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We present a method of detecting bifurcations by locating zeros of a signed version 
of the smallest singular value of the Jacobian. This enables the use of quadratically 
convergent root-bracketing techniques or Chebyshev interpolation to locate bifurcation 
points. Only positive singular values have to be computed, though the method relies on 
the existence of an analytic or smooth singular value decomposition (SVD). The sign of 
the determinant of the Jacobian, computed as part of the bidiagonal reduction in the 
SVD algorithm, eliminates slope discontinuities at the zeros of the smallest singular value. 
We use the method to search for spatially quasi-periodic traveling water waves that 
bifurcate from large-amplitude periodic waves. The water wave equations are formulated 
in a conformal mapping framework to facilitate the computation of the quasi-periodic 
Dirichlet-Neumann operator. We find examples of pure gravity waves with zero surface 
tension and overhanging gravity-capillary waves. In both cases, the waves have two spatial 
quasi-periods whose ratio is irrational. We follow the secondary branches via numerical 
continuation beyond the realm of linearization about solutions on the primary branch to 
obtain traveling water waves that extend over the real line with no two crests or troughs 
of exactly the same shape. The pure gravity wave problem is of relevance to ocean waves, 
where capillary effects can be neglected. Such waves can only exist through secondary 
bifurcation as they do not persist to zero amplitude. The gravity-capillary wave problem 
demonstrates the effectiveness of using the signed smallest singular value as a test function 
for multi-parameter bifurcation problems. This test function becomes mesh independent 
once the mesh is fine enough.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

This paper has the dual purpose of carrying out a detailed computational study of new families of spatially quasi-periodic 
traveling water waves that bifurcate from finite-amplitude periodic waves and developing a new test function for detecting 
bifurcations in general. We begin with a discussion of water waves.
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The study of traveling solutions of the free-surface water wave problem has a long history. Stokes [76] first studied 
two-dimensional periodic traveling solutions in the gravity-driven case without surface tension. He constructed an asymp-
totic expansion of the solution in powers of an amplitude parameter and conjectured that the highest-amplitude solution 
possesses a wave crest with a sharp 120◦ interior corner angle. This was proved 100 years later by Amick, Fraenkel and 
Toland [7]. Longuet-Higgins and Fox [59] carried out a matched asymptotic analysis of the almost-highest traveling water 
wave and discovered that interesting oscillatory structures develop near the wave crest as the wave height approaches that 
of the sharply-crested wave of greatest height. They also showed that the wave speed ceases to increase monotonically as 
the wave crest sharpens, and instead possesses an infinite number of turning points.

The problem of traveling gravity waves in two dimensions can be studied as a bifurcation problem with a one-
dimensional kernel [20,21,81]. In this setting, nonlinear solutions form a bifurcation branch from the zero amplitude 
solution. This branch is called the primary branch. Plotnikov [70] proved that there are infinitely many critical points, 
either turning points or bifurcation points on this primary branch. In [21], Buffoni, Dancer and Toland showed that for each 
sufficiently large value of the integer m, there exists a secondary bifurcation branch of solutions of period 2πm bifurcating 
from a 2π -periodic solution near the highest wave. These results build on earlier work of Chen and Saffman [24], who com-
puted subharmonic bifurcations corresponding to m = 2 and m = 3. Zufiria computed a sequence of 3 bifurcations within 
an m = 6 framework, the third being a symmetry-breaking bifurcation that leads to a branch of non-symmetric traveling 
gravity waves [96]. Vanden-Broeck [85] further extended Chen and Saffman’s results to m = 9 and provided numerical ev-
idence that the bifurcated solutions approach non-periodic waves when m approaches infinity. Our goal in this paper is to 
study such secondary bifurcations with infinite spatial period, which requires new techniques beyond the usual setting of 
periodic waves.

In [18], as an alternative to imposing periodic boundary conditions, Bridges and Dias propose a quasi-periodic (QP) 
framework to study weakly nonlinear traveling solutions of the gravity-capillary water wave problem. The solution of the 
linearized problem can be written as a superposition of two cosine waves whose wave numbers k1 and k2 are both solutions 
of the dispersion relation

c2 = g

k
+ τk. (1.1)

Here g is the acceleration of gravity, τ is the surface tension coefficient, and c is the wave speed, which must be the 
same for k = k1 and k = k2. This is a generalization of the Wilton ripple problem [2,82,93] to the case that k1 and k2 are 
irrationally related. In [91], the present authors propose a conformal mapping approach [25,37–39,42,71,78] to generalize 
the QP framework of Bridges and Dias to the fully nonlinear water wave regime, numerically confirming the existence of 
spatially quasi-periodic traveling water waves. The conformal map simplifies the computation of the Dirichlet-Neumann 
operator to a QP variant of the Hilbert transform.

The solutions in the two-parameter family computed in [91] persist to zero amplitude as QP waves, where they include 
both branches of the dispersion relation (1.1) as special cases. The left and right branches are classified by Djordjevic and 
Redekopp [36] as gravity waves and capillary waves, respectively. At the scale of gravity waves in the ocean, the wave 
number of capillary waves is typically 107 times larger than that of gravity waves. Such a large wave number ratio is 
computationally out of reach in our framework; moreover, we would not expect to find interesting nonlinear interactions 
between waves of such vastly different length scales. Thus, if we wish to find QP traveling waves that might be found in 
the ocean, we must look beyond families of solutions that persist to zero-amplitude and consider the secondary bifurcation 
problem. In this regime, one may as well set τ = 0, which motivates our study of QP solutions of the pure gravity wave 
problem. For simplicity, and for comparison to the gravity-capillary waves found in [91], we focus on the case k2/k1 = 1/

√
2.

A useful feature of the conformal mapping framework is the possibility of studying overhanging waves [41], where 
the wave profile is not the graph of a single-valued function. In [92], the present authors consider the spatially quasi-
periodic initial value problem for water waves and compute a solution that begins at t = 0 with a periodic wave profile 
but a QP velocity potential. Each of the infinite number of wave crests evolves differently as time advances, with some 
waves overturning and others flattening out. We now pose the question of whether overhanging quasi-periodic traveling 
water waves exist. Clearly surface tension or hydroelastic forces will be needed to balance the force of gravity in a steady, 
overhanging state. Crapper [28] discovered a family of exact overhanging periodic traveling solutions of the pure capillary 
wave problem (with no gravity). Kinnersley [54] found analogues of these exact solutions in finite depth, expressed in terms 
of elliptic functions, again for the pure capillary wave problem. Schwartz and Vanden-Broeck [73] computed and classified 
several families of traveling gravity-capillary waves, providing several examples of overhanging waves. Guyenne and Parau 
[50] and Wang et al. [86] computed overhanging traveling solutions of the flexural gravity wave problem of an ice sheet over 
deep water. Akers, Ambrose and Wright [1] show that Crapper’s pure capillary wave solution can be perturbed to account for 
gravity. In the present work, we search for QP bifurcations from the two-parameter family of periodic waves referred to by 
Schwartz and Vanden-Broack as “type 1 waves.” We obtain a new two-parameter family of QP gravity-capillary waves. The 
largest-amplitude waves in this family exhibit an infinite, non-repeating pattern of erratically-spaced overhanging waves, 
each with a different shape.

Because QP waves are represented by periodic functions on higher-dimensional tori, computing large-amplitude QP trav-
eling waves is a high-dimensional nonlinear optimization problem. We build on the basic framework of Wilkening and 
Yu [90], who formulated the search for standing waves as an overdetermined nonlinear least squares problem. In the 
2
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present setting of QP traveling waves, we optimize over a two-dimensional array of Fourier coefficients to represent a 
one-dimensional QP function. The 1D water wave equations are imposed in the characteristic direction (k1, k2) at each 
point of a uniform grid overlaid on the two-dimensional QP torus in physical (as opposed to Fourier) space. The problem 
is overdetermined since we zero-pad the Fourier representation of the solution so that the nonlinear least squares solver 
only has access to the lower-frequency modes of the solution. This reduces aliasing errors and improves the efficiency of 
the computation by reducing the number of degrees of freedom for a given grid spacing. We wrote a custom Levenberg-
Marquardt solver that employs ScaLapack on a supercomputer to carry out the linear least squares problems that govern 
the trust region search steps [67].

We also present a new test function1 for locating bifurcation points in finite or infinite dimensional equilibrium prob-
lems. We combine the best features of the singular value decomposition (SVD) approach [26,75]; the Jacobian determinant 
approach [4,16,57,83]; the minimally augmented systems approach [5,48,49,57]; and the continuation of invariant subspaces 
(CIS) approach [14–16,30,35,46]. To find branch points in equilibrium problems, say f (q) = 0, where q = (u, s) with u ∈�n

and s ∈ �, one searches for parameter values s on a path q(s) of solutions at which the dimension of the kernel of the 
Jacobian J (s) = fq(q(s)) increases by one. Often one defines an augmented (or extended) Jacobian, J e(s), consisting of J (s)
with an extra row consisting of a multiple of the transpose of q′(s), which is tangent to the primary branch of solutions. In 
bifurcation problems arising in low-dimensional dynamical systems, the determinant of J e(s) can be used as a test function 
that changes sign at simple bifurcations. In this case, the method presented here has the same theoretical justification; see, 
e.g., [4]. In high dimensions, e.g. after discretizing a continuous problem, it is preferable for many reasons (discussed in 
Section 3.2) to search for zeros of the smallest singular value σmin(s) of J e(s) rather than using the determinant to locate 
bifurcation points. But singular values are usually computed as non-negative numbers, which leads to slope discontinuities 
in σmin(s) at its zeros and precludes the use of root-bracketing methods. As shown by Shen [75], it is still possible to devise 
a Newton-type method, but this involves approximations of the second derivative operator, fqq , applied in certain directions 
using finite difference approximations, which we aim to avoid.

We instead take advantage of the existence of an analytic singular value decomposition [22,53], or ASVD, J e(s) =
U (s)�(s)V (s)T , where the diagonal entries of �(s), denoted σi(s), can change sign and do not necessarily remain mono-
tonically ordered. A smooth SVD [34] is sufficient if J e(s) is not analytic. Sign changes in σmin(s) eliminate the slope 
discontinuities at its zeros. The standard SVD transfers negative signs in σmin(s) to the corresponding column of U (s)
or row of V (s)T , which changes the sign of one of their determinants. We can recover the signed version by defining 
χ(s) = det(U (s)) det(V (s))σmin(s) = (sgndet J e(s))σmin(s) as a test function whose zeros coincide with bifurcation points, 
where now the standard SVD with positive singular values is being used. This opens the door to using quadratically con-
vergent derivative free methods such as Brent’s method [17] to locate the zeros of χ(s). We show that once enough Fourier 
modes are employed to resolve both the underlying periodic traveling wave and the left and right singular vectors corre-
sponding to σmin(s), then χ(s) becomes independent of N , the Fourier cutoff index. Other methods we are familiar with 
make stronger use of the finite-dimensional status of the truncated problem, leading to test functions with no infinite-
dimensional limit. Having a globally defined test function χ(s) that does not change on refining the mesh is particularly 
useful in multi-parameter problems, with s ∈�d . We demonstrate this with d = 2 in Section 4.2.

Another effective method of locating bifurcations is to border J e(s) with a carefully chosen additional row and column 
to obtain a matrix J ee(s) and solve

J ee(s)
(

r
ψ

)
=
(
0
1

)
, r,0 ∈ �n+1, ψ,1 ∈ �. (1.2)

The scalar function ψ(s) can then be used as a test function whose zeros coincide with the desired branch points [5,14,16,
48,49,57]. We discuss this approach further in Section 3.2 and compare the relative merits of χ(s) and ψ(s), one being that 
ψ(s) will change discontinuously if the mesh is refined adaptively as s changes while χ(s) will not.

To reduce the cost of searching for quasi-periodic bifurcation points, we take advantage of Bloch-Fourier theory for 
diagonalizing linear operators over periodic potentials [55]. This technique has proved useful for studying subharmonic 
stability of water waves [29,58,61,62,65,80,82], but requires reformulation to fit with our quasi-periodic torus framework. 
Decomposing the Fréchet derivative of the traveling water wave equations in the QP torus representation into a direct sum of 
Bloch-Fourier operators allows us to focus on a single Bloch frequency when searching for bifurcations. The dimension of the 
restricted operator corresponds to points in a one-dimensional subset of the two-dimensional Fourier lattice, which makes 
it possible to locate QP bifurcations from very large-amplitude periodic traveling waves. Tracking the bifurcation curves 
beyond linearization about traveling waves then brings in the full 2D array of Fourier modes for the torus representation of 
the solution.

This paper is organized as follows. In Section 2 we review the equations governing spatially quasi-periodic traveling 
water waves [91] and describe the numerical continuation algorithm we use to compute both periodic and quasi-periodic 
traveling waves. In Section 3, we introduce spaces of real-analytic torus functions, work out the Bloch-Fourier theory of 
quasi-periodic bifurcations from traveling waves, define and analyze the test function χ(s) for identifying bifurcation points, 

1 Here we use terminology from the computational dynamical systems literature [16,57], where a test function changes sign at a simple bifurcation; it is 
not related to test functions from the theory of distributions.
3
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and show how to compute the sign of the determinant of a matrix efficiently along with its singular values. In Section 4, 
we present numerical results for the QP gravity wave problem and study a two-parameter bifurcation problem leading to 
examples of overhanging QP traveling gravity-capillary waves. In the appendices, we discuss the effects of floating-point 
arithmetic on χ(s) and prove that the Fréchet derivative for this problem is a bounded operator between spaces of real 
analytic torus functions when the parameters of these spaces are chosen appropriately. Concluding remarks are given in 
Section 5.

2. Spatially quasi-periodic water waves

2.1. Governing equations for traveling waves

We study the problem of traveling gravity-capillary water waves over a two-dimensional, irrotational, inviscid fluid of 
infinite depth. We adopt a conformal mapping formulation [25,37,40,78,91] of the problem; specifically, we consider a 
conformal map

z̃(w) = x̃(w) + i ỹ(w), w = α + iβ (2.1)

that maps the lower half plane

�
− := {α + iβ : α ∈ �, β < 0} (2.2)

to the fluid domain in physical space. Here time has been frozen at t = 0 and dropped from the notation, and we place a 
tilde over functions defined on the real line to simplify the notation for higher-dimensional torus representation of quasi-
periodic functions. This is the opposite convention of [91,92], but seems more natural in hindsight. When the free surface 
is single-valued in physical space, the fluid domain has the form


 := {(x, y) : −∞ < y < η̃phys(x), x ∈ �}, (2.3)

where η̃phys is the free surface elevation. To fix the map, we assume that z̃ satisfies

lim
β→−∞ z̃w = 1 and z̃(0) = 0. (2.4)

We also assume that z̃(w) can be extended continuously to �− and maps the real line β = 0 to the free surface. We 
introduce the notation ζ̃ = z̃|β=0, ξ̃ = x̃|β=0 and η̃ = ỹ|β=0 so that the free surface is parameterized by

ζ̃ (α) = ξ̃ (α) + iη̃(α), η̃(α) = η̃phys(ξ̃ (α)), α ∈ �. (2.5)

If the free-surface is not single-valued in physical space, one may drop the condition that η̃(α) = η̃phys(ξ̃ (α)) and simply 
require that ζ̃ (α) does not self-intersect; see [91].

In this paper, we focus on the cases where η̃(α) is periodic or quasi-periodic with two quasi-periods. As defined in 
[43,64], such a function η̃ is of the form

η̃(α) = η(k1α,k2α), η(α1,α2) =
∑

( j1, j2)∈�2

η̂ j1, j2e
i( j1α1+ j2α2), (2.6)

where η is defined on the torus �2 = �2/(2π�)2. After non-dimensionalization, we may assume that the two basic fre-
quencies of η̃ are

k1 = 1, k2 = k, (2.7)

where k is irrational. We refer to such functions η as torus functions and η̃ as having been extracted or reconstructed from η. 
One can observe that the form (2.6) still applies when η̃ is periodic; in this case, the corresponding torus function satisfies

η(α1,α2) = η̃(α1), α1,α2 ∈ �. (2.8)

This allows us to use η(α1, α2) to represent both quasi-periodic and periodic functions η̃(α).
In [91], quasi-periodic traveling gravity-capillary waves on deep water are formulated in terms of η(α1, α2). The govern-

ing equations for η read

P

[
b

2 J
+ gη − τκ

]
= 0, b = c2, ξ = H[η],

J = (1 + ∂αξ)2 + (∂αη)2, κ = (1+ ∂αξ)(∂2
αη) − (∂αη)(∂2

αξ)

3/2
,

(2.9)
J

4
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where c is the wave speed; g is the gravitational acceleration; τ is the surface tension coefficient; and ξ , J and κ are 
auxiliary torus functions representing the quasi-periodic part of the horizontal parameterization of the free surface, the 
square of the arclength element, and the curvature, respectively. For gravity waves, τ is zero. The operators P , H and ∂α are 
defined by

P = id−P0, P0[ f ] = 1

(2π)2

ˆ

�2

f (α1,α2)dα1 dα2,

H[ f ](α1,α2) =
∑

j1, j2∈�
(−i) sgn( j1 + kj2) f̂ j1, j2e

i( j1α1+ j2α2),

∂α f (α1,α2) = (∂α1 + k∂α2) f (α1,α2).

(2.10)

Here ∂α = (1, k)T · ∇ is the directional derivative in the (1, k) direction on the torus; H is the “quasi-periodic Hilbert 
transform” [91]; and

sgn(a) =
⎧⎨
⎩
1, a > 0,
0, a = 0,
−1, a < 0.

