10

11

12

13

14

15

16

17

18

19

20

Diverging Hydrological Sensitivity among Tropical Basins

Jie He!", Kezhou Lu!, Boniface Fosu??, Stephan A. Fueglistaler*

*Corresponding Author. Contact: jie.he@eas.gatech.edu

1. School of Earth and Atmospheric Sciences, Georgia Institute of Technology

2. Department of Geosciences, Mississippi State University

3. Northern Gulf Institute, Mississippi State University

4. Department of Geosciences, Princeton University

Abstract
The three tropical basins each play a unique role in the global climate system. The main mechanism
by which tropical oceans affect remote climate is the latent heating of local precipitation. Here, we
report major differences in hydrological sensitivity (HS, i.e., precipitation change per unit surface
warming) among tropical basins. Specifically, the Pacific HS is several times as large as that of
the Indian basin, while the Atlantic HS is negative. This results from a thermodynamic
amplification of the existing spatial unevenness in relative humidity, with the wettest basin getting
wetter and the driest basin getting drier. The diverging basin HS is accompanied with an inter-
basin repartitioning of latent heating and convective mass fluxes, with far-reaching implications
on rainfall and surface temperature over tropical and mid-latitude lands. These results suggest that
the previously unrecognized inter-basin differences in HS may contribute substantially to the

geographic pattern of anthropogenic climate change.
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Main Text

Tropical oceans affect the global climate mainly because the patterns of atmospheric
heating resulting from the condensation associated with tropical precipitation impact the
generation and propagation of planetary waves !. The remote effects of tropical oceans therefore
depend on the location and intensity of precipitation 2, and each tropical basin is known for its
distinct remote influences. As the climate warms, the tropical mean precipitation is expected to
increase *°, but it is unclear whether precipitation may change differently among basins. Spatial
variations in tropical precipitation changes are driven primarily by the pattern of sea surface
temperature (SST) changes. This is often referred to as the “warmer-get-wetter” effect, that is, an
increase (decrease) in precipitation where the underlying SST rises faster (slower) than the tropical
mean SST &7 (Figs. la, b). However, when driven by a spatially uniform sea surface warming,
climate models still simulate spatially uneven precipitation changes (Fig. 1c). The spatial
unevenness is particularly noticeable at basin scales, with most of the positive changes occurring
in the Pacific basin. This suggests that hydrological sensitivity (HS, i.e., precipitation change per
degree surface warming) may differ among tropical basins for reasons that have yet to be identified.
The extent and mechanisms of inter-basin differences in HS will be examined in this article. In
addition, we provide evidence that the previously unrecognized inter-basin differences in HS have
far-reaching implications on the global climate system.
Inter-basin differences in hydrological sensitivity

We examine both basin-scale and regional HS in the three tropical (20°S-20°N) basins, as
projected by the models participating the Coupled Model Intercomparison Project phase 6 (CMIP6)
8. We start with the basin mean hydrological sensitivity (HSmean%), Which is defined as the

percentage change in the basin mean precipitation per basin mean SST change. Based on coupled



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

atmosphere-ocean simulations in a high emission scenario (ssp585, Method), the Pacific HSmean%
is 3.6 %/°C, roughly five times as large as the Indian basin HSmean% of 0.76 %/°C, whereas the
Atlantic HSmean% 1s -2.2 %/°C (Fig. 2a). While HSmeane, varies substantially among models, the
inter-basin differences in HSmean% are robust. Over 90% of the models project the highest HSmean
in the Pacific basin and the lowest HSmean% in the Atlantic basin. Over 70% of the models project
the Pacific HSmean% to be more than twice as large as the Indian basin HSmean%, Whereas over 80%
project negative Atlantic HSmean (Extended Data Fig. 1b).

