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ARTICLE INFO ABSTRACT

Communicated by K.G. Vamvoudakis In multi-agent reinforcement learning (MARL), it is challenging for a collection of agents to learn complex
temporally extended tasks. The difficulties lie in computational complexity and how to learn the high-level
ideas behind reward functions. We study the graph-based Markov Decision Process (MDP), where the dynamics
of neighboring agents are coupled. To learn complex temporally extended tasks, we use a reward machine (RM)
to encode each agent’s task and expose reward function internal structures. RM has the capacity to describe
high-level knowledge and encode non-Markovian reward functions. We propose a decentralized learning
algorithm to tackle computational complexity, called decentralized graph-based reinforcement learning using
reward machines (DGRM), that equips each agent with a localized policy, allowing agents to make decisions
independently based on the information available to the agents. DGRM uses the actor-critic structure, and we
introduce the tabular Q-function for discrete state problems. We show that the dependency of the Q-function
on other agents decreases exponentially as the distance between them increases. To further improve efficiency,
we also propose the deep DGRM algorithm, using deep neural networks to approximate the Q-function and
policy function to solve large-scale or continuous state problems. The effectiveness of the proposed DGRM
algorithm is evaluated by three case studies, two wireless communication case studies with independent and
dependent reward functions, respectively, and COVID-19 pandemic mitigation. Experimental results show that
local information is sufficient for DGRM and agents can accomplish complex tasks with the help of RM. DGRM
improves the global accumulated reward by 119% compared to the baseline in the case of COVID-19 pandemic
mitigation.
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1. Introduction has been learned by the respective other agents. Thus, the learning
problem is non-stationary from each agent’s perspective. To tackle

In multi-agent reinforcement learning (MARL), a collection of agents
interact within a common environment and learn to maximize a long-
term reward jointly. We study MARL in a graph-based Markov Decision
Process (MDP) setting, where for each agent, the transition model
is represented by a dynamic Bayesian network [1,2]. In graph-based

MDPs, the transition function between an agent’s states may depend

non-stationarity, each individual agent has to consider the joint state
and action space, whose dimension increases exponentially with the
number of agents.

RL becomes more challenging when solving complex temporally
extended tasks. In many complex tasks, agents only receive sparse

on its current state and action and the neighboring agents [3,4]. In this
work, the agents can have different reward functions from different
tasks, and they can perceive their own rewards.

The key challenge in MARL is the combinatorial nature, which
results in high computational complexity. The combinatorial nature
refers to the exponentially increased size of the joint state and action
space in the multi-agent system [5,6]. Since all agents are learning
simultaneously, the behavior of each individual agent relies on what
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rewards for complex behaviors over a long time. However, agents do
not have access to the high-level ideas behind the sparse rewards.
Moreover, in a sparse-reward formulation, if it is improbable that the
agent achieves the task by chance when exploring the environment, the
learning agent will rarely obtain rewards.

In this paper, we provide a decentralized framework that enables a
collection of agents to solve complex temporally extended tasks under
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coupled dynamics with enhanced computational efficiency. Specifi-
cally, we use reward machines (RMs) to describe the environment,
track the progress through the task, and encode a sparse or non-
Markovian reward function for each agent. The proposed algorithm,
called decentralized graph-based reinforcement learning using reward
machines (DGRM), uses the actor-critic structure, specifically adopting
temporal difference (TD) learning to train the truncated Q-function
and policy gradient for the localized policy. To tackle computational
efficiency, we propose a truncated Q-function considering only the in-
formation of the x-hop neighborhood. The RM state is augmented with
the low-level MDP state as the input for the truncated Q-function and
the policy function. Each agent is equipped with a localized policy, and
information exchange among agents when implementing the learned
policies is not required. We provide the proof that the truncated Q-
function can approximate the Q-function with high accuracy, and the
error of policy gradient approximation is bounded. Also, DGRM can
find an O(y**!)-approximation of a stationary point of the objective
function, where y is the discount factor. To further improve efficiency,
we develop deep DGRM which uses deep neural networks for function
approximation to improve scalability. We demonstrate the effectiveness
of DGRM and deep DGRM on a discrete state problem of wireless
communication and a continuous state problem of COVID-19 pandemic
mitigation, respectively. In the experiments, agents can accomplish
complex tasks under the guidance of RMs.

2. Related work

Recent years have witnessed rapid development in MARL [7-10].
AnMARL system can be categorized into centralized and decentralized
control. The central controller decides the actions for all agents [11,12],
while within the decentralized control, agents make their own decisions
based on their observations [12,13]. The central controller needs to
collect information of all agents and communicate with all agents,
which mitigates the non-stationarity but may decrease the scalability of
the multi-agent system. Therefore, we consider a decentralized learning
algorithm to solve typically graph-based MDP, where the dynamics
of agents are coupled. Graph-based MDP can also be referred to as
networked multi-agent MDP [14], factored MDP [2,15,16].

The most relevant studies to our proposed DGRM algorithm are the
methods utilizing the actor-critic structure for MARL. Foerster et al.
[17],Lowe et al. [18] develop decentralized actor-centralized critic
models for MARL. The centralized critic has access to the joint action
and all available state information. The decentralized actor considers
the local information of each agent. Additionally, the proposed algo-
rithms in Foerster et al. [17],Lowe et al. [18] adopt the framework
of centralized training with decentralized execution. After training
is completed, only the local actors are used at the execution phase.
The communication requirement in our proposed DGRM algorithm
is weaker than that in Foerster et al. [17],Lowe et al. [18], where
DGRM uses information of x-hop neighborhood to learn the critics
during training, while global information is required to learn the critics
in Foerster et al. [17],Lowe et al. [18]. A decentralized actor-critic
algorithm with provable convergence guarantees is proposed in Zhang
et al. [14]. They use a linear approximation for the Q-function, but
it is unclear whether the loss caused by the function approximation is
small. The proposed DGRM algorithm is inspired by the Scalable Actor-
Critic (SAC) algorithm in Qu et al. [19], and we further propose the
DGRM algorithm to solve complex temporally extended tasks and the
deep DGRM algorithm for large-scale or continuous state problems.

