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We present a numerical study of spatially quasi-
periodic gravity-capillary waves of finite depth in
both the initial value problem and travelling wave
settings. We adopt a quasi-periodic conformal
mapping formulation of the Euler equations,
where one-dimensional quasi-periodic functions
are represented by periodic functions on a higher-
dimensional torus. We compute the time evolution of
free surface waves in the presence of a background
flow and a quasi-periodic bottom boundary and
observe the formation of quasi-periodic patterns
on the free surface. Two types of quasi-periodic
travelling waves are computed: small-amplitude
waves bifurcating from the zero-amplitude solution
and larger-amplitude waves bifurcating from finite-
amplitude periodic travelling waves. We derive
weakly nonlinear approximations of the first type and
investigate the associated small-divisor problem. We
find that waves of the second type exhibit striking
nonlinear behaviour, e.g. the peaks and troughs are
shifted non-periodically from the corresponding
periodic waves due to the activation of quasi-periodic
modes.

1. Introduction
Free surface waves on incompressible fluids arise in
many contexts in fluid dynamics. Examples include
ocean wave forecasting [1,2], modelling the motion of
flows over obstacles and varying bottom boundaries
[3–5], and studying wind–wave interactions in extreme
wave events, such as freak waves [6]. These models
are described by the Euler equations, which are usually
studied under periodic boundary conditions or the
assumption that solutions decay to zero at infinity
[7–9]. However, these assumptions are insufficient in
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many problems of interest. For instance, a periodic wave could interact with a bottom boundary
with a different spatial period, or subharmonic perturbations of a periodic travelling wave can
grow in amplitude, leading to quasi-periodic waves. To tackle these issues, we recently proposed
methods [10,11] to study the Euler equations under quasi-periodic boundary conditions;
specifically, we studied spatially quasi-periodic waves of infinite depth in two dimensions and
developed numerical algorithms to compute such waves. In this paper, we extend this previous
work to the finite-depth case and discuss both the initial value and travelling wave problems in
the quasi-periodic setting.

Finite-depth water waves exhibit interesting nonlinear dynamics. It has been shown
numerically that Fermi-Pasta-Ulam recurrence can occur in free surface waves of finite depth
when the wave amplitude is less than about 1/10 of the fluid depth [12,13]. A varying
bottom boundary can lead to substantial amplifications of water waves. There have been both
experimental and numerical studies demonstrating increased freak wave activities when waves
propagate over a sloping bottom, from a deeper to a shallower domain [14,15]. In the problem
of long waves approaching vertical walls, an abrupt transition in the bottom boundary can cause
large runups on the wall or wave breaking, which generally occurs when the wave crest overturns
[16,17]. The interaction between a rotational wave current and a varying bottom boundary gives
rise to a time-dependent Kelvin cat-eye structure [4].

The quasi-periodic dynamics of water waves have recently drawn considerable attention.
Berti & Montalto [18], Baldi et al. [19], Berti et al. [20,21] and Feola & Giuliani [22] have used Nash–
Moser theory to prove the existence of small-amplitude temporally quasi-periodic water waves.
On the numerical side, Wilkening computed new families of relative-periodic [23] and travelling-
standing [24] water waves. Although the physical mechanisms are different, temporally and
spatially quasi-periodic waves have similar mathematical structures in that they can both be
formulated in terms of periodic functions on a higher-dimensional torus. Damanik & Goldstein
[25] proved the global existence and uniqueness of small-amplitude spatially quasi-periodic
solutions of the KdV equation. Oh [26] and Dodson et al. [27] showed the local existence of
spatially quasi-periodic solutions of nonlinear Schrödinger equations.

We were originally motivated by the structure of quasi-crystals in material science. Blinov [28]
used quasi-periodic solutions of the Schrödinger equation to describe the electronic structure
of non-interacting electrons in a quasi-crystals. To study how electrons move through quasi-
crystals, Torres et al. [29] created quasi-periodic standing waves by vibrating a fluid-filled pan
with a quasi-periodic bottom boundary and sent a transverse wave pulse across the fluid
that develops a non-periodic pattern in which the spacing between the wave peaks is not
constant. Their observation inspired us to ask the following question: How do we compute the
exact dynamics of free surface waves in the presence of a quasi-periodic bottom boundary? To
address this question, one needs to study the free surface wave problem in a quasi-periodic
framework.

Another reason for our interest in quasi-periodic water waves originates from the dispersion
relation of gravity-capillary waves of finite depth

c2 = (gk−1 + τk) tanh(kh). (1.1)

Here c is the phase speed, k is the wavenumber, g is the acceleration due to gravity, τ is
the coefficient of surface tension and h is the depth of the fluid. It is known [30] that when
τ/(gh2) < 1/3, there exists ccrit between 0 and

√
gh such that for any fixed phase speed c> ccrit,

there are two distinct positive wavenumbers satisfying the dispersion relation (1.1), which we
denote by k1 and k2. Any superposition of waves with these two wave numbers is a solution
of the linearized travelling wave problem. If k1 and k2 are rationally related, the linear solution
is spatially periodic and related to the well-studied Wilton ripples [30–33]. On the other hand,
if k1 and k2 are irrationally related, the linear solution will be spatially quasi-periodic, which
gives a natural place to search for nonlinear quasi-periodic travelling solutions. Bridges & Dias
[34] first studied these spatially quasi-periodic travelling waves using a spatial Hamiltonian
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structure and constructed weakly nonlinear approximations of these waves. Recently, we [10]
used a conformal mapping formulation of the water wave equations and computed highly
accurate numerical solutions of the fully nonlinear problem in the case of deep water. These
computations are performed on a two-dimensional torus from which we extract one-dimensional
quasi-periodic functions via u(α) = ũ(k1α, k2α). The computational challenges are similar to those
of computing time-periodic standing waves [35–37]. The main difference is that standing waves
can be formulated as a nonlinear two-point boundary value problem, which reduces the number
of unknowns from O(N2) to O(N) initial degrees of freedom, while quasi-periodic travelling
waves have O(N2) unknowns but a simpler objective function whose main cost is the relatively
inexpensive two-dimensional FFT. In the present work, we aim to further extend these techniques
to the case of finite-depth water.

Following [10,11], we adopt a conformal mapping formulation of the free surface Euler
equations [38–45]. In the finite depth case, the fluid domain with a curved surface and an uneven
bottom boundary is mapped conformally onto a horizontal strip instead of the lower half-plane.
Since the conformal mapping depends on time, even though the bottom boundary is fixed in
physical space, the representation of the bottom boundary in conformal space varies with time.
Ruban [46,47] fixed the width of the strip and used a composition of two conformal mappings to
map the strip to the fluid domain—the first leaves the real axis invariant and the second maps the
real line to the bottom boundary. Viotti et al. [3], Flamarion et al. [48,49] and Ribeiro et al. [50] let the
width of the strip vary with time to keep the wavelength the same in physical space and conformal
space. They used a fixed-point iterative method to compute the bottom profile at different times.
In order that water waves possess the same quasi-periods in both physical and conformal spaces,
we also let the strip width be a time-dependent variable. However, in contrast to [3,48], we
compute the time evolution of the bottom profile directly, employing analytical properties of the
conformal mapping, similar to [46,47]. As in the infinite-depth case [10,11], we introduce finite-
depth quasi-periodic Hilbert transforms to relate the real and imaginary parts of the conformal
mapping and to compute the kinematic boundary condition on the free surface. These Hilbert
transforms are Fourier multiplier operators and are easier to compute in a quasi-periodic setting
than a more direct computation of the Dirichlet–Neumann operator [51] in physical space, e.g.
using boundary integral methods [5].

In computing the dynamics of free surface waves over a varying bottom boundary, it is usually
assumed that the spatial periods of the free surface wave and the bottom boundary are the same or
one is an integer multiple of the other. In this paper, we study a new situation where their spatial
periods are irrationally related. Specifically, in one of the examples presented in §4a, we compute
the time evolution of an initially periodic free surface wave with period 2π in the presence
of a periodic bottom boundary with period 2

√
2π . We find that the periodic wave becomes a

quasi-periodic wave, with each wave peak and trough evolving differently as it interacts with
the bottom boundary. We also compute the time evolution of an initially flat free surface in the
presence of a background flow and a quasi-periodic bottom boundary. Similar to the experiment
by Torres et al. [29], we also observe that the free surface wave develops quasi-periodic patterns
as a result of interactions between the background flow and the quasi-periodic bottom boundary.
The wave peaks and troughs are asymmetric and the distance between adjacent wave peaks is
not constant.

In §4b, we compute two types of quasi-periodic travelling solutions: waves that bifurcate from
the zero-amplitude solution and waves that bifurcate from finite-amplitude periodic travelling
solutions. For the first type, we use linearization about the zero solution for the initial bifurcation
direction and obtain a three-parameter family of solutions prescribed by the fluid depth and
Fourier coefficients corresponding to wave numbers k1 and k2; these are called the base Fourier
coefficients. Similar to the case of deep water [10], when the amplitudes of the base Fourier
coefficients are small, the solutions are of small amplitude and are close to the linear solution.
For the second type, we linearize the governing equations around a finite-amplitude 2π -periodic
travelling wave. For the bifurcation direction in this case, we use a quasi-periodic function of the
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following form in the kernel of the linear operator:

δη(α) = eikαη0(α) + c.c., (1.2)

where η0 possesses the same wavelength as the periodic travelling wave, the notation c.c. denotes
the complex conjugate of the preceding term, and we set k= 1/

√
2 in this paper. This method

has also been used to compute secondary periodic bifurcations with k= 1/2 and k= 1/3 by Chen
& Saffman [52] and with k= 1/9 by Vanden-Broeck [53]. In the present work, we obtain quasi-
periodic travelling waves that bifurcate from a periodic travelling wave whose first Fourier
mode resonates with the fifth Fourier mode. The periodic travelling wave is a solution of the
Wilton ripple problem and the wave peaks look like ‘cat ears’. The bifurcated wave still preserves
this characteristic; however, influenced by the Fourier modes in the quasi-periodic direction, the
distance between the successive ‘ears’ is no longer constant.

The paper is organized as follows. In §2, we define finite-depth quasi-periodic Hilbert
transforms and derive equations of motion for quasi-periodic free surface waves in conformal
space when the bottom boundary is not necessarily flat. In §3, we obtain the governing equations
of quasi-periodic travelling waves in the case of finite-depth water with a flat bottom boundary
and establish weakly nonlinear approximations of these waves and the role of small divisors
in computing successive approximations. In §4, we use a Fourier pseudo-spectral method
to compute solutions of the initial value and travelling wave problems and present various
numerical examples. Following the idea in [10,11], we lift the one-dimensional quasi-periodic
problem to a higher-dimensional periodic torus where the computation is performed. We
formulate the travelling wave problem as an overdetermined nonlinear least-squares problem
that we solve through a variant of the Levenberg–Marquardt method [37,54]. For the initial value
problem, we consider the natural setting where the quasi-periodic initial condition and bottom
boundary are posed in physical space. We present a method of transforming them to conformal
space in the electronic supplementary material.

2. Equations of motion

(a) Governing equations in physical space
Gravity-capillary waves of finite depth are governed by the free-surface Euler equations [7,55]. In
two dimensions, they may be written

ηs(x, 0) = ηs
0(x), ϕ(x, 0) = ϕ0(x), t= 0, x ∈R, (2.1)

Φxx + Φyy = 0, ηb(x) < y< ηs(x, t),

Φ = ϕ, y= ηs(x, t),

∇Φ · n= 0, y= ηb(x),

(2.2)

ηs
t = Φy − ηs

xΦx, y= ηs(x, t) (2.3)

and ϕt = Φyη
s
t − 1

2
Φ2
x − 1

2
Φ2
y − gηs + τ

ηs
xx(

1 + (ηs
x)2
)3/2 + C(t), y= ηs(x, t), (2.4)

where x is the horizontal coordinate, y is the vertical coordinate, t is the time, Φ(x, y, t) is the
velocity potential of the fluid, ηs(x, t) is the free surface elevation, ηb(x) is the fixed bottom profile,
g is the vertical acceleration due to gravity and τ is the coefficient of surface tension, which is zero
for gravity waves. Equation (2.3) is the kinematic boundary condition and (2.4) is the dynamic
boundary condition. The function C(t) in (2.4) is an arbitrary integration constant that is allowed
to depend on time but not space. We are interested in the dynamics of the water waves in the
presence of a varying bottom boundary; in other words, the bottom profile is not a constant
function. When the bottom boundary is flat, it is usually assumed that there is no background
flow. Indeed, in this case, the system is Galilean invariant, which means any background flow
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can be eliminated by viewing the system in a moving frame. However, this is not true when
the bottom boundary is variable; the interaction between the background flow and the bottom
boundary can lead to interesting nonlinear dynamics. Therefore, it is meaningful to incorporate
a background flow in the problem description by including a secular growth term in the velocity
potential, which is otherwise spatially periodic or quasi-periodic.