Next, we examine the basin average local hydrological sensitivity, HSiocai%, defined as the
percentage change in pointwise precipitation per unit local SST change (unit: %/°C). Since the
basin average HSiocais can be dominated by regions with low present-day precipitation, we also
examine HSjocal, defined as the actual change in pointwise precipitation per unit local SST change
(unit: mm d-!/°C). The inter-basin differences in HS1ocai% and HSjoca1 are similar to those in HSmean%,
as the basin average HSiocal% and HSiocal 0f the Pacific basin are a few times greater than those of
the Indian basin and are negative for the Atlantic basin (Figs. 2b, c¢). Over 90% of the models
project the highest average HSiocai in the Pacific basin and the lowest average HSioca% in the
Atlantic basin; Over 70% project the Pacific basin mean HSiocar, to be more than twice as large as
the Indian basin mean HSioca%, Whereas over 90% project negative Atlantic mean HSiocalo
(Extended Data Fig. 1¢). Similar levels of robustness are found for inter-basin differences in basin
mean HSjocal (Extended Data Fig. 1d).

Impacts of diverging basin hydrological sensitivity on land

Because the three basins warm at approximately the same rate (Extended Data Fig. 1a), the

diverging HS means a substantial repartition of precipitation and the associated latent heating

among tropical basins. Changes in tropical latent heating are known to affect the global
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atmospheric circulation via the generation and propagation of planetary waves 1% Given the
well-established significance of tropical heating in the global climate system, the inter-basin
repartition of precipitation may be expected to have far-reaching implications. We study the remote
impacts of inter-basin differences in HS by perturbing tropical oceanic diabatic heating in the
Community Atmosphere Model 5.0 (CAMS5) !!. In the first experiment named amipTRP, the
impacts of the projected TRoPical oceanic precipitation changes are simulated by adding diabatic
heating anomalies produced from the CMIP6 multi-model mean precipitation changes (Fig. 3a).
In the second experiment named amipTRPadj, we remove the inter-basin differences in HSioca1%
from amipTRP by applying in each basin a uniform HSjocas perturbation, which is set to the
difference between the tropical oceanic mean HSjoca1% and the basin mean HS\oca% (Fig. 3b). Thus,
impacts of the inter-basin differences in HSiocar, are represented by the difference between
amipTRP and amipTRPadj. Details of the experiment setup are documented in the Method section.

The CMIP6 projected tropical oceanic precipitation changes have widespread impacts on
precipitation over tropical and mid-latitude lands (Fig. 3d). Land responses in the simulation with
inter-basin differences in HSiocars (amipTRP, Fig. 3d) are generally larger than those without
(amipTRPadj, Fig. 3e), indicating that much of these impacts can be attributed to the inter-basin
differences in HSiocaios, (Fig. 3f). The remote influences of diverging basin HSioca1, are most evident
in regions surrounding the Atlantic basin. Specifically, the inter-basin differences in HSiocar
increase precipitation in the continental US, southern parts of South America, and to a lesser degree,
northern Europe. They also reduce precipitation in Mexico, the Amazon rainforest, and southern
Africa. These changes are largely consistent in sign with the CMIP6 multi-model mean changes
(Fig. 3a) and the IPCC best estimate of precipitation changes under ssp585 (cf. Figure 4.42 in

IPCC, 2021 '2). This suggests that the inter-basin differences in HSiocais are a significant
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contributor to the projected land precipitation changes. The inter-basin differences in HSiocal% also
affect land surface temperature changes (Extended Data Fig. 2). These results suggest that the
diverging basin HS may substantially influence the pattern of climate change over land.
Mechanisms of the CAMS5 precipitation responses are examined in detail in Supplementary Text
1 with Supplementary Figures 1-5.

Mechanisms for diverging basin hydrological sensitivity

We investigate the mechanisms for the inter-basin differences in HSmean%. The inter-basin
differences in HSiocais and HSiocal are both significantly correlated with those in HSmeanv (Extended
Data Fig. 3), indicating that their mechanisms may be related.

