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Abstract 9 

The three tropical basins each play a unique role in the global climate system. The main mechanism 10 

by which tropical oceans affect remote climate is the latent heating of local precipitation. Here, we 11 

report major differences in hydrological sensitivity (HS, i.e., precipitation change per unit surface 12 

warming) among tropical basins. Specifically, the Pacific HS is several times as large as that of 13 

the Indian basin, while the Atlantic HS is negative. This results from a thermodynamic 14 

amplification of the existing spatial unevenness in relative humidity, with the wettest basin getting 15 

wetter and the driest basin getting drier. The diverging basin HS is accompanied with an inter-16 

basin repartitioning of latent heating and convective mass fluxes, with far-reaching implications 17 

on rainfall and surface temperature over tropical and mid-latitude lands. These results suggest that 18 

the previously unrecognized inter-basin differences in HS may contribute substantially to the 19 

geographic pattern of anthropogenic climate change. 20 

mailto:jie.he@eas.gatech.edu


Main Text 21 

Tropical oceans affect the global climate mainly because the patterns of atmospheric 22 

heating resulting from the condensation associated with tropical precipitation impact the 23 

generation and propagation of planetary waves 1. The remote effects of tropical oceans therefore 24 

depend on the location and intensity of precipitation 2,3, and each tropical basin is known for its 25 

distinct remote influences. As the climate warms, the tropical mean precipitation is expected to 26 

increase 4,5, but it is unclear whether precipitation may change differently among basins. Spatial 27 

variations in tropical precipitation changes are driven primarily by the pattern of sea surface 28 

temperature (SST) changes. This is often referred to as the “warmer-get-wetter” effect, that is, an 29 

increase (decrease) in precipitation where the underlying SST rises faster (slower) than the tropical 30 

mean SST 6,7 (Figs. 1a, b). However, when driven by a spatially uniform sea surface warming, 31 

climate models still simulate spatially uneven precipitation changes (Fig. 1c). The spatial 32 

unevenness is particularly noticeable at basin scales, with most of the positive changes occurring 33 

in the Pacific basin. This suggests that hydrological sensitivity (HS, i.e., precipitation change per 34 

degree surface warming) may differ among tropical basins for reasons that have yet to be identified. 35 

The extent and mechanisms of inter-basin differences in HS will be examined in this article. In 36 

addition, we provide evidence that the previously unrecognized inter-basin differences in HS have 37 

far-reaching implications on the global climate system. 38 

Inter-basin differences in hydrological sensitivity 39 

We examine both basin-scale and regional HS in the three tropical (20oS-20oN) basins, as 40 

projected by the models participating the Coupled Model Intercomparison Project phase 6 (CMIP6) 41 

8. We start with the basin mean hydrological sensitivity (HSmean%), which is defined as the 42 

percentage change in the basin mean precipitation per basin mean SST change. Based on coupled 43 



atmosphere-ocean simulations in a high emission scenario (ssp585, Method), the Pacific HSmean% 44 

is 3.6 %/ºC, roughly five times as large as the Indian basin HSmean% of 0.76 %/ºC, whereas the 45 

Atlantic HSmean% is -2.2 %/ºC (Fig. 2a). While HSmean% varies substantially among models, the 46 

inter-basin differences in HSmean% are robust. Over 90% of the models project the highest HSmean% 47 

in the Pacific basin and the lowest HSmean% in the Atlantic basin. Over 70% of the models project 48 

the Pacific HSmean% to be more than twice as large as the Indian basin HSmean%, whereas over 80% 49 

project negative Atlantic HSmean% (Extended Data Fig. 1b). 50 

Next, we examine the basin average local hydrological sensitivity, HSlocal%, defined as the 51 

percentage change in pointwise precipitation per unit local SST change (unit: %/oC). Since the 52 

basin average HSlocal% can be dominated by regions with low present-day precipitation, we also 53 

examine HSlocal, defined as the actual change in pointwise precipitation per unit local SST change 54 

(unit: mm d-1/oC). The inter-basin differences in HSlocal% and HSlocal are similar to those in HSmean%, 55 

as the basin average HSlocal% and HSlocal of the Pacific basin are a few times greater than those of 56 

the Indian basin and are negative for the Atlantic basin (Figs. 2b, c). Over 90% of the models 57 

project the highest average HSlocal% in the Pacific basin and the lowest average HSlocal% in the 58 

Atlantic basin; Over 70% project the Pacific basin mean HSlocal% to be more than twice as large as 59 

the Indian basin mean HSlocal%, whereas over 90% project negative Atlantic mean HSlocal% 60 