(b) Finite-depth quasi-periodic Hilbert transforms
As defined in [56,57], a quasi-periodic, real-analytic function f (α) is a function of the form

f (α) = f̃ (kα), f̃ (α) =
∑
j∈Zd

f̂j ei〈j, α〉, α ∈R, α, k ∈R
d, (2.5)

where 〈·, ·〉 denotes the standard inner product on R
d and f̃ is a periodic, real-analytic function

defined on the d-dimensional torus T
d :=R

d/(2πZ)d. We assume that d≥ 2 so that f can be
genuinely quasi-periodic. Entries of the vector k are called the basic wave numbers (or basic
frequencies) of f and are required to be linearly independent over Z. Given a quasi-periodic
function f , the corresponding f̃ and k in (2.5) are not unique. Indeed, if K is any d-by-d unimodular
matrix, then f̃ ′(α) = f̃ (Kα) also satisfies (2.5) with k′ =K−1k. For simplicity, we assume k is given,
along with f or f̃ , to pin down the representation. Given k, one can reconstruct f̃ and its Fourier
coefficients f̂j from f via

f̂j = lim
a→∞

1
2a

∫ a

−a
f (α) e−i〈j,k〉α dα, j ∈Z

d. (2.6)

We refer to [58] for detailed discussions of the above averaging formula. We assume that f̃ (α) is

real-analytic, which is equivalent to the conditions that f̂−j = f̂j for j ∈Z
d and there exist positive

numbers M and γ such that |f̂j| ≤M e−γ ||j||, i.e. the Fourier modes f̂j decay exponentially as ||j|| →
∞. Next, we introduce some operators that act on f and f̃ .

Definition 2.1. The projection operators P and P0 are defined by

P= id −P0 and P0[f ] = P0[f̃ ] = f̂0 = 1
(2π )d

∫
Td

f̃ (α) dα1 · · · dαd. (2.7)

Note that P projects onto the space of zero-mean functions and P0 returns the mean value. There
are two versions of P and P0, one acting on quasi-periodic functions defined on R and one acting
on torus functions defined on T

d.

Definition 2.2. The derivative operator ∂α that acts on f or f̃ is defined by

∂α f (α) = ∂α f̃ (kα) and ∂α f̃ (α) =
∑
j�=0

i〈j, k〉f̂j ei〈j,α〉. (2.8)

For simplicity of notation, we denote ∂α f (or ∂α f̃ ) by fα (or f̃α). One can also interpret ∂α f̃ as the
directional derivative of f̃ along the characteristic direction k.

Definition 2.3. We introduce four finite-depth quasi-periodic Hilbert transforms Htanh, Hcoth,
Hcsch, Hsech that act on f and f̃ as follows [3,59]:

Hop[f ](α) =Hop[f̃ ](kα) and Hop[f̃ ](α) =
∑
j∈Zd

iĤop f̂j ei〈j,α〉, (2.9)

where op = tanh, coth, sech or csch and the symbol Ĥop is given by

Ĥtanh
j = i tanh

(〈j, k〉h), Ĥcoth
j =

{
(−i) coth

(〈j, k〉h), j �= 0,

0 j= 0,

and Ĥsech
j = sech

(〈j, k〉h), Ĥcsch
j =

{
i csch

(〈j, k〉h) j �= 0,

0 j= 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.10)
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w = α + iβ z = x + iy

z (w, t)h (t)

β

α

y

x

Figure 1. The time-dependent conformal mapping.

Here, h is a positive parameter that will be discussed in §c.
We note that

lim
h→∞

Ĥtanh
j = i sgn

(〈j, k〉) and lim
h→∞

Ĥcoth
j = −i sgn

(〈j, k〉). (2.11)

The latter coincides with the quasi-periodic Hilbert transform introduced in [10,11] in the case of
deep water while the former is its pseudo-inverse.

(c) The quasi-periodic conformal mapping
Figure 1 illustrates a time-dependent conformal mapping

z(w, t) = x(α, β, t) + iy(α, β, t), w= α + iβ, (2.12)

that maps the infinite strip in the complex plane

Sh = {α + iβ : α ∈R, −h(t) < β < 0}, (2.13)

to the fluid domain
Ωf = {(x, y) : x ∈R, ηb,phys(x) < y< ηs,phys(x, t)}. (2.14)

To avoid ambiguity, we use ηs,phys and ηb,phys to denote the free surface elevation and the
bottom profile in physical space, respectively, whereas ηs and ηb are used as conformal variables
henceforth.

We assume that z(w, t) can be extended continuously to Sh and maps the top and bottom
boundary of the strip to the free surface and the bottom boundary of the fluid domain,
respectively. Denoting

ζ s(α, t) = z|β=0(α, t) = x(α, 0, t) + iy(α, 0, t) = ξ s(α, t) + iηs(α, t),

and ζ b(α, t) = z|β=−h(t)(α, t) = x(α, −h(t), t) + iy(α, −h(t), t) = ξb(α, t) + iηb(α, t),

⎫⎬⎭ (2.15)

we have
ηs,phys(ξ s(α, t), t) = ηs(α, t) and ηb,phys(ξb(α, t)) = ηb(α, t). (2.16)

For later use in the derivation of the governing equations in conformal space, we compute the
derivative with respect to α and t on both sides of (2.15) and obtain that

xα = ξ s
α , yα = ηs

α , xt = ξ s
t , yt = ηs

t , (β = 0) (2.17)

as well as
xα = ξb

α , yα = ηb
α , yαht + xt = ξb

t , −xαht + yt = ηb
t , (β = −h(t)) (2.18)

where we use the Cauchy–Riemann relation xα = yβ and yα = −xβ in the last two equalities. The
derivative of (2.16) with respect to α and t yields

η
s,phys
x ξ s

α = ηs
α , η

s,phys
x ξ s

t + η
s,phys
t = ηs

t (2.19)

and
η

b,phys
x ξb

α = ηb
α , η

b,phys
x ξb

t = ηb
t . (2.20)
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We are interested in the case where ηs and ηb are quasi-periodic functions of the form (2.5),

ηs(α, t) = η̃s(kα, t), η̃s(α, t) =
∑
j∈Zd

η̂s
j (t) ei〈j,α〉,

ηb(α, t) = η̃b(kα, t), η̃b(α, t) =
∑
j∈Zd

η̂b
j (t) ei〈j,α〉,

α ∈R, α, k ∈R
d, (2.21)

where k is fixed and its components are linearly independent over Z. This is different from the
usual conformal mapping framework [38,41–43,60,61], where ηs and, if present, ηb are assumed
to be periodic. Using the fact that y is a harmonic function defined on Sh and the boundary values
of y are given by y|β=0 = ηs and y|β=−h = ηb, we obtain that

y= 1
h

(
η̂s
0 − η̂b

0
)
β + η̂s

0 +
∑
j�=0

sinh
(〈j, k〉(β + h)

)
sinh

(〈j, k〉h) η̂s
j ei〈j,k〉α −

∑
j�=0

sinh
(〈j, k〉β)

sinh
(〈j, k〉h) η̂b

j ei〈j,k〉α . (2.22)

The harmonic conjugate of y, which is x, can be computed from (2.22) using the Cauchy–Riemann
equations xα = yβ , xβ = −yα ,

x= 1
h

(
η̂s
0 − η̂b

0
)
α + x0 −

∑
j�=0

i
cosh

(〈j, k〉(β + h)
)

sinh
(〈j, k〉h) η̂s

j ei〈j,k〉α +
∑
j�=0

i
cosh

(〈j, k〉β)
sinh

(〈j, k〉h) η̂b
j ei〈j,k〉α . (2.23)

Here, x0 is an integration constant, depending on time only, that we are free to choose. Given Ωf
at any time, to fix the mapping z, we need to specify two free parameters: h and x0. We set

h= η̂s
0 − η̂b

0 , x0 = 0. (2.24)

Hence, the first terms in (2.22) and (2.23) are just α and β. One can choose h in the same way
when the fluid domain is periodic in x so that wavelengths do not change under the conformal
mapping [3]. Alternatively, one may set h= 1, as is done in [46,47] in the periodic case. Setting
x0 = 0 requires a certain choice to be made for a parameter in the time evolution equations [11];
this will be discussed in §e. Until then, we leave x0(t) in the representation as a time-dependent
parameter.

Comparing (2.22) and (2.23), we note that the values of x and y at the top and bottom boundary
of Sh are related by the quasi-periodic Hilbert transforms of (2.9),

ξ s(α, t) = α + x0(t) + Hcoth[ηs](α, t) + Hcsch[ηb](α, t)

and ξb(α, t) = α + x0(t) − Hcsch[ηs](α, t) − Hcoth[ηb](α, t).

⎫⎬⎭ (2.25)

The corresponding torus functions are given in (2.53) below.

(d) The quasi-periodic complex velocity potential
Let Φphys(x, y, t) denote the velocity potential in physical space from §2a and let Wphys(x +
iy, t) = Φphys(x, y, t) + iΨ phys(x, y, t) be the complex velocity potential, where Ψ phys is the stream
function. Using the conformal mapping (2.12), we pull back these functions to the strip Sh and
define

W(w, t) = Φ(α, β, t) + iΨ (α, β, t) =Wphys(z(w, t), t), w= α + iβ. (2.26)

We denote ϕs = Φ|β=0, ϕb = Φ|β=−h, ψs = Ψ |β=0, ψb = Ψ |β=−h and use (2.15) to obtain

ϕs(α, t) = Φphys(ξ s(α, t), ηs(α, t), t) = ϕs,phys(ξ s(α, t), t)

ϕb(α, t) = Φphys(ξb(α, t), ηb(α, t), t)

ψs(α, t) = Ψ phys(ξ s(α, t), ηs(α, t), t) = ψs,phys(ξ s(α, t), t)

and ψb(α, t) = Ψ phys(ξb(α, t), ηb(α, t), t),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.27)
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where ϕs,phys, ψs,phys represent the values of Φphys and Ψ phys on the free surface. Following [3]
for the periodic case, we assume that there is a background flow of horizontal mean velocity U
and the quasi-periodic part of ϕs has the same quasi-periods as ηs and ηb

ϕs(α, t) = Uα + ϕ̃s(kα, t), ϕ̃s(α, t) =
∑
j∈Zd

ϕ̂s
j (t) ei〈j,α〉, α ∈R, α, k ∈R

d. (2.28)

According to (2.2), the bottom boundary is a streamline, therefore ψb is a constant function (or a
function of time only). Considering that adding constants (or functions of time) to Φ and Ψ will
not affect the fluid motion, we set ϕ̂s

0 = 0 and

ψb = 0. (2.29)

Since Φ and Ψ are harmonic conjugates satisfying boundary conditions (2.28) and (2.29), we
obtain

Φ = Uα +
∑
j�=0

ϕ̂j
cosh

(〈j, k〉(β + h)
)

cosh
(〈j, k〉h) ei〈j,k〉α

and Ψ = (β + h)U +
∑
j�=0

iϕ̂j
sinh

(〈j, k〉(β + h)
)

cosh
(〈j, k〉h) ei〈j,k〉α .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.30)

Comparing the values of Φ and Ψ at β = 0 and β = −h, we conclude that

ϕs(α, t) = Uα + Hcoth[ψs](α, t), ψs
α(α, t) =Htanh[ϕs

α](α, t)

and ϕb
α(α, t) = U + Hsech[ϕs

α](α, t) = U − Hcsch[ψs
α](α, t).

⎫⎬⎭ (2.31)

(e) Governing equations in conformal space
We now present a derivation of the equations of motion for quasi-periodic surface water waves
in a conformal mapping formulation when the fluid is of finite depth and the bottom boundary is
not necessarily flat. This is an extension of the results in [11], where the fluid depth is infinite.
Since the conformal mapping is time-dependent, even though the bottom profile in physical
space is fixed, the width of the strip in the conformal domain and the parameterization of the
bottom boundary in conformal space, denoted h(t) and ζ b(α, t), respectively, both vary with time.
Therefore, besides the free surface, the time evolution equations of h and ζb in conformal space
are needed to describe the evolution of the fluid domain. This is the main difference between the
conformal mapping formulations in deep and finite-depth water.