Recently, reward machines (RMs) have received much attention for
task specification. Icarte et al. [20] propose reward machines, i.e., a
type of Mealy machine, to encode structures or high-level knowledge
behind the tasks. They develop the Q-learning for Reward Machines
(QRM) algorithm in the single-agent setting and show that QRM can
converge to an optimal policy in the tabular case. Later, they extend
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their work and develop counterfactual experiences for reward machines
(CRM) and hierarchical RL for reward machines (HRM).

In the multi-agent setting, [21] use RMs to describe cooperative
tasks and introduce how to decompose the cooperative task into a
collection of new RMs, each encoding a sub-task for an individual
agent. They assume agents only observe their local state and abstracted
representations of their teammates [21]. Agents in our work have
access to the information of neighboring agents since we consider
the graph-based MDP, where the dynamics of neighboring agents are
coupled. Thus, the dimension of the Q-function in our work is larger
than that in Neary et al. [21] and needs complexity reduction for better
scalability. RMs have also been applied to robotics, such as quadruped
locomotion learning [22] and planning [23]. There are also studies fo-
cusing on learning RMs from experience instead of giving as a priori to
the learning agent [24-29]. Hierarchical reinforcement learning (HRL)
is another classical approach to solve complex tasks, which decomposes
an RL problem into a hierarchy of subtasks, including methods such
as HAMs [30], Options [31], and MAXQ [32]. However, these HRL
approaches cannot guarantee convergence to the optimal policy.

3. Preliminaries
3.1. Markov decision processes and reward machines

A labeled MDP is defined by a tuple, M = (S,s;,A, R, P,y,P,L),
where S is a finite set of states; s; € S is an initial state; A is a finite
set of actions; R : S X A — R is the reward function, R(s, a) represents
the reward obtained at state x after taking action a; P : SXAXS — [0,1]
is the transition function, P(s, a, s") represents the probability of going
to s’ from s after taking action a; y is the discount factor, y € (0, 1]; P
is a finite set of events; and L : § X A X S — P is a labeling function,
L(s,a,s") maps the state transition to a relevant high-level event.

Definition 1. A reward machine (RM) is a tuple, R = (U,u;,P,6,0),
where U is a finite set of RM states, u; € U is an initial state, P is a finite
set of events, § is the transition function: U x P — U, and ¢ is a reward
function: U x P - R.

Reward machines are a way to encode a non-Markovian reward
function [33]. A run of a reward machine R on the sequence of labels
61y ... ¢, € P* is a sequence uy(Zy,r)ui(€s,rs) ... up_(€y, ri)uy of
states and label-reward pairs such that uy = u;. For alli € {0,... ,k—1},
we have 6(u;, 1;1) = u;y; and o(u;, ;) = riq. We write R(£,£, ... 6)) =
Firy ... 1y to connect the input label sequence to the sequence of rewards
produced by the machine R. We say that a reward machine R encodes
the reward function R of an MDP if for every trajectory sya;s; ... a;sy
and the corresponding label sequence 7,7, ... 7, the reward sequence
equals R(Z,¢, ... €)).

Given a labeled MDP M = (S,s;,A,R,P,y,P,L) with a non-
Markovian reward function and a reward machine R = (U,u;,P,$,0)
which encodes the reward function R of M, we can obtain a product
MDP My, whose reward function is Markovian such that every attain-
able label sequence of M, gets the same reward as in M. Furthermore,
any policy for My achieves the same expected reward in M [24]. We
define the product MDP My = (S/, s’,, AR ,P .y, P L by:

S'=8SxU
s; =(s;,uy)
A=A
R'(s,u,a) = o(u, L(s,a,s")) (@)

P(s,a,s") o =6, L(s,a,s"))
0 otherwise

P'(s,u,a,s",u') = {

YV=y;P =P, L =L
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3.2. Graph-based multi-agent MDP with reward machines

We denote G = (V, E) as an undirected graph, where V = {1, ..., n}
is a finite set of nodes that represents the agents, and E is a finite set
of edges. For agents i, j, we call j a neighboring agent of i, if there is
an edge that connects i and j. Let N(i) C V' be the set including agent
i and the neighboring agents of the agent i.

We consider a multi-agent system, including » agents and formulate
the system as a labeled graph-based MDP M = (S;, s, o A6 Rg: Pg. v,
PoLg) = (S (S s (AN RN (B v (P (L)),
We consider a factored form for Mg, i.e, S; is a Cartesian product
of the states for each agent i in V, S; = S| X -+ X S,. Similarly,
Sp = SpXeeXsh; Ag = Ay XX Ay; Rg = Ry XX R,; Pg = P{X-XP,;
Ps; = Py x-xPy;and L; = L X --- x L,. For each agent i, P, :
Sy X Ang X S; = [0, 1], meaning s,(t + 1) depends on sy ;) (#) € Sy
and ay;)(t) € Ay, where Sy ;) and Ay, denote the Cartesian product
of the sets of states and actions of the agents in N (i) respectively. R;
and L; only depend on the information of agent i itself, R; : S;xA4; - R
and L; : S; X A; XS; = P,.

