
Neurocomputing 564 (2024) 126974

A
0

a

b

c

w
t

r
r
s

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Decentralized graph-basedmulti-agent reinforcement learning using reward
machines
Jueming Hu a, Zhe Xu a, Weichang Wang b, Guannan Qu c, Yutian Pang a, Yongming Liu a,∗

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States of America
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America

A R T I C L E I N F O

Communicated by K.G. Vamvoudakis

Keywords:
Decentralized
Multi-agent
Reinforcement learning
Reward machine
Efficiency

A B S T R A C T

In multi-agent reinforcement learning (MARL), it is challenging for a collection of agents to learn complex
temporally extended tasks. The difficulties lie in computational complexity and how to learn the high-level
ideas behind reward functions. We study the graph-based Markov Decision Process (MDP), where the dynamics
of neighboring agents are coupled. To learn complex temporally extended tasks, we use a reward machine (RM)
to encode each agent’s task and expose reward function internal structures. RM has the capacity to describe
high-level knowledge and encode non-Markovian reward functions. We propose a decentralized learning
algorithm to tackle computational complexity, called decentralized graph-based reinforcement learning using
reward machines (DGRM), that equips each agent with a localized policy, allowing agents to make decisions
independently based on the information available to the agents. DGRM uses the actor-critic structure, and we
introduce the tabular Q-function for discrete state problems. We show that the dependency of the Q-function
on other agents decreases exponentially as the distance between them increases. To further improve efficiency,
we also propose the deep DGRM algorithm, using deep neural networks to approximate the Q-function and
policy function to solve large-scale or continuous state problems. The effectiveness of the proposed DGRM
algorithm is evaluated by three case studies, two wireless communication case studies with independent and
dependent reward functions, respectively, and COVID-19 pandemic mitigation. Experimental results show that
local information is sufficient for DGRM and agents can accomplish complex tasks with the help of RM. DGRM
improves the global accumulated reward by 119% compared to the baseline in the case of COVID-19 pandemic
mitigation.
1. Introduction

In multi-agent reinforcement learning (MARL), a collection of agents
interact within a common environment and learn to maximize a long-
term reward jointly. We study MARL in a graph-based Markov Decision
Process (MDP) setting, where for each agent, the transition model
is represented by a dynamic Bayesian network [1,2]. In graph-based
MDPs, the transition function between an agent’s states may depend
on its current state and action and the neighboring agents [3,4]. In this
ork, the agents can have different reward functions from different
asks, and they can perceive their own rewards.
The key challenge in MARL is the combinatorial nature, which

esults in high computational complexity. The combinatorial nature
efers to the exponentially increased size of the joint state and action
pace in the multi-agent system [5,6]. Since all agents are learning
simultaneously, the behavior of each individual agent relies on what

∗ Corresponding author.
E-mail addresses: jueming.hu@asu.edu (J. Hu), xzhe1@asu.edu (Z. Xu), wwang195@asu.edu (W. Wang), gqu@andrew.cmu.edu (G. Qu),

yutian.pang@asu.edu (Y. Pang), yongming.liu@asu.edu (Y. Liu).

has been learned by the respective other agents. Thus, the learning
problem is non-stationary from each agent’s perspective. To tackle
non-stationarity, each individual agent has to consider the joint state
and action space, whose dimension increases exponentially with the
number of agents.

RL becomes more challenging when solving complex temporally
extended tasks. In many complex tasks, agents only receive sparse
rewards for complex behaviors over a long time. However, agents do
not have access to the high-level ideas behind the sparse rewards.
Moreover, in a sparse-reward formulation, if it is improbable that the
agent achieves the task by chance when exploring the environment, the
learning agent will rarely obtain rewards.

In this paper, we provide a decentralized framework that enables a
collection of agents to solve complex temporally extended tasks under
vailable online 30 October 2023
925-2312/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2023.126974
Received 16 June 2022; Received in revised form 15 March 2023; Accepted 26 Oc
tober 2023

https://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
mailto:jueming.hu@asu.edu
mailto:xzhe1@asu.edu
mailto:wwang195@asu.edu
mailto:gqu@andrew.cmu.edu
mailto:yutian.pang@asu.edu
mailto:yongming.liu@asu.edu
https://doi.org/10.1016/j.neucom.2023.126974
https://doi.org/10.1016/j.neucom.2023.126974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126974&domain=pdf

Neurocomputing 564 (2024) 126974J. Hu et al.

t
t
i
p
f
e
f

d
i
a
e
i
s
C
D
d

t
t
b
(
c

w

t

𝑟

a
e

M
w
M
a

coupled dynamics with enhanced computational efficiency. Specifi-
cally, we use reward machines (RMs) to describe the environment,
track the progress through the task, and encode a sparse or non-
Markovian reward function for each agent. The proposed algorithm,
called decentralized graph-based reinforcement learning using reward
machines (DGRM), uses the actor-critic structure, specifically adopting
temporal difference (TD) learning to train the truncated Q-function
and policy gradient for the localized policy. To tackle computational
efficiency, we propose a truncated Q-function considering only the in-
formation of the 𝜅-hop neighborhood. The RM state is augmented with
he low-level MDP state as the input for the truncated Q-function and
he policy function. Each agent is equipped with a localized policy, and
nformation exchange among agents when implementing the learned
olicies is not required. We provide the proof that the truncated Q-
unction can approximate the Q-function with high accuracy, and the
rror of policy gradient approximation is bounded. Also, DGRM can
ind an 𝑂(𝛾𝜅+1)-approximation of a stationary point of the objective
function, where 𝛾 is the discount factor. To further improve efficiency,
we develop deep DGRM which uses deep neural networks for function
approximation to improve scalability. We demonstrate the effectiveness
of DGRM and deep DGRM on a discrete state problem of wireless
communication and a continuous state problem of COVID-19 pandemic
mitigation, respectively. In the experiments, agents can accomplish
complex tasks under the guidance of RMs.

2. Related work

Recent years have witnessed rapid development in MARL [7–10].
AnMARL system can be categorized into centralized and decentralized
control. The central controller decides the actions for all agents [11,12],
while within the decentralized control, agents make their own decisions
based on their observations [12,13]. The central controller needs to
collect information of all agents and communicate with all agents,
which mitigates the non-stationarity but may decrease the scalability of
the multi-agent system. Therefore, we consider a decentralized learning
algorithm to solve typically graph-based MDP, where the dynamics
of agents are coupled. Graph-based MDP can also be referred to as
networked multi-agent MDP [14], factored MDP [2,15,16].

The most relevant studies to our proposed DGRM algorithm are the
methods utilizing the actor-critic structure for MARL. Foerster et al.
[17],Lowe et al. [18] develop decentralized actor-centralized critic
models for MARL. The centralized critic has access to the joint action
and all available state information. The decentralized actor considers
the local information of each agent. Additionally, the proposed algo-
rithms in Foerster et al. [17],Lowe et al. [18] adopt the framework
of centralized training with decentralized execution. After training
is completed, only the local actors are used at the execution phase.
The communication requirement in our proposed DGRM algorithm
is weaker than that in Foerster et al. [17],Lowe et al. [18], where
DGRM uses information of 𝜅-hop neighborhood to learn the critics
uring training, while global information is required to learn the critics
n Foerster et al. [17],Lowe et al. [18]. A decentralized actor-critic
lgorithm with provable convergence guarantees is proposed in Zhang
t al. [14]. They use a linear approximation for the Q-function, but
t is unclear whether the loss caused by the function approximation is
mall. The proposed DGRM algorithm is inspired by the Scalable Actor-
ritic (SAC) algorithm in Qu et al. [19], and we further propose the
GRM algorithm to solve complex temporally extended tasks and the
eep DGRM algorithm for large-scale or continuous state problems.
Recently, reward machines (RMs) have received much attention for

ask specification. Icarte et al. [20] propose reward machines, i.e., a
ype of Mealy machine, to encode structures or high-level knowledge
ehind the tasks. They develop the Q-learning for Reward Machines
QRM) algorithm in the single-agent setting and show that QRM can
2

onverge to an optimal policy in the tabular case. Later, they extend
their work and develop counterfactual experiences for reward machines
(CRM) and hierarchical RL for reward machines (HRM).

In the multi-agent setting, [21] use RMs to describe cooperative
tasks and introduce how to decompose the cooperative task into a
collection of new RMs, each encoding a sub-task for an individual
agent. They assume agents only observe their local state and abstracted
representations of their teammates [21]. Agents in our work have
access to the information of neighboring agents since we consider
the graph-based MDP, where the dynamics of neighboring agents are
coupled. Thus, the dimension of the Q-function in our work is larger
than that in Neary et al. [21] and needs complexity reduction for better
scalability. RMs have also been applied to robotics, such as quadruped
locomotion learning [22] and planning [23]. There are also studies fo-
cusing on learning RMs from experience instead of giving as a priori to
the learning agent [24–29]. Hierarchical reinforcement learning (HRL)
is another classical approach to solve complex tasks, which decomposes
an RL problem into a hierarchy of subtasks, including methods such
as HAMs [30], Options [31], and MAXQ [32]. However, these HRL
approaches cannot guarantee convergence to the optimal policy.

3. Preliminaries

3.1. Markov decision processes and reward machines

A labeled MDP is defined by a tuple,  = (𝑆, 𝑠𝐼 , 𝐴,𝑅, 𝑃 , 𝛾, , 𝐿),
here 𝑆 is a finite set of states; 𝑠𝐼 ∈ 𝑆 is an initial state; 𝐴 is a finite

set of actions; 𝑅 ∶ 𝑆 × 𝐴 → R is the reward function, 𝑅(𝑠, 𝑎) represents
he reward obtained at state 𝑥 after taking action 𝑎; 𝑃 ∶ 𝑆×𝐴×𝑆 → [0, 1]
is the transition function, 𝑃 (𝑠, 𝑎, 𝑠′) represents the probability of going
to 𝑠′ from 𝑠 after taking action 𝑎; 𝛾 is the discount factor, 𝛾 ∈ (0, 1]; 
is a finite set of events; and 𝐿 ∶ 𝑆 × 𝐴 × 𝑆 →  is a labeling function,
𝐿(𝑠, 𝑎, 𝑠′) maps the state transition to a relevant high-level event.

Definition 1. A reward machine (RM) is a tuple,  = (𝑈, 𝑢𝐼 , , 𝛿, 𝜎),
where 𝑈 is a finite set of RM states, 𝑢𝐼 ∈ 𝑈 is an initial state,  is a finite
set of events, 𝛿 is the transition function: 𝑈 ×  → 𝑈 , and 𝜎 is a reward
function: 𝑈 ×  → R.

