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This paper extends the star set reachability approach to verify the robustness of feed-forward neural networks (FNNs) with

sigmoidal activation functions such as Sigmoid and TanH. The main drawbacks of the star set approach in Sigmoid/TanH
FNN Verlﬁcatlon are scalability, fea51b111ty, and optimality issues in some cases due to the linear programj:mng solver usage.

valuable features of a star set. RStar can overapproximate a sigmoidal activation function using four line
or two linear constraints (RStar2), or only the output bounds (RStar0). We implement our RStar#
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1 INTRODUCTION

In recent years, deep neural network (D
various areas. DNNs consist of multiple
initialized and transformed to high-dimens
functions. Understanding an cting the
of neurons, the non-linearit ctivation, and the complex structure of a DNN. Thus, DNN is considered as a
black box. Despite its s i if
A small adversarial att

idely used technique for solving real-world tasks in
any neurons with weights and biases that are randomly
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applied to safety-critical systems, formal methods for safety verification and robustness certification of DNNs are
critical and highly necessary.

Verification and certification of DNNs can be broadly categorized into exact and overapproximation analyses,
depending on activation functions and analysis methods. Nonlinear activation functions such as ReLU and leaky
ReLU can either be analyzed exactly or by overapproximation due to their piece-wise linear properties [30-32, 34].
Nonlinear activation functions such as Sigmoid and TanH are generally analyzed with overapproximation methods
as an exact approach is computationally intractable. Despite their wide usage in real-world neural networks,
sigmoidal DNNs have not been extensively researched, and only a few verification approaches have been proposed
[6,8,9,11, 18,27, 38, 47]. These activation functions are much more challenging and complex to verify due to their
nonlinear properties. Most methods proposed recently for these functions are overapproximatedéwith abstraction,
such as symbolic intervals [28, 46] that are limited to overapproximate an activation function with two linear
bounds. The exact verification guarantees the soundness and completeness of the reachablhty i
it is computationally expensive and may not be scalable to verify deep neural netwo
frame. On the other hand, overapproximation analysis is faster and more scalable thar{
guarantees only the soundness of the results. Importantly, errors in overapproxi
quickly over layers. Therefore, loose overapproximation produces a conser
useless for verification. Although a trade-off between scalability and precisi
of results may be dramatic on verification.

DeepPoly [28] and CROWN [46] approaches, Wthh ove i ctivation functions such as ReLU, TanH,
i id usi i ing two linear constraints allows these methods to

linear programming optimization. This ke
approach on large networks. However, u

constraints in overapproximation also makes DeepPoly
ach. Based on this observation, we propose a new relaxed
als with the back-substitution technique similar to DeepPoly to
find the state bounds in reac ‘while maintaining efficient features of the star set representation to
reduce the conservativen
function by four linear cg

bound of the funct1

We prepare e FNNs with different architectures that are trained with two datasets: MNIST [17] and
CIFAR10 [16]. We evaluate our proposed methods in comparison with the DeepPoly approach for verifying FNNs.
We discuss thé evaluation in terms of scalability, time performance, conservativeness, and verification result.
In short, the relaxed star approaches are more scalable than the original star set while less conservative than
DeepPoly on a set of DNN benchmarks. RStar0 is capable of verifying 3528 times faster than the original star
method. The RStar approaches have improved scalability due to discarding a linear programming (LP) solver
and employing symbolic intervals to find the state bounds during reachability analysis. RStar4 can verify up to
40% more images than DeepPoly on bigger neural networks, while the star set approach can verify at most 17%
more images than RStar4 on MNIST DNNs. The evaluation reveals that applying more linear constraints while
overapproximating an activation function improves precision. Although a multi-core platform is not considered
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in this experiment, the star set’s scalability problem can be easily improved with parallel computation of the
reachable sets.

Contributions. In summary, the main contributions of the paper are as follows.

