m) ] (45)
+

As L(3(60 — 0(P1))) = ®(5 ||60 — 0(P1)||,), inequality (45) implies that for all ¢ € [0,1], there
exists P, € P; such that

- 1/2 2
~ \/ tlog n (1—t) 1 1/2
R(6, M) > " 2 wL ; P

wr, i Po -
! V4ne? 7

+

Because ¢ — wr,(0) is non-decreasing, if ¢ € [0, 1] we may choose P; € P, such that

R(6, M) > [1 — n(l—twr ng% _ (46)

wr

; P
+ vV4ne? 0
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Lastly, we lower bound the modulus of continuity at Py by a modulus at P;. We claim that
under Condition C.1, for all 6 > 0, if [|[Py — Pi||py < 9 then

1
wr(29; Py) > %wL(é;Pl). (47)

Deferring the proof of this claim, note that by taking 6% = tlog% /(16n£2) in inequality (47),
Eq. (46) implies that there exists P; € P; such that

~ 1 2 1
R0, MT") > [1 - <1—t>/2] wi, (26: Py) > — [ _ (1—t>/2} o [ L
(0, M) > n . L (20 Ry) > > n P iy
Let us return to the claim (47). For distributions Py, Py, P, with parameters 6, = 0(F,),

01 — 0 0o — 0 0o — 0
L(%5%) < pt- 00+ 20— o) <52 (052 ) 4o (252

by Condition C.1. Then for any § > 0 and P; with ||P; — Py||py < 0, we have

—9(P —0(P
wr(26; Py) = sup L <9029()> > sup L (0026()>
||P0_P||Tv§25 HPl PHTV
> sup {W_IL <91_9()) — L <90_91>} > y_le(é;Pl) —wr(0; Py).
1P— Pl <6 : 2

Rearranging, we have inequality (47), as for any distribution P; such that [Py — P;||py <9,

QwL(25; P()) 2 wL((S; P()) + wL(Q(S; P()) Z ’y_le(é; Pl).

8 Discussion

By the careful construction of locally optimal and adaptive estimators, as well as our local minimax
lower bounds, we believe results in this paper indicate more precisely the challenges associated with
locally private estimation. To illustrate this, let us reconsider the estimation of a linear functional

v"'6 in a classical statistical problem. Let {Py} be a family with Fisher information matrices {Iy}
and score £y : X — R?. Then a classical estimators 6, of the parameter  is efficient [52, Sec. 8.9]
among regular estimators if and only if

O, — 0=~ Z —I, Mg, (Xs) + op(1/v/n),

and an efficient estimator an of v71'0 satisfies @n =vlgy—n=t30 UTfe_Olégo (X;) + OP(n_l/Q). In
constrast, in the private case, our rate-optimal estimators (recall Section 5.2) in the nonparametric
case have the asymptotic form

R 1 . 1
wpriv,n = UTGO — o7 (n Zl 1901690 (Xz)> + ﬁ Zl Wi + OP(I/\/EL

where the random variables W; must add noise of a magnitude scaling as és.upJj \UTIG_O Ygy ()],

because otherwise it is possible to distinguish examples for which UTIHB 1@90 (X;) is large from those
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for which it has small magnitude. This enforced lack of distinguishability of “easy” problems (those
for which the scaled score I, 109, (X;) is typically small) from “hard” problems (for which it is large)
is a feature of local privacy schemes, and it helps to explain the difficulty of estimation, as well as to
illustrate the more nuanced scaling of the best possible estimators with problem parameter 6y, when
sup,, \vTIéjlégo ()] may be similar to Eo[(vTI(,Blégo (X))?]'/2, the optimal non-private asymptotic
variance.

We thus believe it prudent to more carefully explore feasible definitions of privacy, especially
in local senses. Regulatory decisions and protection against malfeasance may require less stringent
notions of privacy than pure differential privacy, but local notions of privacy—where no sensitive
non-privatized data leaves the hands of a sample participant—are desirable. The asymptotic expan-
sions above suggest a notion of privacy that allows some type of relative noise addition, to preserve
the easiness of “easy” problems, will help. Perhaps large values of ¢, at least for high-dimensional
problems, may still provide acceptable privacy protection, at least in concert with centralized
privacy guarantees. We look forward to continuing study of these fundamental limitations and
acceptable tradeoffs between data utility and protection of study participants.