Reward machines are a way to encode a non-Markovian reward
function [33]. A run of a reward machine  on the sequence of labels
𝓁1𝓁2 …𝓁𝑘 ∈ ∗ is a sequence 𝑢0(𝓁1, 𝑟1)𝑢1(𝓁2, 𝑟2)… 𝑢𝑘−1(𝓁𝑘, 𝑟𝑘)𝑢𝑘 of
states and label-reward pairs such that 𝑢0 = 𝑢𝐼 . For all 𝑖 ∈ {0,… , 𝑘−1},
we have 𝛿(𝑢𝑖, 𝑙𝑖+1) = 𝑢𝑖+1 and 𝜎(𝑢𝑖, 𝑙𝑖+1) = 𝑟𝑖+1. We write (𝓁1𝓁2 …𝓁𝑘) =
1𝑟2 … 𝑟𝑘 to connect the input label sequence to the sequence of rewards
produced by the machine . We say that a reward machine  encodes
the reward function 𝑅 of an MDP if for every trajectory 𝑠0𝑎1𝑠1 … 𝑎𝑘𝑠𝑘
nd the corresponding label sequence 𝓁1𝓁2 …𝓁𝑘, the reward sequence
quals (𝓁1𝓁2 …𝓁𝑘).
Given a labeled MDP  = (𝑆, 𝑠𝐼 , 𝐴,𝑅, 𝑃 , 𝛾, , 𝐿) with a non-
arkovian reward function and a reward machine  = (𝑈, 𝑢𝐼 , , 𝛿, 𝜎)
hich encodes the reward function 𝑅 of , we can obtain a product
DP , whose reward function is Markovian such that every attain-
ble label sequence of gets the same reward as in. Furthermore,
any policy for  achieves the same expected reward in  [24]. We
define the product MDP  = (𝑆′, 𝑠′𝐼 , 𝐴,𝑅

′, 𝑃 ′, 𝛾 ′, ′, 𝐿′) by:

𝑆′ = 𝑆 × 𝑈

𝑠′𝐼 = (𝑠𝐼 , 𝑢𝐼)

𝐴 = 𝐴

𝑅′(𝑠, 𝑢, 𝑎) = 𝜎(𝑢, 𝐿(𝑠, 𝑎, 𝑠′))

𝑃 ′(𝑠, 𝑢, 𝑎, 𝑠′, 𝑢′) =

{

𝑃 (𝑠, 𝑎, 𝑠′) 𝑢′ = 𝛿(𝑢, 𝐿(𝑠, 𝑎, 𝑠′))
0 otherwise

′ ′ ′

(1)
𝛾 = 𝛾; =  ;𝐿 = 𝐿

Neurocomputing 564 (2024) 126974J. Hu et al.



a

(
d
a
a
c
𝑃

𝑃

F
𝑆
𝑎

t
o
b
𝐽

d
s
a
a

a
w
(

∇

3.2. Graph-based multi-agent MDP with reward machines

We denote 𝐺 = (𝑉 ,𝐸) as an undirected graph, where 𝑉 = {1,… , 𝑛}
is a finite set of nodes that represents the agents, and 𝐸 is a finite set
of edges. For agents 𝑖, 𝑗, we call 𝑗 a neighboring agent of 𝑖, if there is
an edge that connects 𝑖 and 𝑗. Let 𝑁(𝑖) ⊆ 𝑉 be the set including agent
𝑖 and the neighboring agents of the agent 𝑖.

We consider a multi-agent system, including 𝑛 agents and formulate
the system as a labeled graph-based MDP 𝐺 = (𝑆𝐺 , 𝑠𝐼𝐺 , 𝐴𝐺 , 𝑅𝐺 , 𝑃𝐺 , 𝛾,
𝐺 , 𝐿𝐺) = ({𝑆𝑖}𝑛𝑖=1, {𝑠

𝑖
𝐼}

𝑛
𝑖=1, {𝐴𝑖}𝑛𝑖=1, {𝑅𝑖}𝑛𝑖=1, {𝑃𝑖}𝑛𝑖=1, 𝛾, {𝑖}𝑛𝑖=1, {𝐿𝑖}𝑛𝑖=1).

We consider a factored form for 𝐺, i.e, 𝑆𝐺 is a Cartesian product
of the states for each agent 𝑖 in 𝑉 , 𝑆𝐺 = 𝑆1 × ⋯ × 𝑆𝑛. Similarly,
𝑠𝐼𝐺 = 𝑠1𝐼 ×⋯×𝑠𝑛𝐼 ; 𝐴𝐺 = 𝐴1×⋯×𝐴𝑛; 𝑅𝐺 = 𝑅1×⋯×𝑅𝑛; 𝑃𝐺 = 𝑃1×⋯×𝑃𝑛;
𝐺 = 1 × ⋯ × 𝑛; and 𝐿𝐺 = 𝐿1 × ⋯ × 𝐿𝑛. For each agent 𝑖, 𝑃𝑖 ∶

𝑆𝑁(𝑖) × 𝐴𝑁(𝑖) × 𝑆𝑖 → [0, 1], meaning 𝑠𝑖(𝑡 + 1) depends on 𝑠𝑁(𝑖)(𝑡) ∈ 𝑆𝑁(𝑖)
and 𝑎𝑁(𝑖)(𝑡) ∈ 𝐴𝑁(𝑖), where 𝑆𝑁(𝑖) and 𝐴𝑁(𝑖) denote the Cartesian product
of the sets of states and actions of the agents in 𝑁(𝑖) respectively. 𝑅𝑖
and 𝐿𝑖 only depend on the information of agent 𝑖 itself, 𝑅𝑖 ∶ 𝑆𝑖×𝐴𝑖 → R
nd 𝐿𝑖 ∶ 𝑆𝑖 × 𝐴𝑖 × 𝑆𝑖 → 𝑖.
We design a reward machine 𝑖 for each agent 𝑖. 𝑖 =

𝑈𝑖, 𝑢𝑖𝐼 ,𝑖, 𝛿𝑖, 𝜎𝑖) encodes the reward function 𝑅𝑖 of𝐺 individually. 𝑖
efines the task of agent 𝑖 in terms of high-level events from 𝑖. Given
labeled graph-based MDP 𝐺 = (𝑆𝐺 , 𝑠𝐼𝐺 , 𝐴𝐺 , 𝑅𝐺 , 𝑃𝐺 , 𝛾,𝐺 , 𝐿𝐺) with
non-Markovian reward function collectively defined by Reward Ma-
hines 𝑖, we can obtain a product MDP𝐺 = (𝑆𝐺, 𝑠𝐼𝐺

, 𝐴𝐺, 𝑅𝐺,
𝐺, 𝛾𝐺,𝐺, 𝐿𝐺) whose reward function is Markovian,

𝑆𝐺 = 𝑆𝐺 × 𝑈1 ×⋯ × 𝑈𝑛

𝑠𝐼𝐺
= (𝑠𝐼𝐺 , 𝑢

1
𝐼 ×⋯ × 𝑢𝑛𝐼)

𝐴𝐺 = 𝐴𝐺

𝑅𝐺𝑖
(𝑠𝑖, 𝑢𝑖, 𝑎𝑖) = 𝜎𝑖(𝑢𝑖, 𝐿𝑖(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖))

𝑃𝐺(𝑠, 𝑢, 𝑎, 𝑠′, 𝑢′) = 𝑃𝐺1
×⋯ × 𝑃𝐺𝑛

𝐺𝑖
(𝑠𝑁(𝑖), 𝑢𝑁(𝑖), 𝑎𝑁(𝑖), 𝑠

′
𝑖 , 𝑢

′
𝑖) =

{

𝑃𝑖(𝑠𝑁(𝑖), 𝑎𝑁(𝑖), 𝑠′𝑖) if 𝑢′𝑖 = 𝛿(𝑢𝑖, 𝐿𝑖(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖))

0 otherwise

𝛾𝐺 = 𝛾;𝐺 = 𝐺;𝐿𝐺 = 𝐿𝐺

(2)

or simplicity of notation, we define the global state 𝑠 = (𝑠1,… , 𝑠𝑛) ∈
𝐺, global RM state 𝑢 = (𝑢1,… , 𝑢𝑛) ∈ 𝑈𝐺 ∶= 𝑈1 ×⋯ × 𝑈𝑛, global action
= (𝑎1,… , 𝑎𝑛) ∈ 𝐴𝐺, and global reward 𝑅(𝑠, 𝑢, 𝑎) = 1

𝑛
∑𝑛

𝑖=1 𝑅𝑖(𝑠𝑖, 𝑢𝑖, 𝑎𝑖).
𝐺 augments RM state and MDP state, which tracks the progress

hrough the task for each agent. The goal in an 𝐺 is to find the
ptimal joint policy 𝜋𝜃 ∶ 𝑆𝐺 → 𝐷𝑖𝑠𝑡𝑟(𝐴𝐺), which is parameterized
y 𝜃. 𝜋𝜃(𝑎|𝑠, 𝑢) is expected to maximize the discounted global reward,
(𝜃) starting from the initial state distribution 𝑠𝐼 and 𝑢𝐼 ,

max
𝜃

𝐽 (𝜃) = E(𝑠,𝑢)∼𝑠𝐼 ,𝑢𝐼E𝑎(𝑡)∼𝜋𝜃 (⋅|𝑠(𝑡),𝑢(𝑡))[
∞
∑

𝑡=0
𝛾 𝑡 ⋅𝑅(𝑠(𝑡), 𝑢(𝑡), 𝑎(𝑡))|𝑠(0) = 𝑠𝐼 , 𝑢(0) = 𝑢𝐼]

(3)

The Q-function under the policy 𝜋𝜃 , 𝑄𝜃(𝑠, 𝑢, 𝑎), is defined as the
expected discounted future reward of taking action 𝑎 given a pair (𝑠, 𝑢)
and then following the policy 𝜋𝜃 ,

𝑄𝜃(𝑠, 𝑢, 𝑎)

= E𝑎(𝑡)∼𝜋𝜃 (⋅|𝑠(𝑡),𝑢(𝑡))[
∞
∑

𝑡=0
𝛾 𝑡𝑅(𝑠(𝑡), 𝑢(𝑡), 𝑎(𝑡))|𝑠(0) = 𝑠𝐼 , 𝑢(0) = 𝑢𝐼 , 𝑎(0) = 𝑎]

= 1
𝑛

𝑛
∑

𝑖=1
E𝑎(𝑡)∼𝜋𝜃 (⋅|𝑠(𝑡),𝑢(𝑡))[

∞
∑

𝑡=0
𝛾 𝑡𝑅𝑖(𝑠𝑖(𝑡), 𝑢𝑖(𝑡), 𝑎𝑖(𝑡))|𝑠(0) = 𝑠, 𝑢(0) = 𝑢, 𝑎(0) = 𝑎]