1) An extension of the star set to overapproximate reachability analysis of Sigmoid/TanH FNNs.

2) A new relaxed star (RStar) approach utilizing symbolic intervals with the back-substitution technique to
overapproximate a sigmoidal activation function that includes three variants (RStar4, RStar2, RStar0) to
balance between conservativeness and scalability.

3) An implementation of the star set and RStar representation and the reachability algorithms in NNV.

4) A thorough evaluation and comparison with DeepPoly on a set of benchmarks.

Organization. The remainder of the paper is organized as follows. Section 2 formally defines FNN and its
reachability, in which the definition of generalized star set and symbolic intervals are stated in det 'l In Section
3, we provide propositions and lemmas of how an overapproximation of non-linear functions s
and TanH is applied based on the star set and symbolic intervals. Moreover, we describ
the symbolic intervals and their composition. We then propose the relaxed star tha
symbolic intervals for the reachability analysis of an FNN. In Section 4, we explaj
each method based on the relaxed star reachability algorithm and show their
evaluation in Section 5. Section 6 reviews the related works, and Section

2 PRELIMINARIES

A k-layer feed-forward neural network ¥ consists of an input lay
layer ¢, 1 < ¢ < k, consists of n, neurons that are intercon
layer ¢ performs two operations: affine mapping and ac
M R"-1 — R™ performing a linear transformati state. ector 2 which is the output of the previous
layer, i.e., layer £ — 1. The activating operation appl 1c ¢
vector from the affine mapping operation f;*. The output ector y of the ¢- th hldden layer is expressed as:

Ur—1) = fy (Weye_1 + by),

ayers, and an output layer. Each
in a preceding layer A hidden

ve = fi(ye

where W, € R"*"-1 and b, € R™ are the weight matrix and the bias vector of the ¢-th layer respectively. In this
paper, we are interested in FNNs/with Sigmoid activation functions defined by f7(x;) = e_xl or TanH defined
- he i-th neuron of an input vector x. The input-output relation of the FNN can

by f°(x;) = % whe
be written as:

M M M M
X, F=fil o fliofiliofilyofillpo- o f7 o it

Ri ={yilyr = filx),x € I},
Rz = {y2ly2 = f2(y1), y1 € R},
Rre = Yk | Yk = fie(Yx-1), Y1 € R-1},

ACM Trans. Des. Autom. Electron. Syst.
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where the output reachable set Ry = F(Z') contains all the outputs of the FNN corresponding to all input vectors
x in the input set 7.

Definition 2.2 (Generalized Star Set [32]). A generalized star set (or simply star) © is a tuple {(c, V, P) created
based on an input vector x € © C R”, where ¢ € R” is a center vector, V = [01,02,- -+ , 0y ] consists of a set of m
basis vectors v € R", and predicate P : R™ — {T, L}. P(a) £ Ca < d Al, < & < u, has a conjunction of p linear
constraints, where C € RP*™ d € R?, « is the predicate variable, and I, and u, are lower and upper predicate
bounds. The set of states can be represented as:

[e] = {xlx=c+ Z a;v; such that P(a) = T}.

i=1

A star is an empty set, i.e., © = 0 if and only if the predicate P(«) is infeasible. Sometimes b
the set of states [ @] are referred to as ©.

We note that any polytope can be represented as a star set. Affine mapping and inter
a star set is another star set that can be computed efficiently via matrix-vector multiplic [32) The efficiency of
flity analysis of ReLU
networks. The star-based reachability approach can compute an overapproximation of the exact reachable set of a
network by overapproximating the output of a ReLU activation on all ney i
the triangle overapproximation rule [3]. This overapproximation reacha
the lower and upper bound vectors of a state vector x in a star

these bounds by solving 2n LP problems, i.e. min(max) x[j] = ¢

u. The star set approach finds
.Ca <d,1 < j < n.Solving LP
it'set approach time-consuming and less
consider two affine transformers for finding
svides enhanced scalability in the trade-off of

scalable. Therefore, we apply symbolic intervals D =
the state vector bounds via back-substitution. Th