(Extended Data Fig. 1c). Similar levels of robustness are found for inter-basin differences in basin 61 

mean HSlocal (Extended Data Fig. 1d). 62 

Impacts of diverging basin hydrological sensitivity on land 63 

Because the three basins warm at approximately the same rate (Extended Data Fig. 1a), the 64 

diverging HS means a substantial repartition of precipitation and the associated latent heating 65 

among tropical basins. Changes in tropical latent heating are known to affect the global 66 



atmospheric circulation via the generation and propagation of planetary waves 1,9,10. Given the 67 

well-established significance of tropical heating in the global climate system, the inter-basin 68 

repartition of precipitation may be expected to have far-reaching implications. We study the remote 69 

impacts of inter-basin differences in HS by perturbing tropical oceanic diabatic heating in the 70 

Community Atmosphere Model 5.0 (CAM5) 11. In the first experiment named amipTRP, the 71 

impacts of the projected TRoPical oceanic precipitation changes are simulated by adding diabatic 72 

heating anomalies produced from the CMIP6 multi-model mean precipitation changes (Fig. 3a). 73 

In the second experiment named amipTRPadj, we remove the inter-basin differences in HSlocal% 74 

from amipTRP by applying in each basin a uniform HSlocal% perturbation, which is set to the 75 

difference between the tropical oceanic mean HSlocal% and the basin mean HSlocal% (Fig. 3b). Thus, 76 

impacts of the inter-basin differences in HSlocal% are represented by the difference between 77 

amipTRP and amipTRPadj. Details of the experiment setup are documented in the Method section. 78 

The CMIP6 projected tropical oceanic precipitation changes have widespread impacts on 79 

precipitation over tropical and mid-latitude lands (Fig. 3d). Land responses in the simulation with 80 

inter-basin differences in HSlocal% (amipTRP, Fig. 3d) are generally larger than those without 81 

(amipTRPadj, Fig. 3e), indicating that much of these impacts can be attributed to the inter-basin 82 

differences in HSlocal% (Fig. 3f). The remote influences of diverging basin HSlocal% are most evident 83 

in regions surrounding the Atlantic basin. Specifically, the inter-basin differences in HSlocal% 84 

increase precipitation in the continental US, southern parts of South America, and to a lesser degree, 85 

northern Europe. They also reduce precipitation in Mexico, the Amazon rainforest, and southern 86 

Africa. These changes are largely consistent in sign with the CMIP6 multi-model mean changes 87 

(Fig. 3a) and the IPCC best estimate of precipitation changes under ssp585 (cf. Figure 4.42 in 88 

IPCC, 2021 12). This suggests that the inter-basin differences in HSlocal% are a significant 89 



contributor to the projected land precipitation changes. The inter-basin differences in HSlocal% also 90 

affect land surface temperature changes (Extended Data Fig. 2). These results suggest that the 91 

diverging basin HS may substantially influence the pattern of climate change over land. 92 

Mechanisms of the CAM5 precipitation responses are examined in detail in Supplementary Text 93 

1 with Supplementary Figures 1-5. 94 

Mechanisms for diverging basin hydrological sensitivity 95 

We investigate the mechanisms for the inter-basin differences in HSmean%. The inter-basin 96 

differences in HSlocal% and HSlocal are both significantly correlated with those in HSmean% (Extended 97 

Data Fig. 3), indicating that their mechanisms may be related. 98 

Spatial variations in tropical precipitation changes are often attributed to the pattern of the 99 

underlying SST changes according to the “warmer-get-wetter” theory 6. However, the inter-basin 100 

differences in precipitation changes occur despite similar surface warming across basins (Extended 101 

Data Fig. 1a). By comparing atmospheric model responses to spatially uniform and structured sea 102 

surface warming (with experiment names of amipUniform and amipAll, respectively, see Method), 103 

we find that the pattern of SST changes does not substantially affect the inter-basin differences in 104 

HS (Figs. 2a-c). 105 

The “warmer-get-wetter” theory is a two-step argument. First, the relatively uniform 106 

tropical upper tropospheric temperature makes boundary-layer moist static energy (MSE0) the 107 

main driver of atmospheric instability 13,14. Second, SST becomes the main driver of MSE0 108 

changes and ultimately, precipitation changes, when spatial variations in relative humidity changes 109 

are negligible 6,15. To understand why the “warmer-get-wetter” theory fails at the basin scale, we 110 

evaluate both parts of the theory by examining basin precipitation as a function of relative SST 111 