= 1
𝑛

𝑛
∑

𝑖=1
𝑄𝜃

𝑖 (𝑠, 𝑢, 𝑎)

(4)
3

where 𝑄𝜃
𝑖 (𝑠, 𝑢, 𝑎) is the Q-function for the individual reward 𝑅𝑖, with the

imension of (𝑆1 ×⋯×𝑆𝑛) × (𝑈1 ×⋯×𝑈𝑛) × (𝐴1 ×⋯×𝐴𝑛). Compared to
tandard Q-learning, 𝑄𝜃(𝑠, 𝑢, 𝑎) also keeps track of RM states, allowing
gents to take the high-level stages into consideration when selecting
ctions.
A commonly used RL algorithm is policy gradient [34]. Let 𝑑𝜃 be
distribution on the 𝑆𝐺 given by 𝑑𝜃(𝑠, 𝑢) = (1 − 𝛾)

∑∞
𝑡=0 𝛾

𝑡𝑑𝜃𝑡 (𝑠, 𝑢),
here 𝑑𝜃𝑡 (𝑠, 𝑢) is the distribution of (𝑠(𝑡), 𝑢(𝑡)) under fixed policy 𝜃 when
𝑠(0), 𝑢(0)) is drawn from 𝑑0. Then,

𝐽 (𝜃) = 1
1 − 𝛾

E(𝑠,𝑢)∼𝑑𝜃 ,𝑎∼𝜋𝜃 (⋅|𝑠,𝑢)𝑄
𝜃(𝑠, 𝑢, 𝑎)∇ log𝜋𝜃(𝑎|𝑠, 𝑢) (5)

Since the sizes of the joint state and action spaces, 𝑆𝐺 and 𝐴𝐺,
grow exponentially with the number of agents, the corresponding Q-
functions 𝑄𝜃 and 𝑄𝜃

𝑖 can be large tables and therefore, are intractable
to compute and store.

4. Decentralized graph-based reinforcement learning using re-
ward machines (DGRM)

We propose the truncated Q-function (𝑄̃𝜃
𝑖), which takes the lo-

cal information of each agent as the input, and thus, the dimension
of 𝑄̃𝜃

𝑖 is much smaller than 𝑄𝜃
𝑖 . We present that 𝑄̃𝜃

𝑖 is able to ap-
proximate 𝑄𝜃

𝑖 with high accuracy. Then, we propose the truncated
policy gradient based on 𝑄̃𝜃

𝑖 , and the error of policy gradient ap-
proximation is bounded. Moreover, the DGRM algorithm can find an
𝑂(𝛾𝜅+1)-approximation of a stationary point of 𝐽 (𝜃). To further improve
efficiency, we also develop the deep DGRM algorithm, using deep
neural networks to approximate the Q-function and policy function to
solve large-scale or continuous state problems.

4.1. DGRM algorithm

To reduce complexity, we propose a decentralized learning algo-
rithm that equips each agent with a localized policy 𝜋𝜃𝑖

𝑖 , parameterized
by 𝜃𝑖. The localized policy for agent 𝑖, 𝜋𝜃𝑖

𝑖 (𝑎𝑖|𝑠𝑖, 𝑢𝑖), is a distribution
on the local action 𝑎𝑖, depending on the local state 𝑠𝑖 and local RM
state 𝑢𝑖. Thus, each agent acts independently, and information exchange
is not required with learned policies. Moreover, the RM state is aug-
mented with the low-level MDP state for the policy, which provides
guidance to the agent in the task level. The joint policy, 𝜋𝜃(𝑎|𝑠, 𝑢), is
defined as ∏𝑛

𝑖=1 𝜋
𝜃𝑖
𝑖 (𝑎𝑖|𝑠𝑖, 𝑢𝑖), 𝜃 = (𝜃1,… , 𝜃𝑛). 𝜋

𝜃𝑖
𝑖 is similar to the policy

defined in the Scalable Actor-Critic (SAC) algorithm [19], which is
conditioned only on the local state 𝑠𝑖. 𝜋

𝜃𝑖
𝑖 differs from the policy in

graph-based MDP [4] because their policy is conditioned on the agent’s
neighborhood.

Further, DGRM algorithm uses local information of each agent 𝑖 to
approximate 𝑄𝜃

𝑖 , inspired by Qu et al. [19]. We assume that the agent
𝑖 has access to the neighborhood of radius 𝜅 (or 𝜅-hop neighborhood)
of agent 𝑖, denoted by 𝑁𝜅

𝑖 , 𝜅 ≥ 0. 𝜅-hop neighborhood of 𝑖 includes the
agents whose shortest graph distance to agent 𝑖 is less than or equal
to 𝜅, including agent 𝑖 itself. We define 𝑁𝜅

−𝑖 = 𝑉 ∕𝑁𝑘
𝑖 , meaning the set

of agents that are outside of agent 𝑖’s 𝜅-hop neighborhood. The global
state 𝑠 can also be written as (𝑠𝑁𝜅

𝑖
, 𝑠𝑁𝜅

−𝑖
), which are the states of agents

that are inside and outside agent 𝑖’s 𝜅-hop neighborhood respectively,
similarly, the global RM state 𝑢 = (𝑢𝑁𝜅

𝑖
, 𝑢𝑁𝜅

−𝑖
) and the global action

𝑎 = (𝑎𝑁𝜅
𝑖
, 𝑎𝑁𝜅

−𝑖
). First, we define the exponential decay property of the

Q-function.

Definition 2. Q-function has the (𝜆, 𝜌)-exponential decay property if,
for any localized policy 𝜃, for any 𝑖 ∈ 𝑉 , 𝑠𝑁𝜅

𝑖
∈ 𝑆𝐺𝑁𝜅

𝑖
, 𝑠𝑁𝜅

−𝑖
, 𝑠′𝑁𝜅

−𝑖
∈

𝑆𝐺𝑁𝜅
−𝑖
, 𝑢𝑁𝜅

𝑖
∈ 𝑈𝐺𝑁𝜅

𝑖
, 𝑢𝑁𝜅

−𝑖
, 𝑢′𝑁𝜅

−𝑖
∈ 𝑈𝐺𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

𝑖
∈ 𝐴𝐺𝑁𝜅

𝑖
, 𝑎𝑁𝜅

−𝑖
, 𝑎′𝑁𝜅

−𝑖
∈ 𝐴𝐺𝑁𝜅

−𝑖
,

𝑄𝜃
𝑖 satisfies,

|𝑄𝜃
𝑖 (𝑠𝑁𝜅

𝑖
, 𝑠𝑁𝜅

−𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑢𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

𝑖
, 𝑎𝑁𝜅

−𝑖
) −𝑄𝜃

𝑖 (𝑠𝑁𝜅
𝑖
, 𝑠′𝑁𝜅

−𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑢′𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

𝑖
, 𝑎′𝑁𝜅

−𝑖
)| ≤ 𝜆𝜌𝜅+1
(6)

Neurocomputing 564 (2024) 126974J. Hu et al.

d

w
s

∀

W
Q
a
i
p
t
i
t
o
Q
i

T
f

(

T
f
t
l
e

∇

g
c
l
i
t

t
o
𝑂
t
c

A

a

t
(
n
i
t

1
1
1

Theorem 1. Assume ∀𝑖, 𝑅𝑖 is upper bounded by 𝑅, the (
𝑅
1−𝛾 , 𝛾)-exponential

ecay property of 𝑄𝜃
𝑖 holds.

The proof of Theorem 1 can be found in the supplementary material.
Theorem 1 indicates that the dependency of 𝑄𝜃

𝑖 on other agents decreases
exponentially as the distance between them grows. Information on the
agents that are far away from the learning agent could be unnecessary
for determining the value of Q-function. Then, we propose the following
truncated Q-functions for the state-(RM state)-action triples,

𝑄̃𝜃
𝑖 (𝑠𝑁𝜅

𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
) =

∑

𝑠𝑁𝜅
−𝑖
∈𝑆𝐺𝑁𝜅

−𝑖
,𝑢𝑁𝜅

−𝑖
∈𝑈𝐺𝑁𝜅

−𝑖
,𝑎𝑁𝜅

−𝑖
∈𝐴𝐺𝑁𝜅

−𝑖

𝑐𝑖(𝑠𝑁𝜅
−𝑖
, 𝑢𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

−𝑖
; 𝑠𝑁𝜅

𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
)

⋅𝑄𝜃
𝑖 (𝑠𝑁𝜅

𝑖
, 𝑠𝑁𝜅

−𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑢𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

𝑖
, 𝑎𝑁𝜅

−𝑖
)

(7)

here 𝑐𝑖(𝑠𝑁𝜅
−𝑖
, 𝑢𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

−𝑖
; 𝑠𝑁𝜅

𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
) is any non-negative weight and

atisfies,

(𝑠𝑁𝜅
𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
) ∈ 𝑆𝐺𝑁𝜅

𝑖
× 𝑈𝐺𝑁𝜅

𝑖
× 𝐴𝐺𝑁𝜅

𝑖
,

∑

𝑠𝑁𝜅
−𝑖
∈𝑆𝐺𝑁𝜅

−𝑖
,𝑢𝑁𝜅

−𝑖
∈𝑈𝐺𝑁𝜅

−𝑖
,𝑎𝑁𝜅

−𝑖
∈𝐴𝐺𝑁𝜅

−𝑖

𝑐𝑖(𝑠𝑁𝜅
−𝑖
, 𝑢𝑁𝜅

−𝑖
, 𝑎𝑁𝜅

−𝑖
; 𝑠𝑁𝜅

𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
) = 1.