We design a reward machine R; for each agent i. R, =
w;, u'}, P;, 6;,0;) encodes the reward function R; of M,; individually. R;
defines the task of agent i in terms of high-level events from P;. Given
a labeled graph-based MDP Mg = (Sg, s, Ag» Rg, Pg. v, Pg, Lg) with
a non-Markovian reward function collectively defined by Reward Ma-
chines R;, we can obtain a product MDP Mg = (Sgr, Si.p» AGr> Rors

PorsYGr Por> Lgr) whose reward function is Markovian,

Sgr = Sg XUy x - xU,

Sige = (s,G,u} X e X Up)
Agr = Ag

Rgr, (5545 a)) = 0;(u;, Li(s;, a;, s7)

rooN
Por(s,u,a,s",u’) = PGR| X oo X PGR”

P (s 3 ; ool = P(snyanay 8 if ul = 8(u;, Lis;, a;, 57))
GR;\ON()? N(@i)» “N (i) ®i> %) — .
' ! R 0 otherwise

Yor =7:Por = PgiLgr = Lg
@

For simplicity of notation, we define the global state s = (s, ...,s,) €
S, global RM state u = (uy, ... ,u,) € Us := U, x --- XU, global action
a=(ay,...,a,) € Ag, and global reward R(s,u,a) = i Y Ri(siug,ap).

Mg augments RM state and MDP state, which tracks the progress
through the task for each agent. The goal in an Mgy is to find the
optimal joint policy z¥ : S;z — Distr(Agg), which is parameterized
by 0. z%(als,u) is expected to maximize the discounted global reward,
J(0) starting from the initial state distribution s; and u;,

max J(0) = By, 1, Earortrstouin| 2 7'+ RGO, u(0), a0)15(0) = 57, u(0) = uy]
=0

3

The Q-function under the policy z%, Q%(s,u,a), is defined as the
expected discounted future reward of taking action « given a pair (s, u)
and then following the policy z?,

Q’(s,u,a)

= ]Eamwe(,p(r),u(,))[z ' R(s(0), u(®), a(t))|5(0) = 5;,u(0) = uy, a(0) = a
1=0

b Batgtctitnun| 2y 7 R 0,100, a,0)15(0) = 5,u(0) = . a(0) = a]
i=1

=0

n
1 0
- ;Qi (s,u,a)

4
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where Qf(s, u, a) is the Q-function for the individual reward R;, with the
dimension of (S| X -+ X S,)X (U} X -+ xU,) X (A; X --- X A,,). Compared to
standard Q-learning, Q(s,u, a) also keeps track of RM states, allowing
agents to take the high-level stages into consideration when selecting
actions.

A commonly used RL algorithm is policy gradient [34]. Let d? be
a distribution on the S;x given by do(s,u) = (1 — y) T2, v'd?(s,w),
where df (s, u) is the distribution of (s(¢), u(#)) under fixed policy § when
(s(0),u(0)) is drawn from d,,. Then,

1
VJ©6) = mE(S,u)wgm,,e(‘h_u)Q9<s, u,a)V log 7°(als, u) 5
Since the sizes of the joint state and action spaces, S;z and Agx,
grow exponentially with the number of agents, the corresponding Q-
functions Q? and Q? can be large tables and therefore, are intractable
to compute and store.

4. Decentralized graph-based reinforcement learning using re-
ward machines (DGRM)

We propose the truncated Q-function (QNI?”), which takes the lo-
cal information of each agent as the input, and thus, the dimension
of 0% is much smaller than Q°. We present that O is able to ap-
proximate Qf with high accuracy. Then, we propose the truncated
policy gradient based on Qf, and the error of policy gradient ap-
proximation is bounded. Moreover, the DGRM algorithm can find an
O(y**1)-approximation of a stationary point of J(#). To further improve
efficiency, we also develop the deep DGRM algorithm, using deep
neural networks to approximate the Q-function and policy function to
solve large-scale or continuous state problems.

4.1. DGRM algorithm

To reduce complexity, we propose a decentralized learning algo-
rithm that equips each agent with a localized policy nf" , parameterized
by 6;. The localized policy for agent i, 751‘.9‘ (a;ls;,u;), is a distribution
on the local action ¢;, depending on the local state s; and local RM
state u;. Thus, each agent acts independently, and information exchange
is not required with learned policies. Moreover, the RM state is aug-
mented with the low-level MDP state for the policy, which provides
guidance to the aggent in the task level. The joint policy, z%(als,u), is
defined as []7_, ;" (a;s;,u;),0 = (6, ....,6,). z;' is similar to the policy
defined in the Scalable Actor-Critic (SAC) algorithm [19], which is
conditioned only on the local state s;. zz?" differs from the policy in
graph-based MDP [4] because their policy is conditioned on the agent’s
neighborhood.

Further, DGRM algorithm uses local information of each agent i to
approximate Q‘?, inspired by Qu et al. [19]. We assume that the agent
i has access to the neighborhood of radius « (or x-hop neighborhood)
of agent i, denoted by N[, x > 0. x-hop neighborhood of i includes the
agents whose shortest graph distance to agent i is less than or equal
to «, including agent i itself. We define N*, = V/N¥, meaning the set
of agents that are outside of agent i’s k-hop neighborhood. The global
state s can also be written as (sy«, sy~ ), which are the states of agents
that are inside and outside agenf i’s x-hop neighborhood respectively,
similarly, the global RM state u = (uy~,uy«) and the global action
a = (ayr,ayx ). First, we define the exp(')nent_i'al decay property of the
Q—funct'ion. -

Definition 2. Q-function has the (4, p)-exponential decay property if,
for any localized policy 6, for any i € V,s Nr € SGN{(,s NfI’S;VE,. S
SGyr U € UGN!(’”NZ',’”/}VK'_ € Ug,, -ayx € AGNK’aNf,-’a/N" € Ag,.
o s_elitisfies, ’ - - ‘ - -

[Q7(s s Sy sttty s Ay, @y ) = OF (syws Shye ety s aye, i )| < Ap*H!
T NI ENF ENZ ONE BN o ONE NS N O SN

(6)
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Theorem 1. Assume Vi, R; is upper bounded by R, the (%, y)-exponential
decay property of Q7 holds.