? — RY defining an application of either an affine
px € X C R”, its corresponding symbolic interval is D =
nd D* = (D%, g*) = D"x + g* are the lower and upper symbolic
(x) < D™

mapping, ReLU, Sigmoid or TanH on a stz
(DY, DYy in which D! = (D!, ¢') = D'x +
bounds, respectively. We have; ¥4

Since an affine mappin

51L1C INTERVAL OF AN AFFINE MAPPING FUNCTION). Symbolic interval of an affine
ned by a mapping matrix W and a bias vector b, on a state vector x is D = (D!, D¥),

Proo¥. The linear bounds of the symbolic interval are affine transformers, and each of them can exactly
represent an affine mapping. Hence D! = D¥ = W, and ¢ = g% = b. m]

Symbolic intervals propagate to a symbolic input interval through a network to compute the lower bound and
upper bound of a state vector x. These bounds are essential to construct the convex set and overapproximate
Sigmoid/TanH. The key computation is to derive the tightest and optimal lower and upper symbolic constraints,
ie, D! and DY, for each operation. This requires tight overapproximation rules for the sigmoidal activation
function discussed in the next section.

ACM Trans. Des. Autom. Electron. Syst.



Reachability Analysis of Sigmoidal Neural Networks + 5

3  OVERAPPROXIMATION OF SIGMOIDAL ACTIVATION FUNCTIONS
3.1 Star overapproximation of Sigmoid/TanH

Unlike affine mapping, the Sigmoid or TanH activation function f“ is nonlinear. Therefore, the reachability
analysis of this function is based on overapproximation, which leads to a key difference between the DeepPoly
and our approaches proposed in this paper. The DeepPoly approach uses symbolic intervals (with two linear
symbolic constraints) to overapproximate the sigmoidal activation function. However, it uses the lower and upper
bounds of the states for verifying FNNs. A set of interval constraints, i.e., X = X2, [I;, u;], is used to verify the
robustness of neural networks [28]. m is the number of operations in the FNN. Our star set approach, however,
has the flexibility for users to choose the number of linear constraints used for tighter/looser overapproximation.
Figure 1 shows three different ways of overapproximating the sigmoidal activation function.

o) vY2 feCx) [ Y2
[CIDP/RSO =~ .--"[CZIopPiRso [CJoPRsO
C_IRs2 Y34 ﬁ SO (> IRs2
[]Star/RS4 5 v [_IStar/RS4 [_IStar/RS4
4 / (axay)
Y3
___________________ V1
xil; U;
ML=0 (d)l;<0andy; >0
Fig. 1. Overapproximation of TanH/Sigmoid. DP and R ” epPoly and RStar, respectively. RS2 is in yellow

ds from the LP solver and those from the back-
vbounds to find the state bounds with back-substitution,
<'with the LP solver. Each method constrains its convex set
and yy. Only the star set and RS4 constrain their convex set
ya, li, u; for case (d), and y1, y2, y3, li, u; for cases (b) and (c). RS2 is
Star/RS4. Thus, RS4 € RS2 C RS0. Since l; == u; and y; = f°(l;) is a
bounds are defined in Lemma 3.9 and 3.1. In terms of constraining an
'equivalent, t the star set uses an LP optimization, while RS4 uses symbolic intervals
nd DP,apply very similar overapproximation; however, they are different in verifying
DP: X = X:Zl [li,ui] and RSO: Q = {x | x € [lp, ur]}.

substitution are identical. All RS methods and DP use y;
while the star set applies all linear bounds to
with [; and u; bounds. RS2 additionally constr
with all linear constraints and predicate bounds
bounded by y1, y2, i, and u;, meaning RS2 inc
single point, the case (a) is no
activation function, RS4 and St
to compute the state boun

arid concavity of the sigmoidal function on different input domains, we can overap-
ing two, three, or four linear constraints or simply by a rectangle. On the input regions

function by two/linear constraints y; and y, while the star set uses three constraints y;, y, and y; for a tighter
overapproximation. On other input regions where the sigmoidal function is neither convex nor concave (Figure
1-d), symboli¢ intervals still overapproximate the function by two linear constraints y; and y,, while we apply
four constraints yy, Y, y3 and y4 for a star set. Clearly, a star set approach is less conservative than symbolic
intervals due to tighter overapproximation, which leads to the computation of tight upper and lower bounds.