A Proofs of non-private minimax results

In this appendix, we collect the (more or less standard) proofs of the results in Section 2.2.

A.1 Proof of Proposition 1
The lower bound follows the typical reduction of estimation to testing commin in the literature on
lower bounds [2, 50, 57]. Fix any distribution P; € P, let 8, = 6(P,) for shorthand, and define
d = |0p — 01]/2. Then for any 6§ € R, that |# — 6| < 0 implies |§ — 61| > 6. Thus we have
~ ~ (7) ~ ~
Erp [0 600 +Erp [@-00%] 2 62 [Py (16— 60] > 5) + P (18— 61] > 6))]
— 5 [1—13(? (yé—eoy <5) + PP (|§—91| 25)}
(i1) ~ ~
> 62 [1-py (001> 0) + PP (100112 6)]

where inequality (7) is Markov’s inequality, and the second is the implication preceding the display.
By the definition of variation distance and that ||[P — Q| 1y < v2dpei(P, Q) for any P, Q, we obtain

Epy [(ﬁ 90)2} +Epy [(57 91)2] >5[ — Py = PPlpy]. >0 [1 — V2dpa (P, Q)] . (48)
The tensorization properties of the Hellinger distance imply that
doo (P, PT') = [1 = (1 = diey(Po, P1))"] < ndpy(Po, Pr),

and substituting this into the bound (48) gives that for any P; € P,

M (P P) > By [0 002 2Ery [0—007] = L sup (0(7) —0(P)? [1 - ¢2ndﬁl<—PoPl>}

P eP 4

Taking a supremum over all Py € P satisfying d2 (P, P1) < ﬁ then implies

2—-1
M (Py, P) > \/é;\ﬁwlzlel(nl/z/z Py, P).
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To prove the upper bound, we exhibit an estimator. Let 6, = 0(P,) as above, and assume
w. l o.g. that P, have densities po (take base measure u = Py + P;). Define the acceptance set

={zex" [, g? zi) > 1} and estimator é\n =0pla + 011 4c. Tt is then immediate that

ponae Epn [ = 0(P))?] = (B0 — 00)" max (B(A%), P{ ()} < (60— 00)*[L~ 1B~ Pl

Using the tensorization properties of Hellinger distance and that |[P — Q|1 > diy(P, Q) for any
distributions P and @, we obtain
1P = Pllpy > dia(Bg PP = [1— (1= dpy(Po, P1))"| > 1 — exp (—ndpy(Po, P1))

so that

0 _ 2 HVRY o2
pns Eps [(9n o(P)) } < (B0 — 01)2 exp (—nd2y (Po, P)) .

Taking a supremum over P; gives the claimed upper bound.
Finally, we turn to the bound (7). We have by assumption that for any § > n~/2/2,

{whel(é; Py, P) exp(—n52)} < whel(n_1/2/2; Py, P) - B(4n(52)’8/2 exp(—nd?)
< whe(n™"?/2; Py, P)BB" e P12,

B

where the supremum is attained at 6% = G -

A.2 Proof of Claim 2.1

We use the shorthand wye(8; 0o, ©) = supgee{|v? (0o — 0)| | diei(Ps, Py,) < 8}. The lower bound is
nearly immediate via Proposition 1: by the QMD assumption there exists § > 0 such that ||h| < §

implies ghTIQOh < d?(Pyyin, Py) < 1hT190h Thus we obtain for all n 2 W that
_ 1
whe(n712/2;609,0) = SUP{’hTU’ | it (Poosny Pay) < 4n}
7 7 VT 12
> sup {hTU | BT Ig b < } = Sup{hTU | KT Igyh < } g, " “vl[2-
IhlI<s v A T Tanf 2y

For the upper bound, choose § > 0 such that ||k < & implies that dZ(Pa,+n, Ps,) = sh' Ig,h,
while ||h| > & implies that d?_,(Ps,+n, Pa,) > v > 0; such a pair of § and ~ exist by Assumption A1l
and quadratic mean differentiability. There thus exists ro = (6, o) such that dnel(Pay+r, Po,) < 7o
implies ||h|| < 4, and so for any r < rg, we have that d2_,(Ppy4nh, Pp,) < r* implies