(2.11)

Note that ∂α and H act on torus functions in such a way that extracting the 1d function from the result is equivalent to 
first extracting the function and then applying the 1d derivative or Hilbert transform operators:

(∂α f )(α,kα) = ∂α

[
f (α,kα)

]
,

(H f )(α,kα) = H
[
f (·,k·)](α) = 1

π
P V

∞̂

−∞

f (β,kβ)

α − β
dβ.

(2.12)

Both ∂α and H are diagonal in 2D Fourier space, with Fourier multipliers

̂∂ j1, j2 = i( j1 + kj2), Ĥ j1, j2 = (−i) sgn( j1 + kj2), (2.13)

respectively. Different choices of k lead to different operators.
One can check that if η(α1, α2) is a solution of (2.9), then η(−α1, −α2) is also a solution. In this paper we will fo-

cus on real-valued traveling solutions with even symmetry: η(−α1, −α2) = η(α1, α2). Equivalently, we assume the Fourier 
coefficients of η satisfy

η̂ j1, j2 = η̂− j1,− j2 = η̂ j1, j2 , j1, j2 ∈ �. (2.14)

Since adding a constant to η will not change (2.9), we assume P0[η] = 0 when computing traveling waves. Under these 
assumptions, we reconstruct ξ̃ in (2.5) from ξ = H[η] using

ξ̃ (α) = α + ξ(α,kα), (2.15)

which is an odd function. For most torus functions, adding a tilde denotes evaluation at (α, kα), but we treat ξ as a special 
case and include the linear growth term α in (2.15). This is why we refer to ξ as the quasi-periodic part of the horizontal 
parameterization.

Remark 2.1. It is preferable to report solutions with zero mean in physical space rather than in conformal space. Let us 
briefly use a superscript 0 to denote a traveling wave with the above properties, which satisfies

η̂
(0)
0,0 = 0. (2.16)

The desired solution only requires adjusting the (0, 0) Fourier mode:

η̂0,0 = −P0
[
(η(0))(1 + ξ

(0)
α )
]
, η̂ j1, j2 = η̂

(0)
j1, j2

, ( j1, j2) 
= (0,0), (2.17)

where lima→∞ 1
2a

´ a
−a η̃(α)ξ̃α(α) dα = 0 is the zero mean condition, and we make use of ξ̃ (0)

α = (1 + ξ
(0)
α ), from (2.15). Thus, 

we may assume η̂0,0 = 0 when computing periodic waves, quasi-periodic waves, and the bifurcation points where they 
meet; we can then adjust the mean of each wave computed as a simple post-processing step.
5
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Remark 2.2. One can check that if η(α1, α2) =∑ j1, j2∈� η̂ j1, j2e
i( j1α1+ j2α2) is a real-valued solution of (2.9) with even sym-

metry, then the following three functions are also real-valued solutions with even symmetry:

η(α1 + π,α2) =
∑

j1, j2∈�
(−1) j1 η̂ j1, j2e

i( j1α1+ j2α2),

η(α1,α2 + π) =
∑

j1, j2∈�
(−1) j2 η̂ j1, j2e

i( j1α1+ j2α2),

η(α1 + π,α2 + π) =
∑

j1, j2∈�
(−1) j1+ j2 η̂ j1, j2e

i( j1α1+ j2α2).

(2.18)

2.2. Numerical algorithm

Following [91], we formulate (2.9) as a nonlinear least-squares problem and define objective and residual functions

F [η,τ ,b] = 1

8π2

ˆ

�2

R 2[η,τ ,b]dα1 dα2, R [η,τ ,b] = P

[
b

2 J
+ gη − τκ

]
. (2.19)

We use square brackets for the functional F and operator R so that R (α1, α2) can be short-hand for R [η, τ , b](α1, α2). 
We represent a torus function f in two ways, either through its values on a uniform M1 × M2 grid on �2, or via the fast 
Fourier transform coefficients of these sampled values:

fm1,m2 = f (2πm1/M1,2πm2/M2) =
M2−1∑
j2=0

M1−1∑
j1=0

f̆ j1, j2e
2π i( j1m1/M1+ j2m2/M2),

f̆ j1, j2 = 1

M1M2

M2−1∑
m2=0

M1−1∑
m1=0

fm1,m2e
−2π i( j1m1/M1+ j2m2/M2) =

∑
n1,n2∈�

f̂ j1+n1M1, j2+n2M2 .

(2.20)

Here f̂ j1, j2 = (4π2)−1
˜
�2 f (α1, α2)e−i( j1α1+ j2α2)dα1 dα2 are the actual Fourier modes of f (α1, α2), which are related to 

the FFT modes f̆ j1, j2 by the above aliasing formula. We only store the values of the periodic arrays { fm1,m2 } and { f̆ j1, j2 }
with indices

0�m1 < M1, 0�m2 < M2, 0� j1 � M1/2, 0� j2 < M2, (2.21)

where we take advantage of f̆− j1,− j2 = f̆ j1, j2 when f (α1, α2) is real-valued to avoid having to store modes with index 
j1 < 0. We assume M1 and M2 are sufficiently large and | f̂ j1, j2 | decays sufficiently fast as | j1| + | j2| → ∞ that

f̆ j1, j2 ≈
{
f̂ j1, j2 0� j2 � M2/2,

f̂ j1, j2−M2 M2/2 < j2 < M2.
(2.22)

When evaluating R [η, τ , b], we only vary b, τ and the leading Fourier coefficients of η,

η̂ j1, j2 , (−N1 � j1 � N1, −N2 � j2 � N2) , (2.23)

where N1 and N2 are cutoff frequencies typically taken to be around M1/3 and M2/3, respectively. The higher-frequency 
Fourier modes η̂ j1, j2 with | j1| > N1 or | j2| > N2 are set to zero. This means that the FFT modes η̆ j1, j2 in the range (2.21)
with j1 > N1 or N2 < j2 < M2 − N2 are set to zero. Since η̆0,0 is also set to zero at this stage of the computation (and later 
adjusted via Remark 2.1), and since η is real-valued and even, satisfying (2.14), the number of independent FFT coefficients 
η̆ j1, j2 is

Ntot = N1(2N2 + 1) + N2. (2.24)

Remark 2.3. For simplicity, from now on we focus on the Fourier modes of the torus functions that arise (e.g., η̂ j1, j2 ), with 
the understanding that in the numerical implementation they map to FFT modes (e.g., η̆ j1, j2 ) with indices in the ranges 
(2.21) via the assumption (2.22).

We evaluate R[η, τ , b](α1, α2) on the M1×M2 grid. Using the trapezoidal rule on the integral (2.19), which is a spectrally 
accurate approximation, we obtain an overdetermined nonlinear least-squares problem from �Ntot to �M1M2 , namely
6
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minimize F [{η̂ j1, j2};τ ,b] = 1

2
rT r, rm2M1+m1 = R (2πm1/M1,2πm2/M2)√

M1M2
. (2.25)

Here we have written the objective function to suggest that τ and b = c2 are prescribed parameters and the independent 
Fourier modes {η̂ j1, j2 } are the unknowns over which the objective function is minimized. For small-amplitude traveling 
waves, as explained in [91], it is better to prescribe two Fourier modes, say η̂1,0 and η̂0,1, and include τ and b among the 
unknowns to be determined by solving (2.25). In the present work, as explained below, we study large-amplitude waves 
and use a hybrid choice in which τ and either η̂1,0, η̂0,1 or the wave height (defined below) are prescribed while b and the 
other Fourier modes of η are found by the solver.

One of the examples presented in [91] involves computing a two-parameter family of quasi-periodic traveling waves 
with k = 1/

√
2 held fixed and η̂1,0 and η̂0,1 prescribed to vary over the interval I = [−0.01, 0.01]. Each of these amplitude 

parameters is assigned values on a 16-point Chebyshev-Lobatto grid over I , and polynomial interpolation is used to express 
the surface tension coefficient τ in the form

τ (η̂1,0, η̂0,1) =
15∑

m=0

15∑
n=0

τ̌mnTm(100η̂1,0)Tn(100η̂0,1), (η̂1,0, η̂0,1) ∈ I2, (2.26)

where {Tm(x)}∞m=0 are the Chebyshev polynomials. The wave speed c is similarly interpolated. The tensor product Chebyshev 
coefficients τ̌mn and čmn are found to decay below 10−15 in amplitude for m + n � 10, suggesting that (2.26) is accurate to 
double-precision accuracy throughout the parameter region I2. Setting both amplitude parameters to zero gives τ = τlin =
g/(k1k2) and c2 = c2lin = (k1 + k2)τ , as predicted by linear theory, with g = 1, k1 = 1, k2 = k = 1/

√
2 in this case.

The above approach sidesteps the difficulty of finding bifurcation points within the family of periodic traveling waves. 
Instead, all the waves in the polynomial interpolation leading to (2.26) are genuinely quasi-periodic, with non-zero values of 
both η̂1,0 and η̂0,1. Indeed, by using an even number of Chebyshev-Lobatto nodes, 0 is not among the interpolation points 
in either direction. After the expansion coefficients τ̌mn or čmn have been identified via interpolation, we can set η̂1,0 or η̂0,1
to zero to find the curves τ (η̂1,0, 0) or τ (0, η̂0,1) where a bifurcation exists from periodic traveling waves of wave number 
1 or k = 1/

√
2 to quasi-periodic waves of wave numbers �k = (1, k). These curves are the intersection of a two-parameter 

family of quasi-periodic solutions with a two-parameter family of periodic solutions.
In the present paper, we address the difficulty sidestepped above. We begin by computing families of large-amplitude 

periodic traveling waves, which can be parameterized by surface tension and one amplitude parameter. We may assume 
without loss of generality that η(α1, α2) = η̃(α1) is independent of α2, as in (2.8). All the Fourier modes η̂ j1, j2 with j2 
= 0
are then zero, so we may drop the j2 subscript and view {η̂ j} j∈� as the coefficients of the 1D Fourier expansion of η̃(α). 
The unknowns for the periodic problem are then

�p = (b , η̂1 , η̂2 , η̂3 , · · · , η̂N1−1 , η̂N1), (2.27)

where η̂0 is set to 0 as discussed in Remark 2.1, η̂− j = η̂ j due to (2.14), and τ is a prescribed parameter. We also define a 
wave amplitude by introducing coefficients νi and setting

�ν · �p = ν0b +
N1∑
j=1

ν j p j = μ, (2.28)

where μ is the prescribed amplitude parameter. The two cases we consider are

case 1: �ν = (0,1,0, . . . ,0), μ = η̂1 (= η̂1,0),

case 2: ν j = 0 ( j even) , ν j = 4 ( j odd), μ = h = η̃(0) − η̃(π).
(2.29)

In case 2, the reason for ν j = 4 when j is odd is that η̂− j = η̂ j and together they contribute 4η̂ j to the wave height, 
h = η̃(0) − η̃(π), when j is odd. Note that b ( j = 0) and the even modes with j � 2 have no effect on the wave height 
due to cancellation. For this periodic sub-problem, both η(α1, α2) and R [η, τ , b](α1, α2) are independent of α2, so one can 
simplify (2.25) to

minimize F [�p;μ,τ ] = 1

2
rT r, rm =

{
R (2πm/M1,0)√

M1
, 0�m < M1,

�ν · �p − μ, m = M1,
(2.30)

where we have added an equation to enforce (2.28) and re-organized the argument list of F to separate the prescribed 
parameters from the unknowns.

Remark 2.4. When solutions of the periodic problem are embedded in the 2D torus representation, it is often preferable to 
employ the double-index Fourier notation, η̂ j1, j2 = η̂ j1δ j2,0, where δi j is the Kronecker delta. The amplitude parameter in 
case 1 of (2.29) is then η̂1,0.
7
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Remark 2.5. In case 1 of (2.29), we can alternatively drop the last component of �r in (2.30) and remove η̂1 from the vector 
�p of unknowns over which the minimization is performed. This mode is set equal to μ externally and not varied by the 
solver.

Given an initial guess (�p0; μ, τ ) for a periodic traveling wave, we use the Levenberg-Marquardt method [67] to mini-
mize F in (2.30) over the unknowns �p holding (μ, τ ) fixed. We employ the delayed Jacobian update strategy proposed by 
Wilkening and Yu [90] in the context of computing standing water waves. For the initial guess, we use linear theory to 
get started on one or several straight-line paths through parameter space, i.e., through the (μ, τ )-plane. Once two solution 
on such a path have been computed, we use linear extrapolation for the starting guesses of successive solutions on the 
numerical continuation path. We increase N1 and M1 adaptively as we go to maintain spectral accuracy of the computed 
traveling waves.

We search for bifurcation points along the numerical continuation path of periodic traveling waves using the methods of 
Section 3 below. When a bifurcation branch is found, we follow it using the same strategy as for periodic traveling waves, 
but with η̂0,1 replacing μ as the first numerical continuation parameter. We use τ as the second parameter in both cases. 
On this branch, η̂0,1 = 0 corresponds to the periodic traveling wave, and the list of unknowns, �p, is expanded to include the 
modes η̂ j1, j2 with j2 
= 0:

�p = (b, {η̂ j1, j2}),
(

1� j1 � N1

−N2 � j2 � N2

)
or

(
j1 = 0

2� j2 � N2

)
. (2.31)

Here we follow the strategy of Remark 2.5 and remove η̂0,1 from the list �p rather than add a component to �r to govern 
the amplitude. Since b has replaced η̂0,1 in the list, we see that in the quasi-periodic problem, the number of degrees of 
freedom of the nonlinear least squares problem (2.25) is Ntot from (2.24). For the numerical continuation path, we hold τ
fixed with its value at the bifurcation point and vary η̂0,1 with progressively larger values, increasing N1, N2, M1 and M2 as 
needed to maintain spectral accuracy. We stop when we run out of computational resources to further increase the problem 
size. Details will be given in Sections 4.1 and 4.2 below.

The Levenberg-Marquardt algorithm requires the evaluation of the Jacobian Ji j = ∂ri/∂p j , which can be carried out 
analytically or with finite differences. We take the analytical approach. Let us denote the Fréchet derivative of R by

DqR = (DηR , DτR , DbR ), q = (η, τ ,b), (2.32)

and employ “dot notation” [6,90] for the variational derivative of a quantity at q in the q̇ direction:

Ṙ (q, q̇) = DqR [q]q̇ = d

dε

∣∣∣∣
ε=0

R [q + εq̇]. (2.33)

We will not use a dot for time derivatives in this paper. Explicitly, we have

Ṙ = P

[
1

2 J
ḃ − b

2 J2
J̇ + gη̇ − τ κ̇ − κτ̇

]
,

ξ̇ = H
[
η̇
]
, J̇ = 2

{(
1+ ∂αξ

)(
∂αξ̇
)+ (∂αη

)(
∂αη̇

)}
,

κ̇ = −3κ

2 J
J̇ + 1

J3/2

{(
∂2
αη
)(

∂αξ̇
)+ (1+ ∂αξ

)(
∂2
αη̇
)− (∂2

αξ
)(

∂αη̇
)− (∂αη

)(
∂2
αξ̇
)}

,

(2.34)

where η, ξ , J , κ , η̇, ξ̇ , J̇ and κ̇ are torus functions; b, τ , ḃ and τ̇ are scalars; and ξ represents only the quasi-periodic part 
of ξ̃ , via (2.15). With these formulas, it is easy to evaluate the entries of the Jacobian

Ji, j = ∂ri
∂p j

= Ṙ(2πm1/M1,2πm2/M2)√
M1M2

, 0� i =m2M1 +m1 < M1M2, (2.35)

where m1, m2 are in the ranges (2.21) and j enumerates the entries of �p in (2.31). For example, j = 0 corresponds to b, 
so one sets q̇ = (η̇, τ̇ , ̇b) = (0, 0, 1) in (2.34) to compute the zeroth column of J via (2.35). Since τ is treated as a fixed 
parameter, we set τ̇ = 0 for each column of the Jacobian in the present work; however, in [91], τ is computed by the 
solver, just like b, so one of the Jacobian columns corresponds to q̇ = (η̇, τ̇ , ̇b) = (0, 1, 0). Each of the remaining columns 
corresponds to varying one of the Fourier mode degrees of freedom. Since we make use of the symmetry (2.14), these 
columns correspond to variations of the form

q̇ j1, j2 = (ei( j1α1+ j2α2) + e−i( j1α1+ j2α2),0,0
)
, (2.36)

where j1 and j2 range over the values listed in (2.31) to enumerate columns 1 through (Ntot − 1) of J in a zero-based 
numbering convention. More details on the form of Ṙ for variations of the form (2.36) will be given in Section 3 below. In 
8
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the periodic sub-problem, Ji, j in (2.35) is modified in the obvious way to account for the change from (2.25) to (2.30) and 
(2.31) to (2.27).

In the process of finding a bifurcation point qbif from periodic to quasi-periodic traveling waves in Section 3 below, we 
will obtain a null vector q̇qua of DqR [qbif] that is transverse to the family of traveling waves. In the numerical continuation 
algorithm, we take the bifurcation point qbif as the zeroth point on the path. The first point on the path, which, unlike 
the zeroth point, will be genuinely quasi-periodic, is obtained using the Levenberg-Marquardt algorithm with initial guess 
qbif + εq̇qua. Here ε is a suitably small number that we choose by trial and error to make progress in escaping the family of 
periodic waves while still resembling the zeroth solution. In the minimization, τ is held fixed with its value at the zeroth 
solution and η̂0,1 is held fixed with the value ε ˙̂ηqua

0,1 (since η̂bif
0,1 = 0). After the zeroth and first solution on the path are 

computed, we continue along a straight line through parameter space (the (η̂0,1, τ )-plane) using linear extrapolation for 
the initial guess for the next quasi-periodic solution. The straight line involves holding τ fixed and incrementing η̂0,1 for 
successive solutions. The increment is initially ε ˙̂η0,1, but can be changed adaptively, if needed. This numerical continuation 
strategy is easy to implement and requires only a few iterations to find quasi-periodic solutions that deviate significantly 
from the periodic solution at the bifurcation point as long as ε is chosen to be large enough to make progress along the 
path (but small enough for linear extrapolation to be effective).