(SSTrel, defined as SST minus the tropical mean SST) and MSE0 (calculated as pressure weighted 112 

MSE averaged between 1000 – 850 hPa).  113 

We first examine basin precipitation in relative SSTrel space (Figs. 4a, b). At present-day, 114 

inter-basin differences in precipitation-SST relationships already exist, with the Pacific being the 115 

most favorable for precipitation at a given SST. This is true for both models and observations 116 

(Method), albeit to a lesser degree in the latter. As the climate warms, such inter-basin differences 117 

are projected to intensify (Fig. 4a). Specifically, the Pacific precipitation increases markedly 118 

throughout the convective regime, except at very high SSTrel. The Indian Ocean precipitation is 119 

largely unchanged except increasing moderately near -1.5 ºC SSTrel. The Atlantic precipitation 120 

decreases moderately over most of the SSTrel range. Contrary to previous belief 16, the inter-basin 121 

differences in precipitation and precipitation changes in SSTrel space suggest that SSTrel is not a 122 

good predictor of the present or future precipitation. As we show next, these differences are key to 123 

understanding the diverging basin HS. 124 

In Figures 4c and 4d, we examine precipitation as a function of the relative MSE0 125 

(MSE0rel). As detailed in Method, MSE0rel is calculated as MSE0 normalized by the tropical mean 126 

MSE0. (Changes in the latter have little effect on precipitation 17 and are thus removed through 127 

normalization.) Despite the apparent conundrum in SSTrel space, precipitation is much more 128 

consistent among basins and between present and future simulations, when it is expressed as a 129 

function of MSE0rel. This means that the inter-basin discrepancies in precipitation at a given SSTrel 130 

are largely caused by the inter-basin discrepancies in MSE0rel. Because changes in boundary-layer 131 

temperature are similar across basins (Extended Data Fig. 4), we can further attribute the inter-132 

basin differences in MSE0rel to differences in boundary-layer relative humidity (RH0, calculated 133 

as pressure weighted relative humidity averaged between 1000 – 850 hPa). The present-day RH0 134 



is highest in the Pacific basin in both models and reanalyses (Method, Figs. 4e, f). Upon warming, 135 

RH0 is projected to further increase in the Pacific basin, and further decrease in the Atlantic basin. 136 

In the Indian basin, RH0 increases around -1.5 ºC SSTrel. These changes in RH0 are consistent 137 

with those in precipitation (Fig. 4a). 138 

Thus, to understand the diverging basin HS, we need to understand why RH0 differs among 139 

basins at given SSTs and why such differences are amplified under warming. The inter-basin 140 

differences in the present-day RH0 are explained in detail in Supplementary Text 2 with 141 

Supplementary Figures 6 and 7. To summarize, spatial variations in RH0 are largely determined 142 

by boundary-layer moisture transport (TRP0, Method). Large portions of the Indian and Atlantic 143 

basins are located downwind of arid lands, which makes these basins more susceptible to the 144 

advection of dry air. In addition, the sharp SST fronts in the northeastern Pacific drive large 145 

boundary-layer moisture convergence, which is largely absent in the other basins. The lack of dry 146 

advection and the presence of strong moisture convergence combine for a net moisture import in 147 

the Pacific boundary layer (i.e., a positive Pacific basin mean TRP0), whereas the opposite is true 148 

for the Atlantic basin (Fig. 2e). As a result, the Pacific basin has higher RH0 at given SSTs, which 149 

results in greater MSE0 and ultimately, larger precipitation. 150 

 Next, we analyze the projected TRP0 changes (Fig. 2f), which are dissected into a 151 

thermodynamic component driven by the atmospheric moistening and a dynamic component 152 

driven by boundary-layer circulation changes (Method). As the climate warms, the increasing 153 

moisture concentration intensifies the existing pattern of moisture transport 18. This leads to 154 

positive changes in moisture transport for regions with net moisture import and the opposite for 155 

regions with net moisture export – commonly referred to as “wet-get-wetter and dry-get-drier”. 156 

Consistent with this view, we find positive thermodynamic TRP0 changes in the Pacific basin and 157 



negative changes in the Atlantic basin. This leads to an intensification of the existing inter-basin 158 

differences in TRP0, as the dynamic TRP0 changes are similar across basins. The intensification 159 

of inter-basin differences in TRP0 explains the diverging basin RH0 changes. Furthermore, it 160 

explains why MSE0 changes differently among basins, despite similar SST changes. The 161 

connection among changes in TRP0, RH0, and MSE0 can also be appreciated at regional scales, 162 

as the three variables bear a high degree of spatial resemblance (Extended Data Fig. 5). 163 