1
o Togh < i (Pog4ns Pag) <72,
Using this in the definition of the modulus of continuity yields
Whel(73 0o, ©) = sup {[v"h| | dpey(Pagsn, Pay) <77} < sup {oTh | BT Igoh < 92} = 3¢ 1, %02

for all » < ry. Noting that wye < diam(©) regardless, we apply Proposition 1 and observe

sup {wie (75 00, ©) exp(—nr?) } < max{ sup  wie (r; 60, ©) exp(—nr?), sup wiy(r; 6o, ©) exp(—nrg)}
r>0 0<r<rg T>T0

< max {sup 97“21)TI9_011) exp (—nr?) , diam?(©) exp(—m‘g)}
r>0

= max {QUTI v, diam?(0©) exp(—nr%)} .

en
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A.3 Proof of Lemma 1
The proof is essentially [52, Lemma 8.14]. Letting Iy = Ep,[gg”], we have under Py x P that

dP" | x dPp "
hn//m aux B L T N
o8 = pn xcdpg, Xt i) = T ;h 9(Xi) — BT Toh + o, (1)

(recall [52, Theorem 7.2]). Thus we have

ety
n//m " aux
log — i —

aux

OXPaux

el ([%hoﬂoh] ’ [hTE?gO(;)ZéSI(MX)T] E[QO(fT)icff)L( )T]hD’

Applying the delta method and Le Cam’s third lemma [52, Example 6.7] gives that

Vb, — 0(Py)) n /ﬁpw N <}E[9'0(X)g(X)T]h, Yo + Zaux> :

The differentiability of h +— 0(F},) at h = 0 then gives the first result.
The second limiting result follows by a standard compactness argument.

A.4 Inequality (17): bounds on the Hellinger modulus

For the lower bound on wyel(d), we use techniques from semiparametric inference [e.g. 52, Ch. 25].
Let 0o = Ep,[X] and define the function g(z) = (x—6p). Define the distribution dP; = [1 +tg], dPy/Cy,
where C; = [ [1+tg], dPy. Then we have

[1+tg], — (1+tg)
2

1§C’t§/(1+tg)dP0+t2/ dPy

1
- t2/t2(1 +tg)1{g < —1/t} dP,

Polg < ~1/1) | v/Varolg)Poly < ~179)
t2 t

<142 < 1+ 2t*Var(g)

by Chebyshev’s inequality. A standard calculation [52, Ch. 25.3] via the dominated convergence
theorem—with the observation that the influence function of the mean is 0y(x) = (x — 0y)—yields

Ep, [X] = 0y + tVarp, (X)(1 +o(1)) and diy (P, Py) = %t2VarpO(X)(1 +0o(1))

as t — 0. Let ¢ be small enough that |o(1)] < 1 for ¢ < to. Then for 62 < Varg(X)to/7,
1
Whet(0) > flltp {;tVarpo(X) | ?tQVarO(X) < 52} = 7gﬁ\/Varpo(X),
>to

while (as o(1) — 0)
liminf — @) oy

510 \/8Varp, (X)6
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For the upper bound on wye, we require a few more steps. Let P, € P be an arbitrary
distribution, where we assume that d? (P, P1) < %, and use the shorthand and 61 = §(P;). Then

0r — 0y — /(x — 00)(dPy — dPy) = /(m — 09)(APy + /AP (\/APs — \/dRy)
1 2
< </I—90 dP1+ dPo ) fdhel(Po,Pl)

< (2Eo[(X — 00)%] + 2B [(X — 06)2]) "> V2dyel (P, P)
= 2\/Var0(X) + Varl(X) + (90 - 01)2 . dhel(POa Pl) (49)

by the Cauchy-Schwarz inequality and definition of Hellinger distance. Noting that E[(X — 0)*] <

23(E[X4] + 0%), we may assume there exists some My < oo such that M} > Ep[(X — 6)%] for all