3. Quasi-periodic bifurcations from periodic traveling waves

In [91], we compute small-amplitude quasi-periodic traveling waves that bifurcate from the zero-amplitude wave. In this 
section, we consider quasi-periodic bifurcations from finite-amplitude periodic traveling waves that can be far beyond the 
linear regime of the zero solution. In particular, we wish to study genuinely quasi-periodic traveling waves with zero surface 
tension, which do not exist at small amplitude.

Before discussing bifurcation theory, it is convenient to frame the problem in a Hilbert space setting. Recall that a torus 
function η : �2 →� is real-analytic if and only if (iff) it has a convergent power series in a neighborhood of each �α ∈ �2. 
Equivalently [19,92], η is real-analytic iff its Fourier modes η̂ j1, j2 in (2.6) decay exponentially, i.e., there exist positive 
constants C and σ such that |η̂ j1, j2 | � Ce−σ(| j1|+| j2|) for all ( j1, j2) ∈ �2. We follow the standard convention [56] that 
real-analytic functions can be complex-valued. Although η in (2.6) must be real-valued for (2.5) to make sense, it is useful 
to allow complex-valued torus functions when considering the effect of perturbations in Fourier space. Ultimately, linear 
combinations will be taken to keep the result real-valued. Similarly, while b = c2 must be positive and τ must be non-
negative, perturbations of these quantities can have either sign, and can even be complex as long as linear combinations 
are eventually taken to make them real.

Definition 3.1. For σ � 0, let Vσ be the Hilbert space of real-analytic torus functions of finite norm induced by the inner 
product

〈 f , g〉 =
∑

( j1, j2)∈�2

f̂ j1, j2 ĝ j1, j2 e2σ (| j1|+| j2|). (3.1)

We also define the subspaces

V (l)
σ = { f ∈ Vσ : f̂ j1, j2 = 0 if j2 
= l }, (l ∈ �),

V per
σ = V (0)

σ , V qua
σ = (V per

σ )⊥ =⊕l 
=0 V
(l)
σ

(3.2)

and write, e.g., 
(
V (1)

σ , 0, �
)
and 

(
V per

σ , �, �
)
as shorthand for 

{
( f , 0, b) : f ∈ V (1)

σ , b ∈�} and V per
σ ×�2, respectively, with 

the product Hilbert space norms.

Note that V per
σ consists precisely of the torus functions f (α1, α2) in Vσ that do not depend on α2. We think of functions 

in Vσ \ V per
σ as being genuinely quasi-periodic even though this set includes functions f (α1, α2) that are independent of 

α1. We adopt this viewpoint as our focus is on bifurcations from 2π -periodic traveling waves. The case of bifurcations from 
(2π/k)-periodic traveling waves can be investigated within this framework by rescaling space by a factor of k to make the 
wavelength of these waves 2π , and then replacing k by 1/k as the second basic frequency.

3.1. Linearization about periodic traveling waves

Recall from (2.19) that the governing equations (2.9) for traveling water waves are equivalent to solving

R [q] = P

[
b

2 J
+ gη − τκ

]
= 0, q = (η, τ ,b), (3.3)

where J and κ depend on η via (2.9). We computed the Fréchet derivative of R in (2.34) using “dot notation,” defined in 
(2.33). The following theorem is proved in Appendix B:
9
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Theorem 3.2. Suppose qper = (η, τ , b) with η ∈ V per
σ for some σ > 0. Suppose also that η is real-valued and the resulting J (α1, α2)

in (2.9), which is independent of α2, is non-zero for every α1 ∈ �. Then there exists ρ ∈ (0, σ) such that DqR [qper] is a bounded 
operator from 

(
Vσ , �, �

)
to Vρ .

We do not assume qper is a solution of R [q] = 0 in this theorem, though that is the case of interest. Our next goal 
is to show that when linearized about a periodic solution, variations in (τ , b) and periodic perturbations of η lead to 
periodic changes in R while quasi-periodic perturbations lead to quasi-periodic changes in R . We combine the discussion 
of the numerical computation with the derivation since the only difference is whether infinite Fourier series of real analytic 
functions are considered or whether these functions are approximated via the FFT on a uniform grid.

Let qper = (η, τ , b) satisfy the hypotheses of Theorem (3.2). Then clearly

DqR
[
qper

](
0, τ̇ , ḃ

)= P
[
ḃ/
(
2 J
)− κτ̇

]
(3.4)

is periodic, i.e., a torus function independent of α2. Moreover, if q̇ is of the form

q̇(l1,l2) = (eil1α1eil2α2 ,0,0
)
, l1, l2 ∈ �, (3.5)

then (2.34) simplifies to

Ṙ = P

[
− b

2 J2
J̇ + gη̇ − τ κ̇

]
, η̇ = eil1α1eil2α2 , ξ̇ = −i sgn(l1 + kl2)e

il1α1eil2α2 ,

J̇ = 2
{ ∣∣l1 + kl2

∣∣(1+ ∂αξ
)+ i

(
l1 + kl2

)
∂αη

}
eil1α1eil2α2 ,

κ̇ = −3κ

2 J
J̇ + 1

J3/2

{∣∣l1 + kl2
∣∣∂2

αη − (l1 + kl2
)2(

1+ ∂αξ
)

− i
(
l1 + kl2

)(
∂2
αξ + ∣∣l1 + kl2

∣∣ ∂αη
)}

eil1α1eil2α2 .

(3.6)

The terms in braces, which we denote by Ã(1)(α1) and Ã(2)(α1), respectively, are independent of α2. Next we expand η̃(α)

in (2.8) as a 1d Fourier series, 
∑

j η̂ jei jα , which gives(
1+ ∂αξ

)= 1+
∑
j

| j|η̂ je
i jα1 , ∂r

αη =
∑
j

(i j)r η̂ je
i jα1 , ∂2

αξ =
∑
j

i j| j|η̂ je
i jα1 , (3.7)

where r ∈ {1, 2}. The 1d inverse FFT can then be used to compute Ã(1)(α1) and Ã(2)(α1) on a uniform grid in the α1 variable 
that is fine enough to resolve the Fourier modes to the desired accuracy. We then write

κ̇(α1,α2) = Ã(3)(α1)e
il1α1eil2α2 , Ã(3) = −3

κ

J
Ã(1) + 1

J3/2
Ã(2),

− b

2 J2
J̇ + gη̇ − τ κ̇ = Ã(4)(α1)e

il1α1eil2α2 , Ã(4) = − b

J2
Ã(1) + g − τ Ã(3),

(3.8)

where Ã(3)(α1) and Ã(4)(α1) are computed pointwise on the grid. For each m ∈ {1, 2, 3, 4}, we note that Ã(m)(α1) depends 
on (l1, l2), and will be written Ã(l1,l2,m)(α1) when the dependence needs to be shown explicitly. Finally, we obtain(

DqR
[
qper

]
q̇(l1,l2)

)
(α1,α2) = P

[
Ã(l1,l2,4)(α1)e

il1α1eil2α2
]= ũ(l1,l2)(α1)e

il2α2 , (3.9)

where the projection P was defined in (2.10) above. The Fourier expansion

ũ(l1,l2)(α) =
∑
j

û(l1,l2)
j ei jα, û(l1,l2)

j =
{
Â(l1,l2,4)

j−l1
, ( j, l2) 
= (0,0),

0, ( j, l2) = (0,0),
(3.10)

is easily read off from the FFT of Ã(l1,l2,4)(α), where we used the fact that multiplication by eil1α1 in (3.9) simply shifts 
the Fourier index by l1. Of course, by Remark 2.3, Â(l1,l2,4)

j−l1
will be computed via a one-dimensional de-aliasing formula 

analogous to (2.22). Since τ and b are real and η(α1, α2) = η̃(α1) is real-valued, inspection of (3.6)–(3.9) shows that

Ã(−l1,−l2,m)(α) = Ã(l1,l2,m)(α), ũ(−l1,−l2)(α) = ũ(l1,l2)(α),

(
m = 1,2,3,4

l1, l2 ∈ �

)
. (3.11)

This shows that DqR
[
qper

]
q̇(l1,l2) = DqR

[
qper

]
q̇(l1,l2) , which is also evident from (3.6). If, moreover, η has even symmetry, 

then
10
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Ã(l1,l2,m)(−α) = Ã(l1,l2,m)(α), ũ(l1,l2)(−α) = ũ(l1,l2)(α),

(
m = 1,2,3,4

l1, l2 ∈ �

)
, (3.12)

which implies that the Fourier coefficients of these complex-valued functions are real.

Remark 3.3. Evaluation of (3.6) and (3.9) along the characteristic line α1 = α, α2 = kα gives the real-line version of these 
equations, which can be derived directly via a Fourier-Bloch analysis commonly used in the study of subharmonic stability 
of traveling waves [29,80]. However, by posing the problem in a quasi-periodic torus framework, it becomes possible to 
follow bifurcation branches beyond linearization about periodic traveling waves.

Remark 3.4. In summary, we have shown that DqR [qper] has a block structure, mapping (η̇, τ̇ , ̇b) ∈ (V per
σ , �, �

)
to V per

ρ and 
(η̇, 0, 0) ∈ (V (l2)

σ , 0, 0
)
to V (l2)

ρ for l2 ∈� \ {0}.

Remark 3.5. The spaces Vσ are convenient for identifying the block structure of DqR [qper], which leads us to a numer-
ical algorithm for computing quasi-periodic bifurcation points and perturbation directions to switch to the new branch; 
however, we are not able to apply rigorous bifurcation theorems such as the Crandall-Rabinowitz theorem [27] to prove 
existence of genuinely spatially quasi-periodic water waves in this framework since DqR [qper] is not a Fredholm operator 
from 

(
Vσ , �, �

)
to Vρ . Indeed, when ρ and σ are chosen as in the proof of Theorem B.1 in Appendix B, the algebraic 

codimension is infinite since DqR [qper] is also bounded if the range is decreased slightly to Vρ+ε for sufficiently small ε, 
and the embedding of Vρ+ε into Vρ has infinite algebraic co-dimenison. Proofs of existence [20,21,81] of bifurcations from 
2π -periodic traveling waves to 2πm-periodic traveling waves for sufficiently large integers m employ a variant of Nekrasov’s 
equation [66] instead of (3.3) for the governing equations. Adapting these proofs to the quasi-periodic case is an interesting 
avenue of future research, and may require employing Nash-Moser theory [10,12,13,69] to overcome small divisors, whose 
effects can be seen in the numerical results presented in Section 4.1 below.

It is convenient at this point to introduce alternative basis functions and subspaces that more clearly exhibit the even, 
real-valued nature of the solutions we seek. Let

ϕ�l(�α) = 2cos(�l · �α),

ψ�l(�α) = −2 sin(�l · �α),

�l ∈ � =
{
(l1, l2) ∈ �2 : l2 > 0 or

(
l2 = 0 and l1 > 0

)}
, (3.13)

where �α = (α1, α2). We also define ϕ0,0(�α) = 1. Then(
ϕ�l(�α) , ψ�l(�α)

)
=
(
ei

�l· �α , e−i�l· �α)(1 i
1 −i

)
, (�l ∈ �) (3.14)

and the torus function expansions of an arbitrary function

f (�α) =
∑
j1, j2

f̂ j1, j2e
i( j1α1+ j2α2) = a�0ϕ�0(�α) +

∑
�l∈�

(
a�lϕ�l(�α) + b�lψ�l(�α)

)
(3.15)

are related by

a�0 = f̂�0,
(
a�l
b�l

)
=
(

1
2

1
2

1
2i

−1
2i

)(
f̂�l
f̂−�l

)
,

(
f̂�l
f̂−�l

)
=
(
1 i
1 −i

)(
a�l
b�l

)
, (�l ∈ �). (3.16)

Note that f (�α) is real-valued precisely when all the a�l and b�l are real. In this case, these coefficients are the real and 

imaginary parts of f̂�l for �l ∈ �, and f̂−�l = f̂�l . Similarly, f (�α) is even with respect to �α ∈ �2 precisely when all the b�l are 
zero. We also define the subspaces

X const
σ = spanσ {ϕ0,0} = {constant functions on �2},

X per
σ = X (0)

σ = spanσ {ϕl1,0 : l1 � 1}, Y per
σ = Y (0)

σ = spanσ {ψl1,0 : l1 � 1},
X (l2)

σ = spanσ {ϕl1,l2 : l1 ∈ �}, Y (l2)
σ = spanσ {ψl1,l2 : l1 ∈ �}, (l2 � 1),

(3.17)

where spanσ of a list of functions is the closure of the set of finite linear combinations of the functions with respect to the 
Vσ norm from (3.1). We note that

V per
σ = X const

σ ⊕ X per
σ ⊕ Y per

σ , V (l2)
σ ⊕ V (−l2)

σ = X (l2)
σ ⊕ Y (l2)

σ , (l2 � 1), (3.18)

Vσ = X const
σ ⊕ X per

σ ⊕ Y per
σ ⊕ X qua

σ ⊕ Y qua
σ , X qua

σ =
∞⊕

l2=1

X (l2)
σ , (3.19)
11
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Fig. 1. Simple quasi-periodic bifurcation diagram.

with a similar formula for Y qua
σ . Since the basis functions ϕ�l(�α) and ψ�l(�α) are real-valued, the spaces in (3.19) may be 

regarded as complex or real Hilbert spaces. It is also useful to define

Xσ = X per
σ ⊕ X qua

σ , (3.20)

which contains the even functions of Vσ of zero mean on �2.
As explained above, since we assume in (2.14) that η is real-valued and even, the Fourier coefficients of ũ(l1,l2)(α) in 

(3.10) are real. Thus, from (3.9) and (3.11) we have

DqR
[
qper

](
ϕ�l,0,0

)=∑ j1∈� û(l1,l2)
j1

ϕ j1,l2(�α),

DqR
[
qper

](
ψ�l,0,0

)=∑ j1∈� û(l1,l2)
j1

ψ j1,l2(�α),

(�l = (l1, l2) ∈ �
)
. (3.21)

The j1 = 0 term can be omitted from these sums when l2 = 0 since û(l1,0)
0 = 0, and must be omitted in the second for-

mula as ψ0,0(�α) is not defined. We also see directly from (3.4) and (3.6) that DqR
[
qper

](
0, τ̇ , ̇b

)
is an even function and 

DqR
[
qper

](
ϕ0,0, 0, 0

)= 0.

Remark 3.6. Since η is assumed real-valued and even and DqR
[
qper

]
maps even perturbations to even functions and odd 

perturbations to odd functions, we can restrict attention to even functions and perturbations. In light of Remark 2.1 and the 
presence of the projection P in the definition (3.3) of R , we may further restrict attention to functions and perturbations of 
zero mean. It follows from (3.21) that DqR

[
qper

]
has a block structure with respect to the decomposition (3.20), mapping 

(η̇, τ̇ , ̇b) ∈ (X per
σ , �, �

)
to X per

ρ and (η̇, 0, 0) ∈ (X (l2)
σ , 0, 0

)
to X (l2)

ρ for l2 � 1.

If the surface tension τ is held fixed, which will be the case for the pure gravity wave problem in section 4.1 below, then 
there will be a one-parameter “primary” branch of periodic traveling waves, which we denote by q = qper(s) ∈ (X per

σ , �, �
)
. 

Here s is any convenient amplitude parameter such as η̂1,0 or the crest-to-trough height of the wave, h = η̃(0) − η̃(π). 
Following [4,23,24,27,95], we are interested in finding simple bifurcation points qbif where a second solution curve q =
qqua(θ) ∈ (Xσ , �, �

)
intersects the first non-tangentially, with θ another amplitude parameter such as η̂0,1; see Fig. 1. 

Suppose such an intersection occurs at s = s0 and θ = θ0. Differentiating R
[
qper(s)

]= 0 and R
[
qqua(θ)

]= 0, we obtain

DqR
[
qbif
]((

qper
)′
(s0)
)

= 0 = DqR
[
qbif
]((

qqua
)′
(θ0)

)
. (3.22)

At a simple bifurcation [27], these null vectors span the kernel of DqR
[
qbif
]
,

ker DqR
[
qbif
]= span

{(
qper
)′
(s0) ,

(
qqua

)′
(θ0)

}
. (3.23)

Because τ is frozen and we restrict attention to even perturbations of zero mean, the domain of DqR
[
qbif
]
is taken to be 

Dσ = (Xσ , 0, �
)
when computing the kernel. We decompose

Dσ = Dper
σ ⊕

( ∞⊕
l=1

D(l)
σ

)
,

Dper
σ = {(η̇,0, ḃ) : η̇ ∈ X per

σ , ḃ ∈ �},
D(l)

σ = {(η̇,0,0) : η̇ ∈ X (l)
σ }. (3.24)

Let q̇per = (qper)′(s0), which belongs to Dper
σ since solutions on this branch are periodic. By (3.24), we can decompose (

qqua
)′
(θ0) = q̇per +∑∞

l=1 q̇
(l) with q̇per ∈ Dper

σ and q̇(l) ∈ D(l)
σ . Our assumption that the bifurcation is simple implies that 
1 1

12
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precisely one of the q̇(l) is non-zero. In more detail, because DqR
[
qbif
]
has a block structure, each non-zero component q̇per1

and q̇(l) will also be in the kernel. At least one of the q̇(l) , say with l = l0, must be non-zero since solutions on the path 
qqua(θ) are supposed to be genuinely quasi-periodic, and we require that this occurs at linear order in the perturbation. But 
then all the other q̇(l) must be zero and q̇per1 must be a multiple of q̇per, or else the dimension of ker DqR

[
qbif
]
would be 

greater than two. For simplicity, and without loss of generality, we may assume l0 = 1. Indeed, observing the way k and 
l2 appear in the formulas of (3.6), we see that if q̇(l) belongs to the kernel for l > 1, then q̇(1) will be in the kernel for an 
auxiliary problem with k replaced by kl. Renaming q̇(1) by q̇qua, we have shown that the kernel should take the form

ker DqR
[
qbif
]= span

{
q̇per , q̇qua

}
, q̇per ∈Dper

σ , q̇qua ∈D(1)
σ , (3.25)

where 
(
qper
)′
(s0) = q̇per and 

(
qqua

)′
(θ0) = Cq̇per + q̇qua for some C ∈�. As explained in Section 4.1 below, a non-zero value of 

C would break a symmetry that arises on the solution branches we have found. Thus, C turns out to be zero and qbif +εq̇qua

can be used as a natural initial guess to switch from the periodic branch to the quasi-periodic branch, where ε is a suitably 
small number chosen empirically.