MSE0 affects precipitation via its influences on the convective mass flux, as strong 164 

convection tends to occur in regions of high MSE0 14. While the convective mass flux is projected 165 

to weaken 19, the inter-basin differences in MSE0 changes suggest that it may not weaken at the 166 

same rate among basins. We calculate convective mass flux at each model grid point as 167 

precipitation divided by local surface specific humidity following ref. 20, and compare this method 168 

with calculations based on vertically integrated convective mass flux from a subset of models that 169 

provide such output (Supplementary Table 1). The rate of convection weakening is largest in the 170 

Atlantic basin and smallest in the Pacific basin (Fig. 2d). This is inversely correlated with the 171 

MSE0 changes in each basin, as expected from theoretical relationships between convection and 172 

MSE0 15. Over 90% of the CMIP6 models project the largest weakening in the Atlantic basin and 173 

the least weakening in the Pacific basin. Roughly 70% of the models project the Atlantic basin 174 

mean weakening rate to be more than twice as large as that of the Pacific basin (Extended Data 175 

Fig. 1e). 176 

Discussion 177 

Spatial variations in tropical precipitation changes are expected to follow the pattern of 178 

SST changes. But as the climate warms, the increasing inter-basin disparities in RH0 make SST a 179 

less accurate proxy for MSE0 and consequently, a bad predictor of precipitation changes at basin 180 



scales. At regional scales, the sensitivity of precipitation to warming is set by relative humidity, 181 

which is demonstrated by the spatial resemblance between HSlocal% and RH0 changes (Extended 182 

Data Fig. 5). Therefore, spatial variations in RH0 not only cause HS to diverge among basins, but 183 

is important for the spatial variation in oceanic precipitation changes in general. This is particularly 184 

evident in the amipUniform simulation, where spatial variations in RH0 cause uneven changes in 185 

MSE0rel, which lead to spatially varying precipitation changes despite a uniform surface warming 186 

(Extended Data Figs. 5a, c, e). 187 

Our results show that the diverging HS is rooted in the thermodynamic intensification of 188 

boundary-layer moisture transport. The thermodynamic origin is likely the reason the diverging 189 

basin HS is robustly projected by models. While the fidelity of the state-of-the-art precipitation 190 

projections has been questioned 21, the thermodynamic intensification of moisture transport has 191 

been confirmed by observations 22. This suggests that the diverging basin HS is likely a reliable 192 

projection. On the other hand, the extent to which HS diverges among basins varies among models, 193 

and such variation is closely tied to inter-model variations in the thermodynamic intensification of 194 

the present-day TRP0 (Extended Data Fig. 6). Therefore, model biases in the present-day TRP0 195 

likely contribute to the quantitative disagreement on the inter-basin differences in HS. 196 
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Figures 223 



 224 

Figure 1. Tropical changes from structured and uniform sea surface warming. a-b) Multi-model 225 

mean SST (a) and precipitation (b) changes from the CMIP6 ssp585 simulation. c) Multi-model mean 226 

precipitation changes from amipUniform, which contains an elevated CO2 concentration and a uniform 227 

sea surface warming relative to its baseline simulation (see Method). 228 



 229 

Figure 2. Inter-basin differences in hydrological sensitivity. a-d) CMIP6 multi-model mean HSmean% 230 

(a), basin average HSlocal% (b), basin average HSlocal (c), and percentage change in basin average 231 

convective mass flux, Mweak% (d) from the ssp585, amipUniform, and amipAll simulations. In panel (d), 232 

convective mass flux is calculated at each grid point as precipitation divided by local surface specific 233 

humidity, except symbol ́ , which is calculated by using models’ actual convective mass flux integrated 234 

from surface to the top of the atmosphere from the 14 models that provide convective mass flux output. 235 

e) Present-day basin mean TRP0 from the historical simulation. f) Future changes in total and 236 

individual components of basin mean TRP0 from the ssp585 simulation. δtotal, δdyn, and δthe denote 237 

the total, dynamic, and thermodynamic changes, respectively. In panels (e) and (f), TRP0 is weighted 238 

by the local climatological precipitation before it is averaged over basins. Weighting is applied to focus 239 

on convective areas, thus making the basin average TRP0 more relevant to precipitation. Bars 240 

represent the multi-model mean, whereas whiskers represent one inter-model standard deviation. 241 