P € P. We now bound the variance Vari(X) in terms of Varg(X) and dye (Po, P1). Using that
(z—00)% — (x — 01)* = —22(0p — 01) + 05 — 67,

we obtain

(x — 90 dPy + /dPy)(\/dPy — \/dPy) + (6g — 91

Again applying Cauchy-Schwarz, we observe that

Varg(X) — Vary (X) = / (2 — 00)2(dPy — dPy) — 201 (80 — 01) + 62 — 62

‘Val"o(X) - Varl(X)] < 2M42dhel(P07P1) + (00 - 91)2.
Substituting this bound into inequality (49) and squaring yields
(91 — 90)2 < 4 (2Varg(X) + 2M42dhel(P0, Pl) + 2(90 - 91)2) d}21e1(P07 Pl),
or
8Varg(X) 8M?
1 —8d:,(Po, P1) 1 —8d:,(Po, P1)
In particular, as soon as diy(Po, P1) < 15 and dpel(Py, P1) < (Varg(X )/ M3,

(61— 60)* < i (Po, Pr) + dyer(Po, Pr).
(01 - 90)2 < 32Va1‘0(X)d}2161(P0, Pl)

Solving for the modulus (5) gives the result, and eliminating higher order terms yields

. 0(Fo) — (1) }
limsupsupy ————+—= | dnel(Fo, P1) <6 8Varp, (X).
510 P p{ dhet(Po, P1) | dnei(Fo, 1) 7 ()

A.4.1 Proof of Claim 5.1

A minor extension of Proposition 1 shows there exist numerical constants 0 < ¢y, ¢; < 0o such that

co(wﬁel(confl/Q; Py,P)\B) < EITZ],‘;C(PO, Lap,P,{id}) < s1>118 { (wﬁel(r; Py, P) A B) e*nﬂ} (50)
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for all n € N and any family P. For the influence function fo(x) = (z — Eo[X])/Varo(X) following
the claim, by appropriate renormalization, we may apply the limiting equality (17) to obtain

Whel (0, Po, Pron-par) = \/g(X)é(l + 0(1)) = \/852E[fo(X)?](1 + o(1)).

Varg

The lower bound OM°¢(Py, Lxg, Pron-par, {id}) = m for large n then follows by inequality (50).
1/4

The matching upper bound similarly follows, as for all large enough n, if r < 1/n'/* we have

wl%el(r? Fo, Pnon—par) < 167'2E0 [90 (X)2],

and so

sup {(wﬁel(r; Py, Pron-par) A B) 67"7"2} < max {Sup 16r2Eq [ég(X)ﬂe*qu, sup Bemz}
r>0 >0 —

= O(1) max {iEO[éO(X)Q], Be—ﬁ} .

A derivation mutatis mutandis identical to that for Claim 2.1 gives the parametric result, as
the exponential family has score ¢y, (z) = = — Eg,[X] and Fisher information Iy, = Varp(X).

B Deferred main proofs

B.1 Proof of Proposition 2

Let Py and P; be distributions on X, each with densities pg, p1 according to some base measure p.
Let 0, = 0(P,), and consider the problem of privately collecting observations and deciding whether
0 = 6y or 0 = 6. We define a randomized-response estimator for this problem using a simple
hypothesis test. Define the acceptance set A := {x € X' | po(x) > pi(z)}, so Py(A) — Pi(A) =
| Po — Pi||py- Now, consider the following estimator: for each X;, define

1 with probability (e® +1)~! (et +1 —t¢
T - 1{X: € A} and Z | (T =t} — 4 L With probability (e + 1)7 (et + 1 —¢)
0 with probability (e=¢ +1)"! (e ™5t + 1 —t)

Then the channel Q(- | X;) for Z; | X; is e-differentially-private, and setting . = % — %, we have

65

1— 0

1-96
Py(A°) = 5 +30.Py(A) and Eq[Z;] = £

2

140 11—,

Eo[Zi] 5 Py(A) +

+ 55P1 (A)

while Z; € {0,1}. Define the statistic

1 1-46
Kn::<nZZi— 5 5),

€ i=1

so that Eg[K,] = Po(A) and Eq[K,,] = P1(A). We define the estimator

i, > AR o fie  RUEAWY
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We now analyze the performance of 9. By construction of the acceptance set A,