To begin, we use the chain rule to obtain

dW
dw

= dWphys

dz
· dz

dw
⇒ Φ

phys
x + iΨ phys

x = Φα + iΨα

xα + iyα
. (2.32)

Since Φ
phys
y = −Ψ

phys
x , we can express the velocity of the fluid, which is the gradient of Φphys, in

terms of Φα and Ψα

Φ
phys
x = Φαxα + Ψαyα

x2
α + y2

α

and Φ
phys
y = Φαyα − Ψαxα

x2
α + y2

α

. (2.33)

Evaluating (2.33) on the free surface, we have

Φ
phys
x |z=ζ s(α,t) = ϕs

αξ s
α + ψs

αηs
α

Js
, Φ

phys
y |z=ζ s(α,t) = ϕs

αηs
α − ψs

αξ s
α

Js
, Js = (ξ s

α)2 + (ηs
α)2. (2.34)

Next, we derive the kinematic boundary condition in conformal space. We define the function

ϑ := zt
zw

= xtxα + ytyα

x2
α + y2

α

+ i
ytxα − xtyα

x2
α + y2

α

, (2.35)

which is holomorphic on Sh as long as zw is bounded away from zero. Evaluating (2.35) at β = 0
and β = −h(t) and replacing the derivatives of x and y by the derivatives of ξ s and ηs using (2.17),
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(2.18), we obtain that

Re ϑ

∣∣∣
β=0

= ξ s
t ξ

s
α + ηs

tη
s
α

Js
, Im ϑ

∣∣∣
β=0

= ηs
t ξ

s
α − ξ s

t η
s
α

Js
(2.36)

and

Re ϑ

∣∣∣
β=−h(t)

= ξb
t ξb

α + ηb
t η

b
α

Jb
,

Im ϑ

∣∣∣
β=−h(t)

= ηb
t ξ

b
α − ξb

t ηb
α

Jb
+ ht,

Jb = (ξb
α )2 + (ηb

α)2. (2.37)

Furthermore, the substitution of (2.19) and (2.34) into (2.3) gives

ηs
t ξ

s
α − ξ s

t η
s
α = −ψs

α . (2.38)

Therefore, we have

Im ϑ

∣∣∣
β=0

= −ψs
α

Js
. (2.39)

Substituting (2.20) into (2.37), we obtain that ηb
t ξ

b
α − ξb

t ηb
α = 0, thus

Im ϑ

∣∣∣
β=−h(t)

= ht. (2.40)

Since ht does not depend on the spatial variable, similar to (2.31), Re ϑ |β=0 and Re ϑ |β=−h(t) can
be determined by Im ϑ |β=0 up to an additive constant (that may depend on time but not space)
as follows,

ξ s
t ξ

s
α + ηs

tη
s
α

Js
= −Hcoth

[
ψs

α

Js

]
+ C1 and

ξb
t ξb

α + ηb
t η

b
α

Jb
=Hcsch

[
ψs

α

Js

]
+ C1. (2.41)

Since ϑ is a holomorphic function defined on Sh, using Cauchy’s integral theorem, we obtain

∫ a+i(ε−h)

−a+i(ε−h)
+

∫ a−iε

a+i(ε−h)
+

∫−a−iε

a−iε
+

∫−a+i(ε−h)

−a−iε
ϑ(w) dw= 0, a, ε > 0. (2.42)

Dividing both sides of (2.42) by 2a and taking the limit a→ ∞, ε → 0+, we have

ϑ̂0 = P0[ϑ(α)] = P0[ϑ(α − ih)], (2.43)

where we use (2.6) in the first equality. Substituting (2.39) and (2.40) into (2.43), we obtain the time
evolution equation of the width of the strip Sh

ht = −P0

[
ψs

α

Js

]
. (2.44)

Finally, combining (2.36), (2.37) and (2.41), we obtain the kinematic boundary conditions at both
the free surface and the bottom boundary in conformal space

(
ξ s
t

ηs
t

)
=
(

ξ s
α −ηs

α

ηs
α ξ s

α

)⎛⎜⎜⎝−Hcoth
[

ψs
α

Js

]
+ C1

−ψs
α

Js

⎞⎟⎟⎠ , and

(
ξb
t

ηb
t

)
=
(

ξb
α

ηb
α

)(
Hcsch

[
ψs

α

Js

]
+ C1

)
. (2.45)

Since ξ s and ξb are determined by ηs and ηb up to an additive constant x0 by (2.25), we only need
to evolve h, ηs and ηb to track the evolution of the fluid domain. Comparing (2.23) and (2.45), we
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know that the free parameter x0 is related to C1 through the ODE

dx0

dt
= P0

[
ξ s
α

(
−Hcoth

[
ψs

α

Js

]
+ C1

)
+ ηs

αψs
α

Js

]
. (2.46)

Thus, x0(t) is uniquely determined by C1 and x0(0). Several choices of C1 have been discussed in
detail in [11]. In the scope of this paper, we choose C1 and x0(0) as follows

C1 = P0

[
ξ s
αH

coth
[

ψs
α

Js

]
− ηs

αψs
α

Js

]
, x0(0) = 0. (2.47)

This ensures that x0(t) = 0 for t≥ 0 and alleviates the need to explicitly solve the ODE (2.46).
Now we derive the dynamic boundary condition at the free surface in conformal space from

(2.4). Differentiating the first equation in (2.27) with respect to t, we obtain

ϕs
t = ϕ

s,phys
x ξ s

t + ϕ
s,phys
t , (2.48)

where ϕ
s,phys
x can be expressed in terms of the gradient of Φphys as follows:

ϕ
s,phys
x = Φ

phys
x + Φ

phys
y η

s,phys
x . (2.49)

From (2.32), we know that |∇Φphys|2 = ((ϕs
α)2 + (ψs

α)2)/Js at β = 0. Substitution of (2.45), (2.48) and
(2.49) into (2.4) then gives

ϕs
t = (

Φ
phys
x , Φphys

y
) (ξ s

α −ηs
α

ηs
α ξ s

α

)
︸ ︷︷ ︸(

ϕs
α ,−ψs

α

)

⎛⎜⎜⎝−Hcoth
[

ψs
α

Js

]
+ C1

−ψs
α

Js

⎞⎟⎟⎠−
(
ϕs

α

)2 + (
ψs

α

)2

2Js
− gηs + τκ + C, (2.50)

where κ is the mean curvature, given by

κ = ξ s
αηs

αα − ηs
αξ s

αα(
Js
)3/2 , (2.51)

and C is an arbitrary integration constant that may depend on time but not space. In the discussion
of this paper, we choose C such that P0[ϕs

t ] = 0. In conclusion, (2.44), (2.45) and (2.50) are the
governing equations in conformal space for finite-depth quasi-periodic gravity-capillary waves.

Following [11], instead of solving these equations directly, which are posed on the real line,
we lift the problem to a higher dimensional torus T

d and compute the time evolution of the
corresponding torus functions; then we evaluate the torus functions along the characteristic
direction to obtain quasi-periodic functions on the real line. Using the torus version of the quasi-
periodic derivative and Hilbert transform operators in definitions 2.2 and 2.3, we obtain the
governing equations on T

d from (2.44), (2.45) and (2.50),

η̃s
t = (−Hcoth[χ̃ s] + C1

)
η̃s

α − ξ̃ s
αχ̃ s, η̃b

t = (
Hcsch[χ̃ s] + C1

)
η̃b

α , ht = −P0[χ̃ s],

ϕ̃s
t = P

[(
ψ̃s

α

)2 − (
ϕ̃s

α + U)2

2J̃s
+ (

C1 − Hcoth[χ̃ s]
)(

ϕ̃s
α + U)− gη̃s + τ κ̃

]
ξ̃ s =Hcoth[η̃s] + Hcsch[η̃b], ψ̃s =Htanh[ϕ̃s],

J̃s = (
1 + ξ̃ s

α

)2 + (
η̃s

α

)2, χ̃ s = ψ̃s
α

J̃s
,

κ̃ =
(
1 + ξ̃ s

α

)
η̃s

αα − η̃s
αξ̃ s

αα

(J̃s)3/2
, C1 = P0

[(
1 + ξ̃ s

α

)
Hcoth[χ̃ s] − η̃s

αχ̃ s]. (2.52)

We remark that ϕ̃, which is defined on T
d, represents only the quasi-periodic part of ϕ. An extra

term Uα is included in the definition (2.28) to account for the background flow (when present).
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Similarly, ξ s and ξb are obtained from ξ̃ s and ξ̃b via

ξ s(α, t) = α + ξ̃ s(kα, t) and ξb(α, t) = α + ξ̃b(kα, t), (2.53)

where ξ̃ s is given in (2.52) and ξ̃b is given by

ξ̃b = −Hcsch[η̃s] − Hcoth[η̃b]. (2.54)

According to (2.53), we have

ξ s
α(α, t) = 1 + ξ̃ s

α(kα, t) and ξb
α (α, t) = 1 + ξ̃b

α (kα, t), (2.55)

which is the reason (1 + ξ̃ s
α) appears in various places in (2.52). We also note that the operators

Hcoth, Hcsch and Htanh in (2.52) vary in time along with h(t).

Remark 2.4. Modifying the analysis of [11], one can show that if ζ s and ζ b are injective, then
ηs,phys and ηb,phys are also quasi-periodic functions of the same quasi-periods. Moreover, the
corresponding torus functions η̃s,phys and η̃b,phys can be obtained from η̃s and η̃b by

η̃s,phys(x, t) = η̃s(x + kÃs(x, t), t) and η̃b,phys(x, t) = η̃b(x + kÃb(x, t), t), (2.56)

where Ãs and Ãb satisfy

Ãs(x, t) + ξ̃ s(x + kÃs(x, t), t) = 0 and Ãb(x, t) + ξ̃b(x + kÃb(x, t), t) = 0. (2.57)

In numerical computations, at any given t, one can formulate (2.56) as a nonlinear least-squares
problem and solve it using a Levenberg–Marquardt method [37], which is discussed in the
electronic supplementary material.

Remark 2.5. Since the bottom boundary is stationary, conservation of mass requires that the
mean surface height, which we denote by

μ = 1
(2π )d

∫
Td

η̃s,phys dx1 · · · dxd = 1
(2π )d

∫
Td

η̃s(1 + ξ̃ s
α) dα1 · · · dαd, (2.58)

is a constant in time. Indeed, one finds that μt = 0 by differentiating the second formula of (2.58)
under the integral sign, integrating the term η̃sξ̃ s

αt by parts with respect to α, and using (2.38),
keeping in mind that ξ s

α = 1 + ξ̃ s
α due to (2.53). One usually assumes μ = 0, though for travelling

waves it is convenient to first compute the wave assuming η̂s
0 = 0 and then adjust η̂s

0 and η̂b
0 at the

end to achieve μ = 0.

Remark 2.6. The governing equations (2.52) still hold when the bottom boundary of the fluid
domain is flat: ηb,phys(x) = −hphys. In the usual case that μ = 0, hphys is the mean depth of the fluid
in physical space. Otherwise the mean depth is μ + hphys. From (2.24), we have

hphys = −ηb = −η̂b
0 = h − η̂s

0, (2.59)

which is a constant independent of α and t even though h and η̂s
0 vary in time. Moreover, ξ s is

related to ηs by

ξ s = α + Hcoth[ηs]. (2.60)

Therefore, when the bottom boundary is flat, one only needs to evolve η̃s, ϕ̃s and h.

Remark 2.7. Even though we derive (2.52) in the quasi-periodic setting, these equations still
hold for the periodic problem if we set d= 1 and k= (1). To obtain the governing equations on T,
one just needs to replace the quasi-periodic Hilbert transforms by their periodic counterparts in
(2.52), which can be obtained by changing 〈j, k〉 to j in (2.10). If d> 1, the periodic problem may
be embedded in the quasi-periodic problem by assuming that each of the torus functions in (2.52)
is independent of α2, . . . , αd.
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3. Quasi-periodic travelling waves

(a) Governing equations of quasi-periodic travelling waves
For travelling waves, the system should be translation invariant, so we assume the bottom
boundary is flat. According to remark 2.6, we only need to consider the surface variables in this
case. Thus, to simplify the notation, we drop the superscript ‘s’ in these variables in this section.
Moreover, as discussed in §a, we focus our discussion on the laboratory frame and assume that
there is no background flow.