LEMMA 3.1 (STAR OVERAPPROXIMATION RULE FOR A SIGMOIDAL FUNCTION). For any input vector x € R",
I < x < u in which x; is i-th individual state of x, the output y = f°(x) € R" satisfies the following rules:
ifli ==1u;
yi = f7(xi) (a)

ACM Trans. Des. Autom. Electron. Syst.



6 « Choietal.

ifli>0
yr 2y = UG o (g — 1) + £ (1),
yi Y2 =17 () X (x; — u;) + £ (wy), (b)
yi <ys=f7 () x (x; = L) + f(L).

ifui <0

gi > g1 = £7 (1) X (= ) + £ (1),
yi < g = L0 5 (= 1) + £ (),

u,-—li

Yi > ys = £ (u) X (x — wp) + £ ().

ifly <0andu; >0

Yi > U1 :/IX (xi —li)+f0(li)a
Ui < Yo = A (6 — ) + £ (w),
Yi 2 ys = Xxi — pp Xug + f(uy)
Ui S Ys = py Xx =y X i+ fO(l;

(d)

where A = min(f (1),  (ur)), pu = Lo, py = L0292 g

= fo — [7U) =AxL-f7(0)
= £7(0) X by + £(0), by = LU0

o _ [ (ui)=AXui=£7(0)
f (0)’ax - ufcr’ (01;_/1 ’by

Proor. Since f?(x;) is a single point foge
f° is a monotonically increasing function
is concave. Therefore, f?(x;) is overappre
connecting f°(I;) and f° (u;) for cases (b)
nor concave. Since A = min(£2 (), £ (u;)
point of a tangent line at f'

(c). Otherwise, f7(x;) for x; € (—oo, c0) case (d) is neither convex
1 and y, overapproximate the function. Let a be the intersection

A similar idea applies to , U3, ys overapproximate the function; please refer Fig. 1. O

Example 3.2 (The s n.d TanH FNN). Given a 3-layers TanH FNN with a bounded input set 7 = {x| -1 <
xp <1 e demonstrate back-substitution of symbolic intervals. Here, xj. represents the i-th
individual he j-th layer. The FNN has the following weights and biases:

0.2 08 0.3 0.4 0 0
Wi = [—0.1 0.4] W2 = [—0.1 —0.8} b= [o} be = [0]'

The star set. After an affine operation at the first layer, the star set ®]1W has V =W, ¢ = 0341, and P(a) £ Ca <
dAly, < a<ug,where C=01x5,d=0,l, =[-1,-1]T, us = [1,1]7. The state vector, xf” € ©M, has the lower
bound, l{w =[-1,-0.5]7, and upper bound, u{w = [1,0.5]7. For the star set, these bounds are found with an LP
solver. The state bounds satisfy the TanH overapproximation rule case (d), [2 < 0 and u}! > 0, in Lemma 3.9, 3.1.
The star set applies four linear constraints to overapproximate TanH for case (d) in Lemma 3.1, i.e., Ca° < d°,

ACM Trans. Des. Autom. Electron. Syst.



Reachability Analysis of Sigmoidal Neural Networks « 7

and the lower and upper predicate bounds, i.e., [J < a% < ug.