Po(A) + Pi(A) Pi(A) — Py(A)

T = () +

1 1
= Po(A) - 5 [P — Bollpy = Pi(A4) + 5 1P — Pollpvy

so by Hoeffding’s inequality, we have

m{P (K - P<f1>—5P<A>> P (K . w)} o <_msg 1Py — plu?fv> |

2 2

In particular, we have

2
Eo[L(0 — 00)] + E1[L(6 — 01)] < [L(61 — 60) + L(00 — 01)] exp (_mi? HPOQ_ PlHTV) .

Using the growth condition C.1, we obtain

0 q - 2||Ry — P13
Eo[L(0 — 00)] + E1[L(0 — 01)] < 29L (90291> o (_n(SE 1P, 1HTV)

2
0y — (P 82 ||Py — P|?
§2fysupL( 0 ( )>exp _naH 0 ITv
PeP 2 2
62 2
= 2ysup wr 7v(r; Py) exp _ 10T .
>0 ’ 2

B.2 Proof of Corollary 6
Define the shorthand

wTv((S) = Sl}llp {‘¢(90 + h) - w(go)’ s.t. HP@OJrh — Pt‘)oHTV < (5} .

We first apply Proposition 2. As in this setting the constant v = O(1) from Condition C.1 is

automatically a universal constant, we obtain for numerical constants Cy, C7 < oo that
mloC(Pao, L,P, Q) <y Sli%L (WTV(ClT)) 6_774'252. (51)
T_

We bound wrv(0) for small §. Let 7y and 79 be remainders as in the proof of Proposition 4, so
that || Pyyrn — Ppllpy = 5001 + ro(h) and ¢(0y + h) = ¢(0p) + ¢/ (6)h + 1 (), where both are
o(h) as |h| — 0. Let hg > 0 be such that |ro(h)| < |Jg,h|/4 for |h| < hg. Choose dg > 0 so that
| Poo+n — Poyllpy < o implies || < hg, which is possible by Assumption Al, and |h| < % implies
|7 (h)| < [¢'(00)h|. Then for all § < do, if || Pag+n — Pay ||y < 0, we have |h| < hg and consequently

1 1
d > ”P90+h - P90||TV = §J90|h’ + To(h) > Z‘]90|h|’
or |h| <46/Jg,. Thus we obtain

w1v(0) = sup {[0(80 + ) = V(B0)| s1. || Payin = Py ey < 0}

< sip{|¢'(90)h+w(h)| s.t. || < jé} < 8|¢'(6p)|

0

0.

Jo,
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We now return to inequality (51). Substituting the preceding bound, for numerical constants
Cy, C1 < 0o whose values may change from line to line,

mlr?C(PQO, IJ7 P, Q) < C() max { sup L (wTV (ClT)) 6—7—27152’ L (dlam(w(@))) 6—6877«52/012 }
0<7<d0/C1

Scomax{ sup 1 (AU 6_72"82,L(diam(w(@»)e_égmz/cf}.

0<7<60/C1 Ji 0o

Finally, we use the assumption that L(at) < Ca®L(t) for all @ > 1. We have

L (C”f/;(eo)'7> < C'(ner2)Plen (WGO)' ! )

o Jo, ne?

and using that sup, t%/2e~t = (8/2)%/2¢78/2 gives the result.

B.3 Proof of Proposition 4

We assume that ¢’ (6y) # 0; the result is otherwise trivial. Applying Theorem 1, we have

oc 1 1
moc(py,, L, P, Q) > gWLTV <\/W;P007P> . (52)

Now, we evaluate wr,(6) := wr, Tv(d; Py,, P) for small § > 0. By assumption, there exist remainders
ro and 7y, both satisfying |[r(h)/h| — 0 as h — 0, such that ||Pyyn — Pp,llTv = 3o 1| + r0(h)
and (6o + h) — ¥(0y) = ' (6p)h + 74 (h). Then

wr(6) > sup {L (;(wwo +h) - w(eo») | [1Pog+h — Poollpyv < 5}

— sup {L (;(w’(eo)h + w(h))) | Joy || + 2ro(h) < 25} .

h

Choose hg = h(fo,v,P) > 0 such that |h| < hg implies that |ro(h)| < Jg,|h|/2 and |ry(h)] <
|1 (6p)h|/5. Then evidently

or®) 2 sup {2 (2wo0n) L lnl < b @ (oo,

|h|<ho

where equality (%) occurs whenever § < hgy/Jy,. Setting § = \/ﬁ, letting n grow, and substituting
into inequality inequality (52) gives the proposition.