 242 

Figure 3. Diverging basin hydrological sensitivity and its impacts on land precipitation. a) 243 

Oceanic precipitation changes from the CMIP6 multi-model mean ssp585 simulation. b) Same as 244 

panel (a) but with inter-basin differences in the basin mean HSlocal% removed. c) Future changes in 245 

land precipitation from the CMIP6 multi-model mean ssp585 simulation. d-f) Land precipitation 246 

responses in amipTRP (d), amipTRPadj (e), and the difference between amipTRP and amipTRPadj 247 

(f). In panels (d-f), regions where precipitation responses are significantly above internal variability 248 

(Method) are stippled. 249 



 250 

Figure 4. Factors of precipitation and precipitation change. a) Multi-model mean present and 251 

future precipitation averaged for 0.1 ºC SSTrel bins for individual basins. b) Observed precipitation 252 

averaged as in panel (a). c-d) Same as panels (a) and (b) except for precipitation averaged for 0.002 253 

MSErel bins. e) Multi-model mean present and future RH0 averaged for 0.1 ºC SSTrel bins. f) Present 254 

RH0 from reanalyses averaged as in panel (e). In panels (a), (b), (e), and (f), SSTrel bins that account 255 

for less than 0.5% of the total basin area are shown in semitransparent colors; the same is applied in 256 



panels (c) and (d) for MSErel bins that account for less than 0.5% of the total basin area. Simulated 257 

present and future conditions are taken from the historical and ssp585 simulations, respectively. 258 
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 314 

Methods 315 

Data 316 

CMIP6 317 

We analyze coupled and atmosphere-only simulations in CMIP6 8 by drawing models that 318 

provide all necessary variables. We use one realization from each model, as listed in 319 

Supplementary Table 1. All model outputs are interpolated onto a common 1o by 1o grid. 320 

We use 1985-2014 of the historical simulation to define the present-day condition, 2071-321 

2100 of the ssp585 simulation to define the future condition, and the difference between the latter 322 

and former to define future changes. The ssp585 simulation represents the upper boundary of the 323 



range of emission scenarios included in CMIP6, and its radiative forcing reaches 8.5 W/m² by 324 

2100. Forty-six models are analyzed. When calculating local hydrological sensitivity (i.e., HSlocal% 325 

and HSlocal), we ignore grid points with negative SST changes (which account for less than 0.01% 326 

of all model grid points in the ssp585 simulation). 327 

To understand the impact of the pattern of SST changes, we apply four uncoupled 328 

atmosphere-only simulations: 1) amip, driven by historical forcing and observed SST and sea ice 329 

concentration from 1979 to 2014, 2) amip4xCO2, which is the same as amip except that CO2 330 

concentration is quadrupled, 3) amip4K, which is the same as amip but with additional 4 ºC SST 331 

across global oceans, and 4) amipFuture, which is the same as amip4K but with spatially varying 332 

SST anomalies. The spatially varying SST anomalies are taken from the CMIP3 multi-model SST 333 

responses to 4xCO2 in the coupled 1pctCO2 simulation (where the atmospheric CO2 concentration 334 

increases by 1% per year starting from the pre-industrial level), which are then scaled to have a 335 

global mean SST anomaly of 4 ºC 23. We use amip as our baseline (i.e., the present-day control 336 

run). Changes in amip4K and amipFuture are scaled to obtain responses at 4×CO2, by dividing 337 

changes by each model’s tropical mean SST change in amip4K and amipFuture, respectively and 338 

then multiplying them by each model’s tropical mean SST change at 4×CO2 from the coupled 339 

1pctCO2 simulation. To obtain SST changes at 4×CO2 from 1pctCO2, we calculate SST changes 340 

between the last and first 30 years (121-150 minus 1-30) of the simulation, and then scale them by 341 

log(4)/log(1.01120) assuming that the SST changes are proportional to the logarithm of CO2 342 

changes. Because changes from the direct CO2 forcing and SST increase are linearly additive 24, 343 

we create amipUniform by summing changes in amip4xCO2 and the scaled changes in amip4K, 344 

and amipAll by summing changes in amip4xCO2 and the scaled changes in amipFuture. Eleven 345 

uncoupled models are analyzed. 346 



Observations 347 

Our SST data is a merged product based on the Hadley Centre SST dataset version 1 and 348 

the National Oceanic and Atmospheric Administration optimum interpolation SST analysis version 349 