(8)

e use the term ‘‘truncated Q-function’’ to emphasize that the proposed
-function is dependent on the information of the triple of state-RM state–
ction within a 𝜅-hop neighborhood rather than global information. Accord-
ng to Lemma 6 and Proof of Lemma 17 in Qu et al. [19], the unique fixed
oint (optimal Q-function) of TD learning can be a linear combination of
he full Q-function, where the full Q-function is the Q-function with global
nformation as input. As we use the truncated Q-function to approximate
he full Q-function, we define that the truncated Q is a linear combination
f the full Q-function. In the implementation, the definition of truncated
-function is not directly used. The truncated Q-function is learned by
teratively updating.

heorem 2. Under the (𝜆, 𝛾)-exponential decay property of 𝑄𝜃
𝑖 , 𝑄̃

𝜃
𝑖 satis-

ies,

sup
𝑠,𝑢,𝑎)∈𝑆𝐺×𝑈𝐺×𝐴𝐺

|𝑄̃𝜃
𝑖 (𝑠𝑁𝜅

𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
) −𝑄𝜃

𝑖 (𝑠, 𝑢, 𝑎)| ≤ 𝜆𝛾𝜅+1 (9)

The proof of Theorem 2 can be found in the supplementary material.
heorem 2 shows that 𝑄̃𝜃

𝑖 approximates 𝑄𝜃
𝑖 with high accuracy. 𝑄̃

𝜃
𝑖 is a

unction of the 𝜅-hop neighborhood’s state-(RM state)-action triples, thus
he dimension of 𝑄̃𝜃

𝑖 is smaller, which leads to the potential to handle
arge-scale systems. Next, we use 𝑄̃𝜃

𝑖 to approximate the policy gradi-
nt. The truncated policy gradient for agent 𝑖, 𝐽𝑖, is defined as 𝐽𝑖(𝜃) =
1

1−𝛾 E(𝑠,𝑢)∼𝑑𝜃 ,𝑎∼𝜋𝜃 (⋅|𝑠,𝑢)[
1
𝑛
∑

𝑗∈𝑁𝜅
𝑖
𝑄̃𝜃

𝑗 (𝑠𝑁𝜅
𝑗
, 𝑢𝑁𝜅

𝑗
, 𝑎𝑁𝜅

𝑗
)] ⋅

∇𝜃𝑖 log𝜋
𝜃𝑖
𝑖 (𝑎𝑖|𝑠𝑖.𝑢𝑖), where 𝑄̃𝜃

𝑗 is any truncated Q-function in the form
of Eq. (7).

Theorem 3. If ‖∇𝜃𝑖 log𝜋
𝜃𝑖
𝑖 (𝑎𝑖|𝑠𝑖, 𝑢𝑖)‖ is bounded by 𝐵𝑖, ∀𝑎𝑖, 𝑠𝑖, 𝑢𝑖, ‖𝐽𝑖(𝜃) −

𝜃𝑖𝐽 (𝜃)‖ ≤ 𝜆𝐵𝑖
1−𝛾 𝛾

𝜅+1

The proof of Theorem 3 can be found in the supplementary material.
Theorem 3 indicates that the error of the truncated policy gradient is
bounded. Thus, the truncated Q-function can be used to compute the policy
gradient for policy improvement.

The DGRM algorithm adopts the actor-critic framework, specifically
using temporal difference (TD) learning to train the truncated Q-function
and policy gradient for the localized policy. The pseudocode of DGRM is
given in Algorithm 1. The truncated Q-function is updated at every time
step, and the policy parameters are updated in every episode. DGRM reduces
the computational complexity as the truncated Q-function is conditioned
on the state-(RM state)-action triple of 𝜅-hop neighborhood instead of the
lobal information, which results in a much smaller dimension. Thus, the
omplexity of DGRM is the local state-(RM state)-action space size of the
argest 𝜅-hop neighborhood. The approximated gradient of policy parameters
s related to the truncated Q-function of the 𝜅-hop neighborhood. Further,
4

he authors in Qu et al. [19] claimed that under certain assumptions, the
runcated Q-function generated by TD learning can be a good estimate of the
ptimal full Q-function, and the actor-critic algorithm will eventually find an
(𝛾𝜅+1)-approximation of a stationary point of 𝐽 (𝜃). DGRM also follows
he assumptions with the RM state, thus the approximating convergence
onclusion still holds, which is illustrated in Theorem 4.

ssumption 1. The reward is bounded, 𝑅𝑖(𝑠𝑖, 𝑢𝑖, 𝑎𝑖) ≤ 𝑅,∀𝑖, 𝑠𝑖, 𝑢𝑖, 𝑎𝑖. The
individual state and action space sizes are upper bounded as |𝑆𝑖| ≤
𝑆, |𝐴𝑖| ≤ 𝐴,∀𝑖.

Assumption 2. 𝑄𝜃
𝑖 holds the (𝜆, 𝛾) exponential decay property.

The (𝑅
1−𝛾 , 𝛾) exponential decay property in Theorem 1 holds for 𝑄𝜃

𝑖

if 𝑅𝑖 is upper bounded by 𝑅. Such requirement (i.e., bounded 𝑅𝑖) is
ssumed in Assumption 1. Therefore, Assumption 2 automatically holds
under Assumption 1.

Assumption 3. The MDP environment gets sufficient local exploration.
Every (𝑠𝑁𝜅

𝑖
, 𝑢𝑁𝜅

𝑖
, 𝑎𝑁𝜅

𝑖
) pair must be visited with some positive probabil-

ity after some time.

Assumption 4. The policy gradient is bounded and Lipschitz continu-
ous. For any 𝑖, 𝑎𝑖, 𝑠𝑖, 𝑢𝑖 and 𝜃𝑖, we assume ‖∇𝜃𝑖 log𝜋

𝜃𝑖
𝑖 (𝑎𝑖|𝑠𝑖, 𝑢𝑖)‖ ≤ 𝐵𝑖. As

a result, ‖∇𝜃 log𝜋𝜃(𝑎|𝑠, 𝑢)‖ ≤ 𝐵 =
√

∑𝑛
𝑖=1 𝐵

2
𝑖 . Further, assume ∇𝐽 (𝜃) is

𝐵′-Lipschitz continuous in 𝜃.

Theorem 4. Under Assumptions 1, 2, 3, and 4, DGRM will find an
𝑂(𝛾𝜅+1)-approximation of a stationary point of the objective function 𝐽 (𝜃).

Remark 1. Section 3.2 defines the reward function and labeling func-
ion as dependent solely on the local state (𝑠𝑖), RM state (𝑢𝑖), and action
𝑎𝑖) of the learning agent. However, with a straightforward change of
otation, our model, algorithm, and analysis can be readily extended to
nclude a more general dependence on not only 𝑠𝑖, 𝑢𝑖, and 𝑎𝑖, but also
he actions of the agent’s neighbors 𝑎𝑁(𝑖).

Algorithm 1 DGRM Algorithm

Input: initial policy 𝜋𝜃𝑖
𝑖 (0), initial Q-function, 𝑠(0), 𝑢(0), 𝜅, 𝑇 ,

𝛾, 𝛼𝑄̃, 𝛼𝜋 .
1: for each Episode 𝑒 do
2: Take action 𝑎𝑖(0) ∼ 𝜋𝜃𝑖

𝑖 (⋅|𝑠𝑖(0), 𝑢𝑖(0)) for all 𝑖.
3: Get reward 𝑅𝑖(0) for all 𝑖.
4: while exist agent not finish the task and 𝑡 ≤ 𝑇 do
5: Get state 𝑠𝑖(𝑡), RM state 𝑢𝑖(𝑡) for all 𝑖.
6: Take action 𝑎𝑖(𝑡) ∼ 𝜋𝜃𝑖

𝑖 (⋅|𝑠𝑖(𝑡), 𝑢𝑖(𝑡)) for all 𝑖.
7: Get reward 𝑅𝑖(𝑡) for all 𝑖.
8: Calculate TD error for all 𝑖,
9: 𝑇𝐷𝑖 ← 𝑅𝑖(𝑡 − 1) + 𝛾𝑄̃𝑡−1

𝑖
(

𝑠𝑁𝑘
𝑖
(𝑡), 𝑢𝑁𝑘

𝑖
(𝑡), 𝑎𝑁𝑘

𝑖
(𝑡)
)

− 𝑄̃𝑡−1
𝑖

(

𝑠𝑁𝑘
𝑖
(𝑡 −

1), 𝑢𝑁𝑘
𝑖
(𝑡 − 1), 𝑎𝑁𝑘

𝑖
(𝑡 − 1)

)

.
10: Update the truncated Q-function for all 𝑖,
11: 𝑄̃𝑡

𝑖
(

𝑠𝑁𝑘
𝑖
(𝑡 − 1), 𝑢𝑁𝑘

𝑖
(𝑡 − 1), 𝑎𝑁𝑘

𝑖
(𝑡 − 1)

)

← 𝑄̃𝑡−1
𝑖

(

𝑠𝑁𝑘
𝑖
(𝑡 − 1), 𝑢𝑁𝑘

𝑖
(𝑡 −

1), 𝑎𝑁𝑘
𝑖
(𝑡 − 1)

)

+ 𝛼𝑄̃𝑡−1
𝑇𝐷𝑖.

12: end while
13: Calculate the approximated gradient for all 𝑖,
14: 𝑔̃𝑖(𝑒) ←

∑𝑡
𝑡′=0 𝛾

𝑡 1
𝑛
∑

𝑗∈𝑁𝑘
𝑖
𝑄̃𝑡

𝑗
(

𝑠𝑁𝑘
𝑖
(𝑡′), 𝑢𝑁𝑘

𝑖
(𝑡′), 𝑎𝑁𝑘

𝑖
(𝑡′)

)

∇𝜃𝑖 log

𝜋𝜃𝑖(𝑒)
𝑖

(

𝑎𝑖(𝑡′)|𝑠𝑖(𝑡′), 𝑢𝑖(𝑡′)
)

.
5: Update the policy parameters for all agents,
6: 𝜃𝑖(𝑒 + 1) ← 𝜃𝑖(𝑒) + 𝛼𝜋𝑒 𝑔̃𝑖(𝑒).
7: end for

4.2. Deep DGRM algorithm

To further improve efficiency, we approximate both the policy and
truncated Q-functions by deep neural networks. The pseudocode of

Neurocomputing 564 (2024) 126974J. Hu et al.

c
W
i
s

𝑇

t
p
i
i
i
s
a
s
d
s
p

t
i

deep DGRM is given in Algorithm 2. In every episode from line 2 to
line 7, all the agents first interact with the environment. Then in line
8, each agent collects the necessary information during the episode for
later actor and critic updating. Both the Q-network and policy network
are updated in every episode. In line 11, the TD error is the averaged
error over one episode. In line 15, the gradient of policy is conditioned
on the averaged TD error of the 𝜅-hop neighborhood, which indicates
ommunication is required for policy improvement during training.
hen implementing the learned policy after training, communication
s not required since the policy is only conditioned on each agent’s own
tate-(RM state) pair.