Spatial variations in tropical precipitation changes are often attributed to the pattern of the
underlying SST changes according to the “warmer-get-wetter” theory 6. However, the inter-basin
differences in precipitation changes occur despite similar surface warming across basins (Extended
Data Fig. 1a). By comparing atmospheric model responses to spatially uniform and structured sea
surface warming (with experiment names of amipUniform and amipAll, respectively, see Method),
we find that the pattern of SST changes does not substantially affect the inter-basin differences in
HS (Figs. 2a-c).

The “warmer-get-wetter” theory is a two-step argument. First, the relatively uniform
tropical upper tropospheric temperature makes boundary-layer moist static energy (MSEOQ) the
main driver of atmospheric instability !*»'4. Second, SST becomes the main driver of MSEQ
changes and ultimately, precipitation changes, when spatial variations in relative humidity changes
are negligible %!°, To understand why the “warmer-get-wetter” theory fails at the basin scale, we

evaluate both parts of the theory by examining basin precipitation as a function of relative SST
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(SSTel, defined as SST minus the tropical mean SST) and MSEO (calculated as pressure weighted
MSE averaged between 1000 — 850 hPa).

We first examine basin precipitation in relative SSTr. space (Figs. 4a, b). At present-day,
inter-basin differences in precipitation-SST relationships already exist, with the Pacific being the
most favorable for precipitation at a given SST. This is true for both models and observations
(Method), albeit to a lesser degree in the latter. As the climate warms, such inter-basin differences
are projected to intensify (Fig. 4a). Specifically, the Pacific precipitation increases markedly
throughout the convective regime, except at very high SST.. The Indian Ocean precipitation is
largely unchanged except increasing moderately near -1.5 °C SSTe. The Atlantic precipitation
decreases moderately over most of the SSTr range. Contrary to previous belief !¢, the inter-basin
differences in precipitation and precipitation changes in SSTr space suggest that SSTrel is not a
good predictor of the present or future precipitation. As we show next, these differences are key to
understanding the diverging basin HS.

In Figures 4c and 4d, we examine precipitation as a function of the relative MSEOQ
(MSEDOxe1). As detailed in Method, MSEOQ,. is calculated as MSEO normalized by the tropical mean
MSEQ. (Changes in the latter have little effect on precipitation !” and are thus removed through
normalization.) Despite the apparent conundrum in SSTr space, precipitation is much more
consistent among basins and between present and future simulations, when it is expressed as a
function of MSEO..1. This means that the inter-basin discrepancies in precipitation at a given SSTre|
are largely caused by the inter-basin discrepancies in MSEO:.1. Because changes in boundary-layer
temperature are similar across basins (Extended Data Fig. 4), we can further attribute the inter-
basin differences in MSEOQ:. to differences in boundary-layer relative humidity (RHO, calculated

as pressure weighted relative humidity averaged between 1000 — 850 hPa). The present-day RHO
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is highest in the Pacific basin in both models and reanalyses (Method, Figs. 4e, f). Upon warming,
RHO is projected to further increase in the Pacific basin, and further decrease in the Atlantic basin.
In the Indian basin, RHO increases around -1.5 °C SSTri. These changes in RHO are consistent
with those in precipitation (Fig. 4a).

Thus, to understand the diverging basin HS, we need to understand why RHO differs among
basins at given SSTs and why such differences are amplified under warming. The inter-basin
differences in the present-day RHO are explained in detail in Supplementary Text 2 with
Supplementary Figures 6 and 7. To summarize, spatial variations in RHO are largely determined
by boundary-layer moisture transport (TRPO, Method). Large portions of the Indian and Atlantic
basins are located downwind of arid lands, which makes these basins more susceptible to the
advection of dry air. In addition, the sharp SST fronts in the northeastern Pacific drive large
boundary-layer moisture convergence, which is largely absent in the other basins. The lack of dry
advection and the presence of strong moisture convergence combine for a net moisture import in
the Pacific boundary layer (i.e., a positive Pacific basin mean TRP0), whereas the opposite is true
for the Atlantic basin (Fig. 2e). As a result, the Pacific basin has higher RHO at given SSTs, which
results in greater MSEOQ and ultimately, larger precipitation.