2 25. The data ranges from 1979 to 2021 and is archived at 1o resolution. This SST dataset was also 350 

used as the boundary condition for the CMIP6 amip simulation. 351 

To account for the uncertainty among precipitation datasets, we average three widely used 352 

precipitation datasets: 1) GPCP (the Global Precipitation Climatology Project) version 2 26 from 353 

1979 to 2021 at 2.5o resolution, 2) CMAP (the Climate Prediction Center Merged Analysis of 354 

Precipitation) 27 from 1979 to 2021 at 2.5o resolution, and 3) TRMM (the Tropical Rainfall 355 

Measuring Mission Project) 3B43 version 7 28 from 1998 to 2019 at 0.25o resolution. In all three 356 

datasets, oceanic precipitation is derived from satellites. The multi-observation mean features 357 

discussed in this paper are generally present in individual datasets as well. All observational data 358 

are interpolated onto the same 1o by 1o grid that is used for interpolating CMIP6 outputs. 359 

Reanalysis Data 360 

We analyze monthly air temperature, specific humidity, relative humidity, winds, and 361 

geopotential height from reanalysis data during the period of 1979 to 2021. To minimize the effect 362 

of uncertainty within individual datasets, we average three widely used reanalyses: 1) ERA5 (the 363 

5th generation of the European Centre for Medium-Range Weather Forecasts reanalysis) 29 on a 364 

30km horizontal grid and 137 vertical levels, 2) NCEP/DOE-II (the National Center for 365 

Environmental Prediction and Department of Energy  Reanalysis II) 30 at 2.5o resolution with 17 366 

vertical levels, and 3) JRA-55 (the Japanese 55-year Reanalysis) 31 at roughly 1o resolution with 367 

37 vertical levels. The multi-dataset mean features presented in this paper are generally found in 368 



individual reanalysis as well. All reanalysis data are interpolated onto the same 1o by 1o grid that 369 

is used for interpolating CMIP6 outputs. 370 

Relative boundary-layer moist static energy 371 

We analyze the relationship between precipitation and MSE0 in individual basins, but 372 

present MSE0 in its normalized form (i.e., MSE0 divided by the tropical ocean mean MSE0), 373 

which we refer to as the relative boundary-layer moist static energy (MSE0rel). MSE0rel allows for 374 

direct comparisons between present and future MSE-precipitation relationships, by dismissing 375 

changes in the tropical mean MSE0 (which has little practical effect on precipitation due to the 376 

upper-tropospheric warming 17). In addition, the nonlinear Clausius-Clapeyron relationship 377 

automatically makes MSE0 more spatially uneven with warming 32. We discount the effect of the 378 

Clausius-Clapeyron amplification of the spatial unevenness in MSE0 by removing the tropical 379 

mean MSE0 through scaling rather than shifting (the latter is used for defining SSTrel). Therefore, 380 

changes in the spatial unevenness in MSE0rel are either due to changes in the spatial unevenness 381 

in boundary-layer temperature or those in boundary-layer relative humidity. As explained in the 382 

main text, it is the latter that intensifies the inter-basin discrepancies in MSE0rel. 383 

Boundary-layer moisture transport 384 

 TRP0 is calculated at each tropical ocean grid point as: 385 

𝑇𝑅𝑃0 = −∫ (𝑉*⃗ ∙ ∇𝑞)𝑑𝑝!"#	%&'
(###	%&' − ∫ (𝑞 ∙ ∇𝑉*⃗ )𝑑𝑝!"#	%&'

(###	%&' − ∫ 2∂(ω ∙ 𝑞) 𝜕𝑝6 7 𝑑𝑝!"#	%&'
(###	%&'  (1) 386 

where 𝑉*⃗  is horizontal wind velocity, q is specific humidity, ω is pressure velocity, and p is pressure. 387 

The first term on the right-hand side is the transport due to horizontal advection. The second and 388 

third terms are both driven by boundary-layer wind convergence, and we refer to the sum of the 389 

second and third terms as the convergence term. 390 



 Changes in TRP0 can be decomposed into a thermodynamic component, −∫ (𝑉*⃗ ∙!"#	%&'
(###	%&'391 

∇δ𝑞)𝑑𝑝 − ∫ (δ𝑞 ∙ ∇𝑉*⃗ )𝑑𝑝!"#	%&'
(###	%&' − ∫ 2∂(ω ∙ δ𝑞) 𝜕𝑝6 7 𝑑𝑝!"#	%&'