Algorithm 2 Deep DGRM Algorithm
Input: initialized policy 𝜃𝑖(0), initialized Q-network 𝛽𝑖(0), 𝑠(0), 𝑢(0), 𝜅,
, 𝛾, 𝛼𝑄̃, 𝛼𝜋
1: for each Episode 𝑒 do
2: Take action 𝑎𝑖(0) ∼ 𝜋𝜃𝑖

𝑖 (⋅|𝑠𝑖(0), 𝑢𝑖(0)) for all 𝑖.
3: Get reward 𝑅𝑖(0) for all 𝑖.
4: while exist agent not finish the task and 𝑡 ≤ 𝑇 do
5: Get state 𝑠𝑖(𝑡), RM state 𝑢𝑖(𝑡) for all 𝑖.
6: Take action 𝑎𝑖(𝑡) ∼ 𝜋𝜃𝑖

𝑖 (⋅|𝑠𝑖(𝑡), 𝑢𝑖(𝑡)) for all 𝑖.
7: Get reward 𝑅𝑖(𝑡) for all 𝑖.
8: Store transition

(

𝑠𝑁𝜅
𝑖
(𝑡 − 1), 𝑢𝑁𝜅

𝑖
(𝑡 − 1), 𝑎𝑁𝜅

𝑖
(𝑡 − 1), 𝑅𝑖(𝑡 −

1), 𝑠𝑁𝜅
𝑖
(𝑡), 𝑢𝑁𝜅

𝑖
(𝑡), 𝑎𝑁𝜅

𝑖
(𝑡)
)

for all 𝑖.
9: end while
10: Calculate the TD error for all 𝑖,
11: 𝑇𝐷𝑖 ← 1

𝑡
∑𝑡

𝑡′=1

(

𝑅𝑖(𝑡′ − 1) + 𝛾𝑄̃𝑒
𝑖
(

𝑠𝑁𝜅
𝑖
(𝑡′), 𝑢𝑁𝜅

𝑖
(𝑡′), 𝑎𝑁𝜅

𝑖
(𝑡′)

)

−

𝑄̃𝑒
𝑖
(

𝑠𝑁𝜅
𝑖
(𝑡′ − 1), 𝑢𝑁𝜅

𝑖
(𝑡′ − 1), 𝑎𝑁𝜅

𝑖
(𝑡′ − 1)

)

)

.
12: Update Q-network parameters for all 𝑖,
13: 𝛽𝑖(𝑒 + 1) ← 𝛽𝑖(𝑒) + 𝛼𝑄̃𝑇𝐷𝑖∇𝛽𝑖 𝑄̃

𝑒
𝑖 .

14: Update the policy-network parameters for all 𝑖,
15: 𝜃𝑖(𝑒 + 1) ← 𝜃𝑖(𝑒) + 𝛼𝜋

1
|𝑁𝜅

𝑖 |

∑

𝑗∈𝑁𝜅
𝑖
𝑇𝐷𝑗∇𝜃𝑖 ln𝜋𝑖.

16: end for

5. Case studies

In this section, we implement DGRM on three case studies: (1) a
wireless communication case with independent reward functions, (2) a
wireless communication case with dependent reward functions, and (3)
COVID-19 pandemic mitigation adapted from Della Rossa et al. [35].

5.1. Case study I: Wireless communication with independent reward func-
tions

We consider a system consisting of ten users sending packets to
the same destination. The destination is a fixed location that receives
packets. Two types of packets are available, packet 𝐴 and packet 𝐵. The
ask for each user is to first send packet 𝐴 successfully and then send
acket 𝐵 successfully within 16 time steps. A packet is sent successfully
f the destination receives the packet. The interaction graph of the users
s shown in Fig. 1. The interaction graph affects the task completion
n the way that it defines the neighbors, which further determines the
tate transitions as the agent’s state changes with respect to the agent’s
nd its neighbor’s states and actions. Whether an agent sends a packet
uccessfully depends on its left neighbor’s action at last time step. The
etailed transition model is defined in Eq. (10). For example, agent 𝑖
ends packet 𝐴 successfully if the left neighbor of agent 𝑖 (𝑖 > 0) sent
acket 𝐵 successfully at last time step.
Fig. 2 illustrates the reward machine for each user to specify the

ask. We note that in this case study, the reward function and label-
ng function are independent, which depend on the local information
5

Fig. 1. The interaction graph of users in Case Study I. Number: user’s index.

Fig. 2. Reward machines for each user in Case Study I. 𝑢3: goal state.

(𝑠𝑖, 𝑢𝑖, 𝑎𝑖). Each edge is labeled by a tuple (𝑝̂, 𝑟̂), where 𝑝̂ is a propo-
sitional logic formula over  ,  = {𝐴̂, 𝐵̂, 𝐺̂}, and 𝑟̂ ∈ R is a real
number, defining the reward of the corresponding transition. The user
starts from the RM state 𝑢0. To transition from 𝑢0 to 𝑢1, the proposition
𝐴̂ has to be true, and the transition outputs a reward of 5. 𝐴̂ means
the destination receives packet 𝐴 from the user before the time step
reaches 16. Additionally, the user is rewarded by 5 when it sends packet
𝐵 successfully before the time step reaches 16 and after it sends 𝐴
successfully, which is denoted by 𝐵̂, and reaches 𝑢2. 𝑢3 is the goal state,
expressing task accomplishment. When the time step reaches 16, the
user arrives at 𝑢3 and obtains a reward of 5.

The local state of user 𝑖 at time 𝑡, 𝑠𝑖(𝑡) = (𝑡, 𝑓 𝑖
𝑝), includes the current

time step 𝑡, and 𝑓 𝑖
𝑝 which indicates the type of packet that user 𝑖 sends

successfully after taking action 𝑎𝑖(𝑡−1). The action of user 𝑖 at time 𝑡 is
to select from {0: send nothing, 1: send 𝐴, 2: send 𝐵}. We assume that
sufficient packets are available during the entire planning horizon. The
transition model of 𝑓 𝑖

𝑝 is defined as,

∀𝑖 > 0, 𝑓 𝑖
𝑝(𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑓 𝑖−1
𝑝 (𝑡) = 2, 𝑎𝑖(𝑡) = 1,

2, if 𝑓 𝑖−1
𝑝 (𝑡) = 1, 𝑎𝑖(𝑡) = 2,

0, otherwise.

𝑖 = 0, if 𝑎𝑖(𝑡) = 1, 𝑃 (𝑓 𝑖
𝑝(𝑡 + 1) = 1) = 0.5, 𝑃 (𝑓 𝑖

𝑝(𝑡 + 1) = 0) = 0.5.

𝑖 = 0, if 𝑎𝑖(𝑡) = 2, 𝑃 (𝑓 𝑖
𝑝(𝑡 + 1) = 2) = 0.5, 𝑃 (𝑓 𝑖

𝑝(𝑡 + 1) = 0) = 0.5.

(10)

𝑓 𝑖
𝑝 obtains a value of 1 if sending 𝐴 successfully and a value of 2 if
sending 𝐵 successfully. 𝛾 is set to 0.7 in the experiment. We utilize
the softmax policy for the localized policy, which forms parameterized
numerical probabilities for each state–action pair [36].

We run the DRGM algorithm with 𝜅 ranging from 0 to 9 and plot
the global discounted reward during the training process in Fig. 3(a). To
further evaluate the performance of the DGRM algorithm, a testing run
of 1000 episodes is conducted for each DGRM with different 𝜅 values,
and the averaged global discounted reward of 1000 episodes is plotted
in Fig. 3(b). Fig. 3(b) shows that the averaged global discounted reward
increases as 𝜅 increases from 0 to 2. DGRM with 𝜅 = 3 and 4 exhibit
comparable performance to 𝜅 = 2. These findings are consistent with
Theorem 2, which indicates that the error caused by the truncation of
the Q-function decreases exponentially with 𝜅, and Theorem 4, which
implies that the truncated Q-function with a small 𝜅 can find the
stationary point of the objective function 𝐽 (𝜃). The contributions of
agents located far from the learning agent are relatively small and have
a lesser impact on the Q-function. The exponential decay appears to
stop when 𝜅 > 4, which can be attributed to the increasing learning
complexity with the size of the input information for the Q-function. In
particular, DGRM with a large 𝜅 considers a triple of state-RM state–
action with a large size, i.e., information of a large neighborhood, to
learn the truncated Q-function. As a result, accurately estimating the
truncated Q-function for large 𝜅 becomes more challenging, heavily
relying on the learning rate. Furthermore, we conduct a comparison
between DRGM and two baseline methods, namely independent Q-
learning (IQL) [37] and independent Q-learning with reward machines

(IQL-RM). In IQL and IQL-RM, each agent learns a localized Q-function.

Neurocomputing 564 (2024) 126974J. Hu et al.

s
I
b
s
a
o
s
t
t

5
t

m
l
b

I
l
t
a
t
F
s
d
e
r
w
s
I
t
i
s
t
r
a
s

a

Fig. 3. Training and testing results of global discounted reward in Case Study I.
w

t
l
d

5

a
a

a
a
t
p
(
a
o
e

e
t
r
I
𝑟
t

Specifically, the state for the Q-function in IQL includes the same
information as the state for the localized policy of our DGRM algorithm.
Due to the non-Markovian nature of the task, we provide IQL with
two additional states detecting whether the user has sent 𝐴 and 𝐵
uccessfully in the required order. On the other hand, Q-functions in
QL-RM utilize the information as DGRM with 𝜅 = 0. The key difference
etween IQL-RM and DGRM with 𝜅 = 0 lies in their algorithmic
tructure, with IQL-RM using standard Q-learning and DGRM adopting
n actor-critic structure. Fig. 3(a) shows that DGRM with 𝜅 = 0
utperforms IQL-RM, highlighting the advantages of our actor-critic
tructure. Additionally, IQL-RM achieves a higher reward compared
o IQL, thereby highlighting the effectiveness of task specifications
hrough reward machines.