Next, we analyze the projected TRPO changes (Fig. 2f), which are dissected into a
thermodynamic component driven by the atmospheric moistening and a dynamic component
driven by boundary-layer circulation changes (Method). As the climate warms, the increasing
moisture concentration intensifies the existing pattern of moisture transport '8. This leads to
positive changes in moisture transport for regions with net moisture import and the opposite for
regions with net moisture export — commonly referred to as “wet-get-wetter and dry-get-drier”.

Consistent with this view, we find positive thermodynamic TRPO changes in the Pacific basin and
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negative changes in the Atlantic basin. This leads to an intensification of the existing inter-basin
differences in TRPO, as the dynamic TRPO changes are similar across basins. The intensification
of inter-basin differences in TRPO explains the diverging basin RHO changes. Furthermore, it
explains why MSEO changes differently among basins, despite similar SST changes. The
connection among changes in TRP0, RHO, and MSEO can also be appreciated at regional scales,
as the three variables bear a high degree of spatial resemblance (Extended Data Fig. 5).

MSEOQ affects precipitation via its influences on the convective mass flux, as strong
convection tends to occur in regions of high MSEO !4, While the convective mass flux is projected
to weaken '°, the inter-basin differences in MSEQ changes suggest that it may not weaken at the
same rate among basins. We calculate convective mass flux at each model grid point as
precipitation divided by local surface specific humidity following ref. 20, and compare this method
with calculations based on vertically integrated convective mass flux from a subset of models that
provide such output (Supplementary Table 1). The rate of convection weakening is largest in the
Atlantic basin and smallest in the Pacific basin (Fig. 2d). This is inversely correlated with the
MSEO changes in each basin, as expected from theoretical relationships between convection and
MSEO '3. Over 90% of the CMIP6 models project the largest weakening in the Atlantic basin and
the least weakening in the Pacific basin. Roughly 70% of the models project the Atlantic basin
mean weakening rate to be more than twice as large as that of the Pacific basin (Extended Data
Fig. le).

Discussion

Spatial variations in tropical precipitation changes are expected to follow the pattern of

SST changes. But as the climate warms, the increasing inter-basin disparities in RHO make SST a

less accurate proxy for MSEO and consequently, a bad predictor of precipitation changes at basin
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scales. At regional scales, the sensitivity of precipitation to warming is set by relative humidity,
which is demonstrated by the spatial resemblance between HSioca, and RHO changes (Extended
Data Fig. 5). Therefore, spatial variations in RHO not only cause HS to diverge among basins, but
is important for the spatial variation in oceanic precipitation changes in general. This is particularly
evident in the amipUniform simulation, where spatial variations in RHO cause uneven changes in
MSEQO..1, which lead to spatially varying precipitation changes despite a uniform surface warming
(Extended Data Figs. 5a, c, e).

Our results show that the diverging HS is rooted in the thermodynamic intensification of
boundary-layer moisture transport. The thermodynamic origin is likely the reason the diverging
basin HS is robustly projected by models. While the fidelity of the state-of-the-art precipitation
projections has been questioned 2!, the thermodynamic intensification of moisture transport has
been confirmed by observations 2. This suggests that the diverging basin HS is likely a reliable
projection. On the other hand, the extent to which HS diverges among basins varies among models,
and such variation is closely tied to inter-model variations in the thermodynamic intensification of
the present-day TRPO (Extended Data Fig. 6). Therefore, model biases in the present-day TRPO

likely contribute to the quantitative disagreement on the inter-basin differences in HS.
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Figure 1. Tropical changes from structured and uniform sea surface warming. a-b) Multi-model
mean SST (a) and precipitation (b) changes from the CMIP6 ssp585 simulation. ¢) Multi-model mean
precipitation changes from amipUniform, which contains an elevated CO- concentration and a uniform