When the surface tension is allowed to vary, which will be the case in the gravity-capillary wave problem of section 4.2, 
there will be a two-parameter family of periodic traveling waves that contains one-dimensional bifurcation curves where 
the periodic waves intersect with two-dimensional sheets of quasi-periodic traveling waves. In this formulation, one can 
increase the domain of DqR

[
qbif
]
from (3.24) to Dσ = (Xσ , �, �

)
and the dimension of the kernel will increase from two 

to three. But computationally, we can sweep through these manifolds of solutions with τ or an amplitude parameter fixed, 
which reduces the problem to searching for isolated bifurcation points along one-parameter solution curves, as described 
above. The general theory of multi-parameter bifurcation theory is presented in [3,9], for example.

Remark 3.7. If we had not separated X const
σ from X per

σ in (3.17), the dimension of the manifolds of solutions would increase 
by one, as would the kernel, but in a trivial way: one can add a constant to η for any of the solutions to obtain another 
solution. One could add an equation to the nonlinear system R [q] = 0 to select the physical solution with zero mean in 
physical space, but it is simpler to just hold η̂0,0 = 0 in this search phase of the problem and compute the correction 
afterwards, as explained in Remark 2.1.

3.2. Detecting quasi-periodic bifurcation points

In this section, we discuss how to detect quasi-periodic bifurcation points on qper(s) and compute the corresponding 
bifurcation directions. Because we seek bifurcation points qbif such that DqR

[
qbif
]
has a null vector q̇qua ∈ D(1)

σ , it suffices 
to compute the restriction of DqR

[
qper(s)

]
to D(1)

σ = (X (1)
σ , 0, 0

)
and search for values of s for which this operator has a 

non-trivial kernel. By Remark 3.6, the range of this restriction may be taken to be X (1)
ρ .

Recall from Section 2.2 that we compute periodic traveling waves numerically by specifying η̂1,0 and τ as given param-
eters and minimizing the objective function (2.30) to find the square of the wave speed, b = c2, and the remaining leading 
Fourier modes (η̂2,0, . . . , η̂N1,0). The computations are done on a uniform M1-point grid in the α1 variable, where M1 ≈ 3N1
is generally sufficient to achieve spectrally accurate solutions with minimal effects of aliasing errors. Fourier modes η̂ j1 ,0
with | j1| > N1 are taken to be zero, and η is assumed real and even so that η̂− j1,0 = η̂ j1,0 ∈�. N1 is chosen large enough 
that the Fourier modes decay to machine precision by the time | j1| reaches N1.

For each of these computed periodic solutions, qper = qper(s), we form the matrix J qua
[
qper

]
representing the restriction 

of DqR
[
qper

]
to D(1)

σ , using the {ϕl1,1} basis in both the domain and range of the restricted operator, up to a cutoff frequency 
N . We order the basis functions via l1 = (0, 1, −1, 2, −2, 3, −3, . . . , N, −N) and use (3.21) to obtain

J qua
[
qper

]=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

û(0,1)
0 û(1,1)

0 û(−1,1)
0 · · · û(N,1)

0 û(−N,1)
0

û(0,1)
1 û(1,1)

1 û(−1,1)
1 · · · û(N,1)

1 û(−N,1)
1

û(0,1)
−1 û(1,1)

−1 û(−1,1)
−1 · · · û(N,1)

−1 û(−N,1)
−1

...
...

...
...

...

û(0,1)
N û(1,1)

N û(−1,1)
N · · · û(N,1)

N û(−N,1)
N

û(0,1)
−N û(1,1)

−N û(−1,1)
−N · · · û(N,1)

−N û(−N,1)
−N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.26)

where ũ(l1,l2)(α1) is defined above, in (3.9), and a formula for its Fourier modes û(l1,l2)
j is given in (3.10). We generally 

choose N in the range N1 � N � (3/2)N1. The goal is to have enough rows and columns in J qua that when the singular 
value decomposition

J qua[qper(s)] = U (s)�(s)V (s)T , �(s) = diag
(
σ1(s) , σ2(s) , . . . , σ2N+1(s)

)
(3.27)

is computed, the left and right singular vectors corresponding to the smallest singular value have expansions in the {ϕl,1}
basis with coefficients {al,1} that decay in amplitude to machine precision by the time |l| reaches N . Here the singular values 
13
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σi(s) are not related to the parameter σ in the weighted spaces Vσ , Dσ and Xσ . Our reasons for using the unweighted 
Fourier basis {ϕl1,1} when computing the matrix representation of DqR

[
qper

]
from D(1)

σ to X (1)
ρ are explained in Remark 3.12

below.
Because this is a discretization of an infinite-dimensional problem, the smallest singular values are of physical interest 

while the largest are under-resolved and inaccurately computed. Thus, we order the singular values in ascending order

0� σ1(s) � σ2(s) � · · · � σ2N+1(s). (3.28)

Increasing N further does not change the smallest singular values and corresponding singular vectors (up to floating-point 
arithmetic effects) as they are already fully resolved without using the high-frequency columns and rows of J qua that are 
added. Standard computational routines, of course, return them in descending order. But for this discussion, we reverse the 
columns of U (s) and the rows of V (s)T from the computation to match the convention (3.28). In the end, the matrices U (s)
and V (s)T do not have to be computed at all; see Section 3.3.

As the parameter s changes, we compute �(s) in (3.27) and search for zeros s0 of the smallest singular value, σ1(s0) = 0. 
Since singular values are returned as non-negative quantities, σ1(s) has a slope discontinuity at each of its zeros. This is a 
challenge for root-finding algorithms that rely on bracketing or polynomial approximation. But if the matrix entries of J qua
depend analytically on s, there is an analytic SVD in which the singular values and vectors are analytic functions of s; see 
Bunse-Gerstner et al. [22] and Kato ([53], pp. 120–122, 392–393). If J qua is not analytic with respect to s, a smooth SVD 
[34] often exists and can be used instead. When the SVD is computed numerically, instead of changing the sign of σ1(s)
when s crosses s0, the corresponding left or right singular vector will change sign. If we transfer this sign change to σ1(s), 
the slope discontinuity is eliminated and σ1(s) becomes analytic or smooth.

One idea we experimented with is to multiply σ1(s) by sgn(〈u1, v1〉), where u1 and v1 are the first columns of U and 
V in (3.27) under the convention (3.28); sgn(a) is defined above in (2.11); and 〈u, v〉 =∑ j u

j v j , where we use superscripts 
for the components of a column vector that has been extracted from a matrix. If u1(s0) and v1(s0) are nearly orthogonal, 
one can instead use sgn(〈T u1, v1〉), where T is a Householder reflection that aligns u1(s1) with v1(s1) at some point s1
near s0. Although this works fine in the present problem (even without introducing T ), it is clear that in general, 〈T u1, v1〉
might change discontinuously if σ1(s) and σ2(s) ever cross, possibly leading to a sign change that does not correspond to a 
zero crossing of σ1(s).

We propose, instead, to use the signs of the determinants of U and V to track orientation changes in the singular vectors 
when s crosses a zero of σ1(s). So we define

χ(s) = sgn
(
detU (s)

)
sgn
(
det V (s)

)
σ1(s)

= ( sgndet J qua
[
qper(s)

] )
σ1(s).

(3.29)

The zeros s0 of χ(s) will be used to identify bifurcation points qbif = qper(s0). Since U (s) and V (s) are orthogonal, their de-
terminants are equal to 1 or −1 and can be computed accurately by LU or Q R factorization to determine which. (Including 
sgn just rounds the numerical result to the exact value). The second formula of (3.29) has to be treated with care, but can 
be computed faster than the first formula as an intermediate step of computing σ1(s), without having to actually form the 
matrices U (s) or V (s) or compute their determinants; see Section 3.3.

To find a zero s0 of χ(s), we can use a root bracketing technique such as Brent’s method [17] to reduce |χ(s)| to the 
point that floating-point errors corrupt the smallest singular value of the SVD algorithm, which is typically below 10−13

in double-precision. Alternatively, one can compute χ(s) at a set of Chebyshev nodes on an interval [s1, s2] for which 
χ(s1) and χ(s2) have opposite signs. One can then use Newton’s method or Brent’s method on the Chebyshev interpolation 
polynomial to find a zero s0 of χ(s). We demonstrate both techniques in Section 4 below. Once qbif = qper(s0) has been 
found, the null vector q̇qua in (3.25) is given by

q̇qua = (η̇qua,0,0), η̇qua = v1ϕ0,1 +
N∑
j=1

[
v2 jϕ j,1 + v2 j+1ϕ− j,1

]= N∑
j=−N

a j,1ϕ j,1, (3.30)

where v = v1 is the first column of V and we make use of the row and column ordering of J qua in (3.26). Here a0,1 = v1, 
a j,1 = v2 j and a− j,1 = v2 j+1 for 1 � j � N . Since V is orthogonal, ‖v1‖ = 1, so q̇qua is already normalized sensibly and 
qbif + εq̇qua serves as a useful initial guess for computing solutions on the secondary branch qqua(θ). The null vector only 
needs to be computed when s = s0 is a zero of χ(s), and can be computed efficiently without forming U (s) or the other 
columns of V (s) if the problem size is large enough to make these calculations expensive; see Section 3.3.

Remark 3.8. An important feature of χ(s) is that once N is large enough that the left and right singular vectors u1 and v1
have entries that decay to zero in floating-point arithmetic, further increases in N do not change the numerical value of 
χ(s).

To explain Remark 3.8, we first consider the zero-amplitude case. Setting η = 0, ξ = 0, J = 1 and κ = 0 in (3.6), we find 
that
14
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û(l1,l2)
j =

{
−b|l1 + kl2| + g + τ (l1 + kl2)2, j = l1,

0, otherwise.
(3.31)

Thus, J qua in (3.26) is diagonal, and the last two diagonal entries are

J qua2N,2N = (1− τ |N + k|)(1− |N + k|),
J qua2N+1,2N+1 = (1− τ | − N + k|)(1− | − N + k|), (3.32)

where we used b = c2 = (g/k1) + τk1 for the square of the wave speed of the zero-amplitude traveling wave of dimension-
less wave number k1 = 1 and gravitational acceleration g = 1. Assuming k > 0 and N > k + 1, we have 1 − | ± N + k| �
1 − (N − k) < 0, so both of these final diagonal entries are negative if τ = 0. If τ > 0, then both diagonal entries will be 
positive once τN > τk + 1 and N > k + 1. Thus, with or without surface tension, once N is large enough, increasing N
by one does not change the sign of the determinant of J qua in the linearization about η = 0. With N fixed, because an 
analytic SVD of the form (3.27) exists, the sign of det J qua[qper(s)] will only change when s passes through a zero of χ(s), 
which is the signed version of the smallest singular value σ1(s). If such zero crossings correspond to well-resolved singular 
vectors in the kernel and N1 and N2 are large enough, then upon replacing N = N1 by N = N2, the same crossings will be 
encountered and the sign of the determinant at a given s will not change. This argument would break down if truncating 
the matrix leads to a spurious null vector at some s for either N1 or N2, but we find that only the large singular values are 
sensitive to where the matrix is truncated. When a null vector is found, it is easy to check a-posteriori that the entries v2 j

and v2 j+1 of v = v1 in (3.30) decay to machine precision by the time j reaches N .

Remark 3.9. In finite-dimensional bifurcation problems, say f (q) = 0 ∈ �n with q = (u, s) ∈ �n+1 and primary branch pa-
rameterized by q = q(s), one can use

det J e(s), J e(s) =
(

fq[q(s)]
q′(s)T

)
(3.33)

as a test function that changes sign at simple bifurcations. This is the numerical approach advocated in [4], for example, 
and is one of the test functions implemented in Matcont [16,33]. In our case, using Bloch’s theorem, we only have to 
consider quasi-periodic perturbations q̇ ∈ D(l2)

σ with l2 = 1, so we can replace det J e(s) above by det J qua[qper(s)] in (3.26). 
The most common way to compute the determinant is as the product of the diagonal entries of the LU factorization. But 
these products can be very large or very small, potentially leading to overflow or underflow in floating-point arithmetic, and 
it is difficult to know what order of magnitude of the determinant constitutes a zero crossing. One can look for zeros among 
the diagonal entries of the LU factorization, but there are many cases where a nearly singular matrix has diagonal entries 
all bounded away from zero. For example, the bidiagonal matrix with 1’s on the diagonal and 2’s on the superdiagonal 
has unit determinant but is effectively singular once the matrix size exceeds 50. Moreover, unlike our χ(s) function, the 
numerical value of the determinant will change when the matrix truncation parameter N changes. For all these reasons, 
the determinant itself is not a suitable function to identify bifurcation points in this problem, though its sign is effective at 
removing the slope discontinuities of σ1(s), enabling the use of root-finding algorithms to rapidly locate its zeros.

Remark 3.10. In the context of dynamical systems, du/dt = f (u, s), many test functions have been devised to identify fold 
points, Hopf points, and branch points [15,16,33,46,48]. For large-scale equilibrium problems arising from discretized PDEs, 
Bindel et al. [16] reached the same conclusion we did above in Remark 3.9 on the unsuitability of (3.33) as a test function. 
Instead, in [16], minimally augmented systems [5,14,15,48,49] are used together with Newton’s method to locate branch 
points. Studying the details of this approach, e.g., Algorithm 5 of [16], the Newton iteration involves solving f = 0 simul-
taneously with driving ψ(s) in (1.2) to zero. As a result, intermediate Newton iterations will not involve states u that lie 
precisely on the primary bifurcation curve. This causes a problem for us as we have to linearize about a periodic solu-
tion to use Bloch-Fourier theory. The assumption that J ee in (1.2) is square is also incompatible with our formulation of 
the traveling wave problem as an overdetermined nonlinear least squares problem, where J in (2.35) has more rows than 
columns to reduce aliasing errors and improve the accuracy of the computed periodic or quasi-periodic traveling waves. We 
prefer to treat the two stages of finding traveling waves and studying their behavior under perturbation as separate infinite 
dimensional problems that we solve with spectral methods using as many modes as necessary to achieve double-precision 
accuracy. One could still devise a minimally augmented systems approach within this philosophy to search for changes in 
the dimension of the kernel of J qua[qper(s)], but it would require a custom implementation and the resulting test function 
ψ(s) analogous to (1.2) would not be much cheaper to compute than our χ(s). Moreover, ψ(s) is only locally defined near 
each bifurcation point due to various choices of vectors that are made when augmenting the Jacobian. It also does not have 
the mesh independence feature of χ(s), so ψ(s) will change discontinuously if the mesh is refined adaptively as s changes.

Remark 3.11. The closest test function we have found in the literature to (3.29) is a signed version of the magnitude of the 
smallest eigenvalue of fu , denoted |λmin(s)|, (see equation (67) of [16]), which is proposed as an alternative to det( fu(s)) for 
detecting zero-Hopf points. We use σmin instead of |λmin| and broaden the scope of the test function to search for branch 
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points. This has the advantage that it can be applied to an equation g(u, s) = 0 that is equivalent to f (u, s) = 0 but is no 
longer in dynamical systems form. For example, one does not obtain the dynamic water wave equations [25,37–39,71,92]
by setting ηt = R [q] in (3.3), since the velocity potential has been eliminated in the traveling wave equations. While the 
eigenvalues of fu at an equilibrium point give information about the dynamics of u under perturbation, only the kernel 
of gu (and changes in its dimension) are relevant, making σmin(s) more natural than |λmin(s)| in a test function based on 
solving g = 0.

Remark 3.12. Since DqR
[
qper

]
maps 

(
X (1)

σ , 0, 0
)
to X (1)

ρ with 0 <ρ<σ , it would be natural to use 
{
2−1/2e−σ(|l1|+1)ϕl1,1

}
l1∈�

and 
{
2−1/2e−ρ(| j1|+1)ϕ j1,1

}
j1∈� as orthonormal bases for X (1)

σ and X (1)
ρ in the domain and range. This would cause the 

rows and columns of J qua
[
qper

]
to be rescaled so that entry û(l1,1)

j1
in (3.26) is multiplied by e−σ |l1|eρ| j1| . This yields a 

two-parameter family of matrices J qua
[
qper

]
, parameterized by ρ and σ , that ultimately predict the same bifurcation points 

and perturbation directions to switch branches. Recall that σ is defined by the requirement that η ∈ V per
σ , so any smaller 

positive value can also be used without violating the hypotheses. If σ is small, the corresponding ρ will also be small since 
ρ ∈ (0, σ). So we are effectively considering the σ → 0+ limit, with e−σ |l1|eρ| j1| ≈ 1, in the formula (3.26) for J qua

[
qper

]
.