.2. Case study II: Wireless communication with dependent reward func-
ions

This case study aims to evaluate the effectiveness of DGRM in the
ulti-agent system, as noted in Remark 1. The reward function and the
abeling function depend on not only the local information (𝑠𝑖, 𝑢𝑖, 𝑎𝑖),
ut also the actions of the learning agent’s neighbors 𝑎𝑁(𝑖).
The environment in this case study is similar to that of Case Study

. The system consists of 5 agents and the interaction graph follows a
inear structure where the agents are positioned in a line, identical to
he interaction graph in Fig. 1. Node 1 represents the leftmost agent,
nd node 5 represents the rightmost agent. The task, state, action, and
ransition model are the same as the settings used in Case Study I.
ig. 4 displays the reward machine for each agent, which follows the
ame structure as the reward machine defined in Case Study I. The
istinction between Case Study I and Case Study II lies in the approach
mployed to determine the required events for RM state transitions and
ewards. In Case Study II, neighboring agents’ actions are considered
hen determining the events and rewards, whereas in Case Study I, RM
tate transitions and rewards are based on local information (𝑠𝑖, 𝑢𝑖, 𝑎𝑖).
n detail, when the agent is in state 𝑢0, it receives a reward of 5 if
he event 𝐶̂ becomes true. However, the occurrence of the event 𝐶̂
s subject to two conditions being met. Firstly, the agent successfully
ends packet 𝐴̃ within 16 time steps. Secondly, at the same time step,
he agent’s left neighbor chooses to send packet 𝐵̃. Similarly, event 𝐷̂
equires that the agent sends packet 𝐵̃ successfully within 16 time steps
fter it sends 𝐴̃ successfully. Furthermore, its left neighbor selects to
end 𝐴̃ at the current time step.
In this case study, we vary the parameter 𝜅 from 0 to 4 in DGRM

nd compare it with the performance of IQL and IQL-RM. We measure
6

a

Fig. 4. Reward machines for each user in Case Study II. 𝑢3: goal state.

the performance of each algorithm in terms of global discounted re-
wards during training, as shown in Fig. 5(a). Additionally, we assess
the average global discounted reward across 1000 testing episodes,
as illustrated in Fig. 5(b). Our experimental results demonstrate that
DGRM outperforms the baseline methods IQL and IQL-RM for all values
of 𝜅. Moreover, we observe that the performance of DGRM improves
as 𝜅 increases when 𝜅 is less than 2. The policies learned by DGRM
with 𝜅 = 2 and 3 achieve similar global discounted rewards to DGRM
ith 𝜅 = 1 during testing. These findings align with the exponential

decay property of the truncated Q-function outlined in Theorem 2 and
he convergence conclusion presented in Theorem 4. The increase in
earning complexity associated with larger values of 𝜅 leads to a slight
ecrease in the average global discounted reward for DGRM with 𝜅 = 4.

.3. Case study III: COVID-19 pandemic mitigation

To the best of our knowledge, this case study provides the first
ttempt to use reward machines as specifications to mitigate epidemics
nd pandemics such as COVID-19.
We consider a network model of Italy [35], where Italy is modeled

s a network of 20 regions and the parameters of each region’s model
re calculated from real data. Real data have been obtained from
he public database of the Italian Civil Protection Agency. The total
opulation is divided into five subgroups for each region 𝑖: susceptible
𝑖), infected (𝑖), quarantined (𝑖), hospitalized (𝑖), recovered (𝑖),
nd deceased (𝑖). The detailed analysis of real data and the estimation
f parameters of the pandemic model can be referred to Della Rossa
t al. [35].
Della Rossa et al. [35] propose a bang–bang control strategy for

ach region according to the relative saturation level of its health sys-
em, mathematically, the ratio, 𝑟𝑖, between the number of hospitalized
equiring care in ICU (estimated as 0.1𝑖) over the number of available
CU beds ( 

𝑖) in the region. The regional lockdown is enforced when
𝑖̃ is larger than 0.5 and relaxed when 𝑟𝑖 is smaller than 0.2. During
he lockdown, the region implements strict social distancing rules, and
ll fluxes in or out of the region are reduced to 70% of their original

Neurocomputing 564 (2024) 126974J. Hu et al.

w

𝜙

a
i
w
c
b

m
a
𝑖
T
s
t

Fig. 5. Training and testing results of global discounted reward in Case Study II.
w
s
s

[
𝑣
c
i
t
a
s

𝑣

s
c
a
s
a
w
s
w
t
R

values. Mathematically, the social distancing parameter and fluxes are
set as follows.

𝜌𝑖 =

⎧

⎪

⎨

⎪

⎩

𝜌𝑖
0.1𝑖
 
𝑖

≥ 0.5

min(1, 3𝜌𝑖)
0.1𝑖
 
𝑖

≤ 0.2
(11)

here 𝜌𝑖 is the minimum estimated value during the national lockdown
and min(1, 3𝜌𝑖) simulates the relaxation of social distancing rules.

𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0.7𝜙𝑖𝑗
0.1𝑖
 
𝑖

≥ 0.5

𝜙𝑖𝑗
0.1𝑖
 
𝑖

≤ 0.2,
∀𝑖 ≠ 𝑗

𝜙𝑗𝑖 =

⎧

⎪

⎨

⎪

⎩

0.7𝜙𝑗𝑖
0.1𝑖
 
𝑖

≥ 0.5

𝜙𝑗𝑖
0.1𝑖
 
𝑖

≤ 0.2,
∀𝑖 ≠ 𝑗

𝜙𝑖𝑖 = 1 −
∑

𝑖≠𝑗
𝜙𝑖𝑗

(12)

where 𝜙𝑖𝑗 is the original value of the flux from region 𝑖 to region 𝑗
before the pandemic, and 0.7𝜙𝑖𝑗 simulates the feedback flux control
during a lockdown. We take the above bang–bang control as a baseline
method for comparison with our proposed method.

In this case study, we aim to control the spread of COVID-19 among
the 20 regions of Italy over a period of 4 weeks. A region is defined to
be in a severe situation when the total hospital capacity is saturated,
denoted by 0.1𝑖

 
𝑖

≥ 0.5, which is the same as the saturation level when
lockdown is adopted in the bang–bang control. The control objective
s that each region would not be in a severe situation for 2 consecutive
eeks and avoid a long time lockdown of 2 consecutive weeks since the
osts of continuing severe restrictions could be great relative to likely
enefits in lives saved [38].
To conduct our experiment, we establish a labeled graph-based
ulti-agent MDP for the network model of Italy and a reward machine
s task specification for each region. We define that region 𝑗 is region
’s neighbor if there are fluxes of people traveling between two regions.
he simulation is conducted with a discretization step of 1 day and
tarts on a Monday. At the first step of the simulation, each region is set
o be in a severe situation, 𝑖(0) = 6 

𝑖 , the values of 𝑖(0), 𝑖(0), 𝑖(0),
and 𝑖(0) are the same as the experiment in Della Rossa et al. [35].
Each region has four possible actions at each time step: no restrictions,
7

implementing social distancing (𝜌𝑖 = 𝜌𝑖), controlling fluxes between
neighboring regions (𝜙𝑖𝑗 = 0.7𝜙𝑖𝑗 ,∀𝑖 ≠ 𝑗), and adopting a lockdown.
The local state of region 𝑖 at day 𝑡, 𝑠𝑖(𝑡), includes the characterization
of its population, high-level features of this week’s situation, and the
simulated time step,

𝑠𝑖(𝑡) = (𝑖(𝑡),𝑖(𝑡),𝑖(𝑡),𝑖(𝑡),𝑖(𝑡),𝑖(𝑡), 𝑣̃𝑖, 𝑙𝑖, 𝑡) (13)

here 𝑣̃𝑖 and 𝑙𝑖 are the numbers of days when the region is in a severe
ituation and the number of days when the region adopts a lockdown
ince this Monday, respectively. The transitions of 𝑖(𝑡),𝑖(𝑡),𝑖(𝑡),𝑖(𝑡),
𝑖(𝑡),𝑖(𝑡) follow the pandemic model’s dynamics in Della Rossa et al.
35]. The set of events is 𝑖 = {𝜖0, 𝜖1, 𝑣0𝑙0, 𝑣0.5𝑙0, 𝑣1𝑙0, 𝑣0𝑙0.5,
0.5𝑙0.5, 𝑣1𝑙0.5, 𝑣0𝑙1, 𝑣0.5𝑙1, 𝑣1𝑙1}, where 𝜖0 is an empty event when the
urrent day is not Monday; 𝜖1 is the event leading to the goal state and
ndicates the current day is the last time step of the entire simulation;
he superscript of 𝑣 and 𝑙 describe the level of the situation’s severity
nd the frequency of lockdown implementation during the previous
even days (from Monday to Sunday), respectively. Mathematically,

𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑣0 𝑣̃ = 0
𝑣1 𝑣̃ = 7
𝑣0.5 0 < 𝑣̃ < 7

𝑙𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑙0 𝑙 = 0
𝑙1 𝑙 = 7
𝑙0.5 0 < 𝑙 < 7

(14)

We note that the reward machine for each region is the same for
implicity. The Reward Machine gives each region guidance on the
ontrol objective, which is shown in Fig. 6. The agent starts at 𝑢0,
ssuming that during the previous week, the region was in a severe
ituation for at least 1 day but less than 7 days and did not implement
lockdown. The RM states (𝑢4, 𝑢8, 𝑢9, 𝑢10, 𝑢11, 𝑢12, 𝑢15) are sink states
hich are not encouraged, indicating that the region has been in a
evere situation or has implemented a lockdown for two consecutive
eeks. 𝑢16 is the goal state and can be reached from all the states except
he sink states. Due to the limited space in Fig. 6, the required events for
M state transitions which should be marked on the edges in Fig. 6 are
listed in Table 1. For instance, during the first week, if the region was in
a severe situation and implemented a lockdown for seven consecutive
days, denoted by 𝑣1𝑙1, the region is directed to 𝑢5 on the second week’s
Monday. From Tuesday to Sunday, the agent would remain at the same
RM state due to the empty event 𝜖 . The reward function 𝜎 is defined
0 𝑖

Neurocomputing 564 (2024) 126974J. Hu et al.

s

w

w
c
c
p
W
𝜅
o
t
u
𝜅
i
d

a

d
a
r
a
a
p

Fig. 6. Reward Machine structure for each agent in Case Study III. 𝑢16: goal state;
1

←←←←←←→: pointing to the RM state set {𝑢0 , 𝑢1 , 𝑢2 , 𝑢3};
2

←←←←←←→: pointing to the RM state
et {𝑢5 , 𝑢6 , 𝑢7};

3
←←←←←←→: pointing to the RM state set {𝑢13 , 𝑢14 , 𝑢16};

4
←←←←←←→: pointing to

the RM state set {𝑢9 , 𝑢10 , 𝑢11}. For simplicity, self-loops at {𝑢5 , 𝑢6 , 𝑢7 , 𝑢13} are omitted.
The required events for RM state transitions are listed in Table 1.