Since the bottom boundary is flat, ξ , η and ϕ, ψ are related by Hilbert transforms

ξ = α + Hcoth[η], ξα = 1 + Hcoth[ηα], ϕ =Hcoth[ψ], ϕα =Hcoth[ψα]. (3.1)

We assume the wave is travelling from left to right at speed c; therefore, we have

ηphys(x, t) = η
phys
0 (x − ct) and ϕphys(x, t) = ϕ

phys
0 (x − ct). (3.2)

Differentiating both sides of (3.2) with respect to x and t separately, we know that a travelling
solution satisfies

η
phys
t = −cηphys

x and ϕ
phys
t = −cϕphys

x . (3.3)

Substituting the second equation of (2.19) into the first equation of (3.3) and multiplying both
sides of the equation by ξ s

α , we obtain

ηtξα − ξtηα = −cηα . (3.4)

Comparing (3.4) and (2.38), we conclude that a travelling solution satisfies

ψα = cηα (3.5)

in conformal space. Applying the Hilbert transform Hcoth to both sides of (3.5), we obtain

ϕα = c(ξα − 1). (3.6)

Substituting the travelling condition of ϕphys in (3.3) into (2.48) and employing (2.49) to express

ϕ
phys
x in terms of the gradient of Φphys, we obtain that

ϕt =
(
Φ

phys
x + Φ

phys
y η

phys
x

)
(ξt − c) = ϕα

ξα

(
ξα

(
−Hcoth

[
ψα

J

]
+ C1

)
+ ηα

ψα

J
− c

)

= ϕα

ξα

(
ξα

(
−Hcoth

[
ψα

J

]
+ C1

)
+ c

(
ηα

)2

J
− c

)
= ϕα

(
−Hcoth

[
ψα

J

]
+ C1 − cξα

J

)
. (3.7)

Here in the second equality, we use the first equation in (2.19) to rewrite η
phys
x as ηs

α/ξ s
α and

substitute the gradient of Φphys and ξt using (2.34) and (2.45), respectively. In the third equality,
we use (3.5) to replace ψα by cηα . The substitution of (3.5) and (3.7) into (2.50) gives

c
J

(
ϕαξα + ψαηα

)− 1
2J

(
(ϕα)2 + (ψα)2)− gη + τκ + C= 0. (3.8)

Using (3.5) and (3.6) to express ϕα and ψα in terms of ξα and ηα , respectively, we obtain the
governing equation of travelling waves

P
[
c2

2J
+ gη − τκ

]
= 0, (3.9)

where we choose the integration constant C in (3.8) such that P0 acting on the left-hand side of (3.8)
returns zero. Since (3.9) does not depend on time, the solution of (3.9) can be considered as the
initial condition of a travelling wave. From (3.1) and (2.51), we know that J and κ are determined
by η; hence, the unknowns in (3.9) are τ , c and η. Even though we are mainly interested in the
case where η is quasi-periodic, the governing equation (3.9) still holds when η is periodic. Due to
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the projection operator, modifying η by a constant will not influence (3.9); hence, we assume that
P0[η] = 0. In this paper, we focus on travelling waves with even symmetry

η(α) = η(−α). (3.10)

We compute ξ from η using (3.1) and deduce that ξ is odd. Asymmetric travelling waves have
been studied in [62–64] in the periodic setting.

As in the initial value problem, we first solve for η̃ on T
d and then reconstruct η from η̃ using

(2.21). The governing equations of travelling waves on the torus read

R[τ , b, η̃] = P

[
b

2J̃
+ gη̃ − τ κ̃

]
= 0,

ξ̃ =Hcoth[η̃], J̃ = (
1 + ξ̃α

)2 + η̃2
α , κ̃ =

(
1 + ξ̃α

)
η̃αα − η̃α ξ̃αα

J̃3/2
,

(3.11)

where b= c2 and R is called the residual function. We treat the strip width h in conformal space
as a fixed parameter and suppress it in the argument list of R; see remark 3.1 below. Linearizing
(3.11) around the zero solution η̃ = 0, we obtain

bHcoth[δη̃α] − gδη̃ + τδη̃αα = 0, (3.12)

where δη̃ denotes the variation of η̃. Expressing δη̃ in terms of its Fourier series in (3.12), we obtain
the dispersion relation for the linearized problem

b coth(〈j, k〉h)〈j, k〉 − g − τ (〈j, k〉)2 = 0, j ∈Z
d. (3.13)

Since the entries of k are linearly independent over Z, given b and τ , there exist at most two
linearly independent vectors j1, j2 ∈Z

d that satisfy the dispersion relation [34]. For simplicity, we
consider the basic case where d= 2; hence, η possesses two quasi-periods and η̃ is defined on T

2.
Without loss of generality, we also assume that j1 = (1, 0)T, j2 = (0, 1)T and k= (1, k)T, where k is a
positive irrational number.

In summary, we study quasi-periodic travelling waves of the following form:

η(α) = η̃(α, kα) and η̃(α1, α2) =
∑

j1,j2∈Z
η̂j1,j2 ei(j1α1+j2α2). (3.14)

We also assume that η̃ is an even function with zero mean on T
2 in conformal space, which is

consistent with the assumptions on η. Therefore, the Fourier coefficients of η̃ satisfy

η̂0,0 = 0, η̂j1,j2 = η̂−j1,−j2 ∈R. (3.15)

We refer to remark 3.1 below if one wants to obtain solutions with zero mean in physical space.
Under assumptions (3.14) and (3.15), we can study the problem of quasi-periodic travelling waves
in the setting of a bifurcation problem with a two-dimensional kernel spanned by the solutions of
the linearized problem (3.12):

η̃lin(α1, α2) = η̂1,0(eiα1 + e−iα1 ) + η̂0,1(eiα2 + e−iα2 )

blin = c2
lin = g(k2 − 1)

k(k coth(h) − coth(kh))
, τlin = g(k coth(kh) − coth(h))

k(k coth(h) − coth(kh))
.

⎫⎪⎬⎪⎭ (3.16)

We refer to η̂1,0 and η̂0,1 as the base Fourier coefficients and the corresponding Fourier modes
e±iα1 , e±iα2 as the base Fourier modes. Nonlinear solutions can be considered as bifurcations
from the zero-amplitude solution. We usually choose the base Fourier coefficients as bifurcation
parameters and fix them at non-zero values to ensure that the solutions we obtain are genuinely
quasi-periodic. In finite depth, h is a third parameter.

As shown in [65], large-amplitude quasi-periodic travelling solutions can often be found
by searching for secondary bifurcations from finite-amplitude periodic travelling waves. The
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linearization of (3.11) around a periodic solution reads

δR= P
[

δb

2J̃
− 1

2J̃2
bδJ̃ + gδη̃ − δτ κ̃ − τδκ̃

]
,

δξ̃α =Hcoth[δη̃α], δJ̃ = 2((1 + ξ̃α)δξ̃α + η̃αδη̃α)

and δκ̃ = −3
2
κ̃

δJ̃

J̃
+ 1

J̃3/2

(
δξ̃αη̃αα + (1 + ξ̃α)δη̃αα − δη̃αξ̃αα − η̃αδξ̃αα

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.17)

Let q denote the triple (τ , b, η̃) and let qper(s) denote a one-parameter family of periodic travelling
waves embedded in the quasi-periodic framework by assuming η̃(α1, α2) is independent of α2.
Here, s is an amplitude parameter (such as η̂1,0), and, for simplicity, we fix τ and the strip width
h in conformal space to be independent of s. Each solution q= qper(s) in the family satisfies
R(q) = 0. In [65], an algorithm is presented for locating bifurcation points by using a quadratically
convergent root bracketing technique [66] to locate zeros of the signed smallest singular value

χ (s) = sgn
(

det
(
J qua(s)

))
σmin

(
J qua(s)

)
. (3.18)

Here, J qua(s) is a Fourier truncation of the restricted Jacobian obtained from the linearization
(3.17) applied only in quasi-periodic perturbation directions of the form δq= (0, 0, δη̃qua), where
δη̃qua has two-dimensional Fourier modes δ̂η̃

qua
j1,j2 that are all zero unless j2 ∈ {1, −1}. This

construction is based on Bloch–Fourier perturbation theory over periodic potentials [67]. At
zeros of χ (s), J qua(s) has a kernel that provides a bifurcation direction δη̃qua that allows us to
switch from the primary periodic branch to the secondary quasi-periodic branch of travelling
waves. We use η̃per + εδη̃qua, with ε chosen empirically, as an initial guess for solutions on this
secondary branch, and then use numerical continuation to follow the branch beyond the realm
of linearization about the primary branch. Further discussion of the analysis and computation of
the bifurcation problem in the infinite-depth setting is given in [65].

Remark 3.1. We have simplified the computation of quasi-periodic traveling waves via the
conformal mapping formulation by setting η̂0,0 = 0 and fixing the strip width h in conformal
space. By (2.59), this causes the vertical position of the bottom boundary in physical space to
be ηb = −hphys = −h. However, the mean surface height μ in (2.58) is generally non-zero when
η̂0,0 = 0, so the physical fluid depth is μ + h. If desired, after computing a solution with η̂0,0 = 0,
one can compute μ via (2.58) and shift the vertical position of both the free surface and bottom
boundary by −μ in physical space. This will not change the parameter h, so it will still be a
travelling wave. When μ and hphys are computed for the new wave, the former will be zero and
the latter will be the physical fluid depth. This shifted solution satisfies

η̂0,0 = −P0[
(
P[η̃]

)
(1 + ξ̃α)]. (3.19)

Another option is to prescribe μ = 0, hphys, η̂1,0 and η̂0,1 and solve for η̂0,0 and h along with
the remaining Fourier modes η̂j1,j2 using the Levenberg–Marquardt solver. This would entail
including h= hphys + η̂0,0 from (2.59) as well as (3.19) as additional constraints in (3.11).

(b) Weakly nonlinear approximations of quasi-periodic travelling waves
Although the primary focus of this work is on computing quasi-periodic solutions of the fully
nonlinear time-dependent and travelling water wave equations in finite depth, it is instructive
to investigate how small divisors arise in weakly nonlinear approximations of small-amplitude
quasi-periodic travelling waves. In previous work, it has been necessary to treat such small
divisors carefully using Nash–Moser theory [59,68] to prove the existence of temporally quasi-
periodic water waves [18–22]. Here we focus on spatial quasi-periodicity.

As discussed in §3a, the travelling solutions bifurcating from the zero solution form a three-
parameter family with bifurcation parameters η̂1,0, η̂0,1 and h. In the weakly nonlinear model, we
treat h as a constant and set these two Fourier coefficients to be fixed, non-zero multiples of an
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amplitude parameter ε and aim to express b, τ and the other Fourier coefficients of η̃ in terms of
them. Let us consider the following asymptotic expansions of b, τ and η̃

b= b(0) + εb(1) + ε2b(2) + ε3b(3) + O(ε4),

τ = τ (0) + ετ (1) + ε2τ (2) + ε3τ (3) + O(ε4)

and η̃ = εη̃(1) + ε2η̃(2) + ε3η̃(3) + O(ε4).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.20)

Substituting (3.20) into (3.11) and eliminating the coefficients of εn for n= 0, 1, 2, we obtain

O(1): P

[
1
2 b

(0)

]
= 0,

O(ε): P

[
1
2 b

(1) + gη̃(1)−b(0)Hcoth
[
η̃

(1)
α

]
−τ (0)η̃

(1)
αα

]
= 0

and O(ε2): P
[

1
2 b

(2) + gη̃(2)−b(0)Hcoth
[
η̃

(2)
α

]
−τ (0)η̃

(2)
αα−b(1)Hcoth

[
η̃

(1)
α

]
−τ (1)η̃

(1)
αα

+ b(0)
(

3
2

(
Hcoth

[
η̃

(1)
α

])2− 1
2

(
η̃

(1)
α

)2
)

+ τ (0)
(

2Hcoth
[
η̃

(1)
α

]
η̃

(1)
αα + Hcoth

[
η̃

(1)
αα

]
η̃

(1)
α

)]
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.21)

Since the constant term in (3.21) vanishes under the projection, the second equation is essentially
the same as the linearization (3.12); therefore, we have

η̃(1) = η̃lin = η̂1,0 eiα1 + η̂0,1 eiα2 + c.c., b(0) = blin, τ (0) = τlin. (3.22)

Using the property of the projection operator and the assumption that P0[η̃] = 0, we rewrite the
third equation in (3.21) as

gη̃(2) − b(0)Hcoth[η̃(2)
α

]− τ (0)η̃
(2)
αα︸ ︷︷ ︸

A(2)

−b(1)Hcoth[η̃(1)
α

]− τ (1)η̃
(1)
αα︸ ︷︷ ︸

B(2)

= P
[
b(0)

(
−3

2
(Hcoth[η̃(1)

α

]
)2 + 1

2

(
η̃

(1)
α

)2
)

− τ (0)(2Hcoth[η̃(1)
α

]
η̃

(1)
αα + Hcoth[η̃(1)

αα

]
η̃

(1)
α )

]
︸ ︷︷ ︸

C(2)

. (3.23)

Substituting η̃(1), b̃(0) and τ̃ (0) into C(2) using (3.22), we obtain

C(2) = Ĉ(2)
2,0 ei(2α1) + Ĉ(2)

0,2 ei(2α2) + Ĉ(2)
1,1 ei(α1+α2) + Ĉ(2)

1,−1 ei(α1−α2) + c.c., (3.24)

where the Fourier coefficients of C(2) are

Ĉ(2)
2,0 = gη̂2

1,0
3(k2 + 1) coth2(h) − 6k coth(kh) coth(h) + k2 − 1

2k(coth(kh) − k coth(h))
,

Ĉ(2)
0,2 = −gkη̂2

0,1
3(k2 + 1) coth2(kh) − 6k coth(kh) coth(h) − k2 + 1

2(coth(kh) − k coth(h))
,

Ĉ(2)
1,1 = −gη̂1,0η̂0,1

(k2 + 2k) coth2(kh) − (2k + 1) coth2(h) + (−k2 + 1) coth(kh) coth(h) − k2 + 1
coth(kh) − k coth(h)

and Ĉ(2)
1,−1 = gη̂1,0η̂0,1

(k2 − 2k) coth2(kh) + (2k − 1) coth2(h) + (k2 − 1) coth(kh) coth(h) − k2 + 1
coth(kh) − k coth(h)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.25)

We observe that A(2) is linear with respect to η̃(2) and the Fourier coefficients of A(2) can be
expressed as

Â(2)
j1,j2

= Ŝj1,j2 η̂
(2)
j1,j2

, (3.26)

where the symbol Ŝj1,j2 is defined by

Ŝj1,j2 = g−b(0) coth((j1 + kj2)h)(j1+kj2) + τ (0)(j1+kj2)2

= g
k

(
k + k2−1

coth(kh)−k coth(h) coth((j1+kj2)h)(j1+kj2)+ coth(h)−k coth(kh)
coth(kh)−k coth(h) (j1 + kj2)2

)
. (3.27)
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Since Ŝ±1,0 and Ŝ0,±1 are both zero according to the definition, we know that Â(2)
±1,0 = Â(2)

0,±1 = 0.