This is the most suitable choice for the numerical algorithm for three reasons. First, if ρN were large, floating-point 
errors would be amplified in the matrix entries in the lower-left corner of J qua

[
qper

]
, where | j1| � |l1|, possibly reducing 

the accuracy of σ1(s) in (3.28) and the corresponding right singular vector, v1, which is the desired null vector predicting 
the bifurcation direction at the zeros of σ1(s). Second, N may need to be increased to fully resolve this null vector for the 
rescaled version of J qua

[
qper

]
. Indeed, if v j

1 are the entries of v1 for the unscaled version of J qua
[
qper

]
, then Ceσ | j|v j will be 

the entries of v1 for the rescaled version, which decay slower and therefore need a larger N to decay below the roundoff-
error threshold. (C is a normalizing constant.) And third, rescaling the matrix J qua

[
qper

]
will change its singular values, 

possibly leading to new small singular values that do not correspond to bifurcation directions but instead to high-frequency 
inputs to DqR

[
qper

]
that are compressed due to the change in norm from the input space (X (1)

σ , 0, 0) to the output space 
X (1)

ρ . By considering the σ → 0+ limit, only the well-resolved singular values are small.

3.3. Computing the sign of the determinant of a matrix along with its singular values

For simplicity, since the results of this section are not tied to the water wave problem, we revert to standard numerical 
linear algebra notation: J qua will be denoted by A; its dimension 2N + 1 will be denoted by n; and the singular values 
will be ordered so that σ1 � σ2 � · · ·σn � 0. In floating-point arithmetic, we define the sign of the determinant as a single 
function (without computing det A as an intermediate result) to be

sgndet A = (detU )(det V ), A = U�V T , � = diag(σ1, . . . , σn). (3.34)

This is a procedural definition: compute the SVD of A numerically to obtain U and V , which are orthogonal. Then compute 
their determinants by LU or QR factorization, round to 1 or −1, and multiply them together. As explained in Section 3.2, 
if A depends analytically on a parameter s, then χ(s) = (detU (s))(det V (s))σn(s) will be a real analytic function that does 
not have slope discontinuities at the zeros of σn(s). This conclusion relies on the existence of an analytic SVD, but it is 
only necessary to compute the standard SVD with non-negative singular values. Our goal now is to show how to compute 
(detU )(det V ) without actually forming the matrices U and V or computing their determinants explicitly.

Recall that the first step of the SVD algorithm is to compute a bidiagonal reduction, e.g., using the ‘dgebrd’ routine in 
the LAPACK library:

U T
0 AV0 = B0. (3.35)

Here U0 and V0 are orthogonal matrices and B0 is upper bidiagonal. We will show that

sgndet A = (detU0)(det V0) sgn(det B0), (3.36)

where sgn(det B0) =∏n
j=1 sgn

(
(B0) j j

)
. Here (detU0) and (det V0) are ±1 with parity matching the number of left and right 

Householder transformations performed in the bidiagonal reduction, which are easy to count from the output of ‘dgebrd’. 
The left-hand side of (3.36) is still defined as (detU )(det V ), but we wish to use (3.36) as a cheaper alternative.

Our task is now to analyze what would happen if we were to continue with the standard algorithm to compute U and 
V along with �. The next step of this standard algorithm is to call ‘dbdsqr’ to compute a sequence of upper bidiagonal 
matrices

Bk = U T
k Bk−1Vk, (k = 1,2,3, . . . ) (3.37)

that converge rapidly to a diagonal matrix �̃. In the initial iterations, while searching for the smallest singular values, 
‘dbdsqr’ employs a zero-shift in the implicit QR algorithm [31] or the mathematically equivalent ‘dqds’ algorithm [32,45]. 
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This leads to high relative accuracy in all the computed singular values. Moreover, each iteration of (3.37) in floating-point 
arithmetic is equivalent to introducing a small relative perturbation of each non-zero matrix entry of Bk−1, performing a 
“bulge-chasing” sequence of Givens rotations in exact arithmetic [31,32], and then perturbing each non-zero entry of the 
result by a small relative amount to obtain Bk . These perturbations of the diagonal and superdiagonal entries of Bk−1

and Bk do not affect the signs of their determinants, and the Givens rotations all have unit determinant, so sgn(det Bk) =
sgn(det Bk−1). On each iteration, super-diagonal entries of Bk that are sufficiently small relative to their neighboring diagonal 
entries are zeroed out, which does not affect sgn(det Bk). The algorithm terminates and �̃ is set to Bk when the last super-
diagonal entry is zeroed out. Thus, sgn(det �̃) = sgn(det B0). At this point we have

A = Ũ �̃Ṽ T , Ũ = U0U1 · · ·UK , Ṽ T = V T
K · · · V T

1 V T
0 , (3.38)

where K is the number of iterations required for convergence. We finally obtain

A = U�V T = (Ũ P T )(P �̃DP T )(P DṼ T ), D = diag
(
sgn(σ̃1), . . . , sgn(σ̃n)

)
, (3.39)

where multiplying �̃ by D takes the absolute values of the diagonal entries and P is a permutation matrix such that 
� = P �̃DP T contains the singular values on the diagonal in non-increasing order. Note that we have transferred the signs 
on the diagonal of �̃ to the rows of Ṽ T via D . We conclude that

(detU0)(det V0) sgn(det B0) = (detU0)(det V0) sgn(det �̃) = (det Ũ )(det Ṽ )det(D)

= det(Ũ P T )det(P DṼ T ) = (detU )(det V ),
(3.40)

where we used det(Ũ ) = det(U0) and det(Ṽ ) = det(V0) since the matrices U1, . . . , UK and V T
K , . . . , V T

1 are comprised of 
Givens rotations of unit determinant. This shows that we can stop at (3.36) and get the same result as continuing to the 
completed computation of (detU )(det V ). Again, this is due to the ‘dbdsqr’ and ‘dqds’ algorithms maintaining high relative 
accuracy on the entries of successive bidiagonal matrices Bk . The smallest entries on the diagonal cannot jump across zero 
as this would entail a large relative change.

Since sgndet A is known already after the initial bidiagonal reduction, it is not necessary to accumulate the Givens 
rotations to form Ũ and Ṽ T in (3.38), apply the permutations to form U and V T in (3.39), or compute the determinants 
of U and V explicitly. The initial bidiagonal reduction involves (8/3)n3 + O (n2) flops [32] while forming U and V and 
computing their determinants involves another (16/3)n3 + O (n2) flops, which triples the running time. Once a zero of χ(s)
has been found, we can form V to find the null vector of A in 2n3 + O (n2) flops, without also forming U or computing the 
determinants of U and V .

4. Numerical results

We now present two examples of quasi-periodic traveling waves that bifurcate from finite-amplitude periodic traveling 
waves: quasi-periodic gravity waves and overturning quasi-periodic gravity-capillary waves.

4.1. Quasi-periodic gravity waves

As noted in the introduction, typical wave numbers for capillary waves in the ocean are 107 times greater than those 
of gravity waves, and one does not expect to observe interesting nonlinear interaction between component waves of such 
different length scales. For ocean waves, it is appropriate to set the surface tension coefficient to zero, which removes the 
capillary wave branch [36] from the dispersion equation (1.1). We are interested in quasi-periodic waves in which the two 
wavelengths are comparable, so we use k1 = 1 and k2 = k = 1/

√
2 for comparison with several of the examples in [91]. 

Whereas the quasi-periodic solutions computed in [91] persist to zero amplitude, the pure gravity wave problem does not 
support genuinely quasi-periodic solutions in the linearization about the zero solution since there is only one wave number 
k for a given wave speed c in the dispersion relation (1.1). Thus, we must search for secondary bifurcations.

Since surface tension is held fixed at τ = 0, this is a one-parameter bifurcation problem. We use the wave height, 
h = η̃(0) − η̃(π), as the amplitude parameter as it increases monotonically from the zero solution to the sharply crested 
120◦ corner wave [59]. The blue curves in Fig. 2 show wave speed c versus wave height h (left panel and inset) and 
versus η̂1,0 (right panel and inset). Here we follow the convention of Remark 2.4 and write η̂1,0 rather than η̂1, even 
though η(α1, α2) = η̃(α1) is independent of α2. Each blue marker corresponds to a computed periodic traveling wave. Note 
that both the wave speed c and the first Fourier mode η̂1,0 possess turning points beyond which they no longer increase 
monotonically as one progresses further along the primary bifurcation branch. The black markers correspond to quasi-
periodic solutions, and will be discussed below. We increase the Fourier cutoff N1 in (2.27) as needed to maintain spectral 
accuracy in the computed traveling waves.

Table 1 gives the sequence of Fourier cutoff values N1 used in the data of Fig. 2 as well as the largest wave height h
for which N1 was used. We used M1 = 3N1 gridpoints in the pseudo-spectral computation of the products and quotients 
in (2.9) and (2.35) and for the rows of the residual function rm in (2.30). Also shown in the table are the Fourier cutoff 
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Fig. 2. Bifurcation diagrams of the primary branch (blue) and a secondary branch (black) for traveling water waves with zero surface tension. The wave 
height h = η̃(0) − η̃(π) is preferable as an amplitude parameter to the wave speed c or the first Fourier mode η̂1,0 on the primary branch as it increases 
monotonically all the way to the extreme 120◦ corner wave. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Table 1
Largest wave height h for which the Fourier cutoff N1 was used to compute the periodic waves 
on the primary branch in Fig. 2, and the cutoff N that was used to truncate J per to 2N + 1
rows and columns. In the bottom row, N = N1.

h 0.075 0.2 0.3 0.4 0.575 0.65 0.725 0.8 0.82 0.832
N1 22 30 48 60 128 180 300 600 768 864
N 48 54 64 80 160 192 324 640 768 864
h 0.8394 0.8429 0.8525 0.8627 0.8687 0.8721 0.8763 0.8786 0.8815 0.88305
N1 1024 1350 1800 2400 4096 6144 8192 12288 16384 32000

values N used to truncate J qua in (3.26) to 2N + 1 rows and columns. This calculation also requires a grid on which to 
evaluate the products and quotients in (3.6)–(3.10). For this we used M = 3N gridpoints. In the last column of Table 1, with 
N = N1 = 32000, we reduced M1 to 65536 and M to 78732 to reduce the memory cost and running time, so aliasing errors 
may be slightly higher in this final batch of results.

Panels (a)–(c) of Fig. 3 show the first several singular values σ j (blue) as well as −σ j (red), keeping in mind the 
convention (3.28) that σ j+1 � σ j � 0. These are plotted as functions of the wave height h for each of the periodic solutions 
corresponding to the blue markers in Fig. 2. We find two bifurcation points in the range 0 � h � 0.88305, which we label

hA = 0.8090707936918, hE = 0.882674234631. (4.1)

The corresponding wave speeds are

cA = 1.083977046908, cE = 1.09238325132. (4.2)

Here E stands for “extreme,” as the wave profile of this bifurcation is getting close to the limiting 120◦ corner wave, which 
has been computed accurately by Gandzha and Lukomsky [47] and has a wave height of hmax = 0.88632800992. The black 
curve in Fig. 3 shows χ(h), which turns out to satisfy

χ(h) =
{

σ1(h), h� hA or h ∈ [hE ,0.88305],
−σ1(h), hA � h� hE .

(4.3)

There may be additional zero-crossings with h > 0.88305, but we ran out of computational resources to search for them.
We compute hA using Brent’s method [17] starting with the bracket χ(0.8) = 0.0100259 > 0 and χ(0.82) =

−0.0130748 < 0. Brent’s method uses a combination of linear interpolation, inverse quadratic interpolation, and bisec-
tion to rapidly shrink the bracket to a zero of the function without derivative evaluations. In this example, only 7 additional 
function evaluations were needed to converge, with χ(h) taking on the values 4.5 × 10−4, −4.7 × 10−9, 7.2 × 10−12, 
1.5 × 10−13, −2.3 × 10−13, 1.1 × 10−14, −2.9 × 10−15. The last value corresponds to h = hA reported in (4.1). We used 
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Fig. 3. Plots of the smallest singular values of J qua versus h (blue), their negations (red), the test function χ(h) (black), the bifurcation points A and E , 
and the Chebyshev amplitudes |χ̌m| obtained from the interpolation points shown in panel (c). Note that χ(h) is a smooth function in spite of the many 
changes in Fourier cutoff N1 and mesh size M1 from Table 1 represented in the graphs in panels (a)–(c).

N1 = 768 and M1 = 2304 in the traveling wave calculation and 2N + 1 = 1537 for the dimension of J qua in the SVD calcu-
lation when computing χ(h) inside Brent’s method. The total running time of the 9 function evaluations was 21.7 seconds 
on a workstation with two 12-core 3.0 GHz Intel Xeon Gold 6136 processors.

To demonstrate an alternative approach, we compute hE using polynomial interpolation. First, we identify a bracket 
with χ(0.88238) = −0.00467 < 0 and χ(0.88305) = 0.00638 > 0. We then evaluate χ on a 16-point Chebyshev-Gauss 
grid over the interval [0.88238, 0.88305]. Unlike Brent’s method, this can be done in parallel, though we did not have the 
computational resources to do this. From these values, we obtain the expansion

χ(h) ≈ χ́ (h) =
15∑

m=0

χ̌mTm
(
2

h − 0.88238

0.88305− 0.88238
− 1
)
. (4.4)

Panel (d) of Fig. 3 shows the Chebyshev mode amplitudes |χ̌m|. It appears that the modes decay rapidly up to m = 7, and 
then start to be corrupted by floating-point arithmetic errors. So we truncate the series (4.4) by reducing the upper limit 
from 15 to 7 and then use Newton’s method on χ́ (h) to obtain hE in (4.1). A final evaluation of the original function χ
(not its polynomial approximation) yields χ(hE ) = 2.1 × 10−12. The relatively large floating-point errors visible in the high-
frequency Chebyshev modes and the larger value of |χ(hE )| relative to |χ(hA)| are due to the increase in problem size. For 
the hE calculation, we used N1 = N = 32000, M1 = 65536 and M = 78732. We discuss floating-point errors in the smallest 
singular value (and hence in χ ) in Appendix A.

Remark 4.1. It would have been better (though not worth redoing) to use a nested set of Chebyshev-Lobatto grids with 
2n + 1 points. We could have stopped at n = 3 rather than guessing that 16 points would be enough to resolve χ(h) with 
spectral accuracy, which turned out to be overkill. Each χ(h) evaluation involves computing a traveling wave and then 
computing the SVD of J qua. At this problem size, each traveling wave calculation takes 45 minutes on one large memory 
node of the Lawrencium cluster at Lawrence Berkeley National Laboratory (LBNL) while the SVD takes 50 minutes on 15 
standard memory nodes, using ScaLapack. Each node has 32 cores (2.3 GHz) and either 96 GB or 1.6 TB of memory.

Remark 4.2. If the problem is so large that even the bidiagonalization phase of the SVD is prohibitively expensive, one 
can compute only the smallest singular values using bisection and inverse iteration [32,74]. In this case, one can still use 
Chebyshev polynomials to represent χ(s) and locate bifurcation points, but a sign has to be added by hand to some of the 
values of σmin(si) to convert them into χ(si), where si are the Chebyshev-Lobatto gridpoints. This is usually easy by plotting 
both σmin(si) and −σmin(si) on the same plot, as in panel (c) of Fig. 3, and looking at the graphs to determine where they 
cross zero. Usually at most one point has an ambiguous sign, and it is easy to tell which sign is correct since the Chebyshev 
modes will only decay rapidly when χ(s) has been sampled with the correct signs. One could potentially automate this 
process using continuous invariant subspace (CIS) methods [14,15,30,35,46] to avoid sign flips in the corresponding singular 
vectors, or by introducing signs from one end of the list of χ(si) values until the Chebyshev modes suddenly decay rapidly.

Panels (a) and (b) of Fig. 4 show the wave profiles ζ̃ (α) = ξ̃ (α) + iη̃(α) of the periodic traveling waves with wave 
heights hA and hE in (4.1). Panel (b) shows a full period of the wave while panel (a) shows a closer view at the crest tip. 
The aspect ratio of both plots is 1 to demonstrate how close solution E is to the 120◦ corner wave. The mean fluid height 
of both waves is 0, with solution E higher close to the crest tip and solution A higher beyond the crossing points visible in 
panel (a). Panels (c) and (d) show the Fourier mode amplitudes 

∣∣η̂ j
∣∣ of these two solutions as well as the components a j,1

of the null vector q̇qua expressed in the ϕ j,1 basis, as in (3.30). Solution A is resolved to double-precision accuracy using 
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Fig. 4. Wave profiles of solutions A and E , where quasi-periodic bifurcations with k = 1/
√
2 were detected in Fig. 3, along with their Fourier mode 

amplitudes 
∣∣η̂ j
∣∣ and the amplitudes of the components a j,1 of the null vector q̇qua in (3.30).

N1 = N = 768. Indeed, the mode amplitudes in panel (c) decay through at least 15 orders of magnitude with floating-point 
errors evident in the highest-frequency modes. Solution E is nearly fully resolved with N1 = N = 32000, but the mode 
amplitudes in panel (d) have not decayed all the way to the point that roundoff effects become visible. We did not attempt 
to increase N1 and N further due to the computational expense.