B.4 Proof of Theorem 2

The proof mirrors that of Proposition 4. Let 6y = 6(F) be the desired parameter. Again, we
assume that Vi (0y)TEo[fo(X)g(X)] # 0, as otherwise the result is trivial. For the L!-information
Jg.0 := [ |g|dPy, there exist remainders rg, ry, both satisfying r(h) = o(h) and

[P0 = Phllpy = %|h|!]g,0 +ro(h) and ¢ (8(Pr)) = ¥(60) + Vob(60) "Eo[blo (X)g(X)]h + 1y (h)
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by the differentiability assumptions. Choose hg > 0 small enough that [h| < ho implies that
Iro(h)| < 3|h|Jg0 and |ry(h)| < [Vep(0o)TEo[fy(X)g(X)]h|/20, which depends only on ¢ and
Psub,0- Then defining wr,(0) := wr, Tv(0; Py, P) for shorthand, we have

o202 s {1 (3000 - 62 1170 - Fulry <0}

|h|<ho 2

> sup {1 (57000 Bl (X)g(X)11) | it < 0.

For all 6 < hg/Jg,0, then, we obtain

198 V4 (60) T Eo[fo (X ) g(X)]

Applying Theorem 1 and setting § = \/81n? gives the result.

C Technical Appendices
C.1 Proof of Lemma 2

By the triangle inequality, we have

/ ’p90+h - p90 - hT€00p60|le’
</

We show that each of the integral terms I; and Iz are both o(||h||) as h — 0. By algebraic
manipulation and the Cauchy—Schwarz inequality,

1 . 1 .
Poo+h — Poy — §hTﬁeo VP00 (\/Poo+h + /Do) dMJr/ ‘QhTfeo VP8 (\/Poo+h — \/Péy)| d

:=1I1(h;00) :=I2(h;00)

dp

1 .
Iy (h; 00) = / |v/Poo+h + \/Déy | - ‘\/peo—i-h — /Doy — ihTfeox/peo

1
2
d,u)

Jensen’s inequality gives [ |\/Pootn + /Pogl2dpt < 2 [(poy-+n + Po,)di = 2. The assumption that P
is QMD at 6y immediately yields I1(h;60y) = o(]|h]|). To bound I, we again apply the Cauchy—

Schwarz inequality, obtaining

(/1m+wmdu) ( Ve~ Py~ h

1 1
2 2
215(h;6p) < </ \h" Cgy /Doy | dﬂ) : </ |\/Poo+h — \/pao!2du)

Since P is QMD at 6y, we have [ |\/Bogrn — /Poo)>dpe = [ |20 Loy /Dy |2dps + o(||1]1?) = Og, (|11]1%)
(see [52, Ch. 7.2]). Thus I»(h;6o) = Og,(||h||?), giving the lemma.
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C.2 Proof of Proposition 6

We require one additional piece of notation before we begin the proof. Let W; = Z; — V; be the
error in the private version of the quantity V;, so that E[W; | V;] = 0, and

2 - 1 e
Wi — 6571‘/;‘ ef—1 W.p. ef+1
—2e° e 1
7‘/1 + <1 W.p.

ecf—1 ec+1°

Recall our definitions of V; = 1{T(X;) > fn} and Z; as the privatized version of V;. Letting
Zp = %Z?:l Z;, and similarly for V,, and W,,, recall also the definition of the random variable

Gy = U(T,, 00) = Py, (T'(X) > T,,). By mimicking the delta method, we will show that

V(O — 00) = 250V (Vi = G + W) + 0p(1). (53)

Deferring the proof of the expansion (53), let us show how it implies the proposition.
First, with our definition of the W;, we have

Var(Ws [ V) = EWE | Vil = ey = 07

so that W,, = 1 37" | W satisfies \/nW, LN N(0,6-2) by the Lindeberg CLT. Thus, assuming the
expansion (53), it remains to show the weak convergence result