We also observe that B(2) is linear with respect to η̃(1) with Fourier coefficients

B̂(2)
j1,j2

= Q̂(1)
j1,j2

η̂
(1)
j1,j2

and Q̂(n)
j1,j2

= −b(n) coth((j1 + kj2)h)(j1 + kj2) + τ (n)(j1 + kj2)2, (3.28)

where (j1, j2) = (±1, 0), (0, ±1) according to (3.22). Combining (3.25), (3.26) and (3.28), we obtain

b(1) = τ (1) = 0, η̂
(2)
j1,j2

=

⎧⎪⎨⎪⎩
C(2)
j1,j2

Ŝj1,j2

, |j1| + |j2| = 2,

0, |j1| + |j2| �= 2.
(3.29)

One can obtain the asymptotic expansions of quasi-periodic travelling waves in the case of
deep water by letting h go to infinity. In this case, the expressions of η̃(1), b(0) and τ (0) read

η̃(1) = η̂1,0 eiα1 + η̂0,1 eiα2 + c.c., b(0) = g + g
k

, τ (0) = g
k

(3.30)

and the expressions of η̃(2), b(1) and τ (1) read

η̃(2) = η̂
(2)
2,0 ei(2α1) + η̂

(2)
0,2 ei(2α2) + η̂

(2)
1,1 ei(α1+α2) + η̂

(2)
1,−1 ei(α1−α2) + c.c., b(1) = τ (1) = 0,

η̂
(2)
2,0 = −gη̂2

1,0
(2k − 1)/k

Ŝ2,0
, η̂

(2)
0,2 = gη̂2

0,1
k(k − 2)

Ŝ0,2
,

η̂
(2)
1,1 = −gη̂1,0η̂0,1

(k + 1)

Ŝ1,1
, η̂

(2)
1,−1 = −gη̂1,0η̂0,1

(k + 1)

Ŝ1,−1
, (3.31)

where

Ŝj1,j2 = g
k

(|j1 + kj2| − k)(|j1 + kj2| − 1). (3.32)

Even though we stop at the second order in the weakly nonlinear model, one can continue
computing higher-order terms by induction. Suppose that we have obtained terms of order n − 1
for η̃ and terms of order n − 2 for b and τ . Eliminating the coefficients of εn in (3.11), we find that

gη̃(n) − b(0)Hcoth[η̃(n)
α

]− τ (0)η̃
(n)
αα − b(n−1)Hcoth[η̃(1)

α

]− τ (n−1)η̃
(1)
αα =C(n), (3.33)

where C(n) depends on {b(j)}0≤j≤n−2, {τ (j)}0≤j≤n−2 and {η̃(j)}0≤j≤n−1. Comparing the Fourier
coefficients of both sides of the above equation, we have

Ŝj1,j2 η̂
(n)
j1,j2

+ Q̂(n−1)
j1,j2

η̂
(1)
j1,j2

= Ĉ(n)
j1,j2

, (3.34)

where Ŝj1,j2 and Q̂(n−1)
j1,j2

are given in (3.27) and (3.28), respectively. Eventually we can express b(n−1),

τ (n−1) and the Fourier coefficients of η̃(n) as follows,

η̂
(n)
j1,j2

=
Ĉ(n)
j1,j2

Ŝj1,j2

, (j1, j2) �= (±1, 0), (0, ±1)

b(n−1) =
(Ĉ(n)

0,1/η̂0,1) − k2(Ĉ(n)
1,0/η̂1,0)

k(k coth(h) − coth(kh))
,

and τ (n−1) =
coth(h)(Ĉ(n)

0,1/η̂0,1) − k coth(kh)(Ĉ(n)
1,0/η̂1,0)

k(k coth(h) − coth(kh))
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.35)

Note that the Fourier coefficients of η̃(n) are obtained through a division by Ŝj1,j2 for (j1, j2) �=
(±1, 0), (0, ±1). If the Ŝj1,j2 can become arbitrarily small, the corresponding terms η̂

(n)
j1,j2

may be
strongly amplified, calling into question the nature of the expansion (3.20). This is known as
a small divisor problem. In the case of deep water, it is clear from (3.32) that some of the
Ŝj1,j2 approach zero as |j1|, |j2| grow without bound. Speculating on the possibilities, it may be
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that (3.20) becomes an asymptotic series provided that k is sufficiently irrational, satisfying a
diophantine condition [56]

|k − j1/j2| >C|j2|−ν , j1 ∈Z, j2 ∈Z\{0}, (3.36)

where C is a positive constant and ν > 2. But it may also be that exact mathematical solutions only
exist for sufficiently small values of ε in a totally disconnected Cantor-like set [68], even under the
assumption (3.36). More research is needed to resolve these questions.

The story is even more complicated in the case where the fluid is of finite depth because the
expression for Ŝj1,j2 involves the hyperbolic cotangent function. But this formula becomes simpler
again in the case of shallow water, where h is small. Expanding coth(h) and coth(kh) in (3.27) in a
Laurent expansion about h= 0, we obtain

Ŝj1,j2 = gh4

45
(|j1 + kj2|2 − k2)(|j1 + kj2|2 − 1) + O(h6). (3.37)

We note that Ŝj1,j2 can be very small due to the factor of h4 in (3.37). Thus, in the shallow water
regime, the amplitudes of quasi-periodic travelling waves bifurcating from the zero-amplitude
solution must be small, with ε at most O(h4), if weakly nonlinear theory is to predict their
behaviour.

4. Numerical methods and results
As in §3 above, we focus our discussion on quasi-periodic functions with two quasi-periods.
All computation will be performed with respect to torus functions on T

2; the one-dimensional
quasi-periodic functions will be reconstructed from the torus functions using (2.5). Let f (α) be
a quasi-periodic function with two quasi-periods and let f̃ denote the corresponding periodic
function on T

2,

f (α) = f̃ (α, kα), f̃ (α1, α2) =
∑

j1,j2∈Z
f̂j1,j2 ei(j1α1+j2α2), (α1, α2) ∈T

2. (4.1)

Following [10,11], we adopt a pseudo-spectral method and represent f̃ in two ways

(1) Via the values of f̃ on a uniform M1 × M2 grid on the torus T2,

f̃m1,m2 = f̃
(

2πm1

M1
,

2πm2

M2

)
, 0 ≤m1 <M1, 0 ≤m2 <M2. (4.2)

(2) Via the truncated two-dimensional Fourier series of f̃ , with Fourier coefficients given by

f̂j1,j2 = 1
M2

M2−1∑
m2=0

⎛⎝ 1
M1

M1−1∑
m1=0

f̃m1,m2 e−2π ij1m1/M1

⎞⎠ e−2π ij2m2/M2 , (4.3)

where 0 ≤ j1 ≤M1/2, −M2/2 < j2 ≤M2/2.

We use the ‘r2c’ and ’c2r’ version of the 2d FFTW library to rapidly transform between these two
forms. Products, powers and quotients in (2.52) and (3.11) are evaluated point-wise on the grid
while derivatives and Hilbert transforms are computed in Fourier space via definition 2.2 and 2.3.
In the scope of this paper, we choose k= 1/

√
2 for all numerical examples.

(a) Time evolution of spatially quasi-periodic waves of finite depth
To compute the time evolution of spatially quasi-periodic waves, we discretize (2.52) on T

2

and use the fifth-order explicit Runge–Kutta method of Dormand & Prince [11,69]. The initial
condition of the water wave is given in physical space, which is more natural in practice, and we
compute the conformal mapping to transform the initial condition to conformal space using the
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method described in the electronic supplementary material. The numerical examples discussed
below are gravity waves but our numerical method also applies to the case of non-zero surface
tension.

Figure 2 shows the time evolution of a free surface wave that is initially flat and develops quasi-
periodic dynamics in the presence of a background flow and a quasi-periodic bottom boundary.
In physical space, the bottom boundary is parameterized by

ηb,phys(x) = −1 + 0.2 cos(x) + 0.2 cos
(

x√
2

)
(4.4)

and the mean velocity of the background flow in (2.28) is U = 1. In the computation, we use
M1 =M2 = 512 and compute the time evolution of the wave from t= 0 to t= 3 with time steps
�t= 10−5. In (a), the black line plots the bottom boundary and the blue line plots the flat free
surface at t= 0. To better distinguish the shape of the free surface at different times, we add an
upward spatial shift to each curve. The time difference between two adjacent curves is 0.06, and
we plot

ηs(α, tn) + 10tn
3

, tn = 0.06n, n= 0, 1, . . . , 50. (4.5)

Due to the background flow and the quasi-periodic bottom boundary, the free surface wave
moves from left to right and forms wave crests ahead of the peaks of the bottom boundary, which
deflects the fluid upward. Panels (b) and (c) show snapshots of the time evolution of the free
surface from t= 0 to t= 1.5 and from t= 1.5 to t= 3 separately without the upward shift given in
(4.5); the time difference between two adjacent curves in both panels is 0.15.

In figure 2d, we further evolve the quasi-periodic wave from t= 3 to t= 3.5 using the same
512 × 512 spatial grid on the torus and plot the free surface at t= 3.5 with a red line. We find that
the wave overturns near ξ = π at t= 3.308. However, the quasi-periodic wave is under-resolved
by t= 3.5, with gridpoints spread out enough to see discrete line segments in the plot near ξ =
π and small oscillations visible near ξ = π and ξ = 7π . In the infinite depth case [11], refining
the grid to 4096 × 4096 was sufficient to resolve an overturning spatially quasi-periodic wave
so that the Fourier modes decay to 10−12 at all times. Here, rather than refine the mesh beyond
512 × 512, we compute the time evolution of a periodic wave under the same initial condition and
background flow, but with a periodic bottom boundary

ηb,phys(x) = −1 + 0.2 cos(x) + 0.2 cos
(

5x
7

)
, (4.6)

where 5/7 is a rational approximation of k= 1/
√

2. We use the spatial resolution M= 32 768 for
the periodic calculation (which employs 16 385 Fourier modes). The free surface of the periodic
wave at t= 3.5 is plotted with a blue line in (d). We observe that the two waves in (d) resemble
each other, but are not exactly the same, due to the different bottom boundaries. They will differ
much more for larger values of |x|, where cos(x/

√
2) is further from cos(5x/7). The periodic wave

overturns near ξ = π at time t= 3.288. We show the time evolution of the periodic wave near the
overturning point from t= 3 to t= 3.5 in (e), where the time difference between adjacent curves is
�t= 0.1.