The proof of Theorem 1 can be found in the supplementary material.
Theorem 1 indicates that the dependency of Q? on other agents decreases
exponentially as the distance between them grows. Information on the
agents that are far away from the learning agent could be unnecessary
for determining the value of Q-function. Then, we propose the following
truncated Q-functions for the state-(RM state)-action triples,

=0 s
Qi(sN:,uN’A,aN’A) = cl(sN:,uN:,aN:,ANLK,uN:,aN:)

snx, GSU.‘I:’ uyx €Uq v eAL;N: @
0
. Q,. (sN’x,sNi’,uN‘A Sy ANy aNi‘)

where c¢;(syx Uy~ ,anx 3 Syx, Uk, dyxc) IS any non-negative weight and
. L NI ENZp PN BN BN
satisfies,

V(sNiK,uN’g«,aN’;c) € Sy XUgye X Ay
i i i

Ci(stiqufi=aNf,.;SN,F’”N‘,"""N,.”) =1
SNK‘GSGNK UNK EUGNK anx EAGNK
- -i -i ! —i

(8)

We use the term “truncated Q-function” to emphasize that the proposed
Q-function is dependent on the information of the triple of state-RM state—
action within a k-hop neighborhood rather than global information. Accord-
ing to Lemma 6 and Proof of Lemma 17 in Qu et al. [19], the unique fixed
point (optimal Q-function) of TD learning can be a linear combination of
the full Q-function, where the full Q-function is the Q-function with global
information as input. As we use the truncated Q-function to approximate
the full Q-function, we define that the truncated Q is a linear combination
of the full Q-function. In the implementation, the definition of truncated
Q-function is not directly used. The truncated Q-function is learned by
iteratively updating.

Theorem 2. Under the (4,y)-exponential decay property of Q%, QY satis-
fies

sup Q) (syx uyx.aye) = Q) (s.u,a)| < Ay ©)
(s, u,a)ESGXUGXAG ! ! !

The proof of Theorem 2 can be found in the supplementary material.
Theorem 2 shows that O? approximates QY with high accuracy. 0? is a
function of the x-hop neighborhood’s state-(RM state)-action triples, thus
the dimension of Q? is smaller, which leads to the potential to handle
large-scale systems. Next, we use Qf.’ to approximate the policy gradi-
ent. The truncated policy gradient for agent i, J,, is defined as J,(6) =
fE(s Wi s Y jene Qs s uyx, ane)l -

y W ’ Whn i J J Jj
Ve, logn?’ (a;ls;.u;), where Q~f is any truncated Q-function in the form
of Eq. (7).

Theorem 3. If ||V, logz!" (a;|s;.u)|| is bounded by By, Vaj.,s;.u;, |17,(6) -
Vo, JOI < 2Lyt

The proof of Theorem 3 can be found in the supplementary material.
Theorem 3 indicates that the error of the truncated policy gradient is
bounded. Thus, the truncated Q-function can be used to compute the policy
gradient for policy improvement.

The DGRM algorithm adopts the actor-critic framework, specifically
using temporal difference (TD) learning to train the truncated Q-function
and policy gradient for the localized policy. The pseudocode of DGRM is
given in Algorithm 1. The truncated Q-function is updated at every time
step, and the policy parameters are updated in every episode. DGRM reduces
the computational complexity as the truncated Q-function is conditioned
on the state-(RM state)-action triple of x-hop neighborhood instead of the
global information, which results in a much smaller dimension. Thus, the
complexity of DGRM is the local state-(RM state)-action space size of the
largest k-hop neighborhood. The approximated gradient of policy parameters
is related to the truncated Q-function of the x-hop neighborhood. Further,
the authors in Qu et al. [19] claimed that under certain assumptions, the
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truncated Q-function generated by TD learning can be a good estimate of the
optimal full Q-function, and the actor-critic algorithm will eventually find an
O(y**1)-approximation of a stationary point of J(8). DGRM also follows
the assumptions with the RM state, thus the approximating convergence
conclusion still holds, which is illustrated in Theorem 4.

Assumption 1. The reward is bounded, R;(s;, u;,a;) < R Vi, s;, u;, a;. The
individual state and action space sizes are upper bounded as [S;| <
S, |A;| < AVi.

Assumption 2. Qf holds the (4, y) exponential decay property.

The (%,y) exponential decay property in Theorem 1 holds for Qf

if R; is upper bounded by R. Such requirement (i.e., bounded R,) is
assumed in Assumption 1. Therefore, Assumption 2 automatically holds
under Assumption 1.

Assumption 3. The MDP environment gets sufficient local exploration.
Every (sy«,uyr~,ayr) pair must be visited with some positive probabil-
ity after some time.

Assumption 4. The policy gradient is bounded and Lipschitz continu-

. 9.
ous. For any i,a;, s;,u; and §;, we assume ||V, log 7" (a;]s;, u)ll < B;. As

a result, ||V, log%(als,u)|| < B = y/X_, B. Further, assume VJ(0) is
B’-Lipschitz continuous in 6.

Theorem 4. Under Assumptions 1, 2, 3, and 4, DGRM will find an
O(y**1)-approximation of a stationary point of the objective function J(6).