Fig. 7. Global discounted rewards during the training process in Case Study III
(denoised using B-spline interpolation).

as follows.
𝜎𝑖(𝑢𝑖, 𝐿𝑖(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖))

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−600 𝑢𝑖 = 𝑢4, 𝑢8, 𝑢9, 𝑢10, 𝑢11, 𝑢12, 𝑢15

−250𝑣 − 50𝑙 + 400 𝑢′𝑖 = 𝑢3

−250𝑣 − 50𝑙 − 300 𝑢′𝑖 = 𝑢4, 𝑢8, 𝑢9, 𝑢10, 𝑢11, 𝑢12, 𝑢15

−250𝑣 − 50𝑙 + 250 𝐿𝑖(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖) = 𝜖1
0 𝐿𝑖(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖) = 𝜖0
−250𝑣 − 50𝑙 + 200 otherwise

(15)

here 𝑢′𝑖 = 𝛿𝑖(𝑢𝑖, 𝐿𝑖(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)).
In the experiment, we set 𝛾 = 0.9. We use two fully connected layers

ith [256, 128] units and ReLU activations for the actor and two fully
onnected layers with [256, 128] units and Tanh activation for the
ritic. We run the deep DGRM algorithm with 𝜅 = 0 up to 𝜅 = 5 and
lot the global discounted rewards during the training process in Fig. 7.
ith the increase in 𝜅, the global discounted reward increases when
≤ 2. This is also demonstrated in Fig. 8, which shows the performance
f the baseline (bang–bang control policy in Della Rossa et al. [35]) and
he results of deep DGRM obtained by 20 independent simulation runs
sing the converged policy for each 𝜅. The deep DGRM algorithm with
> 0 outperforms 𝜅 = 0, which is the independent learner method

n Tan [37]. The deep DGRM algorithm with 𝜅 = 1 improves the global
iscounted reward by 218% compared to 𝜅 = 0. The deep DGRM with
8

Fig. 8. Comparison of global discounted rewards in Case Study III.

Fig. 9. Comparison of local discounted rewards of each region in Case Study III.

𝜅 = 2 has limited improvement (4%) on the performance compared to
𝜅 = 1. When 𝜅 > 2, the global discounted reward stops growing due to
the cascading of local interactions, which is consistent with the results
in Case Study I. Moreover, the learning complexity grows with 𝜅 as
discussed in Case Study I. As we use the deep neural networks in Case
Study III, the model contains many parameters and the performance
heavily depends on the learning rate. By spending much more effort
in tuning, DGRM with a large 𝜅 has the potential to reach the same
reward as DGRM with a small 𝜅 (e.g., 𝜅 = 1, 2). With the deep DGRM
algorithm, information of the 1-hop neighborhood would be sufficient
for good performance in this experiment, and the global information is
unnecessary. Moreover, the deep DGRM with 𝜅 = 1 improves the global
ccumulated reward by 119% compared to the baseline.
To take a deeper look into the results, Fig. 9 shows the local

iscounted rewards of each region using the deep DRGM algorithm
nd the baseline method, with the reward function determined by the
eward machine. From Fig. 9, it can be seen that only region 5 receives
large penalty and fails the task with the deep DGRM algorithm, while
total of 13 regions fail the task utilizing the baseline method. We also
lot the result of 0.1𝑖

 
𝑖

(the relative saturation level of its health system)
during the entire simulation for each region with 𝜅 = 1 in Fig. 10.
The result indicates our proposed deep DGRM algorithm can guide 19
among 20 regions to avoid being in a severe situation and adopting a
lockdown for 2 consecutive weeks in a period of 4 weeks, which reduces
the spread of disease while considering the economic factors.

6. Conclusion

In this work, reward machines are leveraged to express complex
temporally extended tasks. A decentralized learning algorithm for

Neurocomputing 564 (2024) 126974J. Hu et al.
Fig. 10. Result of 0.1𝑖

 
𝑖

of each region with 𝜅 = 1 in Case Study III. Red dashed line: the threshold of 0.5 for 0.1𝑖

 
𝑖

when the region is in a severe condition. Background: orange:
select to lockdown; yellow: select to practice social distancing; blue: select to control the flux.
Table 1
Required events for reward machine state transition in Case Study III.
𝑢 transition event 𝑢 transition event

𝑢𝑖 → 𝑢0, 𝑖 ∈ {1, 2, 3, 5, 6, 7, 13, 14} 𝑣0.5𝑙0 𝑢0 → 𝑢0 𝜖0 ∨ 𝑣0.5𝑙0

𝑢𝑖 → 𝑢1, 𝑖 ∈ {0, 2, 3, 6, 7, 14} 𝑣0𝑙1 𝑢1 → 𝑢1 𝜖0 ∨ 𝑣0𝑙1

𝑢𝑖 → 𝑢2, 𝑖 ∈ {0, 1, 3, 5, 6, 7, 13, 14} 𝑣0𝑙0.5 𝑢2 → 𝑢2 𝜖0 ∨ 𝑣0𝑙0.5

𝑢𝑖 → 𝑢3, 𝑖 ∈ {0, 1, 2, 5, 6, 7, 13, 14} 𝑣0𝑙0 𝑢3 → 𝑢3 𝜖0 ∨ 𝑣0𝑙0

𝑢𝑖 → 𝑢5, 𝑖 ∈ {0, 2, 3, 14} 𝑣1𝑙1 𝑢5 → 𝑢5 𝜖0 ∨ 𝑣1𝑙1

𝑢𝑖 → 𝑢6, 𝑖 ∈ {0, 1, 2, 3, 13, 14} 𝑣1𝑙0.5 𝑢6 → 𝑢6 𝜖0 ∨ 𝑣1𝑙0.5

𝑢𝑖 → 𝑢7, 𝑖 ∈ {0, 1, 2, 3, 13, 14} 𝑣1𝑙0 𝑢7 → 𝑢7 𝜖0 ∨ 𝑣1𝑙0

𝑢𝑖 → 𝑢13, 𝑖 ∈ {0, 2, 3, 6, 7, 14} 𝑣0.5𝑙1 𝑢13 → 𝑢13 𝜖0 ∨ 𝑣0.5𝑙1

𝑢𝑖 → 𝑢14, 𝑖 ∈ {0, 1, 2, 3, 5, 6, 7, 13} 𝑣0.5𝑙0.5 𝑢14 → 𝑢14 𝜖0 ∨ 𝑣0.5𝑙0.5

𝑢𝑖 → 𝑢4, 𝑖 ∈ {1, 5, 13} 𝑣0𝑙1 𝑢𝑖 → 𝑢8, 𝑖 ∈ {1, 13} 𝑣1𝑙1

𝑢𝑖 → 𝑢9, 𝑖 ∈ {6, 7} 𝑣1𝑙1 𝑢𝑖 → 𝑢10, 𝑖 ∈ {5, 6, 7} 𝑣1𝑙0.5

𝑢𝑖 → 𝑢11, 𝑖 ∈ {5, 6, 7} 𝑣1𝑙0 𝑢𝑖 → 𝑢12, 𝑖 ∈ {5} 𝑣1𝑙1

𝑢𝑖 → 𝑢15, 𝑖 ∈ {1, 5, 13} 𝑣0.5𝑙1 𝑢𝑖 → 𝑢16, 𝑖 ∈ {0, 1, 2, 3, 5, 6, 7, 13, 14} 𝜖1
s

graph-based MDP is introduced. We propose a truncated Q-function
that uses the local information of the 𝜅-hop neighborhood and can be
computed efficiently. We also prove that the approximation error is
bounded. After training, agents can implement the policies indepen-
dently. We also combine the decentralized architecture and function
approximation by deep neural networks to enable the application to
large-scale MARL or continuous state problems. Furthermore, this is the
first work to use reward machines to mitigate the COVID-19 pandemic
through task specification, and we show performance improvement
over the baseline method.

The proposed approach can be widely applied to various real-
world large-scale sparse networked systems that can be formulated as
a graph-based MDP, such as the power grid, communication systems,
pandemic networks, and smart traffic or infrastructure systems. The
current work assumes each agent has an individual reward machine and
the reward machine is known, but it would be possible to learn reward
machines from experience [24] and decompose a team-level task to
a collection of reward machines [21]. We use a standard actor-critic
algorithm, one possible research direction is to use more advanced RL
algorithms such as Proximal Policy Optimization (PPO) [39] to allow
9

for solving continuous action problems. Leveraging strategies such as
Hindsight Experience Replay [40] to learn policies faster is also worth
investigating.

CRediT authorship contribution statement

Jueming Hu: Conceptualization, Methodology, Software, Analy-
is, Validation, Writing – original draft. Zhe Xu: Conceptualization,
Methodology, Analysis, Writing – review, Supervision. Weichang
Wang: Methodology, Analysis, Writing – review. Guannan Qu:
Analysis, Writing – review. Yutian Pang: Analysis, Writing – review.
Yongming Liu: Writing – review, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

Neurocomputing 564 (2024) 126974J. Hu et al.

R

Acknowledgments

The research reported in this paper was supported by funds from
NASA University Leadership Initiative program (Contract No. NNX17A
J86A, PI: Yongming Liu, Technical Officer: Anupa Bajwa) and by funds
from the National Science Foundation (Award: 2331781). The support
is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.neucom.2023.126974.

eferences

[1] T. Dean, K. Kanazawa, A model for reasoning about persistence and causation,
Comput. Intell. 5 (2) (1989) 142–150.

[2] C. Guestrin, D. Koller, R. Parr, S. Venkataraman, Efficient solution algorithms
for factored MDPs, J. Artificial Intelligence Res. 19 (2003) 399–468.

[3] N. Forsell, R. Sabbadin, Approximate linear-programming algorithms for graph-
based Markov decision processes, in: Proceedings of the 2006 Conference
on ECAI 2006: 17th European Conference on Artificial Intelligence August
29–September 1, 2006, Riva Del Garda, Italy, 2006, pp. 590–594.

[4] Q. Cheng, Q. Liu, F. Chen, A.T. Ihler, Variational planning for graph-based MDPs,
Adv. Neural Inf. Process. Syst. 26 (2013) 2976–2984.

[5] V.D. Blondel, J.N. Tsitsiklis, A survey of computational complexity results in
systems and control, Automatica 36 (9) (2000) 1249–1274.

[6] P. Hernandez-Leal, B. Kartal, M.E. Taylor, A survey and critique of multiagent
deep reinforcement learning, Auton. Agents Multi-Agent Syst. 33 (6) (2019)
750–797.

[7] M.L. Littman, Markov games as a framework for multi-agent reinforcement
learning, in: Machine Learning Proceedings 1994, Elsevier, 1994, pp. 157–163.

[8] C. Claus, C. Boutilier, The dynamics of reinforcement learning in cooperative
multiagent systems, AAAI/IAAI 1998 (746–752) (1998) 2.

[9] M.L. Littman, Value-function reinforcement learning in Markov games, Cogn.
Syst. Res. 2 (1) (2001) 55–66.

[10] J. Hu, M.P. Wellman, Nash Q-learning for general-sum stochastic games, J. Mach.
Learn. Res. 4 (Nov) (2003) 1039–1069.

[11] B. Silver, W. Frawley, G. Iba, J. Vittal, K. Bradford, ILS: A framework for multi-
paradigmatic learning, in: Machine Learning Proceedings 1990, Elsevier, 1990,
pp. 348–356.

[12] J. Hu, Y. Liu, UAS conflict resolution integrating a risk-based operational safety
bound as airspace reservation with reinforcement learning, in: AIAA Scitech 2020
Forum, 2020, p. 1372.