Figure 3 shows the time evolution of an initially periodic free surface wave in the presence of
a periodic bottom boundary whose spatial period is irrationally related to the initial condition. In
physical space, the initial free surface and the bottom boundary are given by

η
s,phys
0 (x) = 0.2 cos(x) and ηb,phys(x) = −1 + 0.2 cos

(
x√
2

)
. (4.7)

In (a), the initial free surface and the bottom boundary are plotted with blue and black
curves, respectively. As shown in the figure, they are both periodic and the bottom boundary’s
wavelength is longer than that of the free surface. We use M1 =M2 = 256 in the computation and
evolve the water wave from t= 0 to t= 10 with time steps �t= 2 × 10−5. At t= 0, the fluid is
at rest with zero velocity potential. In (a), we plot the time evolution of the free surface with an
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Figure 2. Panels (a–c) show the time evolution from t = 0 to t = 3 of an initially flat free surface in the presence of a
background flow and a quasi-periodic bottom boundary. In (a), the bottom boundary is plotted in black and we added an
upward spatial shift, given by (4.5), to separate the curves from each other. Panels (b) and (c) show details of the free surface
without such a shift. In (d), we evolve this solution further, to t = 3.5, and compare it with a periodic calculation with a bottom
boundary of similar shape over the spatial range shown. Both waves overturn near ξ = π and t = 3.3. The evolution of the
overturning periodic wave from t = 3 to t = 3.5 is shown in (e).

upward spatial shift

ηs(α, tn) + 0.75tn, tn = 0.2n, n= 0, 1, . . . , 50. (4.8)

The free surface flattens due to the force of gravity and rises again due to inertia, which is similar
to the oscillation of a standing water wave [35,36]. One can observe that the crests and troughs
of the surface wave are not symmetric for t> 0 except at x= 0 due to the even symmetry of the
initial condition. In (b), (c) and (d), we plot snapshots of the time evolution of the free surface
without the upward shift (4.8) from t= 0 to t= 3.2; from t= 3.2 to t= 7; and from t= 7 to t= 10.
The time difference between two adjacent curves is 0.2. One can observe that the wave oscillates
up and down like a standing wave. However, as a consequence of the quasi-periodic interactions
between the surface wave and the bottom boundary, the heights of different crests are different at
any given time.

(b) Spatially quasi-periodic travelling waves
We formulate the travelling wave problem as a nonlinear least-squares problem, which we solve
using a variant of the Levenberg–Marquardt algorithm [10,37,54]. In §3a, we introduced the
residual function R in (3.11), which depends on τ , b, η̃, and demonstrated that the solutions of the
travelling wave problem are the solutions of R[τ , b, η̃] = 0. In the computation, we consider τ , b
and the Fourier coefficients of η̃ as unknowns, denoted η̂, and define the following scalar objective
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t = 0 t = 3.2

t = 3.2 t = 7

t = 7 t = 10
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(d)
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Figure 3. Time evolution from t = 0 to t = 10 of an initially periodic free surface evolving from rest, with no background flow,
over a periodic bottom boundary whose spatial period is irrationally related to the initial period of the free surface. Panel (a)
shows the free surface at different times with the upward shift (4.8); the bottom boundary is plotted in black. Panels (b), (c)
and (d) show details of the free surface evolution without the shift.

function

F [τ , b, η̂] := 1
8π2

∫
T2

R2[τ , b, η̂] dα1 dα2. (4.9)

Note that solving (3.11) is equivalent to finding a zero of the objective function F [τ , b, η̂]. For
the unknown η̂, we only vary the leading Fourier coefficients η̂j1,j2 with |j1| ≤N1 <M1/2, |j2| ≤
N2 <M2/2 and set the other Fourier coefficients to zero. According to the assumption (3.15), we
also set η̂0,0 = 0 and require that the Fourier coefficients η̂j1,j2 are real and satisfy η̂−j1,−j2 = η̂j1,j2 .
Consequently, the number of independent leading Fourier coefficients is Ntot =N1(2N2 + 1) +
N2. As discussed in §3a, we choose η̂1,0, η̂0,1 and h as bifurcation parameters when computing
quasi-periodic travelling solutions bifurcating from the zero-amplitude solution and fix them at
non-zero amplitudes in the minimization of F . Therefore, there are Ntot parameters to compute,
which are stored in a vector p as follows:

p1 = τ , p2 = η̂1,1, p3 = b, p4 = η̂1,−1, p5 = η̂0,2, . . . , pNtot = η̂1,−N2 . (4.10)

The Fourier modes have been organized in a spiral fashion so that low frequency modes appear
first in the list and η̂1,0, η̂0,1 have been replaced by τ and b; see [10] for details. Our goal is to find p
given η̂1,0 and η̂0,1 such that F [p; η̂1,0, η̂0,1] = 0, where we have re-ordered the arguments of F and
R in (4.9). In the computation, the function R is evaluated at M1 × M2 grid points, hence there are
M1M2 equations, which are more than the number of unknowns. For this reason, the nonlinear
least-squares problem is overdetermined.

The objective function F is computed from R by the trapezoidal rule approximation over T2,
which is spectrally accurate,

f (p) = 1
2
r(p)Tr(p) ≈F [p; η̂1,0, η̂0,1],

rm(p) = R[p; η̂1,0, η̂0,1](αm1 , αm2 )√
M1M2

,

(
m= 1 + m1 + M1m2

αmi = 2πmi
Mi

)
, 0 ≤mi <Mi. (4.11)

The parameters pj are chosen to minimize f (p) using the Levenberg–Marquardt method [37,54].
The method requires a Jacobian matrix ∂rm/∂pj, which we compute by solving the variational
equations (3.17). We have ∂rm/∂pj = δR(αm1 , αm2 )/

√
M1M2, where m= 1 + m1 + M1m2 and the jth

column of the Jacobian corresponds to setting δpj in (4.10) to 1 and the others to 0 depending on
the perturbation direction: δτ , δb or δη̂j1,j2 .

We compute quasi-periodic travelling solutions that bifurcate from the zero solution using
Nx =Ny = 75 and Mx =My = 200. We fix η̂1,0 = η̂0,1 = 10−5, choose h to be the continuation
parameter, and decrease h from 3 to 0.5 with �h= 0.01 to obtain a family of quasi-periodic
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Figure 4. Quasi-periodic travelling gravity-capillary waves bifurcating from the zero solution. (a) Surface elevation function
of two solutions with h= 0.5 (dashed red line) and h= 3.0 (solid black line). (b) Amplitudes of Fourier coefficients η̂2,0, η̂0,2,
η̂1,1, η̂1,−1 of quasi-periodic travelling solutions for which η̂1,0 and η̂0,1 are fixed at 10−5. (c) Absolute value of the corresponding
divisors Ŝj1 ,j2 defined by (3.27) in the weakly nonlinear model (3.31). Here, we solve (3.11) by minimizing f (p) in (4.11) and check
whether the solution behaves as predicted by (3.31). Panels (d) and (e) show |η̂j1 ,j2 | versus |Ŝj1 ,j2 | for 2≤ |j1| + |j2| ≤ 75 in
the cases where h= 0.5 and h= 3, respectively.

solutions. In figure 4a, we plot the wave profile of the free surface for solutions at h= 0.5 and
h= 3. The difference between these two solutions is small because they are both small-amplitude
bifurcations from the zero solution for which we imposed the same amplitude parameters η̂1,0 and
η̂0,1 at linear order. We stayed close to the linear regime in this example to investigate whether
travelling solutions of the fully nonlinear equations, which we compute using the Levenberg–
Marquardt method, behave as predicted by weakly nonlinear theory. While the wave profiles are
close to one another, the values of h (3 and 0.5) and τ (1.23088845108 and 0.0812490184995) differ
substantially for the two solutions.

In figure 4b, we plot the absolute value of the leading Fourier coefficients |η̂2,0|, |η̂0,2|, |η̂1,1|
and |η̂1,−1| of the computed solutions as functions of h, holding η̂1,0 and η̂0,1 fixed at 10−5. These
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Fourier coefficients decrease as h increases. In (c), we plot the absolute value of the divisors Ŝj1,j2
defined in (3.27) corresponding to these four Fourier coefficients, which decrease as h decreases.
The behaviour of the Fourier coefficients and Ŝj1,j2 is consistent with the weakly nonlinear
approximations (3.31), where the Fourier coefficients are obtained through division by Ŝj1,j2 . As a
result, smaller values of Ŝj1,j2 lead to larger Fourier coefficients. Note that we are checking whether
travelling solutions of the Euler equations (3.11) obtained by minimizing f (p) ≈F [p; η̂1,0, η̂0,1] in
(4.11) via the Levenberg–Marquardt method behave as predicted by the weakly nonlinear model
(3.31); we did not solve (3.31) directly.

Figure 4d,e demonstrates the relationship between |η̂j1,j2 | and |Ŝj1,j2 | with 2 ≤ |j1| + |j2| ≤ 75 for
travelling solutions at h= 0.5 and h= 3, respectively. Since the largest Fourier coefficients are fixed
at 10−5, one expects roundoff errors around 10−20. But instead the ‘roundoff floor’, visible in both
panels, appears to grow linearly as |Ŝj1,j2 | decreases. This suggests that roundoff errors in the
Levenberg–Marquardt method are amplified by the reciprocals of the divisors Ŝj1,j2 even though
this is not a weakly nonlinear calculation. The ‘active’ modes in which |η̂j1,j2 | extends above
the roundoff floor appear to be well-resolved. The plots look nearly identical if we refine the
calculation, keeping Nx =Ny = 75 but increasing Mx and My from 200 to 300. In fact, we plotted
the data from this finer mesh in (d) and (e). In (e), when h= 3, there are just a few active modes η̂j1,j2 ,
and they all correspond to low frequency modes with 2 ≤ |j1| + |j2| ≤ 5. But in (d), when h= 0.5,
there are many active modes of both small and intermediate frequency, plotted with red and black
markers, respectively. This is consistent with (3.37) and (c), where the small divisors from weakly
nonlinear theory decrease as h decreases. The fixed values η̂1,0 = η̂0,1 = 10−5 we selected for this
calculation appear to be small enough when h= 3 that we could have computed the solution by
weakly nonlinear theory, but large enough at h= 0.5 that it was necessary to solve the problem by
the Levenberg–Marquardt approach.

Next, we search for quasi-periodic bifurcations from finite-amplitude periodic travelling
waves of finite depth. We use a new procedure, described in detail for the case of deep water
in [65], to locate bifurcation points. Specifically, we use the signed smallest singular value χ (s) of
the Jacobian J qua(s), as in (3.18), as a bifurcation ‘test function’ that changes sign at bifurcation
points. When a zero of χ (s) is found, the kernel of the Jacobian J qua(s) of (3.18) also furnishes
a search direction δη̃qua for the quasi-periodic branch. We use η̃per + εδη̃qua with an empirically
chosen value of ε as the initial guess for the Levenberg–Marquardt solver. We then use numerical
continuation to follow this branch beyond the realm of linearization about the periodic travelling
wave. Instead of using η̂1,0, η̂0,1 and h as continuation parameters, we use τ , h and the Fourier
mode η̂0,1. For simplicity, we hold τ and h fixed and just vary the Fourier mode to obtain a
one-parameter family of quasi-periodic solutions.

Figures 5 and 6 show two quasi-periodic gravity-capillary waves bifurcating from a branch
of periodic travelling waves. The fluid depth in conformal space is h= 0.1. We set τ =
0.00327672209262 so that the first Fourier mode of the periodic waves resonates with the fifth
Fourier mode, which corresponds to solutions of the Wilton ripple problem [30,33,70]. For the
periodic travelling wave, we set M= 300, N = 100 and use s= η̂1 as the continuation parameter.
The one-dimensional waves are computed on T and embedded in T

2 when searching for
bifurcations, so that η̂1 becomes η̂1,0. We computed periodic waves with amplitude s ranging
from 10−5 to 2 × 10−4 with �s= 10−5. By tracking the sign of χ (s), we find out that there is a
zero of χ (s) when s belongs to intervals [10−5, 2 × 10−5], [4 × 10−5, 5 × 10−5], [7 × 10−5, 8 × 10−5],
[1.1 × 10−4, 1.2 × 10−4] and [1.7 × 10−4, 1.8 × 10−4]. We focus our discussion on the first and last
intervals and locate the zeros of χ (s) in these intervals, which are the bifurcation points, using the
numerical algorithm described in [65]. In double precision, the zeros and corresponding values
of χ are

s1 = 1.83810709940 × 10−5, χ (s1) = −7.8 × 10−15

and s2 = 1.72625902886 × 10−4, χ (s2) = 4.8 × 10−15.

⎫⎬⎭ (4.12)
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Figure 5. Quasi-periodic bifurcation from a periodic travelling gravity-capillary wave. Panel (a) shows the periodic travelling
wavewhere a bifurcationwas found and the largest-amplitude solutionwe computed on the quasi-periodic bifurcation branch.
Thedottedblack line corresponds to the periodicwave and the red line corresponds to the quasi-periodicwave. Panels (b) and (c)
show contour plots of the torus functions of the periodic wave and the quasi-periodic wave, respectively. The one-dimensional
quasi-periodic wave in (a) is extracted from the corresponding torus function along the characteristic lines of slope k = 1/

√
2,

plotted with red dashed lines in (c).