[ 0.0839 03359 -1 0] [0.3416]
—0.0839 —0.3359 1 0 0.3416
0.1699  0.6799 -1 0 0.0883
0

co - | 701699 —0.6799 1 4o = 00883 o _ [—0.7615} W = [0.7615}
-0.0786 03145 0 1| 0.0688 |« ~ |-0.4621|""* ~ |0.4621]"
0.0786 —0.3145 0 1 0.0688
-0.0953 0.3815 0 -1 0.0148
| 0.0953  —0.3815 0 1| 0.0148]

where I,, is an n-dimensional identity matrix. If the star applies two linear constraints instea
the constraints in blue color are discarded (this approach is used for RStar2 with symbolic int
solver; proposed in the section 3.3).

3.2 Symbolic interval overapproximation of Sigmoid/TanH
We have shown the overapproximation rule for the star set. Now, we deri

mate a sigmoidal activation function in the below.

For any input vectors x € R”,
x is D = (D'x + ¢!, D¥x + g*),

PROPOSITION 3.3 (SYMBOLIC INTERVAL OF A SIGMOIDAL ACTIVAT
I < x < u, the symbolic interval of the Sigmoid/TanH activatio

D' = diag(D}, D}.....D}). ¢ = (919} . gn|", D* = diag (D} e G i
ifli == U;
(a)
ifli >0
D!
{ ; (b)
Di
ifui <0
D! = (c)
Dy = om0, gt = fo(1;) — Dt x L. C
ifly <0andu; >0
D! =1 g} =fo(l)- Dl x1 @

DY =1, g¢ = f°(uw;) — D} X u;,

on Lemma 3.1, y; and y, are two linear functions that overapproximate a sigmoidal function. Since
are affine transformers, two linear functions are stored in the form of an affine transformation.
O

Proor. Bas
symbolic interya

Back-Substitution. One can see that the overapproximation is done based on the lower bound ! and upper
bound u of the state vector x. When x is in a star set, these bounds can be found by solving LPs (Section 2),
which is time-consuming. To overcome this, we can use the back-substitution technique used in symbolic in-
tervals to estimate these bounds without solving LPs. To estimate the lower bound and upper bound vectors

(l]i\”, ukM ) of the output at the k*" affine mapping operation xly (i.e., l,i” < x,iw < ullcw), we propagate the rela-
tionship from xljcw - Xy o x,jcw_ LX) & xM — xq using previously constructed symbolic intervals

ACM Trans. Des. Autom. Electron. Syst.



8 « Choietal.

{DM, D7 DQ{ oo DY, Z)f/’ }. Here, xq is the input to the network, [ < xo < uy. The back-substitution
procedure consists of multiple back-substitution steps since it propagates function by function. We note that the
back-substitution of symbolic intervals is only applied to RStar sets defined in Definition 3.7. The original star set
uses an LP solver to find the state bounds.

From Prop. 3.3, one can see that D9 and D™ are diagonal matrices. Since diagonal matrices are commutative,
symbolic intervals of activation function and affine mapping can be composed into a single symbolic interval. For
example, D_; = Dy_, © D,iw_ , is the symbolic interval of the composed function fi_; = f7 | © fkj‘f | representing
the polyhedral relationship within in the layer. Hence, the back-substitution can propagate layer by layer, reducing
memory consumption and computation. The composition of two consecutive symbolic intervals is given in below.

- 93). (DY, g5)

PROPOSITION 3.4. The composition of two symbolic intervals Dy = (D!, gi), (D}, g7)) and D, =
) of two consecutive operation fi and f, is given by:

Dy1=Dy0D; = ((Dépgéﬂ’ (D31, 931))
DY = max(0,D¥) - D* + min(D.,0) - D!,
981 = g5 + max(0.D5) - gi' + min(D3, 0) - g,
D, = max(0,D}) - D! + min(D¥,0) - D"

Let xo be the input to the first operation f;, we have:
Do + 9o < folfix

* Xot+

o) = min(D},0) - Di(xo) + max(0, D}) - Di (x0) + g
= min(D¥,0) - D* - xo + max(0, D}) - D! - xo+
g\ + min(D¥,0) - ¢* + max(0,D.) - ¢!