sea surface warming relative to its baseline simulation (see Method).
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Figure 2. Inter-basin differences in hydrological sensitivity. a-d) CMIP6 multi-model mean HSmean%
(a), basin average HSiocar (D), basin average HSiocal (C), and percentage change in basin average
convective mass flux, Mweak (d) from the ssp585, amipUniform, and amipAll simulations. In panel (d),
convective mass flux is calculated at each grid point as precipitation divided by local surface specific
humidity, except symbol x, which is calculated by using models’ actual convective mass flux integrated
from surface to the top of the atmosphere from the 14 models that provide convective mass flux output.
e) Present-day basin mean TRPO from the historical simulation. f) Future changes in total and
individual components of basin mean TRPO from the ssp585 simulation. dtotal, ddyn, and dthe denote
the total, dynamic, and thermodynamic changes, respectively. In panels (e) and (f), TRPO is weighted
by the local climatological precipitation before it is averaged over basins. Weighting is applied to focus
on convective areas, thus making the basin average TRPO more relevant to precipitation. Bars

represent the multi-model mean, whereas whiskers represent one inter-model standard deviation.
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Figure 3. Diverging basin hydrological sensitivity and its impacts on land precipitation. a)
Oceanic precipitation changes from the CMIP6 multi-model mean ssp585 simulation. b) Same as
panel (a) but with inter-basin differences in the basin mean HSiocair, removed. ¢) Future changes in
land precipitation from the CMIP6 multi-model mean ssp585 simulation. d-f) Land precipitation
responses in amipTRP (d), amipTRPadj (e), and the difference between amipTRP and amipTRPad;
(f). In panels (d-f), regions where precipitation responses are significantly above internal variability

(Method) are stippled.
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Figure 4. Factors of precipitation and precipitation change. a) Multi-model mean present and
future precipitation averaged for 0.1 °C SSTe bins for individual basins. b) Observed precipitation
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for less than 0.5% of the total basin area are shown in semitransparent colors; the same is applied in
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panels (c) and (d) for MSE bins that account for less than 0.5% of the total basin area. Simulated

present and future conditions are taken from the historical and ssp585 simulations, respectively.
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Methods

Data
CMIP6

We analyze coupled and atmosphere-only simulations in CMIP6 ® by drawing models that
provide all necessary variables. We use one realization from each model, as listed in
Supplementary Table 1. All model outputs are interpolated onto a common 1° by 1° grid.

We use 1985-2014 of the historical simulation to define the present-day condition, 2071-
2100 of the ssp585 simulation to define the future condition, and the difference between the latter

and former to define future changes. The ssp585 simulation represents the upper boundary of the



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

range of emission scenarios included in CMIP6, and its radiative forcing reaches 8.5 W/m? by
2100. Forty-six models are analyzed. When calculating local hydrological sensitivity (i.e., HSiocal%
and HS\oca1), we ignore grid points with negative SST changes (which account for less than 0.01%
of all model grid points in the ssp585 simulation).

To understand the impact of the pattern of SST changes, we apply four uncoupled
atmosphere-only simulations: 1) amip, driven by historical forcing and observed SST and sea ice
concentration from 1979 to 2014, 2) amip4xCO2, which is the same as amip except that CO»
concentration is quadrupled, 3) amip4K, which is the same as amip but with additional 4 °C SST
across global oceans, and 4) amipFuture, which is the same as amip4K but with spatially varying
SST anomalies. The spatially varying SST anomalies are taken from the CMIP3 multi-model SST
responses to 4xCO; in the coupled 1pctCO2 simulation (where the atmospheric CO, concentration
increases by 1% per year starting from the pre-industrial level), which are then scaled to have a
global mean SST anomaly of 4 °C ?*. We use amip as our baseline (i.e., the present-day control
run). Changes in amip4K and amipFuture are scaled to obtain responses at 4xCO», by dividing
changes by each model’s tropical mean SST change in amip4K and amipFuture, respectively and
then multiplying them by each model’s tropical mean SST change at 4xCO; from the coupled
IpctCO2 simulation. To obtain SST changes at 4xCO> from 1pctCO2, we calculate SST changes
between the last and first 30 years (121-150 minus 1-30) of the simulation, and then scale them by
log(4)/10g(1.01'2%) assuming that the SST changes are proportional to the logarithm of CO,
changes. Because changes from the direct CO; forcing and SST increase are linearly additive 4,
we create amipUniform by summing changes in amip4xCO?2 and the scaled changes in amip4K,
and amipAll by summing changes in amip4xCO2 and the scaled changes in amipFuture. Eleven

uncoupled models are analyzed.
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Observations