The periodic solutions at s1 and s2 are plotted with dotted black lines in figures 5a and 6a,
respectively. These periodic solutions demonstrate the nonlinear interaction of Fourier modes
of different wavelengths. Unlike the crests of sinusoidal waves, we observe small ripples at the
wave peaks of the periodic wave at s1. As the amplitude of the periodic solution increases, this
nonlinear feature is more pronounced. For the periodic solution at s2, near x= 2πn for n ∈Z, there
is a flat plateau with wave peaks shifted to the edges of the plateau, forming an interesting ‘cat
ears’ structure. These nonlinear features at the wave crests can be attributed to the effect of the
capillary force. In figures 5b and 6b, we show contour plots of torus functions of these periodic
travelling waves. We observe that the width of the yellow region is larger for the higher-amplitude
periodic wave; in correspondence, this wave possesses wider wave crests.

We compute secondary quasi-periodic bifurcation branches that intersect the primary periodic
branch at s1 and s2 and show the corresponding results in figures 5 and 6, respectively. In
both computations, we set Mx = 300,My = 150,Nx = 100,Ny = 50 and use η̂0,1 as the continuation
parameter. We follow the two quasi-periodic branches until η̂0,1 = 7 × 10−5 and η̂0,1 = 1.1 ×
10−4, respectively; the corresponding quasi-periodic travelling waves are plotted with red lines
in figures 5a and 6a. The objective function is minimized to 2.14 × 10−27 and 5.03 × 10−28,
respectively, for these solutions. In figure 5a, the oscillations at the troughs of the quasi-periodic
wave are ahead of the ones of the periodic wave near ξ = 3π , 5π , 7π , 11π and are behind near
ξ = π , which demonstrates the quasi-periodic feature of the secondary bifurcation.

We also observe that the amplitude of the quasi-periodic wave in figure 5a is noticeably larger
than the periodic wave due to the activation of Fourier modes in the quasi-periodic direction.
In figures 5c and 6c, we show contour plots of the torus functions of the quasi-periodic travelling
waves in (a). Unlike the periodic solution, the quasi-periodic solution depends on α2. For example,
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Figure 6. Quasi-periodic bifurcation from a larger-amplitude periodic travelling gravity-capillary wave. The panels show the
same information as in figure 5.

one can see the variation of the yellow and blue regions in the α2 direction. Moreover, this
variation is rather oscillatory in figure 5, which adds to the difficulty of computing higher-
amplitude quasi-periodic waves on the bifurcation branch. The one-dimensional quasi-periodic
waves are obtained by evaluating the corresponding torus functions along the red dashed line
of slope 1/

√
2. In figures 5a and 6a, there will be crests if the dashed line in (c) passes through

the yellow region and troughs if it passes through the blue region. Due to the variation in yellow
region, the widths of the crests of the quasi-periodic wave are no longer constant. For example,
in figure 6a, the crests of the quasi-periodic wave are wider than those of the periodic wave near
ξ = 6π , 8π and narrower near ξ = 4π , 10π .

5. Conclusion
In this paper, we have presented a numerical study of two-dimensional finite-depth free surface
waves in the spatially quasi-periodic setting. Specifically, we have studied both the initial value
and travelling wave problems. For the initial value problem, we derived the governing equations
of water waves in the presence of a background flow and a non-flat bottom boundary in
conformal space. As noted in remark 2.7, the derivation is valid in both the quasi-periodic and
periodic settings. Motivated by the experiments of Torres et al. [29] studying spatially quasi-
periodic surface waves in the presence of a quasi-periodic bottom boundary, we computed the
time evolution of an initially flat surface with a background flow over a quasi-periodic bottom
boundary. We also find that the waves develop quasi-periodic patterns in which the distance
between adjacent wave peaks is not constant.

Next, we computed spatially quasi-periodic travelling waves that bifurcate from the zero-
amplitude wave or from finite-amplitude periodic travelling waves. Motivated by observations in
[10,65] that the Fourier coefficients of quasi-periodic travelling waves decay slower along certain
directions, we derived the weakly nonlinear equations governing small-amplitude quasi-periodic
travelling waves in §3b and found that there is a divisor Ŝj1,j2 in the formula for the Fourier
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coefficients η̂j1,j2 of the weakly nonlinear solutions. For example, in the case of deep water, this
divisor reads

Ŝj1,j2 = g
k

(|j1 + kj2| − k)(|j1 + kj2| − 1). (5.1)

Due to the unboundedness of 1/Ŝj1,j2 , the Fourier coefficients along directions |j1 + kj2| − k= 0
and |j1 + kj2| − 1 = 0 are expected to decay slower than in other directions. We also study these
divisors in the case of shallow water and find that weakly nonlinear theory breaks down faster
when h is smaller due to the factor of h4 in the formula (3.37) for Ŝj1,j2 .

In the current work, we assume that the bottom boundary remains fixed in time. In the future,
we plan to further extend our method to study quasi-periodic flows with a free surface over a
moving bottom boundary. In the case of periodic water waves, this has been studied in [47,71].
We also plan to analyse the linear stability of periodic travelling waves [72–75] and investigate
the long-time dynamics of travelling waves under unstable subharmonic perturbations. In the
quasi-periodic setting, we are able to compute the exact time evolution of these perturbed waves
instead of their linearized approximations [1]. We are also interested in developing numerical
methods, such as the transformed field expansion method [76–78], to study the dynamics of
these waves in three dimensions where the conformal mapping method no longer applies. On
the theoretical side, a rigorous proof of the existence of quasi-periodic travelling waves is still
an open problem. We expect it will be necessary to employ a Nash–Moser iteration to tackle the
small divisor problem, which has been successfully used to prove the existence of temporally
quasi-periodic standing waves and travelling waves [18,20].

Data accessibility. Supplementary material is available online [79].
Authors’ contributions. J.W.: conceptualization, data curation, formal analysis, funding acquisition, investigation,
methodology, software, validation, visualization, writing—original draft, writing—review and editing; X.Z.:
conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, software,
validation, visualization, writing—original draft, writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This work was supported in part by the National Science Foundation under award no. DMS-1716560
and by the Department of Energy, Office of Science, Applied Scientific Computing Research, under award no.
DE-AC02-05CH11231; and by an NSERC (Canada) Discovery grant.

References
1. Janssen PA. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Ocean. 33,

863–884. (doi:10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2)
2. Toffoli A, Onorato M, Bitner-Gregersen E, Osborne AR, Babanin AV. 2008 Surface gravity

waves from direct numerical simulations of the Euler equations: a comparison with second-
order theory. Ocean Eng. 35, 367–379. (doi:10.1016/j.oceaneng.2007.10.004)

3. Viotti C, Dutykh D, Dias F. 2014 The conformal-mapping method for surface gravity waves
in the presence of variable bathymetry and mean current. Procedia IUTAM 11, 110–118.
(doi:10.1016/j.piutam.2014.01.053)

4. Flamarion MV, Nachbin A, Ribeiro R. 2020 Time-dependent Kelvin cat-eye structure due to
current–topography interaction. J. Fluid Mech. 889, A11. (doi:10.1017/jfm.2020.51)

5. Ambrose DM, Camassa R, Marzuola JL, McLaughlin RM, Robinson Q, Wilkening J. 2022
Numerical algorithms for water waves with background flow over obstacles and topography.
Adv. Comput. Math. 48, 46:1–46:62. (doi:10.1007/s10444-022-09957-z)

6. Kharif C, Giovanangeli JP, Touboul J, Grare L, Pelinovsky E. 2008 Influence of wind on
extreme wave events: experimental and numerical approaches. J. Fluid Mech. 594, 209–247.
(doi:10.1017/S0022112007009019)

7. Johnson RS. 1997 A modern introduction to the mathematical theory of water waves. Cambridge,
UK: Cambridge University Press.

8. Alazard T, Burq N, Zuily C. 2014 On the Cauchy problem for gravity water waves. Invent.
Math. 198, 71–163. (doi:10.1007/s00222-014-0498-z)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
3 

http://dx.doi.org/10.1175/1520-0485(2003)33%3C863:NFIAFW%3E2.0.CO;2
http://dx.doi.org/10.1016/j.oceaneng.2007.10.004
http://dx.doi.org/10.1016/j.piutam.2014.01.053
http://dx.doi.org/10.1017/jfm.2020.51
http://dx.doi.org/10.1007/s10444-022-09957-z
http://dx.doi.org/10.1017/S0022112007009019
http://dx.doi.org/10.1007/s00222-014-0498-z


26

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230019

..........................................................

9. Harrop-Griffiths B, Ifrim M, Tataru D. 2017 Finite depth gravity water waves in holomorphic
coordinates. Ann. PDE 3, 1–102. (doi:10.1007/s40818-017-0022-z)

10. Wilkening J, Zhao X. 2021 Quasi-periodic travelling gravity-capillary waves. J. Fluid Mech.
915, A7:1–A7:35. (doi:10.1017/jfm.2021.28)

11. Wilkening J, Zhao X. 2021 Spatially quasi-periodic water waves of infinite depth. J. Nonlinear
Sci. 31, 52:1–52:43.

12. Ruban VP. 2011 Numerical study of Fermi-Pasta-Ulam recurrence for water waves over finite
depth. JETP Lett. 93, 195–198. (doi:10.1134/S0021364011040126)

13. Ruban V. 2012 The Fermi-Pasta-Ulam recurrence and related phenomena for
1D shallow-water waves in a finite basin. J. Exper. Theoret. Phys. 114, 343–353.
(doi:10.1134/S1063776111160084)

14. Trulsen K, Zeng H, Gramstad O. 2012 Laboratory evidence of freak waves provoked by non-
uniform Bathymetry. Phys. Fluids 24, 097101. (doi:10.1063/1.4748346)

15. Ducrozet G, Gouin M. 2017 Influence of varying bathymetry in rogue wave occurrence
within unidirectional and directional sea-states. J. Ocean Eng. Mar. Energy 3, 309–324.
(doi:10.1007/s40722-017-0086-6)

16. Viotti C, Dias F. 2014 Extreme waves induced by strong depth transitions: fully nonlinear
results. Phys. Fluids 26, 051705. (doi:10.1063/1.4880659)

17. Herterich JG, Dias F. 2019 Extreme long waves over a varying Bathymetry. J. Fluid Mech. 878,
481–501. (doi:10.1017/jfm.2019.618)

18. Berti M, Montalto R. 2016 Quasi-periodic standing wave solutions of gravity-capillary water
waves, vol. 263. Memoirs of the American Mathematical Society. Providence, RI: American
Mathematical Society.

19. Baldi P, Berti M, Haus E, Montalto R. 2018 Time quasi-periodic gravity water waves in finite
depth. Invent. Math. 214, 739–911. (doi:10.1007/s00222-018-0812-2)

20. Berti M, Franzoi L, Maspero A. 2021 Traveling quasi-periodic water waves with constant
vorticity. Arch. Ration. Mech. Anal. 240, 99–202. (doi:10.1007/s00205-021-01607-w)

21. Berti M, Franzoi L, Maspero A. 2021 Pure gravity traveling quasi-periodic water waves with
constant vorticity. (http://arxiv.org/abs/2101.12006)

22. Feola R, Giuliani F. 2020 Quasi-periodic traveling waves on an infinitely deep perfect fluid
under gravity. (http://arxiv.org/abs/2005.08280)

23. Wilkening J. 2015 Relative-periodic elastic collisions of water waves. Contemp. Math. 635,
109–129.

24. Wilkening J. 2021 Traveling-standing water waves. Fluids 6, 187:1–187:35. (doi:10.3390/
fluids6050187)

25. Damanik D, Goldstein M. 2016 On the existence and uniqueness of global solutions
for the KdV equation with quasi-periodic initial data. J. Am. Math. Soc. 29, 825–856.
(doi:10.1090/jams/837)

26. Oh T. 2015 On nonlinear Schrödinger equations with almost periodic initial data. SIAM
J. Math. Anal. 47, 1253–1270. (doi:10.1137/140973384)

27. Dodson B, Soffer A, Spencer T. 2020 The nonlinear Schrödinger equation on Z and
R with bounded initial data: examples and conjectures. J. Stat. Phys. 180, 910–934.
(doi:10.1007/s10955-020-02552-w)

28. Blinov IV. 2015 Periodic almost-Schrödinger equation for quasicrystals. Sci. Rep. 5, 1–5.
(doi:10.1038/srep11492)

29. Torres M, Adrados J, Aragón J, Cobo P, Tehuacanero S. 2003 Quasiperiodic Bloch-like states in
a surface-wave experiment. Phys. Rev. Lett. 90, 114501. (doi:10.1103/PhysRevLett.90.114501)

30. Trichtchenko O, Deconinck B, Wilkening J. 2016 The instability of Wilton’s ripples. Wave
Motion 66, 147–155. (doi:10.1016/j.wavemoti.2016.06.004)

31. Wilton J. 1915 On ripples. Phil. Mag. 29, 688–700. (doi:10.1080/14786440508635350)
32. Akers BF, Ambrose DM, Sulon DW. 2019 Periodic travelling interfacial hydroelastic waves

with or without mass II: multiple bifurcations and ripples. Eur. J. Appl. Math. 30, 756–790.
(doi:10.1017/S0956792518000396)

33. Akers B, Nicholls DP. 2021 Wilton ripples in weakly nonlinear dispersive models of
water waves: existence and analyticity of solution branches. Water Waves 3, 25–47.
(doi:10.1007/s42286-020-00034-w)

34. Bridges T, Dias F. 1996 Spatially quasi-periodic capillary-gravity waves. Contemp. Math. 200,
31–46.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
3 

http://dx.doi.org/10.1007/s40818-017-0022-z
http://dx.doi.org/10.1017/jfm.2021.28
http://dx.doi.org/10.1134/S0021364011040126
http://dx.doi.org/10.1134/S1063776111160084
http://dx.doi.org/10.1063/1.4748346
http://dx.doi.org/10.1007/s40722-017-0086-6
http://dx.doi.org/10.1063/1.4880659
http://dx.doi.org/10.1017/jfm.2019.618
http://dx.doi.org/10.1007/s00222-018-0812-2
http://dx.doi.org/10.1007/s00205-021-01607-w
http://arxiv.org/abs/2101.12006
http://arxiv.org/abs/2005.08280
http://dx.doi.org/10.3390/fluids6050187
http://dx.doi.org/10.1090/jams/837
http://dx.doi.org/10.1137/140973384
http://dx.doi.org/10.1007/s10955-020-02552-w
http://dx.doi.org/10.1038/srep11492
http://dx.doi.org/10.1103/PhysRevLett.90.114501
http://dx.doi.org/10.1016/j.wavemoti.2016.06.004
http://dx.doi.org/10.1080/14786440508635350
http://dx.doi.org/10.1017/S0956792518000396
http://dx.doi.org/10.1007/s42286-020-00034-w


27

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230019

..........................................................