Remark 1. Section 3.2 defines the reward function and labeling func-
tion as dependent solely on the local state (s;), RM state (;), and action
(a;) of the learning agent. However, with a straightforward change of
notation, our model, algorithm, and analysis can be readily extended to
include a more general dependence on not only s;,u;, and g;, but also
the actions of the agent’s neighbors ay ;.

Algorithm 1 DGRM Algorithm

Input: initial policy 71',.9" (0), initial Q-function, s(0), u(0), «,T,
7500, 0y
1: for each Episode ¢ do
2:  Take action ;(0) ~ ' (-|s;(0),u;(0)) for all i.
3:  Get reward R;(0) for all i.
4. while exist agent not finish the task and r < T do
5 Get state s;(r), RM state u,(¢) for all i.
6: Take action a;(r) ~ :rf"(~|s,-(t), u;(1)) for all i.
7 Get reward R;(?) for all i.
8 Calculate TD error for all i,
9 TD; < Rt = 1)+ 707 (syr (@, uyi(®), ayi(®) = O (syu(t =
D, upr(t = 1), aye(t = 1)).
10: Upda’te the truncated Q-function for all i,
11: Q;(SN{{(:— Dyt = 1), aye(t = D) « Q”j.—l(sN‘_k(z— D, uyi(t =
D,ayi(t = 1) +ag,_ TD;.
12:  end while
13:  Calculate the approximated gradient for all i,
4 5@ < Tigr'y Tyent O (syr()uys (). ayk () Vs, log
7 (@, (1) uy ().
15:  Update the policy parameters for all agents,
16:  0;(e+ 1) « 0,(6) + a,_g;(@).
17: end for ’

4.2. Deep DGRM algorithm

To further improve efficiency, we approximate both the policy and
truncated Q-functions by deep neural networks. The pseudocode of
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deep DGRM is given in Algorithm 2. In every episode from line 2 to
line 7, all the agents first interact with the environment. Then in line
8, each agent collects the necessary information during the episode for
later actor and critic updating. Both the Q-network and policy network
are updated in every episode. In line 11, the TD error is the averaged
error over one episode. In line 15, the gradient of policy is conditioned
on the averaged TD error of the x-hop neighborhood, which indicates
communication is required for policy improvement during training.
When implementing the learned policy after training, communication
is not required since the policy is only conditioned on each agent’s own
state-(RM state) pair.

Algorithm 2 Deep DGRM Algorithm
Input: initialized policy 6;(0), initialized Q-network p;(0), s(0), u(0), «,
T; Vs aQ: [

1: for each Episode ¢ do
2:  Take action ¢;(0) ~ zrf)"(-ls,-(O), u;(0)) for all .
Get reward R;(0) for all i.
while exist agent not finish the task and t < T do
Get state s;(1), RM state u;(¢) for all i.
Take action a;(1) ~ ' (-|s,(), u; (1)) for all i.
Get reward R;(¢) for all i.
Store transition (s Nt =

© N D AW

l),uN‘_x(t -
1),sN’x(t),uNf(t),aN’x(I)) for all i.

9: end while

10:  Calculate the TD error for all i,

1 TD, < 1% (Rf(t’ -+ 0?7

0% (syr (' = D,upe(t’ = D, aye (@’ = 1)
12: Updat‘e Q—networi< parametelrs for all i,
13 B+ 1) < B(&) +agTD;Vy 0°.
14:  Update the policy-network parameters for all i,
150 0@+ 1) < 0,Q) + ag i Tjenr TD; Vo, Inm.
16: end for

D,ayc(t = 1), Rt —

—_

SN "), Uk ", anr (T')) -

~—

1
INF]

5. Case studies

In this section, we implement DGRM on three case studies: (1) a
wireless communication case with independent reward functions, (2) a
wireless communication case with dependent reward functions, and (3)
COVID-19 pandemic mitigation adapted from Della Rossa et al. [35].

5.1. Case study I: Wireless communication with independent reward func-
tions

We consider a system consisting of ten users sending packets to
the same destination. The destination is a fixed location that receives
packets. Two types of packets are available, packet A and packet B. The
task for each user is to first send packet A successfully and then send
packet B successfully within 16 time steps. A packet is sent successfully
if the destination receives the packet. The interaction graph of the users
is shown in Fig. 1. The interaction graph affects the task completion
in the way that it defines the neighbors, which further determines the
state transitions as the agent’s state changes with respect to the agent’s
and its neighbor’s states and actions. Whether an agent sends a packet
successfully depends on its left neighbor’s action at last time step. The
detailed transition model is defined in Eq. (10). For example, agent i
sends packet A successfully if the left neighbor of agent i (i > 0) sent
packet B successfully at last time step.

Fig. 2 illustrates the reward machine for each user to specify the
task. We note that in this case study, the reward function and label-
ing function are independent, which depend on the local information
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Fig. 1. The interaction graph of users in Case Study I. Number: user’s index.
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Fig. 2. Reward machines for each user in Case Study I. «*: goal state.

(s;,u;,a;). Each edge is labeled by a tuple (p,#), where p is a propo-
sitional logic formula over P, P = {A,B,G}, and # € R is a real
number, defining the reward of the corresponding transition. The user
starts from the RM state u’. To transition from u° to u', the proposition
A has to be true, and the transition outputs a reward of 5. A means
the destination receives packet A from the user before the time step
reaches 16. Additionally, the user is rewarded by 5 when it sends packet
B successfully before the time step reaches 16 and after it sends A
successfully, which is denoted by B, and reaches u2. i is the goal state,
expressing task accomplishment. When the time step reaches 16, the
user arrives at > and obtains a reward of 5.