We next search for solutions on the quasi-periodic branch qqua(θ) that intersects qper(s) at solution A. We have been 
using s = h, the wave height, as the amplitude parameter on the primary branch and will switch to θ = η̂0,1 on the sec-
ondary branch. Note that θ = 0 for all the solutions on the primary branch. Another mode η̂ j,1 with j 
= 0 could have been 
used instead, but j = 0 turns out to maximize |a j,1| in the expansion of q̇qua in (3.30). The lowest-frequency coefficients, 
normalized so that 

∑
| j|�N |a j,1|2 = 1, are

j −4 −3 −2 −1 0 1 2 3 4
a j,1 0.266 0.306 0.340 −0.239 −0.565 −0.193 −0.102 −0.062 −0.042

. (4.5)

Note that a j,1 is not symmetric about j = 0, which is also evident in panel (c) of Fig. 4. As explained at the end of 
Section 2.2, we use

qqua(θ) ≈ qguess = qbif + εq̇qua, ε = θ

a0,1
, θ = η̂0,1, (4.6)

as an initial guess for the first point on the bifurcation path, where qbif = (ηA, τA, bA) with τA = 0 and bA = c2A from (4.2), 
and q̇qua = (η̇qua, 0, 0). The leading 2D Fourier modes of ηguess = ηA + εη̇qua are given by

(
η̂
guess
j1, j2

)
=

j1 0 1 2 3 4 . . .

j2 � 2 0 0 0 0 0 . . .

j2 = 1 εa0,1 εa1,1 εa2,1 εa3,1 εa4,1 . . .

j2 = 0 −0.0631 0.1485 0.0496 0.0253 0.0155 . . .
j2 = −1 εa0,1 εa−1,1 εa−2,1 εa−3,1 εa−4,1 . . .

j � −2 0 0 0 0 0 . . .

(4.7)
2
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Fig. 5. The secondary branch of quasi-periodic traveling waves (black) bifurcates from the primary branch of periodic waves (blue) at solution A. The 
solutions between A and B ′ are related to those between A and B by the symmetry (4.8). Panel (a) shows a highly magnified view of the plots in the left 
panel of Fig. 2.

where we make use of (2.14) to obtain η̂guess
j,−1 = η̂

guess
− j,1 = εa− j,1 for j � 0. We use the ‘r2c’ and ‘c2r’ routines of FFTW, which 

take advantage of (2.14) to avoid storing Fourier modes with j1 < 0.
Since the kernel of DqR

[
qbif
]
in (3.25) is two-dimensional, it might have been necessary to include a term ε2q̇per in 

(4.6) with ε2 depending linearly on θ and ε. But solutions qqua(θ) = (ηqua(θ), 0, bqua(θ)
)
on this path turn out to have the 

symmetry property

ηqua(−θ)(α1,α2) = ηqua(θ)(α1,α2 + π), bqua(−θ) = bqua(θ). (4.8)

Since all the nonzero Fourier modes ˙̂ηqua
j1, j2

have j2 ∈ {1, −1}, we see that

(−ε)η̇qua(α1,α2) = εη̇qua(α1,α2 + π), (4.9)

so changing the sign of the perturbation in (4.6) is equivalent to shifting by π in the α2 direction. Including ε2q̇per in the 
formula for qguess would break this symmetry if ε2 were a non-zero multiple of ε.

In Fig. 5, we plot 3 bifurcation curves showing different aspects of how the secondary branch, plotted in black, splits 
from the primary branch, plotted in blue. The black markers between the bifurcation point A and the point labeled B
correspond to solutions computed by minimizing the objective function (2.25) holding θ = η̂0,1 at fixed values. The markers 
on the other side, between A and B ′ , were obtained from these solutions using the symmetry (4.8) rather than carrying 
out the minimization again. The decision to explore negative values of θ first was arbitrary. Exactly the same results would 
have been obtained in the other direction (aside from swapping the labels B and B ′). We define the wave height h plotted 
in panels (a) and (b) as η(0, 0) − η(π, 0). This choice will be discussed and justified in Remark 4.3 below.

For the first point on the secondary branch, we set ε = 1.768 × 10−7, which corresponds to θ = η̂0,1 = −1.0 × 10−7. We 
then minimize the objective function (2.25) holding η̂0,1 fixed. The initial guess for the second point can be computed in the 
same way, by doubling ε, or from linear extrapolation from the zeroth point (qbif) and the first point. Both methods work 
well. The starting guess for each additional solution on the path is computed via linear extrapolation from the previous two 
solutions. As we progress along the path, we monitor the amplitudes of the 2D Fourier modes and increase N2 as necessary 
to maintain spectral accuracy. The first several solutions are still very close to the periodic traveling wave, so N2 = 3 and 
M2 = 8 are sufficient. The traveling wave requires N1 = 550, M1 = 1200 to achieve spectral accuracy, so we held these fixed 
in the quasi-periodic calculation. Presumably N1 and M1 will need to be increased if one proceeds far enough along the 
path, but we always ran out of resolution in N2 and M2 first. The mesh parameters used for different values of θ = η̂0,1 in 
our calculation are as follows:

N2 3 6 6 8 12 18 20 48
M2 8 16 16 24 36 48 48 108
θ0 −0.1 −1 −10 −20 −40 −70 −100 −120 ×10−6

θ1 −1 −10 −20 −40 −70 −100 −120 −120 ×10−6

�θ −0.1 −1 −2.5 −2.5 −2.5 −2.5 −2.5 — ×10−6

Each column corresponds to a batch of solutions computed by numerical continuation by taking equal steps of size �θ from 
θ = θ0 to θ = θ1. The factors of 10−6 apply to all the entries in the bottom 3 rows. For each new column, θ0 is the same as 
θ1 from the previous column, which means we recompute the solution with larger values of N2 and M2 using the previous 
solution as a starting guess. In the last column (with N2 = 48), we simply refine the solution at θ = −1.2 × 10−4 without 
progressing further along the path.

In Fig. 6, we plot the leading Fourier mode amplitudes 
∣∣η̂ j1, j2

∣∣ for solution B . The same data is plotted from three 
viewpoints in panels (a), (b) and (c). The grid is M1 × M2 = 1200 × 108, and the solver searches for modes η̂ j1, j2 with 
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Fig. 6. Fourier mode amplitudes 
∣∣η̂ j1, j2

∣∣ for solution B of Fig. 5. The three plots show the same data from different viewpoints. The modes were truncated 
at j1 = 50 in the plots, but extend to j1 = 550 in the calculation. The resonant line j1 +kj2 = 0 is plotted in dark red in panel (b). The closest lattice points 
to this line are plotted in red in all three panels.

0 � j1 � N1 = 550 and | j2| � N2 = 48. The remaining modes with 551 � j1 � 600 and 49 � | j2| � 54 are set to zero in the 
nonlinear least squares solver but retained in the FFT calculations to reduce aliasing errors. The solver does not control η̂0,1, 
which is held fixed at −1.2 × 10−4. The modes with j1 < 0 are assumed to satisfy (2.14). In the figure, we truncate j1 at 
50, but the modes are non-zero out to j1 = 550, and continue to decay along slices of constant j2 in a similar way to the 
modes of the periodic wave A, shown in Fig. 4. The objective function F in (2.25) has been minimized to 1.9 × 10−25 for 
this solution. We did not try to compute more than one solution at this resolution as each calculation is quite expensive. 
The Jacobian J in (2.35) has 129600 rows and 53398 columns and has to be factored at least once via the SVD in our 
implementation of the Levenberg-Marquardt method. We used ScaLapack for this purpose, and ran the code on 18 nodes 
(432 cores) of the Savio cluster at UC Berkeley. The running time was 70 minutes. We also did not attempt to follow the 
bifurcation branches at solution E as the periodic problem already involves 32000 active Fourier modes.

Panel (b) of Fig. 6 shows the Fourier amplitude data in a two-dimensional view using the same colormap as panels (a) 
and (c). Also plotted, in dark red, is the resonant line j1 + j2k = 0. Since k = 1/

√
2 is irrational, the only lattice point lying 

precisely on this line is ( j1, j2) = (0, 0). As discussed in [91], lattice points ( j1, j2) close to this line correspond to plane 
waves ei( j1+ j2k)α of long wavelength. The residual function R in (3.3) is unchanged if η is perturbed by a constant function, 
and changes little for long wavelength perturbations. Thus, the above plane waves are approximate null vectors of the 
Jacobian (2.35). Such “small divisors” have been overcome in similar problems [10,12,13,44] building on Nash-Moser theory 
[52,69], though so far always at small-amplitude, near the zero solution. Adapting these rigorous techniques to the spatially 
quasi-periodic setting is a challenging open problem, especially in the present case of bifurcations from finite-amplitude 
periodic waves.

We avoid running into small divisors in our search for bifurcations by restricting ker DqR [qbif] to D(1)
σ in (3.26). But 

in fully nonlinear calculations such as solution B of Figs. 5 and 6, which has many active modes in both the j1 and j2
directions, one can see some effects of the small divisors on the Fourier modes corresponding to lattice points near the 
resonant line, which we plotted in red in all three panels of Fig. 6. In panel (a) we see that the modes η̂ j1, j2 with j2 < 0
grow in amplitude as j1 increases to the resonant line (holding j2 fixed), and then decay afterward. By contrast, we see 
in panel (c) that on the “back side” (with j2 > 0), the modes appear to generally decay monotonically right away as j1
increases. If we instead decrease j1 through negative values with j2 held fixed, the modes with j2 > 0 are the ones that 
increase in magnitude until j1 crosses the resonant line while the modes with j2 < 0 will generally decay right away as 
| j1| increases. It is not necessary to plot this as it follows from the data shown in Fig. 6 and the symmetry (2.14), namely 
η̂− j1,− j2 = η̂ j1, j2 .

Fig. 7 shows torus views of the bifurcation direction at solution A, namely η̇qua(α1, α2) from (3.30), and the deviation in 
the wave profile from solution A to solution B ,

ηdev
B (α1,α2) = ηB(α1,α2) − ηA(α1,α2), (4.10)

where ηA(α1, α2) is independent of α2. In the left panel, we actually plot C η̇qua, where the normalization constant C is 
chosen to minimize the distance from C η̇qua to ηdev

B in L2 on the torus, which turns out to be

C = 〈η̇qua, ηdev
B 〉L2(�2)

〈η̇qua, η̇qua〉L2(�2)

= 2.121× 10−4. (4.11)

While the bifurcation direction predicts the large-scale features of ηdev
B , there are clear differences in the two contour plots. 

In particular, the symmetry in the left panel in which η̇qua(α1, α2) changes sign on shifting α2 by π , which occurs due to 
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Fig. 7. Contour plots of the bifurcation direction C η̇qua(α1, α2) and the deviation ηdev
B (α1, α2) from solution A to solution B . The dashed lines show how 

the characteristic line (α, kα) wraps around the periodic torus for α � 0 (green) and α � 0 (red). Evaluation along this characteristic line yields the 
one-dimensional quasi-periodic functions shown in panels (c) and (d) of Fig. 9.

˙̂η j1, j2 = 0 for j2 /∈ {−1, 1}, is broken in the right panel. Indeed, ηdev
B has a richer Fourier structure consisting of the modes 

plotted in Fig. 6 minus the modes of solution A, η̂ j1, j2 = η̂ jδ j2,0, where η̂ j is plotted in Fig. 4. Replacing α2 by α2 + π in 
ηdev
B (α1, α2) yields ηdev

B ′ (α1, α2), where B ′ is the solution at the other end of the secondary bifurcation branch in Fig. 5.

Remark 4.3. For all the solutions on the path from A to B in Fig. 5, which correspond to negative values of θ = η̂0,1, we 
find (by studying the numerical results) that the maximum and minimum values of η(θ)(α1, α2) occur at

argmaxη(θ)(α1,α2) = (0,0), argminη(θ)(α1,α2) = (π,0), (θ < 0). (4.12)

Thus, we define the wave height h on this quasi-periodic branch as

h(θ) = η(θ)(0,0) − η(θ)(π,0). (4.13)

However, on the path from A to B ′ , where θ > 0, the maximum and minimum values occur at (0, π) and (π, π), respec-
tively, due to (4.8). So if we define h1(θ) = η(θ)(0, π) − η(θ)(π, π), then the physical wave height is h1(θ) for θ > 0 and 
h(θ) for θ < 0. Both h1(θ) and h(θ) can be read off of panels (a) and (b) of Fig. 5, since h1(θ) = h(−θ). So it is preferable 
to plot h(θ) for positive and negative values of θ , as we have done, rather than plotting the physical wave height, which 
would introduce a slope discontinuity at the bifurcation point in panels (a) and (b) of Fig. 5. Moreover, it would discard 
the information about h(θ) with θ > 0, replacing it by h1(θ), which is already known from h(θ) with θ < 0. We will simply 
refer to h(θ) in (4.13) as “the wave height.”

Our next goal is to plot the 1D quasi-periodic functions obtained by evaluating the torus functions of Fig. 7 along the 
dashed red and green lines, namely

C ˙̃η(α) = C η̇qua(α,kα), η̃dev
B (α) = ηdev

B (α,kα). (4.14)

We will plot them as functions of α rather than in the parametric form used in Fig. 4. This allows for a simpler corre-
spondence with the torus functions of the conformal mapping formulation of (2.9) and avoids the complication of solutions 
A and B having slightly different parameterizations ξ̃A(α) and ξ̃B(α) in the x-direction. One would have to transform to 
a graph-based formulation of the problem to define analogues of C ˙̃η and η̃dev

B in (4.14) that are functions of x rather 
than α. Panel (a) of Fig. 8 shows that η̃(α) is more sharply peaked than the physical wave profile obtained by plotting 
ζ̃ (α) = ξ̃ (α) + iη̃(α) parametrically.

We wish to plot the functions in (4.14) over many cycles of the underlying periodic wave without losing resolution due 
to excessive horizontal compression of the plot. We do this by plotting the results on a periodic domain with a period that 
differs from 2π , the period of the underlying Stokes wave. To select a useful period for the plot, we consider best rational 
approximations of k. Panel (b) of Fig. 8 shows the fractional part

{Q k} = Q k − �Q k�, Q = 1,2,3, . . . ,50 (4.15)
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Fig. 8. Comparison of η̃(α) and the parametric plot ζ̃ (α) = ξ̃ (α) + iη̃(α) for solution A, and fractional parts of the first 50 integer multiples of k = 1/
√
2.

of the first 50 integer multiples of the second wave number k, which is k = 1/
√
2 in the present calculation. Here �·� is 

the floor function. We also write �·� for the function that rounds its argument up or down to the nearest integer. Given a 
positive integer Q , the closest rational number of the form P/Q to k is found by setting P = �Q k�. With this choice of P , 
let

e1(Q ) = ∣∣P − Q k
∣∣= min({Q k},1− {Q k}), e2(Q ) =

∣∣∣∣ PQ − k

∣∣∣∣= e1(Q )

Q
. (4.16)

The black markers in the right panel of Fig. 8 minimize e1(Q ) over previously seen values, i.e., e1(Q ) � e1(q) for 1 � q � Q . 
They correspond to the rational approximations

k ≈ 1

1
, k ≈ 2

3
, k ≈ 5

7
, k ≈ 12

17
, k ≈ 29

41
, (4.17)

where k = 1/
√
2. If we had minimized e2(Q ) instead, as is usually done in defining best rational approximations, 1/2 and 

7/10 would be added to the list.

Remark 4.4. In the present problem, e1(Q ) gives the vertical shift (divided by 2π ) of the characteristic line passing through 
(0, 0) in the (1, k) direction after wrapping around the torus Q times in the α1-direction and approximately P times in the 
α2 direction. So a small value of e1(Q ) means C ˙̃η(α) and η̃dev

B (α) will nearly recur on shifting α by 2π Q . We will focus 
on the Q = 17, P = 12 case.

Panel (a) of Fig. 9 shows 1717
36 cycles of solution A to the left and right of the origin. In panel (b), we wrap this solution 

around a torus of period 17π/9. This is done by plotting η̃A(α) parametrically versus

ᾱ = rem

(
α + 17

18
π ,

17

9
π

)
− 17

18
π, rem(a,b) =

(
a/b − �a/b�

)
b. (4.18)

The peak at the origin in panel (a) remains at the origin in panel (b), but successive peaks of the 2π -periodic Stokes wave 
are shifted by �α = 2π − 17

9 π = 1
9π in panel (b) due to the mismatch of the period of the wave and that of the plot 

domain. The labels above the peaks indicate how far one must advance to the right in panel (a) to obtain the corresponding 
peak in panel (b). For example, progressing through 8 periods of the Stokes wave (to α = 16π ) yields the right-most peak 
in panel (b). The next peak wraps around the plot domain, so α = 18π in panel (a) gives the left-most peak of panel (b). 
The 17th peak in panel (a) (at α = 34π ) sweeps out the same curve in panel (b) as the 0th peak in panel (a). The labels 
below the peaks in panel (b) work the same as those above the peaks, but moving left instead of right.

Panels (c) and (d) of Fig. 9 show the extracted functions (4.14) for |α| � (2π)
(
1717

36

)
, wrapped around the torus of panel 

(b) via (4.18). We do this to better view the quasi-periodic behavior of the traveling wave. In the same way that panel (b) 
shows more detail than panel (a) about the shape of the peaks of the Stokes wave, panels (c) and (d) show more detail than 
would be visible if they were compressed horizontally to match the style of panel (a). By offsetting the peaks of successive 
cycles of the Stokes wave, the dominant features of the linear perturbation C ˙̃η(α) and the nonlinear perturbation η̃dev

B (α)

are similarly offset. Indeed, we find that the perturbations change most rapidly near the peaks of the Stokes wave, and 
these rapid changes are what we identify as their dominant features. We label these features in panels (c) and (d) with the 
value of α of the nearest peak of the Stokes wave. The labels come in pairs that differ by 34π . This is because two points 
α separated by 34π are mapped to the same point ᾱ and will cross a peak of the Stokes wave together. So their dominant 
features will occur near each other when plotted versus ᾱ . The peak at the origin has 3 labels since the 0th, 17th and 
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Fig. 9. Plots of η̃A(α) and the perturbations C ˙̃η(α) and η̃dev
B (α) predicted by linearization about solution A and actually occurring by following the 

secondary bifurcation branch from A to B . In panels (b)–(d), we plot the functions on a domain of period (17/9)π to stagger both the peaks of solution A
and the dominant features of the perturbations. The vertical dashed lines in panels (b)–(d) are centered on the peaks of the Stokes waves. The perturbations 
in panels (c) and (d) are color coded to match the corresponding peaks in panel (a) that have been perturbed.