[13] W. Wang, Y. Liu, R. Srikant, L. Ying, 3M-RL: Multi-resolution, multi-agent, mean-
field reinforcement learning for autonomous UAV routing, IEEE Trans. Intell.
Transp. Syst. (2021).

[14] K. Zhang, Z. Yang, H. Liu, T. Zhang, T. Basar, Fully decentralized multi-agent
reinforcement learning with networked agents, in: International Conference on
Machine Learning, PMLR, 2018, pp. 5872–5881.

[15] C. Guestrin, D. Koller, R. Parr, Multiagent planning with factored MDPs, in: NIPS,
Vol. 1, 2001, pp. 1523–1530.

[16] M. Cubuktepe, Z. Xu, U. Topcu, Distributed policy synthesis of multi-agent
systems with graph temporal logic specifications, IEEE Trans. Control Netw. Syst.
(2021).

[17] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual
multi-agent policy gradients, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32, (1) 2018.

[18] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch, Multi-agent actor-
critic for mixed cooperative-competitive environments, 2017, arXiv preprint
arXiv:1706.02275.

[19] G. Qu, A. Wierman, N. Li, Scalable reinforcement learning of localized policies for
multi-agent networked systems, in: Learning for Dynamics and Control, PMLR,
2020, pp. 256–266.

[20] R.T. Icarte, T. Klassen, R. Valenzano, S. McIlraith, Using reward machines for
high-level task specification and decomposition in reinforcement learning, in:
International Conference on Machine Learning, PMLR, 2018, pp. 2107–2116.

[21] C. Neary, Z. Xu, B. Wu, U. Topcu, Reward machines for cooperative multi-agent
reinforcement learning, 2020, arXiv preprint arXiv:2007.01962.

[22] D. DeFazio, S. Zhang, Learning quadruped locomotion policies with reward
machines, 2021, arXiv preprint arXiv:2107.10969.

[23] A. Shah, S. Li, J. Shah, Planning with uncertain specifications (Puns), IEEE Robot.
10

Autom. Lett. 5 (2) (2020) 3414–3421.
[24] Z. Xu, I. Gavran, Y. Ahmad, R. Majumdar, D. Neider, U. Topcu, B. Wu,
Joint inference of reward machines and policies for reinforcement learning,
in: Proceedings of the International Conference on Automated Planning and
Scheduling, Vol. 30, 2020, pp. 590–598.

[25] R. Toro Icarte, E. Waldie, T. Klassen, R. Valenzano, M. Castro, S. McIlraith,
Learning reward machines for partially observable reinforcement learning, Adv.
Neural Inf. Process. Syst. 32 (2019) 15523–15534.

[26] D. Furelos-Blanco, M. Law, A. Russo, K. Broda, A. Jonsson, Induction of subgoal
automata for reinforcement learning, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 3890–3897.

[27] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, A. Russo, Induction and
exploitation of subgoal automata for reinforcement learning, J. Artificial
Intelligence Res. 70 (2021) 1031–1116.

[28] M. Hasanbeig, N.Y. Jeppu, A. Abate, T. Melham, D. Kroening, DeepSynth:
Automata synthesis for automatic task segmentation in deep reinforcement learn-
ing, in: The Thirty-Fifth {AAAI} Conference on Artificial Intelligence,{AAAI},
Vol. 2, No. 9, Baltimore, MD, USA, August 15–17, 27th {USENIX} Security
Symposium,{USENIX} Security 18, 2021, p. 36.

[29] G. Rens, J.-F. Raskin, Learning non-Markovian reward models in mdps, 2020,
arXiv preprint arXiv:2001.09293.

[30] R. Parr, S. Russell, Reinforcement learning with hierarchies of machines, in: Ad-
vances in Neural Information Processing Systems, Morgan Kaufmann Publishers,
1998, pp. 1043–1049.

[31] R.S. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning, Artif. Intell. 112 (1–2) (1999)
181–211.

[32] T.G. Dietterich, Hierarchical reinforcement learning with the MAXQ value
function decomposition, J. Artif. Intell. Res. 13 (2000) 227–303.

[33] R.T. Icarte, T.Q. Klassen, R. Valenzano, S.A. McIlraith, Reward machines:
Exploiting reward function structure in reinforcement learning, 2020, arXiv
preprint arXiv:2010.03950.

[34] R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: Advances in Neural
Information Processing Systems, 2000, pp. 1057–1063.

[35] F. Della Rossa, D. Salzano, A. Di Meglio, F. De Lellis, M. Coraggio, C. Calabrese,
A. Guarino, R. Cardona, P. DeLellis, D. Liuzza, et al., Intermittent yet coordinated
regional strategies can alleviate the COVID-19 epidemic: a network model of the
Italian case, 2020, arXiv preprint arXiv:2005.07594.

[36] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[37] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative agents,
in: Proceedings of the Tenth International Conference on Machine Learning,
1993, pp. 330–337.

[38] D.K. Miles, M. Stedman, A.H. Heald, ‘‘Stay at Home, Protect the National Health
Service, Save Lives’’: a cost benefit analysis of the lockdown in the United
Kingdom, Int. J. Clin. Pract. 75 (3) (2021) e13674.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, arXiv preprint arXiv:1707.06347.

[40] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B.
McGrew, J. Tobin, P. Abbeel, W. Zaremba, Hindsight experience replay, 2017,
arXiv preprint arXiv:1707.01495.

Jueming Hu is a Ph.D. candidate in the School for En-
gineering of Matter, Transport & Energy at Arizona State
University. She completed her master’s degree at Arizona
State University in 2018 and obtained her bachelor’s de-
gree from Southeast University in China in 2017. Her
research interests include Reinforcement Learning, UAS
traffic management, optimization, and operation research.

Zhe Xu received the B.S. and M.S. degrees in Electrical
Engineering from Tianjin University, Tianjin, China, in 2011
and 2014, respectively. He received the Ph.D. degree in
Electrical Engineering at Rensselaer Polytechnic Institute,
Troy, NY, in 2018. He is currently an assistant professor
in the School for Engineering of Matter, Transport, and
Energy at Arizona State University. Before joining ASU,
he was a postdoctoral researcher in the Oden Institute for
Computational Engineering and Sciences at the University of
Texas at Austin, Austin, TX. His research interests include
formal methods, autonomous systems, control systems and
reinforcement learning.

https://doi.org/10.1016/j.neucom.2023.126974
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb1
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb1
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb1
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb2
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb2
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb2
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb3
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb4
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb4
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb4
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb5
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb5
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb5
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb6
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb6
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb6
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb6
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb6
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb7
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb7
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb7
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb8
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb8
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb8
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb9
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb9
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb9
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb10
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb10
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb10
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb11
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb11
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb11
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb11
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb11
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb12
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb12
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb12
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb12
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb12
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb13
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb13
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb13
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb13
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb13
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb14
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb14
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb14
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb14
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb14
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb15
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb15
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb15
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb16
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb16
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb16
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb16
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb16
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb17
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb17
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb17
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb17
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb17
http://arxiv.org/abs/1706.02275
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb19
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb19
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb19
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb19
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb19
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb20
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb20
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb20
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb20
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb20
http://arxiv.org/abs/2007.01962
http://arxiv.org/abs/2107.10969
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb23
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb23
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb23
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb24
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb25
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb25
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb25
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb25
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb25
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb26
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb26
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb26
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb26
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb26
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb27
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb27
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb27
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb27
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb27
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb28
http://arxiv.org/abs/2001.09293
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb30
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb30
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb30
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb30
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb30
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb31
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb31
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb31
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb31
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb31
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb32
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb32
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb32
http://arxiv.org/abs/2010.03950
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb34
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb34
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb34
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb34
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb34
http://arxiv.org/abs/2005.07594
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb36
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb36
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb36
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb37
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb37
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb37
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb37
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb37
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb38
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb38
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb38
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb38
http://refhub.elsevier.com/S0925-2312(23)01097-4/sb38
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.01495

Neurocomputing 564 (2024) 126974J. Hu et al.
Weichang Wang received his Ph.D. degree and Master’s
degree in School of Electrical, Computer and Energy En-
gineering at Arizona State University. He obtained his
Bachelor’s degree in School of Electronic Information and
Communications at Huazhong University of Science and
Technology. His research interests include Wireless Com-
munication Network, Resource Allocation in Stochastic
Systems, Multi-agent Reinforcement Learning, and Internet
of Things (IoT).

Guannan Qu is an assistant professor in the Electrical
and Computer Engineering Department of Carnegie Mel-
lon University. He received his B.S. degree in electrical
engineering from Tsinghua University in Beijing, China in
2014, and his Ph.D. in applied mathematics from Harvard
University in Cambridge, Massachusetts in 2019. He was a
CMI and Resnick postdoctoral scholar in the Department of
Computing and Mathematical Sciences at California Institute
of Technology from 2019 to 2021. He is the recipient
of Caltech Simoudis Discovery Award, PIMCO Fellowship,
Amazon AI4Science Fellowship, and IEEE SmartGridComm
Best Student Paper Award. His research interest lies in
control, optimization, and machine/reinforcement learning
with applications to power systems, multi-agent systems,
Internet of things, and smart cities.
11
Yutian Pang is a Ph.D. candidate in mechanical and
aerospace engineering at Arizona State University. He ob-
tained his Bachelor’s degree from Huazhong University of
Science and Technology in 2017 and his master’s degree
from Arizona State University in 2018. His research in-
terests include data-driven intelligent decision support for
aviation systems, Bayesian machine learning for uncertainty
quantification, and robust autonomy.

Yongming Liu is a professor of aerospace and mechanical
engineering with the School for Engineering of Matter,
Transport and Energy at Arizona State University. He heads
the Prognostic Analysis and Reliability Assessment Labo-
ratory (PARA). His research interests range from fatigue
and fracture of engineering materials and structures, proba-
bilistic computational mechanics, risk assessment and man-
agement to multi-physics damage modeling and structural
durability, multi-scale uncertainty quantification and propa-
gation, imaging-based experimental testing, diagnostics and
prognostics.

	Decentralized graph-based multi-agent reinforcement learning using reward machines
	Introduction
	Related Work
	Preliminaries
	Markov Decision Processes and Reward Machines
	Graph-Based Multi-Agent MDP with Reward Machines

	Decentralized Graph-Based Reinforcement Learning Using Reward Machines (DGRM)
	DGRM algorithm
	Deep DGRM algorithm

	Case Studies
	Case Study I: Wireless Communication with Independent Reward Functions
	Case Study II: Wireless Communication with Dependent Reward Functions
	Case Study III: COVID-19 Pandemic Mitigation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