The local state of user i at time ¢, s;,(t) = (1, f ;), includes the current
time step ¢, and f! which indicates the type of packet that user i sends
successfully after taking action a;( — 1). The action of user i at time 7 is
to select from {0: send nothing, 1: send Z, 2: send E}. We assume that
sufficient packets are available during the entire planning horizon. The
transition model of f [’) is defined as,

L i 0=2am=1,
Vi>0, f+1)=12, if [l =1, a(1) =2,
0, otherwise. (10)
P(fyt+1)=1)=05,P(f,t+1)=0) = 0.5.
P(fit+1)=2)=05,P(f,(t+1)=0) = 0.5.

i=0, ifa@)=1,
i=0, ifa@)=2,

f 1’; obtains a value of 1 if sending A successfully and a value of 2 if
sending B successfully. y is set to 0.7 in the experiment. We utilize
the softmax policy for the localized policy, which forms parameterized
numerical probabilities for each state-action pair [36].

We run the DRGM algorithm with « ranging from O to 9 and plot
the global discounted reward during the training process in Fig. 3(a). To
further evaluate the performance of the DGRM algorithm, a testing run
of 1000 episodes is conducted for each DGRM with different « values,
and the averaged global discounted reward of 1000 episodes is plotted
in Fig. 3(b). Fig. 3(b) shows that the averaged global discounted reward
increases as x increases from O to 2. DGRM with « = 3 and 4 exhibit
comparable performance to k¥ = 2. These findings are consistent with
Theorem 2, which indicates that the error caused by the truncation of
the Q-function decreases exponentially with «, and Theorem 4, which
implies that the truncated Q-function with a small x can find the
stationary point of the objective function J(6). The contributions of
agents located far from the learning agent are relatively small and have
a lesser impact on the Q-function. The exponential decay appears to
stop when « > 4, which can be attributed to the increasing learning
complexity with the size of the input information for the Q-function. In
particular, DGRM with a large x considers a triple of state-RM state—
action with a large size, i.e., information of a large neighborhood, to
learn the truncated Q-function. As a result, accurately estimating the
truncated Q-function for large x becomes more challenging, heavily
relying on the learning rate. Furthermore, we conduct a comparison
between DRGM and two baseline methods, namely independent Q-
learning (IQL) [37] and independent Q-learning with reward machines
(IQL-RM). In IQL and IQL-RM, each agent learns a localized Q-function.
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(a) Global discounted rewards during training in

Case Study I (denoised using a rolling window).
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Fig. 3. Training and testing results of global discounted reward in Case Study I.

Specifically, the state for the Q-function in IQL includes the same
information as the state for the localized policy of our DGRM algorithm.
Due to the non-Markovian nature of the task, we provide IQL with
two additional states detecting whether the user has sent A and B
successfully in the required order. On the other hand, Q-functions in
IQL-RM utilize the information as DGRM with « = 0. The key difference
between IQL-RM and DGRM with ¥ = 0 lies in their algorithmic
structure, with IQL-RM using standard Q-learning and DGRM adopting
an actor-critic structure. Fig. 3(a) shows that DGRM with « = 0
outperforms IQL-RM, highlighting the advantages of our actor-critic
structure. Additionally, IQL-RM achieves a higher reward compared
to IQL, thereby highlighting the effectiveness of task specifications
through reward machines.

5.2. Case study II: Wireless communication with dependent reward func-
tions

This case study aims to evaluate the effectiveness of DGRM in the
multi-agent system, as noted in Remark 1. The reward function and the
labeling function depend on not only the local information (s;,;, g;),
but also the actions of the learning agent’s neighbors ay;.

The environment in this case study is similar to that of Case Study
L. The system consists of 5 agents and the interaction graph follows a
linear structure where the agents are positioned in a line, identical to
the interaction graph in Fig. 1. Node 1 represents the leftmost agent,
and node 5 represents the rightmost agent. The task, state, action, and
transition model are the same as the settings used in Case Study L
Fig. 4 displays the reward machine for each agent, which follows the
same structure as the reward machine defined in Case Study I. The
distinction between Case Study I and Case Study II lies in the approach
employed to determine the required events for RM state transitions and
rewards. In Case Study II, neighboring agents’ actions are considered
when determining the events and rewards, whereas in Case Study I, RM
state transitions and rewards are based on local information (s;,u;, g;
In detail, when the agent is in state u0, it receives a reward of 5 if
the event € becomes true. However, the occurrence of the event €
is subject to two conditions being met. Firstly, the agent successfully
sends packet A within 16 time steps. Secondly, at the same time step,
the agent’s left neighbor chooses to send packet B. Similarly, event D
requires that the agent sends packet B successfully within 16 time steps
after it sends A successfully. Furthermore, its left neighbor selects to
send A at the current time step.

In this case study, we vary the parameter x from 0 to 4 in DGRM
and compare it with the performance of IQL and IQL-RM. We measure

(=C,0) (=D,0) (=G,0)

Fig. 4. Reward machines for each user in Case Study II. «*: goal state.

the performance of each algorithm in terms of global discounted re-
wards during training, as shown in Fig. 5(a). Additionally, we assess
the average global discounted reward across 1000 testing episodes,
as illustrated in Fig. 5(b). Our experimental results demonstrate that
DGRM outperforms the baseline methods IQL and IQL-RM for all values
of k. Moreover, we observe that the performance of DGRM improves
as « increases when « is less than 2. The policies learned by DGRM
with k¥ = 2 and 3 achieve similar global discounted rewards to DGRM
with k¥ = 1 during testing. These findings align with the exponential
decay property of the truncated Q-function outlined in Theorem 2 and
the convergence conclusion presented in Theorem 4. The increase in
learning complexity associated with larger values of « leads to a slight
decrease in the average global discounted reward for DGRM with x = 4.