_nl 1
=Dy - %0+ 951

We note that the composition of two symbolic intervals happens only between activating operation and affine
mapping, i.e, Dy 1 = D7 | o Z)%l since D and D"° are diagonal matrices having commutative properties.

Once two symbolic intervals are composed into a single symbolic interval, a set of symbolic intervals consists
of { Dy, Di_1,..., D1}, where Dy = Z);(W . Using the back-substitution of these symbolic intervals, we can achieve
lower bound and upper bound vectors (I, ux) of a state vector xi. The back-substitution propagation becomes

Xp — Xg—1 — -+ — x1 — xp and is described in the following.

ACM Trans. Des. Autom. Electron. Syst.



Reachability Analysis of Sigmoidal Neural Networks « 9

PROPOSITION 3.5 (BACK-SUBSTITUTION). For
I, < Dt{(xl—l) < xp = fo(xe-1) £ Dy (x-1) < uy,
backward propagation of a single layer can be achieved with the following equations:
up = max(0,Dy) - up—1 + min(Df,, 0) - le—1 + gy, (1)
ly, = min(D},0) - l,_1 + max(0, Df,) “Up_q +gé. (2)
In order to propagate backward all the way to the input layer, up—y — up_y — -+ = ugandlp_y = lp_y — - = I.

Proor.

ur = xp = fe(xe-1)
=max(0,D}) - up—1 + min(Dtl;, 0)-le—1+g;
> max(0, DY) - DY, (x¢—) + min(DL,0) - DL, (xp—2) +
> max(0,D}) - f—1(x¢-2) + min(D}, 0) - f—y (xe—2.

=max(0,D}) - xp—1 + min(Df,, 0)-xp—1+9;. 4

Iy < xp = fr(xp-q)

= min(D}’, 0) - l,_1 + max(0, Df,) .

~

The lower and upper bounds of ka are achieved using the back-substitution of the symbolic intervals at the

output of the k' affine map ¢ bounds, we can construct the symbolic interval Df of the kth

3. This symbolic interval is composed of a symbolic interval of the k" affine
interval is then used (with previously constructed symbolic intervals) to

function appli , stitution propagation in lines 14-17 and computes lower state bound using eq. (2) in
line 19.

Example 3.6/Symbolic Intervals on a TanH FNN). Consider the same FNN and input set as in Example 3.2.
The predefined FNN is shown in Figure 2. We demonstrate the back-substitution of symbolic intervals. Here, x;
represents the i-th individual state of x at the j-th layer.

Symbolic Intervals. The symbolic intervals at affine mapping, Z){W has Di’M = Di"M = W, and gi’M =
g'l"M = by (Proposition 2.4). Following Proposition 3.3, the symbolic interval of the 1% layer TanH, D{ =

o 042 0 | [-0.34 042 0 ] [0.34]\\ .
((D1 ,91 7). (D%, 97%)) = <([ o 0.79] , [_0'07]), ([ 0 0'79} , [0'07}) >, is constructed based on the

lower and upper bounds of x, the output state vector of the 1% affine mapping, found by back-substitution. Then,

ACM Trans. Des. Autom. Electron. Syst.
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Algorithm 1 Back-substitution algorithm.