Vi (Vo Gr)
Gn(1—Gy)

4 N(0, 1). (54)
where G,, = \Il(fn, 6p). By definition, the {X;}}"; are independent of fn, and hence

EV; | T,)] = U(Ty,00) = G and Var(V; | T,)) = U(Ty, 60)(1 — U(Th, 00)) = Gu(1 — Gp).
The third central moments of the V; conditional on fn have the bound

?|

Thus, we may apply the Berry-Esseen Theorem [40, Thm 11.2.7] to obtain

p (ﬁ(vn — Gp)

~ 3 ~ ~ ~
vV, — E[V | Tn]‘ | Tn] < W(Th, 00)(1 — (T, 00)) = Gu(1 — Gy).

<U,:= ! A 2.
nGn(1 —Gy)

sup

teR Gn(l - Gn)

<t ’fn> —®(t)

Jensens’s inequality then implies

P <\/ﬁ(vn_G") <t> —<I>(t)

<E
Gn(1—-Gy) -

sup
teR

sup
teR

Vi (Va=Ga) _ -
(200 i) -

] <E[U,]

To show the convergence (54), it is thus sufficient to show that E[U,] — 0 as n 1 co. To that
end, the following lemma on the behavior of W¥(¢,6) = Py(T(X) > t) is useful.
Lemma 4. Let tg = Ey,[T(X)] and assume that Varg,(T'(X)) > 0. Then there exist ¢ > 0 and
c € (0,3) such that if t € [to £ €] and 0 € [0y €], then U(t,0) € [c,1 —c].
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Proof. By the dominated convergence theorem and our assumption that Varg, (7(X)) > 0, where
to = Eg, [T'(X)], we have

liminf W(t,60) = Py, (T(X) = 10) € (0.1) and Limsup W(t,60) = Py, (T(X) > to) € (0.1).
0 tlto

The fact that ¢ — W(t,60p) is non-increasing implies that for some ¢; > 0,c € (0,1), we have
U(t,bp) € [2¢,1 — 2c] for t € [ty — €1,t9 + €1]. Fix this €; and ¢. By [40, Thm 2.7.1], we know that
any t € R, the function 6 — W(t, ) is continuous and non-decreasing. Thus for any €3 > 0, we have

U(tg+ €1,00 — €2) < U(t,0) < U(tg —€1,00 + €2) for (t,0) € [to £ €1] X [0 £ €2].
Using the continuity of 6 — W(¢,0), we may choose €3 > 0 small enough that
U(t,0) € [c,1 —c|] for (t,0) € {to—e1,to+e1} x {0y — €2,00 + €2}.
The lemma follows by taking € = €1 A €. O

As Varg, (T'(X)) > 0 by assumption, Lemma 4 and the fact that T, 5 to imply
G = (T, 00) = Pao(T(X) > Tp,) € [e+ op(1),1 — ¢ + op(1)]. (55)

The bounds (55) imply that G, (1 — Gy) > ¢(1 — ¢) + op(1), so U, % 0. By construction |Uy,| < 2
for all n, so the bounded convergence theorem implies E[U,] — 0, which was what we required to
show the weak convergence result (54). The joint convergence in the proposition follows because
W, and V,, — G,, are conditionally uncorrelated.

The delta method expansion We now return to demonstrate the claim (53). For p € [0, 1],
recall the definition (27) of the function H, and define

~

Ho(p) := H(p,T,) = inf {9 eR| Py(T(X) > Th) > p} , (56)

where the value is —oo or +oo for p below or above the range of 6 — Pp(T'(X) > fn), respectively.
Then 6,, = H,(Z,) by construction (27). We would like to apply Taylor’s theorem and the inverse
function theorem to 68,, — 0y = Hn(Zn) — 6, but this requires a few additional steps.

By the inverse function theorem, p — H,(p) is C* on (infy \Il(fn, 0), supy \Il(fn, 0)), and letting

. 0 0

Wy (t,0) = 550 (t,0) = Eg[L{T(X) = t} (T(X) = A(0))] = 55 Rp(T(X) = 1),
we have H/ (p) = Wy(Th, Hy(p)) ' whenever p is interior to the range of 01— Pp(T(X) > T,). To
show that Z,, is (typically) in this range, we require a bit of analysis on Wy.