−17th peaks of panel (a) are mapped to the 0th peak in panel (b). The final 17
36 of a cycle is included so that these curves 

complete their cycles through the plot window rather than stopping abruptly at ᾱ = 0.
In addition to aligning their dominant features, mapping points α that differ by 17 cycles to the same point ᾱ causes 

these curves to be close to each other in panels (c) and (d). By Remark 4.4, advancing α through 17 cycles will cause the 
torus function to be evaluated at the same value of α1 and at a nearby value of α2, shifted up or down by 2πe1(17) = 0.131. 
In Fig. 7, the dashed green and red lines correspond to α � 0 and α � 0, respectively. Over the range 0 � α � 34π , each 
dashed green line is offset vertically by 0.131 from a nearby dashed red line. This vertical offset is equivalent to advancing 
α by 34π , i.e., by displacing (α1, α2) by (34π, 34πk) and mapping back to �2 by periodicity, starting at a point on the red 
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line. The final fractional cycles of length (17/36)(2π) in each direction are offset vertically by 0.131 from lines of the same 
color and terminate at the circular green and red markers in Fig. 7. As noted above, these fractional cycles are included to 
extend the plots in panels (c) and (d) of Fig. 9 to the end of the plot window so they don’t end abruptly at ᾱ = 0.

Studying panels (c) and (d), we observe that the perturbation at the origin, plotted in black, sharpens the Stokes wave 
symmetrically, where we view following the secondary bifurcation branch as a perturbation of solution A. The other wave 
crests are perturbed asymmetrically and can be sharpened, flattened or shifted right or left, with no two perturbed in 
exactly the same way. Even though we could not follow this branch very far at the scale of the bifurcation diagram shown in 
Fig. 2 using wave height and wave speed as parameters, solution B has many small scale features not present in solution A. 
Moreover, nonlinear effects cause the deviation of B from A in panel (d) to differ visibly from that predicted by linearization, 
shown in panel (c). We also see that while the perturbations do stay reasonably close to each other when α increases by 
17 cycles, differences are clearly visible and there would not be much agreement after another 17 or 34 cycles. Closer 
agreement could be achieved by switching to Q = 41 as 2πe1(41) = 0.054, but this would increase the number of peaks in 
panel (b) from 17 to 41, making it more difficult to distinguish the features that arise in panels (c) and (d).

From these results, it is natural to conjecture that this path of quasi-periodic solutions will continue until the wave 
profile develops a singularity, presumably with a 120◦ corner in physical space at the origin [59,76]. In the periodic case, 
this limiting corner wave has been proved to exist by Amick, Fraenkel and Toland [7] and studied numerically by Gandzha 
and Lukomsky [47]. Chen and Saffman [24] found that wavelength-doubling and wavelength-tripling bifurcations also lead 
to families of solutions that appear (in the numerical simulations) to terminate with the tallest crest sharpening to 120◦
while the other crests remain rounded. In the case of genuinely quasi-periodic traveling waves studied here, the analogous 
result would be for the torus function representing the traveling solution to develop a singularity at (0, 0) when the wave 
height reaches a critical value.

To investigate this limit, it is preferable to transform our torus functions from a conformal mapping formulation to a
graph-based formulation. Recall from (2.9) that ξ , which represents the quasi-periodic part of the horizontal position of the 
wave in the sense of (2.15), is related to the wave profile η via ξ = H[η]. Here ξ and η are torus functions. In [92], it is 
shown that if ∂α

∣∣
α=0ξ(α1 + α, α2 + kα) > −1 for (α1, α2) ∈�2, then the extracted wave profile

ζ̃ (α) =
ξ̃ (α)︷ ︸︸ ︷

α + ξ(α,kα)+i

η̃(α)︷ ︸︸ ︷
η(α,kα) (4.19)

is a graph and there is a torus function ηphys(x1, x2) such that

η̃(α) = η̃phys(ξ̃ (α)), η̃phys(x) = ηphys(x,kx), (α, x ∈ �). (4.20)

This torus function can be computed via

ηphys(�x) = η
(�x+ �kA(�x)), (�x ∈ �2), (4.21)

where �k = (1, k) and A(�x) is the unique solution [92] of

A(�x) + ξ
(�x+ �kA(�x))= 0,

(�x ∈ �2). (4.22)

Note that the wave number ratio, k, which is set to 1/
√
2 in the examples presented here, is the same in physical space as 

in conformal space. It is shown in [92] that the inverse of the mapping �x = �α + �kξ(�α) on �2 is �α = �x+ �kA(�x).
Panel (a) of Fig. 10 shows a contour plot of ηphys(x1, x2) for solution B of Figs. 5, 6, 7 and 9. After computing the 

torus function η(α1, α2) for solution B in conformal space, we used Brent’s method [17] to rapidly solve (4.22) for A(�x)
on a 257 × 257 uniform grid on �2 with period cell [−π, π ]2 and then evaluated ηphys(�x) via (4.21). The dashed green 
and red lines in panel (a) show where ηphys(x1, x2) would be evaluated to extract η̃phys(x) in (4.20) over −3π � α � 3π . 
Because the deviation of solution B from the periodic wave A is small, as seen in Figs. 7 and 9, it is difficult to see the 
variation of ηphys(x1, x2) with respect to x2 when plotted over the entire torus. In panel (b) of Fig. 10, we repeat the 
calculation on a subset of the torus, with x1 ∈ [−π/20, π/20] and x2 ∈ [−π, π ]. The increased resolution achieved by 
zooming in on this region reveals that the torus function ηphys(x1, x2) has a maximum at (0, 0). This means the extracted 
wave η̃phys(x) is largest at x = 0, where the characteristic line (x, kx) passes through (0, 0). In panel (c), we plot the (negative 
of the) curvature, κphys(�x) = κ

(�x + �kA(�x)), where the formula for κ(α1, α2) is given in (2.9). These formulas imply that 
κ̃(x) = κphys(x, kx) = (η̃phys)′′(x)/

[
1 + ((η̃phys)′(x)

)2]3/2
. We see that −κphys(x1, x2) has a maximum at (0, 0), confirming 

that the highest peak of η̃phys(x), which occurs at x = 0, coincides with the sharpest peak, where the curvature is most 
negative.

These results are consistent with the conjecture that the maximum of ηphys(�x) at �x = (0, 0) will continue to grow and 
sharpen to form a singularity at the origin in such a way that the extracted wave η̃phys(x) forms a 120◦ corner at x = 0. 
All the other peaks would remain rounded in this limit (assuming the torus function remains smooth except at the origin, 
where it is continuous but has a discontinuous gradient), though there would be peaks of arbitrarily high curvature as 
the characteristic line (x, kx) will pass arbitrarily closely to (0, 0) modulo 2π�2 as x → ±∞. This conjecture is highly 
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Fig. 10. Contour plots of the torus functions of the wave profile and the negative of the curvature for solution B after transforming to a graph-based 
representation of the solution. The dashed lines in panels (b) and (c) are the same lines shown in panel (a), but we have zoomed in on the wave crest by 
restricting to − π

20 � x1 � π
20 .

speculative as there is still a long way to go from solution B to a solution with a sharp corner. The curvature κ̃phys(0) has 
only decreased from −2.513 for solution A to −2.554 for solution B and would have to approach −∞ in order to form a 
corner wave. Bifurcation from solution E is perhaps more promising for reaching a genuinely quasi-periodic wave in which 
the crest at the origin has a sharp corner since solution E itself is closer to the limiting 120◦ periodic wave than solution A. 
The curvature at the crest of solution E is −52.015.

Exploring this conjecture further numerically is currently out of reach due to the computational cost of tracking quasi-
periodic solutions on the branch from solution A past solution B or computing any solution on the path bifurcating from 
solution E . This is partly because the conformal mapping approach is not well suited to representing nearly singular wave 
profiles. The grid spacing tends to spread out precisely where one needs mesh refinement. This is evident already for 
solution A in Fig. 8 by comparing the plot of η̃(α) versus α, where the grid is uniformly spaced, to that of η̃(α) versus 
ξ̃ (α), which describes the curve in physical space. The effect is much worse for solution E , and in the limit that ζ̃ (α) forms 
a corner, η̃(α) will form a cusp. Boundary integral methods [90] and auxiliary conformal maps [60,77] are more flexible for 
controlling the grid spacing but have not yet been adapted to the quasi-periodic setting.

For temporally periodic standing water waves, Penney and Price [68] conjectured that the largest-amplitude standing 
wave will form a 90◦ corner each time it comes to rest. Taylor performed wave tank experiments corroborating this conjec-
ture but doubted Penney and Price’s analysis [79]. Careful numerical studies suggested that the limiting wave may have a 
corner as sharp as 60◦ [63], or even a cusp [72]. Wilkening [88] increased the resolution near the crest tip by a factor of 200 
over these previous studies and showed that the Penney and Price conjecture is false due to a breakdown of self-similarity. 
Increasing the amplitude leads to increasingly complex behavior at small scales that prevents the emergence of a limiting 
standing wave [90]. It is an interesting open question whether the 120◦ corner wave conjecture will turn out to be true 
for spatially quasi-periodic traveling waves, or whether the torus functions will become rough on small scales, diverging in 
some Sobolev norm before the crest can sharpen to a corner at the origin.

4.2. Overturning quasi-periodic gravity-capillary waves

In this section, we compute the two-parameter family of “type 1” gravity-capillary waves studied numerically by 
Schwartz and Vanden-Broeck [73] and more recently by Akers, Ambrose and Wright [1] and search for bifurcations to 
quasi-periodic traveling waves corresponding to k = 1/

√
2. In particular, we obtain overturning quasi-periodic waves that 

bifurcate from periodic overturning waves.
At large amplitude, the type 1 waves possess a symmetric air pocket at x = π that drops down into the fluid, possibly 

surrounded by overhanging regions of the free surface. By contrast, type 2 waves have two air pockets that drop down into 
the fluid on either side of x = π ; see Fig. 11. In our dimensionless units with the wavelength normalized to 2π and the 
acceleration of gravity normalized to g = 1, our surface tension parameter τ agrees with the parameter κ used by Wilton 
[93] and by Schwartz and Vanden-Broeck [73]. The waves we seek, i.e., the primary branch of type 1 periodic traveling 
waves, bifurcate from zero amplitude for τ > 1/2. The case τ = 1/2 corresponds to a Wilton ripple [84,93], where there 
are two solutions of the Stokes expansion, one of which matches up with this family of type 1 waves. This family can be 
numerically continued to smaller values of τ , which we do, but the result is different than bifurcation from zero amplitude 
at these smaller values of τ . Indeed, bifurcating from zero amplitude with τ ∈ (1/3, 1/2) leads to “type 2” waves [73] that 
match up with the other solution of the Wilton ripple expansion at τ = 1/2. Fig. 11 shows a type 1 wave and a type 2 
wave with τ = 1/2, with amplitudes chosen just below the point that self-intersection occurs. We use η̂1,0 = η̂1 for the 
amplitude parameter.

Panel (a) of Fig. 12 shows a contour plot of χ evaluated on the family of type 1 waves we computed. We split the 
domain of the contour plot into 3 regions
27



J. Wilkening and X. Zhao Journal of Computational Physics 478 (2023) 111954
Fig. 11. Nearly self-intersecting type 1 and type 2 periodic traveling gravity-capillary waves with surface tension parameter τ = 1/2. The amplitude param-
eter is η̂1 = 0.26417 for the type 1 wave shown, and η̂1 = 0.28947 for the type 2 wave shown.

region 1: 1� τ � 6.5, region 2: 0.52� τ � 0.98, region 3: 0.05� τ � 0.5. (4.23)

In each region, we sample τ at equal intervals of size �τ = 0.05, 0.02 and 0.01, respectively. At each τ value of regions 
1 and 2, we use s = η̂1,0 as an amplitude parameter and sweep forward with steps of size �s = 0.01 until the wave self-
intersects to form a trapped bubble. The conformal mapping method can compute non-physical waves in which the free 
surface crosses through itself to form an overlapping fluid region. We use this feature to root-bracket the amplitude at 
which the walls of the air bubble first meet. In more detail, once the amplitude is large enough that the wave contains an 
air pocket with overhanging walls, we compute the first zero, α0(s, τ ), of ξ̃ ′(α) using Newton’s method. We then evaluate 
ξ̃ (α0(s, τ )) − π as we continue to increase s by �s = 0.01. Once this function is positive, the wave has self-intersected and 
we have found a bracket to use in Brent’s method to find s(τ ) such that ξ̃ (α0(s(τ ), τ )) = π to double-precision accuracy. 
We then compute χ(s, τ ) at 81 values of s, uniformly spaced between 0 and s(τ ). As a result, the right boundary of the 
contour plot corresponds to the maximum amplitude for each τ where the air pocket closes to form a bubble.

In the third region of (4.23), an additional step is taken in which two numerical continuation paths are computed 
with s = η̂1,0 held fixed and τ decreasing. The specific choices of s are 0.005 and 0.006, with starting points at τ ∈
{0.52, 0.54}, computed as part of region 2 in (4.23). Once solutions are known with (τ , s) in the range 0.05 � τ � 0.5 and 
s ∈ {0.005, 0.006}, we proceed as above to find the boundary to the right, but with �s decreased to 0.001 for the search 
for the initial bracket for Brent’s method. When the right boundary is found (where the air pocket pinches off into an air 
bubble), we compute χ at 81 equally spaced points between s = 0.0017 and the pinch-off amplitude. We re-iterate that 
only for τ > 1/2 does the wave approach zero-amplitude when the parameter s decreases to zero. We stop at s = 0.0017 for 
τ � 1/2 since a different bifurcation parameter than η̂1,0 is needed to properly explore the limit as s → 0+ when τ � 1/2
on this sheet of type 1 solutions, and s = 0.0017 is small enough for the purpose of plotting χ(s, τ ).

Because it is a two-parameter family, many solutions had to be computed to generate the contour plot of χ(s, τ ) in 
panel (a) of Fig. 12. There are 14661 solutions represented in the plot. The Fourier cutoffs N1 and N used to compute the 
traveling waves and χ are as follows:

τ range [0.05,0.09] [0.1,0.19] [0.2,0.5] [0.52,0.98] [1.0,2.45] [2.5,6.5]
N1 320 256 128 108 72 54
N 384 300 160 128 90 64

(4.24)

We set M1 = 3N1 and M = 3N in all cases. We highlight the zero contours of χ(s, τ ) in red. There are 4 values of τ > 0.5
at which a red contour line reaches the τ axis, i.e., where χ(0, τ ) = 0. In the small-amplitude limit, the candidate quasi-
periodic bifurcations are plane waves, enumerated by Fourier lattice points �l ∈ ±� from (3.13). Plane waves with wave 
numbers k1 = 1 and k2 = l1 + kl2 can co-exist as traveling waves if they are both roots of the dispersion relation

c2 = g

k j
+ τk j, ( j = 1,2). (4.25)

Eliminating c2 and setting g = 1, we have 1 + τ = 1
k2

+ τk2, or τ = 1/k2. In our calculation, we use Bloch theory to restrict 
attention to the case l2 ∈ {±1} when constructing J qua in (3.26). The possible values of τ that exceed 1/2, the Wilton ripple 
cutoff for type 1 waves, are then

τ = 1

1− k
= 3.414, τ = 1

0+ k
= 1.414, τ = 1

2− k
= 0.773, τ = 1

1+ k
= 0.586, (4.26)

where k = 1/
√
2. These are precisely the locations where the red contour lines in panel (a) meet the τ axis. We find that 

the contours at 1.414 and 0.773 form a closed loop, and the contour at 0.586 drops down below τ = 0.5 into region 3 from 
(4.23), where we used numerical continuation to extend the range of type 1 waves below the Wilton ripple cutoff.
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Fig. 12. Contour plot of χ(s, τ ) for type 1 gravity-capillary waves along with representative examples of bifurcation points on the zero contour of χ and a 
secondary branch of quasi-periodic, overhanging traveling waves bifurcating from solution F .

We now focus on the remaining contour, which begins at τ = 3.414. We see in Fig. 12 that this contour extends all the 
way to the right boundary of the contour plot, where the type 1 waves self-intersect at a point, trapping an air bubble 
below. The solutions labeled C , D , E and F have values of s equal to 0.3, 0.5, 0.7 and 0.791, respectively, and are plotted 
in panels (c)–(f). As s increases along the contour, the air pocket at x = π (or one of its 2π -periodic translations) deepens, 
eventually forming a trapped bubble. Solution E has formed a deep air pocket, but the free surface is still a graph. Solution 
F has overhanging walls that nearly touch. Using polynomial interpolation from the points on the right boundary with 
6.1 � τ � 6.5, we find that the red contour meets the right boundary at

(s, τ ) = (0.7916457855 , 6.297256422 ). (4.27)

Solution F is very close to this, with (s, τ ) = (0.791, 6.294747714). Solutions C , D and E correspond to (s, τ ) =
(0.3, 4.1248233), (0.5, 4.9579724) and (0.7, 5.8995675), respectively. Each of the waves C–F bifurcates to a quasi-periodic 
family with basic frequencies k1 = 1 and k2 = k = 1/

√
2. Indeed, the entire red curve corresponding to χ = 0 gives the 

intersection of the two-parameter family of periodic type 1 waves and a two-parameter sheet of such QP waves. Fixing τ or 
s reduces the problem to a standard one-parameter bifurcation problem of the type studied in Section 4.1 above. See [3,9]
for background on the general theory of multi-parameter bifurcation theory.