Input: D, Iy, ug > lower and upper symbolic constraints and input vector bounds
Output: L, u > upper and lower bounds
1: procedure u = UBBACKSUB(D', D, Iy, ug)
2 A=D{ > k is number of functions, length(D")
3 bl = 0,,%1, bu = gz > n is number of neurons of the layer
4 fori « kto0do
5 A =min(A,0) -Dll. +max (0, A) - D}
6 bl = min(A,0) 'gf + bl
7 bu = max(0, A) - g% + bu
8 end for
9 u = min(A,0) - ly + bl + max(0,A) - uy + bu

10: end procedure
11: procedure [ = LBBACKSUB(D, Iy, up)

12: A= D,l( ctions, length(D")
13: bl = gi, bu = 0,1 urons of the layer
14: fori « kto0do

15: A =max(0,A) -Df +min(A,0) - DY

16: bl = max(0,A) -gf + bl

17: bu = min(A,0) - g¢ + bu

18: end for

19: I = max(0,A) - I + bl + min(A,0) - uy + bu
20: end procedure

o - _0.76 M= _0.21

n=_1 ul? =0.76 uy™ =0.21
0 .

uh=1 x> 0422} - 0.34 x> 0.3x)7 — 0.4x5°
—1<axi<1 7 <0.42xtM 1034 xM <0.3x)7 +0.4x%°

>[-0.21, 0.21]

Outputs

[0.43, 0.43]

o(xp™)

M > 0. 1xh +0.4x3 37> -0.79x3" —0.07  x3M = —0.1x}7 - 0.8x}7
M < _0.1x8 +0.4x3 227 <-0.79x2M +0.07  x2M < -0.1x}" — 0.8x}7
12" =—0.5 137 = -0.46 3=-0.43
WM =05 w27 = 0.46 uj = 0.43

Fig. 2. An example of TanH FNN

D7 is composed with Z){V[ such that D; = D7 o Z){VI = <([—()00(§38 ggﬂ , [:333] ), ([—000(?8 8;1] 5 [8(3;71] )>

(Proposition 3.4). Once the symbolic interval of the 2" layer affine mapping is constructed, we can achieve the

ACM Trans. Des. Autom. Electron. Syst.



Reachability Analysis of Sigmoidal Neural Networks « 11

output bounds of the FNN by applying the back-substitution. Based on Proposition 3.5,

([03 —o4] \([o08 033] 034
M 01 —0.8]°") {|=0.08 031 T |0.07
03 —04])([008 033] ~ [-034
—0.1 -0.8)\[-0.08 0.31]™ 7 |-0.07
0.056 —0.025 —0.13
0.056 —0.281| 1" [-0.09

< mi 0.056 —0.025 0 1 + 0 0.056 —0.025 -1 _

=M™ o056 —0.281|"") [1] TP 0.056 —0.281]) [-1] T
The output bounds of the FNN are I}f = [-0.21, —0.43|" and u)! = [0.21, 0.43]" wit
of symbolic intervals. If the bounds are solved by an LP solver based on the star set

constraints, [} = [—0.15, —0.43]T and u)! = [0.15, 0.43]T. The star set achieved:
symbolic interval as it applied four linear constraints to overapproximate th

L'

IN

+ max (0,

3.3 Relaxed-star overapproximation of Sigmoid/TanH

g the sigmoidal activation
ar programming optimization.
being an infeasible reachable
vantage of the star set [32] and symbolic
tfepresentation. A relaxed star, defined in

A star set can achieve the tightest bounds of the state vector by over
function with multiple linear constraints, albeit its scalability is limited d
In some cases, an LP solver computes the state bounds, which 1

Definition 3.7 (Relaxed Star Set). A re
set, D is a set of symbolic intervals, [, a

rsimply RStar) Q is a tuple (®, D, Iy, up), where O is a star
t bounds for the back-substitution of symbolic intervals.

m
| = {x |x=0.c+ Z ;0.9; such that
i=1
O.P(a) =T,l < x <u}.