Our SST data is a merged product based on the Hadley Centre SST dataset version 1 and
the National Oceanic and Atmospheric Administration optimum interpolation SST analysis version
2 %5, The data ranges from 1979 to 2021 and is archived at 1° resolution. This SST dataset was also
used as the boundary condition for the CMIP6 amip simulation.

To account for the uncertainty among precipitation datasets, we average three widely used
precipitation datasets: 1) GPCP (the Global Precipitation Climatology Project) version 2 2° from
1979 to 2021 at 2.5° resolution, 2) CMAP (the Climate Prediction Center Merged Analysis of
Precipitation) 27 from 1979 to 2021 at 2.5° resolution, and 3) TRMM (the Tropical Rainfall
Measuring Mission Project) 3B43 version 7 2 from 1998 to 2019 at 0.25° resolution. In all three
datasets, oceanic precipitation is derived from satellites. The multi-observation mean features
discussed in this paper are generally present in individual datasets as well. All observational data
are interpolated onto the same 1° by 1° grid that is used for interpolating CMIP6 outputs.
Reanalysis Data

We analyze monthly air temperature, specific humidity, relative humidity, winds, and
geopotential height from reanalysis data during the period of 1979 to 2021. To minimize the effect
of uncertainty within individual datasets, we average three widely used reanalyses: 1) ERAS (the
5% generation of the European Centre for Medium-Range Weather Forecasts reanalysis) 2° on a
30km horizontal grid and 137 vertical levels, 2) NCEP/DOE-II (the National Center for
Environmental Prediction and Department of Energy Reanalysis IT) *° at 2.5° resolution with 17
vertical levels, and 3) JRA-55 (the Japanese 55-year Reanalysis) 3! at roughly 1° resolution with

37 vertical levels. The multi-dataset mean features presented in this paper are generally found in
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individual reanalysis as well. All reanalysis data are interpolated onto the same 1° by 1° grid that
is used for interpolating CMIP6 outputs.
Relative boundary-layer moist static energy

We analyze the relationship between precipitation and MSEOQ in individual basins, but
present MSEOQ in its normalized form (i.e., MSEO divided by the tropical ocean mean MSEOQ),
which we refer to as the relative boundary-layer moist static energy (MSEOre1). MSEO.. allows for
direct comparisons between present and future MSE-precipitation relationships, by dismissing
changes in the tropical mean MSEOQ (which has little practical effect on precipitation due to the
upper-tropospheric warming '7). In addition, the nonlinear Clausius-Clapeyron relationship
automatically makes MSEO more spatially uneven with warming 2. We discount the effect of the
Clausius-Clapeyron amplification of the spatial unevenness in MSEQ by removing the tropical
mean MSEOQ through scaling rather than shifting (the latter is used for defining SSTre1). Therefore,
changes in the spatial unevenness in MSEOQ, are either due to changes in the spatial unevenness
in boundary-layer temperature or those in boundary-layer relative humidity. As explained in the
main text, it is the latter that intensifies the inter-basin discrepancies in MSEOri.
Boundary-layer moisture transport

TRPO is calculated at each tropical ocean grid point as:

_ 850 hPa = 850 hPa , = 850 hPa [0(w - q)
TRPO = — f1000 nealV VAP = J 100 ppa (@ VV)dp = flOOO hPa [ /ap] dp (1)

where V is horizontal wind velocity, ¢ is specific humidity, w is pressure velocity, and p is pressure.
The first term on the right-hand side is the transport due to horizontal advection. The second and
third terms are both driven by boundary-layer wind convergence, and we refer to the sum of the

second and third terms as the convergence term.
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850 hPa ,=3