(###	%&'  and a dynamic component, 392 

−∫ (δ𝑉*⃗ ∙ ∇𝑞)𝑑𝑝!"#	%&'
(###	%&' − ∫ (𝑞 ∙ ∇δ𝑉*⃗ )𝑑𝑝!"#	%&'

(###	%&' − ∫ 2∂(δω ∙ 𝑞) 𝜕𝑝6 7 𝑑𝑝!"#	%&'
(###	%&' , where δ denotes 393 

future changes. 394 

CAM5 Experiments with perturbed diabatic heating 395 

Tropical precipitation drives global teleconnections through planetary Rossby waves 396 

generated from the release of latent heat. We examine how tropical inter-basin HS divergence 397 

affects land precipitation via a series of atmosphere-only experiments with perturbed diabatic 398 

heating. The model used here is the Community Atmosphere Model, version 5 (CAM5) within the 399 

framework of the Community Atmosphere Model, version 1 (CESM1 33), at a horizontal resolution 400 

of 1 degree. The baseline simulation is driven by pre-industrial forcing and monthly SST and sea 401 

ice concentrations of a 2600-year CESM1 pre-industrial control simulation (available via the 402 

CESM1 large ensemble 34). 403 

We apply two types of diabatic heating perturbation in tropical oceanic regions on top of 404 

the baseline simulation. In the first experiment (named amipTRP), the diabatic heating 405 

perturbation is produced from the CMIP6 multi-model mean tropical oceanic precipitation change 406 

in ssp585 (Fig. 3a). In the second experiment (named amipTRPadj), we apply the same diabatic 407 

heating perturbation as amipTRP but with inter-basin discrepancies in HSlocal% removed. 408 

Specifically, we add the difference between the tropical oceanic mean HSlocal% and the basin mean 409 

HSlocal% uniformly to the HSlocal% at all grid points in each basin and in each CMIP6 model. We 410 

then use the adjusted HSlocal% and the climatological precipitation and SST changes in each model 411 



to recalculate the tropical oceanic precipitation change, δPadj. The multi-model mean δPadj (Fig. 3b) 412 

is used to produce the diabatic heating perturbation in amipTRPadj. 413 

To obtain the diabatic heating perturbations from precipitation changes, we assume that 414 

models’ diabatic heating has an idealized Gaussian vertical profile that peaks at 400 hPa 35,36. This 415 

allows us to approximate the target diabatic heating (δQT) as 416 

𝛿𝑄)(𝑝, 𝑙𝑎𝑡, 𝑙𝑜𝑛) = 𝐶*𝛿𝑃(𝑙𝑎𝑡, 𝑙𝑜𝑛)𝑒
+	("#"$)

&

&'&   (2) 417 

where Cs is a scaling constant and is set to 162.92 m2 s-2, P is precipitation, p is pressure and pc is 418 

set to 400 hPa, r is the decaying radius and is set to 3. 419 

The diabatic heating perturbation is added to CAM5 as a seasonally varying constant 420 

temperature tendency term at the end of each physics time step. Because model’s diabatic heating 421 

is free to respond to the perturbation, the total diabatic heating anomaly deviates from the 422 

prescribed diabatic heating perturbation. To match the model’s actual diabatic heating with δQT, 423 

we determine the prescribed diabatic heating forcing through an “iterative approach” detailed in 424 

ref 37. Each iteration ensemble (i) contains ten members of three-year runs that branch off from 425 

various years of the baseline simulation. The diabatic heating perturbation is calculated as 426 

𝛿𝑄(𝑖) = D
𝐶 ∙ 𝛿𝑄) , 𝑓𝑜𝑟	𝑖 = 1

𝛿𝑄(𝑖 − 1) + 𝐶 ∙ J𝛿𝑄) −
(
(#
∑ (𝛿𝑄(𝑖 − 1) + 𝛿𝑄,(𝑖 − 1))(#
,-( L , 𝑓𝑜𝑟	2 ≤ 𝑖 ≤ 10         (3) 427 

where δQ(i-1)+δQn(i-1) is the actual diabatic heating anomaly in ensemble member n of iteration 428 

i-1, which contains the prescribed diabatic heating forcing δQ(i-1) and the model’s diabatic heating 429 

response to such forcing δQn(i-1). With each iteration, the model’s actual diabatic heating anomaly 430 

is pulled towards the target diabatic heating anomaly by adding a diabatic heating perturbation 431 

which is equal to C times the difference between the target diabatic heating anomaly and the 432 

model’s actual diabatic heating anomaly. C is set to 0.25 for i£7 and 0.15 for i>7. C is smaller than 433 