5.3. Case study III: COVID-19 pandemic mitigation

To the best of our knowledge, this case study provides the first
attempt to use reward machines as specifications to mitigate epidemics
and pandemics such as COVID-19.

We consider a network model of Italy [35], where Italy is modeled
as a network of 20 regions and the parameters of each region’s model
are calculated from real data. Real data have been obtained from
the public database of the Italian Civil Protection Agency. The total
population is divided into five subgroups for each region i: susceptible
(S,), infected (I,), quarantined (Q;), hospitalized (¥,), recovered (C,),
and deceased (D;). The detailed analysis of real data and the estimation
of parameters of the pandemic model can be referred to Della Rossa
et al. [35].

Della Rossa et al. [35] propose a bang-bang control strategy for
each region according to the relative saturation level of its health sys-
tem, mathematically, the ratio, 7;, between the number of hospitalized
requiring care in ICU (estimated as 0.1H;) over the number of available
ICU beds (TiH) in the region. The regional lockdown is enforced when
7; is larger than 0.5 and relaxed when 7; is smaller than 0.2. During
the lockdown, the region implements strict social distancing rules, and
all fluxes in or out of the region are reduced to 70% of their original
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(a) Global discounted rewards during training in
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Fig. 5. Training and testing results of global discounted reward in Case Study II.

values. Mathematically, the social distancing parameter and fluxes are

set as follows.

Pi

pi =

min(1,3p;)

>05
11
<0.2

where p; is the minimum estimated value during the national lockdown
and min(1, 3p,) simulates the relaxation of social distancing rules.

0.1H;

0.7¢;; = >0.5
¢ij = — O,fH,» Vi#j

sz

0.7¢; =5t >05 12
¢ji = o H; Vi# ]

$u T =02
¢ =1- 2 ¢ij

i#j

where ¢;; is the original value of the flux from region i to region ;j
before the pandemic, and 0.7¢, ; simulates the feedback flux control

during a lockdown. We take the above bang-bang control as a baseline
method for comparison with our proposed method.

In this case study, we aim to control the spread of COVID-19 among
the 20 regions of Italy over a period of 4 weeks. A region is defined to
be in a severe situation when the total hospital capacity is saturated,

denoted by

0.1%

THZ

0.5,

which is the same as the saturation level when

a lockdown is adopted in the bang-bang control. The control objective
is that each region would not be in a severe situation for 2 consecutive
weeks and avoid a long time lockdown of 2 consecutive weeks since the
costs of continuing severe restrictions could be great relative to likely
benefits in lives saved [38].

To conduct our experiment, we establish a labeled graph-based
multi-agent MDP for the network model of Italy and a reward machine
as task specification for each region. We define that region j is region
i’s neighbor if there are fluxes of people traveling between two regions.
The simulation is conducted with a discretization step of 1 day and
starts on a Monday. At the first step of the simulation, each region is set
to be in a severe situation, H;(0) = 6TI.H, the values of Z,(0), Q;(0), C;(0),
and D;(0) are the same as the experiment in Della Rossa et al. [35].
Each region has four possible actions at each time step: no restrictions,

implementing social distancing (p; = p;), controlling fluxes between
neighboring regions (¢;; = 0.7¢;;, Vi # j), and adopting a lockdown.
The local state of region i at day ¢, s,(#), includes the characterization
of its population, high-level features of this week’s situation, and the
simulated time step,

5;(0) = (S,(0), T,(0), R (1), Hy(1), Q;(1), D;(0), By, I 1) 13
where #, and [, are the numbers of days when the region is in a severe
situation and the number of days when the region adopts a lockdown
since this Monday, respectively. The transitions of S;(?), Z;(t), R; (1), H;(?),
Q,(1), D;(1) follow the pandemic model’s dynamics in Della Rossa et al.
[35]. The set of events is P, {eg, €1, 0010, 00310, 0110, 10105
003103 p1103 011 10311 plil} | where ¢, is an empty event when the
current day is not Monday; ¢, is the event leading to the goal state and
indicates the current day is the last time step of the entire simulation;
the superscript of v and / describe the level of the situation’s severity
and the frequency of lockdown implementation during the previous
seven days (from Monday to Sunday), respectively. Mathematically,

P =0 0 7=0
=30 =7 F=qt J=7 14)
W03 0<o<7 95 0<I<7

We note that the reward machine for each region is the same for
simplicity. The Reward Machine gives each region guidance on the
control objective, which is shown in Fig. 6. The agent starts at u°,
assuming that during the previous week, the region was in a severe
situation for at least 1 day but less than 7 days and did not implement
a lockdown. The RM states (u*,u8,u®,u!® u!l,u!2 415) are sink states
which are not encouraged, indicating that the region has been in a
severe situation or has implemented a lockdown for two consecutive
weeks. u!6 is the goal state and can be reached from all the states except
the sink states. Due to the limited space in Fig. 6, the required events for
RM state transitions which should be marked on the edges in Fig. 6 are
listed in Table 1. For instance, during the first week, if the region was in
a severe situation and implemented a lockdown for seven consecutive
days, denoted by v'l', the region is directed to «> on the second week’s
Monday. From Tuesday to Sunday, the agent would remain at the same
RM state due to the empty event ¢,. The reward function o; is defined
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Fig. 6. Reward Machine structure for each agent in Case Study IIL. u'°: goal state;
1 2
—————— —: pointing to the RM state set {u’,u',u?,u’}; -———: pointing to the RM state

s 67 3 - 13,14 16 4 inti
set {w,u’,u’}; ———- —: pointing to the RM state set {u!3, 4!, u!%}; —— —: pointing to
the RM state set {u°,u'%,u''}. For simplicity, self-loops at {u’,u®,u’,u'3} are omitted.
The required events for RM state transitions are listed in Table 1.
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Fig. 7. Global discounted rewards during the training process in Case Study III
(denoised using B-spline interpolation).
as follows.
o;(u;, Li(s;,a;,50)

—-600 u =u",u’,u Jul0 g1l 12 15

—2500 - 50/ +400 ) =i’

—2500 — 501 — 300 o =u*,ub,u®,ul0 ull 12 yls (15)

—2500 =501 +250 L(s;,a;, sl’.) =¢
0 L;(s;,
—2500 — 50/ + 200 otherwise

a;,5)) =€

where u] = §;(u;, Li(s;, a;, 51).