Changes in TRPO can be decomposed into a thermodynamic component, — | 1000 hpa
850 hPa = 850 hPa [d(w - 8q) .
Véq)dp — flooo hpa8q - VV)dp — f1ooo hPa [ /ap] dp and a dynamic component,
850 hPa , .= 850 hP = 850 hPa [J(Sw -
~ J 1000 hPaa(SV VQ)dp — [0 hpaa(q -V8V)dp — [, 00 h;;[ ( Q)/ap] dp, where § denotes

future changes.
CAMS Experiments with perturbed diabatic heating

Tropical precipitation drives global teleconnections through planetary Rossby waves
generated from the release of latent heat. We examine how tropical inter-basin HS divergence
affects land precipitation via a series of atmosphere-only experiments with perturbed diabatic
heating. The model used here is the Community Atmosphere Model, version 5 (CAMS) within the
framework of the Community Atmosphere Model, version 1 (CESM1 3?), at a horizontal resolution
of 1 degree. The baseline simulation is driven by pre-industrial forcing and monthly SST and sea
ice concentrations of a 2600-year CESM1 pre-industrial control simulation (available via the
CESM1 large ensemble %),

We apply two types of diabatic heating perturbation in tropical oceanic regions on top of
the baseline simulation. In the first experiment (named amipTRP), the diabatic heating
perturbation is produced from the CMIP6 multi-model mean tropical oceanic precipitation change
in ssp585 (Fig. 3a). In the second experiment (named amipTRPadj), we apply the same diabatic
heating perturbation as amipTRP but with inter-basin discrepancies in HSiocais removed.
Specifically, we add the difference between the tropical oceanic mean HSjocae, and the basin mean
HSiocals uniformly to the HSioca% at all grid points in each basin and in each CMIP6 model. We

then use the adjusted HSiocai2s and the climatological precipitation and SST changes in each model
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to recalculate the tropical oceanic precipitation change, 6Pagj. The multi-model mean 6P.qj (Fig. 3b)
is used to produce the diabatic heating perturbation in amipTRPadj;.

To obtain the diabatic heating perturbations from precipitation changes, we assume that
models’ diabatic heating has an idealized Gaussian vertical profile that peaks at 400 hPa 3336, This
allows us to approximate the target diabatic heating (6Qr) as

(-pc)?

5Qr(p, lat, lon) = C,6P(lat,lon)e” 22 )

where C; is a scaling constant and is set to 162.92 m? s, P is precipitation, p is pressure and p. is
set to 400 hPa, r is the decaying radius and is set to 3.

The diabatic heating perturbation is added to CAMS as a seasonally varying constant
temperature tendency term at the end of each physics time step. Because model’s diabatic heating
is free to respond to the perturbation, the total diabatic heating anomaly deviates from the
prescribed diabatic heating perturbation. To match the model’s actual diabatic heating with dQr,
we determine the prescribed diabatic heating forcing through an “iterative approach” detailed in
ref 37. Each iteration ensemble (i) contains ten members of three-year runs that branch off from

various years of the baseline simulation. The diabatic heating perturbation is calculated as

C-8Qs, fori=1

500 = {pg(e— 1y 4 ¢ (30, - 55000~ )+ 001t~ 1).for 256510 O

where 0Q(i-1)+0Q0x(i-1) is the actual diabatic heating anomaly in ensemble member 7 of iteration
i-1, which contains the prescribed diabatic heating forcing dQ(i-1) and the model’s diabatic heating
response to such forcing 6Q,(i-1). With each iteration, the model’s actual diabatic heating anomaly
is pulled towards the target diabatic heating anomaly by adding a diabatic heating perturbation
which is equal to C times the difference between the target diabatic heating anomaly and the

model’s actual diabatic heating anomaly. C is set to 0.25 for i<7 and 0.15 for i>7. C is smaller than
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1 because the model’s diabatic heating response tends to be in the same sign as and several times
larger than the prescribed diabatic heating forcing. As a result, using a smaller C allows the model
to reach the target diabatic heating anomaly with fewer iteration ensembles. The final diabatic
heating perturbation is obtained after ten iterations (6Q(10)), which is then applied in amipTRP
and amipTRPadj. The simulated vertically integrated diabatic heating anomalies in amipTRP and
amipTRPadj (Supplementary Fig. 8) are reasonably close to the target precipitation anomalies
(Figs. 3a, b). The amipTRP, amipTRPadj, and the baseline simulations are all 30-year long.
Baroclinic Stationary Wave Model