To explore the existence of spatially quasi-periodic, overhanging traveling waves, we follow the bifurcation branch 
from solution F using our numerical continuation algorithm. We choose N1 = N2 = 64, M1 = M2 = 150 and use 
qbif ± 10−5

(
0, 0, η̇qua

)
to jump from the periodic branch to the quasi-periodic branch. The largest Fourier coefficient of 

η̇qua is ˙̂ηqua
0,1 ≈ 0.6901. Thus, θ = η̂0,1 is a natural choice for the continuation parameter on the QP branch. We hold τ fixed 

at τ bif in this search. We are able to compute the quasi-periodic continuation path until θ reaches ±0.1. The corresponding 
solution with positive θ , labeled G in panel (b), is plotted in panel (g) of Fig. 12. For this solution, η̂1,0 ≈ 0.7529 and the 
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objective function f is minimized to 3.7 ×10−25. In panel (b) of Fig. 12, we plot the Fourier coefficients η̂1,0 and η̂0,1 of the 
bifurcated quasi-periodic solutions. Along the quasi-periodic branch, as |θ | increases, |η̂1,0| decreases. We also observe that 
the plot is symmetric with respect to the vertical line η̂0,1 = 0; this is because the quasi-periodic solutions with negative θ
can be obtained from ones with positive θ through a spatial shift in α2: (α1, α2) �→ (α1, α2 + π). Solutions G and G ′ are 
related in this way.

In panel (g) of Fig. 12, we compare the wave profile ζ = ξ + iη of solution F , which is periodic with amplitude s = 0.791, 
and solution G , which is quasi-periodic with θ = 0.1. We observe that the peaks and troughs of the QP solution appear in a 
non-periodic pattern. The peaks of solution G are above those of solution F near ξ = 0, 6π and below near ξ = 2π, 4π, 10π ; 
the troughs of G are on the left of those of F near ξ = 5π, 11π and on the right near ξ = 3π, 7π, 9π . Beyond the plot 
window shown, the deviation of solution G from F will continue to differ from one peak and trough to the next, never 
exactly repeating over the real line. We zoom in on the troughs of the two solutions near ξ = 5π and observe that the 
trough of solution G is asymmetrical and wider than that of the periodic solution F . Neither solution is self-intersecting. 
Moreover, solution G is further from self-intersecting than solution F . This may be related to the result in panel (b) that 
increasing |θ | causes η̂1,0 to decrease, and decreasing η̂1,0 on the periodic branch increases the gap between the overhanging 
walls. Specifically, solution G has η̂1,0 ≈ 0.7529 while solution F has η̂1,0 ≈ 0.7916. Nevertheless, this quasi-periodic solution 
does exhibit overhanging regions, as shown in the inset plot.

5. Conclusion

We have shown that a signed version, χ , of the smallest singular value, σmin, of the Jacobian serves as an excellent 
test function to locate branch points in equilibrium problems. While σmin has a slope discontinuity at each of its zeros, the 
existence of an analytic or smooth SVD ensures that the function becomes smooth when a sign is included on one side of 
the bifurcation point. We show that this sign factor can be defined as the product of the determinants of the orthogonal 
matrices containing the left and right singular vectors in the standard SVD, which alleviates the need to actually compute 
an analytic SVD. We also show how to compute this sign efficiently from the bidiagonal matrix obtained in the first phase 
of the standard SVD algorithm. It is not necessary to form the matrices of singular vectors, compute their determinants, or 
compute the determinant of the Jacobian itself.

One benefit of using χ as a test function is that root bracketing algorithms such as Brent’s method can then be used to 
locate bifurcation points. This is simpler than the Newton-type method proposed by Shen [75] to locate zeros of σmin or by 
various authors [5,14,16,33,49] to solve minimally extended systems. Within the constraints and philosophy of Remark 3.10, 
our method is as efficient as these alternative approaches. We also proposed a polynomial interpolation approach using 
Chebyshev polynomials, which relies on the smoothness of χ to achieve spectral accuracy. In multi-parameter bifurcation 
problems such as the gravity-capillary problem of Section 4.2, the zero level set of χ can be used to visualize and compute 
the intersection of the primary family of solutions with the secondary family of solutions. This would not work well using 
σmin or ψ from (1.2) instead of χ . We also showed that χ stops changing on further mesh refinement once the singular 
vectors corresponding to the smallest singular values are resolved. As a result, the plots in Fig. 3 and the contour plot 
of Fig. 12 are smooth even though many different mesh sizes are used in the underlying calculations plotted. Other test 
functions such as the determinant of the Jacobian or ψ(s) in (1.2) do not have this mesh independence property, and some 
behave poorly on large-scale discretizations of infinite dimensional problems.

We use this method to compute, for the first time, quasi-periodic traveling gravity waves with zero surface tension and 
overhanging traveling gravity-capillary waves. The former example yields traveling waves that still make sense at the scale 
of the ocean, where the length scale of capillary waves is so much smaller than that of gravity waves (by a factor of 10−7) 
that one can set τ = 0. Genuinely quasi-periodic pure gravity waves do not persist to zero amplitude, which motivated us to 
search for quasi-periodic bifurcations from large-amplitude periodic waves. The latter example showcases the use of χ(s, τ )

to study two-parameter bifurcation problems in which the primary sheet is parameterized over a region with one side 
bounded by singular solutions. In our case, the right boundary of the contour plot in Fig. 12 corresponds to type 1 waves 
that self-intersect to form an air pocket. This contour plot makes it easy to visualize how the secondary two-parameter 
family of quasi-periodic solutions fits together with the primary two-parameter family of periodic traveling waves.

Once bifurcations are found, we use numerical continuation to explore the secondary branches of quasi-periodic solu-
tions. This becomes computationally expensive, especially in the case of the pure gravity wave problem. We formulated 
the problem of finding solutions on the secondary branch as an overdetermined nonlinear least squares problem and 
implemented a parallel algorithm employing MPI and ScaLapack to carry out the trust-region minimization steps of the 
Levenberg-Marquardt method. The largest-amplitude solution we computed, namely solution B of Figs. 5 and 6, required 
solving for Ntot = 53398 independent Fourier modes in its 2D torus representation. We used the Savio cluster at UC Berkeley 
and the Lawrencium cluster at Lawrence Berkeley National Laboratory for these calculations.

An interesting feature of these solutions is that the 2D Fourier modes η̂ j1 , j2 continue to exhibit visible effects of reso-
nance near the line j1 + kj2 = 0 even though these are large-amplitude solutions far from linear water wave theory. We 
explain this by noting that these modes correspond to long wavelengths when the torus function is restricted to the char-
acteristic line α1 = α, α2 = kα, and the Euler equations are not strongly affected by long wavelength perturbations. We also 
identified a symmetry connecting solutions on one side of each secondary bifurcation branch to the other. In particular, 
solution B ′ in Fig. 5 is related to solution B via ηB ′ (α1, α2) = ηB(α1, α2 +π). The same symmetry was found in the gravity-
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capillary problem, e.g., solutions G and G ′ in Fig. 12 are also related by this transformation. Figs. 9 and 12 also show that 
when a large-amplitude periodic traveling water wave is perturbed to create a quasi-periodic traveling wave, each crest and 
trough of the infinite wave train will undergo a different perturbation, so that no two are exactly the same. Nevertheless, 
they fit together to form a single traveling wave profile extending over the real line.

We took advantage of Bloch theory to express the Jacobian as a direct sum of operators mapping (X per
σ , �, �) to Xper

σ

and (X (l2)
σ , 0, 0) to X (l2)

σ . This greatly reduces the number of rows and columns of J qua in (3.26) since l2 could be set to 
1 rather than varying over some range −N2 � l2 � N2. Bloch theory is also useful for studying the stability of traveling 
waves to subharmonic perturbations [58,61,62], and indeed the present work of searching for null vectors of the Jacobian 
of the traveling wave equations can be thought of as a special case of looking for zero eigenvalues of the dynamic stability 
problem. In the present paper, we have shown that perturbations in null directions of the linearization lead to branches 
of spatially quasi-periodic traveling waves for the full water wave equations. In future work, it would be interesting to 
investigate the Benjamin-Feir instability [11,94] and other unstable subharmonic perturbations [29,65,80,82] by evolving 
them beyond the realm of validity of Bloch stability theory using the dynamic version [92] of our spatially quasi-periodic 
water wave framework. Linearly stable subharmonic perturbations would also be interesting to investigate as they may lead 
to solutions of the full water wave equations that are quasi-periodic in time [10,12,13,44,89] as well as space.
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Appendix A. The effects of floating-point errors on the smallest singular value

The SVD algorithm is backward stable [32], which leads to a well-known estimate [31]

|σ̂i − σi|� p(n)‖J‖ε, 1� i � n, (A.1)

where {σ̂i} are the numerically computed singular values of the n × n matrix J , p(n) is a slowly growing function of the 
matrix dimension, ‖J‖ is the 2-norm, and ε is machine precision. Following the approach of [87], one can show that 
p(n) � O (n2.5) using standard backward stability estimates for Householder transformations in the bidiagonalization phase 
[32,51]; however, this is pessimistic. In particular, it assumes worst-case O (nε) errors when summing n numbers. In prac-
tice [8], p(n) is often taken to be 1. In section 4.1, the condition numbers of J qua for solutions A and E are 1636 and 
69074, respectively. Taking p(n) = 1, this leads to expected errors in χ(s) around (1636)(2.2 × 10−16) = 3.6 × 10−13 and 
(69074)(2.2 × 10−16) = 1.5 × 10−11, respectively. Using Brent’s method, we reduced |χ(s)| to 2.9 × 10−15 for solution A. 
However, Brent’s method will report the result in which floating-point errors combine most favorably to minimize |χ(s)|, 
so this value likely over-predicts the accuracy actually obtained. Indeed, if we increase the size of J qua from 1537 to 2049 
and recompute χ without re-optimizing via Brent’s method, we obtain |χ | = 1.5 × 10−14, which is five times bigger. The 
flattening of the high-frequency Chebyshev modes χ̌m in panel (d) of Fig. 3 suggests floating-point errors around 10−11

or 10−12, which is consistent with the above condition number estimate. Chebyshev interpolation seems less prone than 
Brent’s method to optimizing beyond the actual error, so the minimum value of |χ(s)| obtained in problem E , namely 
2.1 × 10−12, may be accurate. Additional calculations would have to be done in quadruple-precision to fully quantify the 
effects of floating-point arithmetic in double-precision, but this is beyond the scope of the present work.
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Appendix B. Proof of Theorem 3.2

Let us restate the theorem in a slightly more general form that simplifies the proof. Theorem 3.2 is recovered by setting 
ρ = ρ1/2 and σ1 = σ .

Theorem B.1. Suppose qper = (η, τ , b) with η ∈ V per
σ for some σ > 0. Suppose also that η is real-valued and the resulting J (α1, α2)

in (2.9), which is independent of α2, is non-zero for every α1 ∈ �. Then there exists ρ1 ∈ (0, σ ] such that DqR [qper] is a bounded 
operator from 

(
Vσ1 , �, �

)
to Vρ provided that 0 < ρ < ρ1 and σ1 > ρ .

Proof. Since η ∈ V per
σ , we know η(α1, α2) = η̃(α1) is independent of α2, and η̃(α) is real analytic and 2π periodic. All the 

torus functions without a dot in (2.34) are then independent of α2, and can be replaced by the corresponding 1d extracted 
function (adding a tilde), evaluated at α1. The torus operators ∂α and H are replaced by their 1d variants when this is done. 
For example, J (α1, α2) = J̃ (α1), where J̃ (α) = (1 + H∂αη̃)2 + (∂αη̃)2. Since J̃ (α) is continuous and assumed non-zero at 
each α ∈ [0, 2π ], it is bounded away from zero. Thus, each of the functions

1/
(
2 J̃
)
, κ̃, b/

(
2 J̃2
)
, (1 + H∂αη̃), ∂αη̃, 3κ̃/

(
2 J̃
)
, J̃−3/2, ∂2

αη̃, H∂2
αη̃ (B.1)

that appears in (2.34) (after setting ξ = Hη) is real analytic and 2π -periodic. As a result (see, e.g., Lemma 5.6 of [19]) the 
1d Fourier coefficients of each of these functions decay exponentially. Thus, there exist C, ρ1 > 0 such that Ce−ρ1| j| is a 
common bound on each of these sets of Fourier coefficients, i.e., if γ̃ (α) =∑ j γ̂ jei jα represents any of the functions in 
(B.1), then |γ̂ j | � Ce−ρ1| j| for j ∈�. Now fix ρ in the range 0 < ρ < ρ1 and let σ1 > ρ .

We need to show that DqR
[
qper

]
is a bounded operator from (Vσ1 , �, �) into Vρ . It suffices to show that the restrictions 

to the subspaces (0, �, �) and (Vσ1 , 0, 0) are bounded. In the first case, we have

DqR
(
qper

)(
0, τ̇ , ḃ

)= P
[
ḃ/
(
2 J
)− κτ̇

]
. (B.2)

Note that 1/(2 J ) and κ are independent of α2. Letting γ (α1, α2) = γ̃ (α1) represent either of these functions, we have

‖γ ‖2Vρ
� C2 + 2C2

∞∑
j=1

e−2(ρ1−ρ) j = C2 + 2C2

e2(ρ1−ρ) − 1
� C2 + C2

ρ1 − ρ
= A2 < ∞, (B.3)

where the last equality defines A. So the Vρ norm of the left-hand side of (B.2) is bounded by A(|ḃ| + |τ̇ |) � A
√
2(ḃ2 +

τ̇ 2)1/2.
Now let η̇ ∈ Vσ1 . We need to compute Ṙ = DqR

[
qper

](
η̇, 0, 0

)
and bound its norm in Vρ by a constant times ‖η̇‖Vσ1

. To 
compute Ṙ , we evaluate (2.34) in two steps. First the terms(

∂αξ̇
)= (H∂αη̇

)
,

(
∂αη̇

)
,

(
∂2
αη̇
)
,

(
∂2
αξ̇
)= (H∂2

αη̇
)

(B.4)

are computed from η̇. The symbols of H∂α , ∂α , ∂2
α and H∂2

α are, respectively, |l1 + kl2|, i(l1 + kl2), −(l1 + kl2)2 and i(l1 +
kl2)|l1 + kl2|, so these operators are bounded from Vσ1 to Vρ since σ1 > ρ . For example,

∥∥H∂αη̇
∥∥2
Vρ

=
∑
l1,l2

∣∣∣|l1 + kl2|η̂l1,l2e
ρ(|l1|+|l2|)

∣∣∣2 � B2
∑
l1,l2

∣∣∣η̂l1,l2e
σ1(|l1|+|l2|)

∣∣∣2 = B2
∥∥η̇∥∥2Vσ1

, (B.5)

where B2 = max(1, k) maxx�0 xe−(σ1−ρ)x = max(1, k)/[e(σ1 − ρ)] < ∞. The second step is to consider

Ṙ = P

[
− b

2 J2
J̇ + gη̇ − τ κ̇

]
. (B.6)

The projection P is bounded on Vρ , and ‖gη̇‖Vρ � g‖η̇‖Vσ1
. Substitution of J̇ and κ̇ in (2.34) into (B.6) yields sums of 

products containing two factors from the list (B.1) and one factor from the list (B.4). From the first step, we know each 
term in the list (B.4) is bounded in Vρ by a constant times ‖η̇‖Vσ1

. The following lemma shows that multiplication by any 
of the terms in (B.1) is a bounded operator on Vρ . Multiplying by two of them is then also bounded, which concludes the 
proof. �
Lemma B.2. Suppose γ̃ (α) =∑ j γ̂ jei jα with |γ̂ j| � Ce−ρ1| j| for positive constants C and ρ1 , and fix ρ ∈ (0, ρ1). Then multiplication 
by γ (α1, α2) = γ̃ (α1) is a bounded operator on Vρ .

Proof. Let u ∈ Vρ and define v(α1, α2) = γ̃ (α1)u(α1, α2). The Fourier modes of v are related to those of u by convolution 
along horizontal slices, v̂l1,l =∑ j γ̂l1− j û j,l . Using the bound on |γ̂ j |, we have
2 2
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eρ(|l1|+|l2|)∣∣v̂l1,l2 ∣∣�∑
j

Ce−ρ1|l1− j|eρ(|l1|−| j|) (eρ(| j|+|l2|)∣∣û j,l2

∣∣)

�
∑
j

Ce−(ρ1−ρ)|l1− j|e−ρ
(|l1− j|−|l1|+| j|) (eρ(| j|+|l2|)∣∣û j,l2

∣∣) .
(B.7)

Since |l1| � |l1 − j| + | j|, we can use Young’s inequality to conclude∑
l1

e2ρ(|l1|+|l2|)∣∣v̂l1,l2 ∣∣2 � A2
∑
j

e2ρ(| j|+|l2|)∣∣û j,l2

∣∣2, (l2 ∈ �), (B.8)

where A =∑m Ce−(ρ1−ρ)|m| � C + 2C/(ρ1 − ρ) < ∞. Summing (B.8) over l2 and square rooting gives ‖v‖Vρ � A‖u‖Vρ , as 
claimed. �
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