In the experiment, we set y = 0.9. We use two fully connected layers
with [256, 128] units and ReLU activations for the actor and two fully
connected layers with [256, 128] units and Tanh activation for the
critic. We run the deep DGRM algorithm with k = 0 up to ¥ = 5 and
plot the global discounted rewards during the training process in Fig. 7.
With the increase in «, the global discounted reward increases when
x < 2. This is also demonstrated in Fig. 8, which shows the performance
of the baseline (bang-bang control policy in Della Rossa et al. [35]) and
the results of deep DGRM obtained by 20 independent simulation runs
using the converged policy for each x. The deep DGRM algorithm with
k > 0 outperforms ¥ = 0, which is the independent learner method
in Tan [37]. The deep DGRM algorithm with x = 1 improves the global
discounted reward by 218% compared to x = 0. The deep DGRM with
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Fig. 9. Comparison of local discounted rewards of each region in Case Study III

x =2 has limited improvement (4%) on the performance compared to
x = 1. When « > 2, the global discounted reward stops growing due to
the cascading of local interactions, which is consistent with the results
in Case Study I. Moreover, the learning complexity grows with « as
discussed in Case Study I. As we use the deep neural networks in Case
Study III, the model contains many parameters and the performance
heavily depends on the learning rate. By spending much more effort
in tuning, DGRM with a large « has the potential to reach the same
reward as DGRM with a small « (e.g., x = 1,2). With the deep DGRM
algorithm, information of the 1-hop neighborhood would be sufficient
for good performance in this experiment, and the global information is
unnecessary. Moreover, the deep DGRM with x = 1 improves the global
accumulated reward by 119% compared to the baseline.

To take a deeper look into the results, Fig. 9 shows the local
discounted rewards of each region using the deep DRGM algorithm
and the baseline method, with the reward function determined by the
reward machine. From Fig. 9, it can be seen that only region 5 receives
a large penalty and fails the task with the deep DGRM algorithm, while
a total of 13 regions fail the task utilizing the baseline method. We also

plot the result of % (the relative saturation level of its health system)

during the entire simulation for each region with x = 1 in Fig. 10.
The result indicates our proposed deep DGRM algorithm can guide 19
among 20 regions to avoid being in a severe situation and adopting a
lockdown for 2 consecutive weeks in a period of 4 weeks, which reduces
the spread of disease while considering the economic factors.

6. Conclusion

In this work, reward machines are leveraged to express complex
temporally extended tasks. A decentralized learning algorithm for
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of each region with x = 1 in Case Study III. Red dashed line: the threshold of 0.5 for S when the region is in a severe condition. Background: orange:
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Table 1
Required events for reward machine state transition in Case Study III

u transition event u transition event

u; = uy, i € {1,2,3,5,6,7,13, 14} 0310 g —> Uy eUVUO'SI0
u, = uy, i €{0,2,3,6,7,14} 00! up = u 50V001]
u; = uy, i €{0,1,3,5,6,7,13,14} V0103 Uy = u, € Vv 0103
u; = us, i € {0,1,2,5,6,7,13, 14} 0010 Uy = Uy enVUﬂI0
u; — us, i €{0,2,3,14} o' us = us € V'l
u; = ug, i € {0,1,2,3,13, 14} v1]05 ug = Ug sU\/U'IO's
u; = ug, i € {0,1,2,3,13,14} o0 u; = uy € V10
u; = uy3, i €{0,2,3,6,7,14} o3t U3 = U3 € V31!
u, = uy, i €{0,1,2,3,5,6,7,13} 03105 Uy = Uy SU\/UO‘SIO's
u;, = uy, i € {1,513} V01! u;, = ug, i € {1,13} o'
u; = ug, i €{6,7} o'l u; = uy, i €{5,6,7} ol 103

u; — uyy, i €{5,6,7} o'1° U = up, i € {5} ol

u; = uys, i € {1,5,13} o0 u; = uyg, i €1{0,1,2,3,5,6,7,13, 14} €

graph-based MDP is introduced. We propose a truncated Q-function
that uses the local information of the x-hop neighborhood and can be
computed efficiently. We also prove that the approximation error is
bounded. After training, agents can implement the policies indepen-
dently. We also combine the decentralized architecture and function
approximation by deep neural networks to enable the application to
large-scale MARL or continuous state problems. Furthermore, this is the
first work to use reward machines to mitigate the COVID-19 pandemic
through task specification, and we show performance improvement
over the baseline method.

The proposed approach can be widely applied to various real-
world large-scale sparse networked systems that can be formulated as
a graph-based MDP, such as the power grid, communication systems,
pandemic networks, and smart traffic or infrastructure systems. The
current work assumes each agent has an individual reward machine and
the reward machine is known, but it would be possible to learn reward
machines from experience [24] and decompose a team-level task to
a collection of reward machines [21]. We use a standard actor-critic
algorithm, one possible research direction is to use more advanced RL
algorithms such as Proximal Policy Optimization (PPO) [39] to allow
for solving continuous action problems. Leveraging strategies such as

Hindsight Experience Replay [40] to learn policies faster is also worth
investigating.
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