35. Mercer GN, Roberts AJ. 1992 Standing waves in deep water: their stability and extreme form.
Phys. Fluids A 4, 259–269.

36. Wilkening J. 2011 Breakdown of self-similarity at the crests of large amplitude standing water
waves. Phys. Rev. Lett. 107, 184501.

37. Wilkening J, Yu J. 2012 Overdetermined shooting methods for computing standing
water waves with spectral accuracy. Comput. Sci. Discov. 5, 014017. (doi:10.
1088/1749-4699/5/1/014017)

38. Dyachenko AI, Kuznetsov EA, Spector M, Zakharov VE. 1996 Analytical description of the
free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys.
Lett. A 221, 73–79. (doi:10.1016/0375-9601(96)00417-3)

39. Dyachenko AI, Zakharov VE, Kuznetsov EA. 1996 Nonlinear dynamics of the free surface of
an ideal fluid. Plasma Phys. Rep. 22, 829–840.

40. Choi W, Camassa R. 1999 Exact evolution equations for surface waves. J. Eng. Mech. 125,
756–760.

41. Dyachenko A. 2001 On the dynamics of an ideal fluid with a free surface. Dokl. Math. 63,
115–117.

42. Zakharov VE, Dyachenko AI, Vasilyev OA. 2002 New method for numerical simulation of a
nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. B Fluids
21, 283–291. (doi:10.1016/S0997-7546(02)01189-5)

43. Li YA, Hyman JM, Choi W. 2004 A numerical study of the exact evolution
equations for surface waves in water of finite depth. Stud. Appl. Math. 113, 303–324.
(doi:10.1111/j.0022-2526.2004.01534.x)

44. Hunter JK, Ifrim M, Tataru D. 2016 Two dimensional water waves in holomorphic coordinates.
Commun. Math. Phys. 346, 483–552.

45. Dyachenko S. 2019 On the dynamics of a free surface of an ideal fluid in a bounded domain
in the presence of surface tension. J. Fluid. Mech. 860, 408–418. (doi:10.1017/jfm.2018.885)

46. Ruban V. 2004 Water waves over a strongly undulating bottom. Phys. Rev. E 70, 066302.
(doi:10.1103/PhysRevE.70.066302)

47. Ruban VP. 2005 Water waves over a time-dependent bottom: exact description for 2D
potential flows. Phys. Lett. A 340, 194–200. (doi:10.1016/j.physleta.2005.03.073)

48. Flamarion MV, Ribeiro Jr R. 2021 An iterative method to compute conformal mappings and
their inverses in the context of water waves over topographies. Int. J. Numer. Methods Fluids
93, 3304–3311. (doi:10.1002/fld.5030)

49. Flamarion MV, Milewski PA, Nachbin A. 2019 Rotational waves generated by current-
topography interaction. Stud. Appl. Math. 142, 433–464. (doi:10.1111/sapm.12253)

50. Ribeiro R, Milewski PA, Nachbin A. 2017 Flow structure beneath rotational water waves with
stagnation points. J. Fluid Mech. 812, 792–814. (doi:10.1017/jfm.2016.820)

51. Craig W, Sulem C. 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83.
(doi:10.1006/jcph.1993.1164)

52. Chen B, Saffman P. 1980 Numerical evidence for the existence of new types of gravity waves
of permanent form on deep water. Stud. Appl. Math. 62, 1–21. (doi:10.1002/sapm19806211)

53. Vanden-Broeck JM. 2014 On periodic and solitary pure gravity waves in water of infinite
depth. J. Eng. Math. 84, 173–180. (doi:10.1007/s10665-013-9621-1)

54. Nocedal J, Wright SJ. 1999 Numerical optimization. New York, NY: Springer.
55. Zakharov VE. 1968 Stability of periodic waves of finite amplitude on the surface of a deep

fluid. J. Appl. Mech. Tech. Phys. 9, 190–194. (doi:10.1007/BF00913182)
56. Moser J. 1966 On the theory of quasiperiodic motions. SIAM Rev. 8, 145–172.

(doi:10.1137/1008035)
57. Dynnikov IA, Novikov SP. 2005 Topology of quasi-periodic functions on the plane. Russ.

Math. Surv. 60, 1. (doi:10.1070/RM2005v060n01ABEH000806)
58. Bohr H. 2018 Almost periodic functions. Mineola, NY: Dover.
59. Plotnikov P, Toland J. 2001 Nash-Moser theory for standing water waves. Arch. Rat. Mech.

Anal. 159, 1–83. (doi:10.1007/PL00004246)
60. Meiron DI, Orszag SA, Israeli M. 1981 Applications of numerical conformal mapping.

J. Comput. Phys. 40, 345–360. (doi:10.1016/0021-9991(81)90215-1)
61. Milewski PA, Vanden-Broeck JM, Wang Z. 2010 Dynamics of steep two-dimensional gravity–

capillary solitary waves. J. Fluid Mech. 664, 466–477. (doi:10.1017/S0022112010004714)
62. Wang Z, Vanden-Broeck JM, Milewski P. 2014 Asymmetric gravity–capillary solitary waves

on deep water. J. Fluid Mech. 759, R2. (doi:10.1017/jfm.2014.567)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
3 

http://dx.doi.org/10.1088/1749-4699/5/1/014017
http://dx.doi.org/10.1016/0375-9601(96)00417-3
http://dx.doi.org/10.1016/S0997-7546(02)01189-5
http://dx.doi.org/10.1111/j.0022-2526.2004.01534.x
http://dx.doi.org/10.1017/jfm.2018.885
http://dx.doi.org/10.1103/PhysRevE.70.066302
http://dx.doi.org/10.1016/j.physleta.2005.03.073
http://dx.doi.org/10.1002/fld.5030
http://dx.doi.org/10.1111/sapm.12253
http://dx.doi.org/10.1017/jfm.2016.820
http://dx.doi.org/10.1006/jcph.1993.1164
http://dx.doi.org/10.1002/sapm19806211
http://dx.doi.org/10.1007/s10665-013-9621-1
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1137/1008035
http://dx.doi.org/10.1070/RM2005v060n01ABEH000806
http://dx.doi.org/10.1007/PL00004246
http://dx.doi.org/10.1016/0021-9991(81)90215-1
http://dx.doi.org/10.1017/S0022112010004714
http://dx.doi.org/10.1017/jfm.2014.567


28

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230019

..........................................................

63. Gao T, Wang Z, Vanden-Broeck JM. 2016 On asymmetric generalized solitary gravity–
capillary waves in finite depth. Proc. R. Soc. A 472, 20160454. (doi:10.1098/rspa.2016.0454)

64. Zufiria JA. 1987 Symmetry breaking in periodic and solitary gravity-capillary waves on water
of finite depth. J. Fluid Mech. 184, 183–206. (doi:10.1017/S0022112087002854)

65. Wilkening J, Zhao X. 2022 Spatially quasi-periodic bifurcations from periodic traveling water
waves and a method for detecting bifurcations using signed singular values. (http://arxiv.
org/abs/2208.05954)

66. Brent RP. 1973 Algorithms for minimization without derivatives. Englewood Cliffs, NJ: Prentice
Hall, Inc.

67. Kittel C. 2005 Introduction to solid state physics, 8th edn. New York, NY: John Wiley and Sons.
68. Iooss G, Plotnikov PI, Toland JF. 2005 Standing waves on an infinitely deep perfect fluid under

gravity. Arch. Rat. Mech. Anal. 177, 367–478. (doi:10.1007/s00205-005-0381-6)
69. Hairer E, Norsett SP, Wanner G. 2000 Solving ordinary differential equations I: nonstiff problems,

2nd edn. Berlin, Germany: Springer.
70. Akers BF, Gao W. 2012 Wilton ripples in weakly nonlinear model equations. Commun. Math.

Sci. 10, 1015–1024. (doi:10.4310/CMS.2012.v10.n3.a15)
71. Ruban VP. 2020 Waves over curved bottom: the method of composite conformal mapping.

J. Exp. Theoret. Phys. 130, 797–808. (doi:10.1134/S1063776120040081)
72. Nicholls DP. 2011 Spectral stability of traveling water waves: eigenvalue collision,

singularities, and direct numerical simulation. Phys. D 240, 376–381. (doi:10.1016/
j.physd.2010.09.013)

73. Deconinck B, Oliveras K. 2011 The instability of periodic surface gravity waves. J. Fluid Mech.
675, 141. (doi:10.1017/S0022112011000073)

74. Tiron R, Choi W. 2012 Linear stability of finite-amplitude capillary waves on water of infinite
depth. J. Fluid Mech. 696, 402. (doi:10.1017/jfm.2012.56)

75. Pierce R, Knobloch E. 1994 On the modulational stability of traveling and standing water
waves. Phys. Fluids 6, 1177–1190. (doi:10.1063/1.868288)

76. Nicholls DP, Reitich F. 2001 A new approach to analyticity of Dirichlet-Neumann operators.
Proc. R. Soc. Edinb. A 131, 1411–1433. (doi:10.1017/S0308210500001463)

77. Nicholls DP, Reitich F. 2006 Stable, high-order computation of traveling water waves in three
dimensions. Eur. J. Mech. B 25, 406–424. (doi:10.1016/j.euromechflu.2005.11.003)

78. Qadeer S, Wilkening J. 2019 Computing the Dirichlet–Neumann operator on a cylinder. SIAM
J. Numer. Anal. 57, 1183–1204. (doi:10.1137/18M1204796)

79. Wilkening J, Zhao X. 2023 Spatially quasi-periodic water waves of finite depth. Figshare.
(doi:10.6084/m9.figshare.c.6615614)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
3 

http://dx.doi.org/10.1098/rspa.2016.0454
http://dx.doi.org/10.1017/S0022112087002854
http://arxiv.org/abs/2208.05954
http://arxiv.org/abs/2208.05954
http://dx.doi.org/10.1007/s00205-005-0381-6
http://dx.doi.org/10.4310/CMS.2012.v10.n3.a15
http://dx.doi.org/10.1134/S1063776120040081
http://dx.doi.org/10.1016/j.physd.2010.09.013
http://dx.doi.org/10.1017/S0022112011000073
http://dx.doi.org/10.1017/jfm.2012.56
http://dx.doi.org/10.1063/1.868288
http://dx.doi.org/10.1017/S0308210500001463
http://dx.doi.org/10.1016/j.euromechflu.2005.11.003
http://dx.doi.org/10.1137/18M1204796
http://dx.doi.org/10.6084/m9.figshare.c.6615614

	Introduction
	Equations of motion
	Governing equations in physical space
	Finite-depth quasi-periodic Hilbert transforms
	The quasi-periodic conformal mapping
	The quasi-periodic complex velocity potential
	Governing equations in conformal space

	Quasi-periodic travelling waves
	Governing equations of quasi-periodic travelling waves
	Weakly nonlinear approximations of quasi-periodic travelling waves

	Numerical methods and results
	Time evolution of spatially quasi-periodic waves of finite depth
	Spatially quasi-periodic travelling waves

	Conclusion
	References