Lemma 5. The function (t,0) — Wy(t,0) = Eg[1{T(X) >t} (T'(X) — A'(#))] is continuous at
(to, 90), where to = Ego [T(X)] = A,(eo)

To avoid disrupting the flow, we defer the proof to Section C.2.1. Now, we have that Wy(to,0) =
1Ky, [|T(X) — to|] > 0, so Lemma 5 implies there exists e > 0 such that

inf Uy(t,0) >c>0 (57)

|t—t0|§e,|9—90‘§6
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for some constant c. Thus, we obtain that
P <7n ¢ Range (U (T, ))) <P (711 ¢ Range(U(T,, ")), T, € [to = e]) +P (T\n & [to £ e])

2 P <Zn ¢ [U(T,, 00) + ce]) +0o(1) = 0, (58)

where inequality (i) follows because Range(¥(t,-)) D [¥(t,6) £ ce] for all ¢ such that |t —to| < €
by condition (57), and the final convergence because Z,, — ¥(T},,0y) = 0 and T,, > t,.

We recall that for fixed ¢, § — (¢, 6) is analytic on the interior of the natural parameter space
and strictly increasing at all 6 for which ¥(¢,6) € (0,1) (cf. [40, Thm. 2.7.1, Thm. 3.4.1]). Thus,

H,(U(T,,0)) =6 whenever ¥(T,,0) € (0,1).
As G = U(T},,60) € [c+ op(1),1 — ¢+ op(1)] by definition (55) of G, we obtain

P (Hn(\ll(fn, 00)) # 90) 0.

By the differentiability of H, on the interior of its domain (i.e. the range of W(T),, 1)), we use the
convergence (58) and Taylor’s intermediate value theorem to obtain that for some p, between Z,
and ¥(T,,6y), we have

)
Vit — 80) = VB ~ Ha((To,00))) + 0r(1) (59)
= H},(pu)V (Zo = ¥(T.00)) + 0p(1) = Wo(To, Hu(pa)) ™V (Zo = (T, 00) ) +0p(1)

n
as p, € int dom H,, with high probability by (58).
It remains to show that H,(pn) = 6o. When T}, € [to = €], the growth condition (57) implies

(T, 00+ €) = Poyye(T(X) > Tp,) > Py (T(X) > T},) + ce = (T, 00) + ce
(T}, 0 — €) = Pyy_o(T(X) > T},) < Py, (T(X) > Tp) — ce = U(T,, 0p) — ce,
and thus - R R
P([Hn(pn) — 0o 2 €) < P(|Zn — V(Ty,00)| = c€) + P(|T5 — to| = €) = 0.
We have the convergence Wy(T,, Hy(py)) 2 Ko, [|T(X) — A'(6p)|] = 3Jo, by the continuous

mapping theorem, and Slutsky’s theorem applied to Eq. (59) gives the delta-method expansion (53).

C.2.1 Proof of Lemma 5
We have
Wo(to, 00) — W (t, 0) = Eq, [L{T(X) > to} (T(X) — A'(60))] ~ Eg[L{T(X) > t} (T(X) — A'(9))
D By, [[T(X) — tol,] — Bo[1{T(X) > t} (T(X) — t + ¢ — A'(0))]
=By, [[T(X) —to] ] — Eq [[T(X) —t], ] + Po(T(X) > t)(t — A'(9))

€ By (100 — to,] — Ba [[70X) — to]] & |t — to] & |t — 4/6)]

where step (i) follows because tg = A'(6y) = Eg,[T'(X)], while the inclusion (i7) is a consequence
of the 1-Lipschitz continuity of ¢ ~ [t], . Now we use the standard facts that A(f) is analytic in ¢
and that 6 — Eg[f(X)] is continuous for any f (cf. [40, Thm. 2.7.1]) to see that for any € > 0, we
can choose ¢ > 0 such that |t —to| < and |0 — 6y| < 0 imply

t—to| <€, [t—A(0)<e, and [Eg, [T(X)—to],] —Eg [[T(X)—to],]| <e
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