1 because the model’s diabatic heating response tends to be in the same sign as and several times 434 

larger than the prescribed diabatic heating forcing. As a result, using a smaller C allows the model 435 

to reach the target diabatic heating anomaly with fewer iteration ensembles. The final diabatic 436 

heating perturbation is obtained after ten iterations (δQ(10)), which is then applied in amipTRP 437 

and amipTRPadj. The simulated vertically integrated diabatic heating anomalies in amipTRP and 438 

amipTRPadj (Supplementary Fig. 8) are reasonably close to the target precipitation anomalies 439 

(Figs. 3a, b). The amipTRP, amipTRPadj, and the baseline simulations are all 30-year long. 440 

Baroclinic Stationary Wave Model 441 

We investigate the CAM5 simulations by comparing the CAM5 circulation responses to 442 

those generated in a Stationary Wave model (SWM). The SWM is a nonlinear baroclinic model 443 

that has been widely used to study stationary wave responses to diabatic heating forcings 38,39. The 444 

SWM does not include model physics, such as cloud, radiation, and precipitation and is thus not 445 

susceptible to issues associated with parameterizations. The SWM is a perturbation model, where 446 

only deviations from the climatology is calculated. The model is based on the three-dimensional 447 

primitive equations. The numerical stability of the SWM is achieved through an idealized damping 448 

and the relaxation towards a specified basic state. The basic state is prescribed as the three-449 

dimensional annual-mean climatology including winds and temperature, derived from the CAM5 450 

control simulation. The diabatic heating perturbation is added to SWM as a constant temperature 451 

tendency term. 452 

Three experiments are conducted – 1) SWM-TRP, where the diabatic heating perturbation 453 

is produced from the CMIP6 multi-model mean precipitation changes (Fig. 3a) and is the same as 454 

that in amipTRP; 2) SWM-TRPadj, where diabatic heating perturbation is produced from the 455 

CMIP6 multi-model mean precipitation changes but with the inter-basin differences in HSlocal% 456 



removed (Fig. 3b) and is the same as that in amipTRPadj; 3) SWM-TRP-d-TRPadj, where diabatic 457 

heating perturbation is produced from precipitation changes due to inter-basin discrepancies in 458 

HSlocal%, which is the same as the difference in diabatic heating perturbation between SWM-TRP 459 

and SWM-TRPadj. We analyze the steady states by averaging the last 50 days of the SWM 460 

experiments. The SWM is substantially less noisy than comprehensive models and the level of 461 

internal variability is negligible in the 50-day averages. 462 

The SWM experiments are analyzed in Supplementary Text 1. Specifically, we use SWM-463 

TRP and SWM-TRPadj to verify the circulation responses in amipTRP and amipTRPadj, 464 

respectively. The linearity of circulation responses to the diabatic heating perturbations is 465 

examined by comparing SWM-TRP minus SWM-TRPadj to SWM-TRP-d-TRPadj. 466 

Quantifying internal precipitation variability 467 

The range of internal precipitation variability in the 30-year amipTRP and amipTRPadj 468 

simulations is determined via a Monte Carlo approach 40. Using the 2600-year CESM1 pre-469 

industrial control simulation 34, we calculate the difference in precipitation averaged over two 470 

randomly selected, non-overlapping 30-year periods. We repeat the above process at each grid 471 

point 5000 times to obtain the frequency distribution of such precipitation difference. The 5th and 472 

95th percentiles are used to define the range of internal precipitation variability. 473 

 474 

Data Availability 475 

Model output and observation data can be accessed at the following websites. CMIP6: https://esgf-476 

node.llnl.gov/projects/cmip6/. Observed SST: https://pcmdi.llnl.gov/mips/amip/. GPCP: 477 

https://psl.noaa.gov/data/gridded/data.gpcp.html. CMAP: 478 

https://www.psl.noaa.gov//data/gridded/data.cmap.html. TRMM: 479 

https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://pcmdi.llnl.gov/mips/amip/


https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary. ERA5: 480 

https://cds.climate.copernicus.eu/cdsapp#!/home. NCEP/DOE-II: 481 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. JRA-55: 482 

https://jra.kishou.go.jp/JRA-55/index_en.html. 483 

 484 

Code Availability 485 

The CESM model code is publicly available at https://www2.cesm.ucar.edu/models/cesm1.2/. 486 

Scripts for the analysis and generation of figures are stored at the Zenodo online repository 487 

https://zenodo.org/records/10729735 (ref. 41). 488 
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