We investigate the CAMS simulations by comparing the CAMS circulation responses to
those generated in a Stationary Wave model (SWM). The SWM is a nonlinear baroclinic model
that has been widely used to study stationary wave responses to diabatic heating forcings 3%, The
SWM does not include model physics, such as cloud, radiation, and precipitation and is thus not
susceptible to issues associated with parameterizations. The SWM is a perturbation model, where
only deviations from the climatology is calculated. The model is based on the three-dimensional
primitive equations. The numerical stability of the SWM is achieved through an idealized damping
and the relaxation towards a specified basic state. The basic state is prescribed as the three-
dimensional annual-mean climatology including winds and temperature, derived from the CAMS
control simulation. The diabatic heating perturbation is added to SWM as a constant temperature
tendency term.

Three experiments are conducted — 1) SWM-TRP, where the diabatic heating perturbation
is produced from the CMIP6 multi-model mean precipitation changes (Fig. 3a) and is the same as
that in amipTRP; 2) SWM-TRPadj, where diabatic heating perturbation is produced from the

CMIP6 multi-model mean precipitation changes but with the inter-basin differences in HSioca1%
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removed (Fig. 3b) and is the same as that in amipTRPadj; 3) SWM-TRP-d-TRPadj, where diabatic
heating perturbation is produced from precipitation changes due to inter-basin discrepancies in
HSiocals, which is the same as the difference in diabatic heating perturbation between SWM-TRP
and SWM-TRPadj. We analyze the steady states by averaging the last 50 days of the SWM
experiments. The SWM is substantially less noisy than comprehensive models and the level of
internal variability is negligible in the 50-day averages.

The SWM experiments are analyzed in Supplementary Text 1. Specifically, we use SWM-
TRP and SWM-TRPadj to verify the circulation responses in amipTRP and amipTRPadj,
respectively. The linearity of circulation responses to the diabatic heating perturbations is
examined by comparing SWM-TRP minus SWM-TRPadj to SWM-TRP-d-TRPadj.
Quantifying internal precipitation variability

The range of internal precipitation variability in the 30-year amipTRP and amipTRPadj
simulations is determined via a Monte Carlo approach #°. Using the 2600-year CESM1 pre-
industrial control simulation **, we calculate the difference in precipitation averaged over two
randomly selected, non-overlapping 30-year periods. We repeat the above process at each grid
point 5000 times to obtain the frequency distribution of such precipitation difference. The 5" and

95t percentiles are used to define the range of internal precipitation variability.

Data Availability

Model output and observation data can be accessed at the following websites. CMIP6: https://esgf-
node.lInl.gov/projects/cmip6/. Observed SST: https:/pcmdi.llnl.gov/mips/amip/. GPCP:
https://psl.noaa.gov/data/gridded/data.gpcp.html. CMAP:

https://www.psl.noaa.gov//data/gridded/data.cmap.html. TRMM:


https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://pcmdi.llnl.gov/mips/amip/
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https://disc.gsfc.nasa.gov/datasets TRMM_3B43 7/summary. ERAS:

https://cds.climate.copernicus.eu/cdsapp#!/home. NCEP/DOE-II:

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. JRA-55:

https://jra.kishou.go.jp/JRA-55/index_en.html.

Code Availability
The CESM model code is publicly available at https://www2.cesm.ucar.edu/models/cesm1.2/.
Scripts for the analysis and generation of figures are stored at the Zenodo online repository

https://zenodo.org/records/10729735 (ref. 41).
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