We note that empty set, i.e. Q = 0 if the predicate ©.P(«) is infeasible. Sometimes both Q and

PROPOSITION 3.8 (AFFINE MAPPING OF A RELAXED STAR). Given a weight matrix W € R™*"™-1 and a bias vector
b € R™, the affine mapping of a RStar Q is another RStar and can be defined as:

Q= (e, vV, P),D, lo, ug),
wherec = Wc + b, V = V\/Vv,l5 = P, Z—) = {Dlu.k’ Dk+l}a Dk+1 = <(W’ b)’ (W’ b)>

ProOF. Based on the definition of star set [32], after affine mapping, © = {y |y = We+b+X." | (2;Wu;) such that
P(a) = T} implies another star with the center ¢ = We + b, basic vectors V = [Woy, Wos, ..., Wop,], and has
the same predicate as the star set, Q.0. D1 = (W, D), (W, b)) implies another symbolic interval with upper
symbolic constraint Dy, | = (W, b) and lower symbolic constraint D,lc+1 = (W,b).Hence, Q = (6,D) = {x | x =

ACM Trans. Des. Autom. Electron. Syst.
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O.c+ > @;0.v; such that .P(a) = TI<x< a} is another relaxed star, where a set of symbolic intervals D=
{D1. ks Dr+1}, | and @ are new bounds of the state vector from the back-substitution of symbolic intervals. O

LEmMMA 3.9 (RSTAR2 OVERAPPROXIMATION RULE OF A SIGMOIDAL ACTIVATION FUNCTION). For any input vectors
x € R", 1 < x < u in which x; is the i-th individual state of x, the outputy = f°(x) € R" satisfies the following
rules:

if l; == u
= f7 (). (a)
ifl; > 0
{yi > o = U X Ga = 1)+ £, o)
Yi < Yo = £ () X (i — ) + £ (u).
ifu; <0
v 2y = 7 ()X (= 1) + (L), o
yi < yp = LW o — ) + £ (1)
ifly <0andu; >0
{yi >y = AX (x; = ) + £ (L), @
Yi Sy = AX(x; —u) + f7(w):

where A = min(f"/ (li),f”/(ui)), andf"/ is the first derivative of

Proor. Based on Lemma 3.1, we know y; and y, overa
set, RStar2 considers only y; and y,.

Unlike the original star set, which requires over

necessarily need to apply the same overa;
the same two constraints as symbolic int
will be the same as those achieved from t mbolic intervals. However, the scalability of the star set does not
increase. Therefore, the relaxed star uses symbolic intervals for finding bounds to improve scalability. In this
paper, we propose three different variants of the relaxed star: RStar4 RStar2, and RStarO The key difference
between these methods lies

star set to construct a convex polytope to perform neural network verification.
ation of a star set involves the intersection between a star set and half-spaces
elax star uses symbolic intervals to find the state bounds, it has the flexibility
unction W1th two hnear constramts (Lemma 3.9) for RStar2 or up to four linear

activating operation; it gets recreated after each function by the state bounds found from the back-substitution of
symbolic intervals. In other words, RStar0 is an outer box of the RStar4 and RStar2 reachable set.

Example 3.10 (Relaxed star on a TanH FNN). We demonstrate the overapproximation of the relaxed star based
on Example 3.2 and 3.6. Let Q4 and Q; represent RStar4 and RStar2, respectively.

After the first affine mapping, Q; = Q4 as their differences come during overapproximation. Since symbolic
intervals are exact on affine mappings, no overapproximation error is present. Qz = (03, D, I, ug), where @, = 611\4
(from Example 3.2), D = {D{VI}, where Z){VI is defined in Example 3.6. For the overapproximation of TanH, both
relaxed stars find the state bounds of xM with symbolic intervals by back-substitution. I = [-1,-0.5]T and

ACM Trans. Des. Autom. Electron. Syst.
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uiw =[1,0.5]7. After the activation function, D; = D7 o Z)f/’ (Example 3.6). We note that the bounds, IJ and u,
are not found by the back-substitution since I = ff’(l{w ) and uf = ff(u{w ). If these bounds are computed by the
back-substitution, then the bounds will have an overapproximation error. Symbolic intervals are incomplete on
activation functions due to overapproximation. Since no overapproximation error is presented in the first layer,
Q4.0 = 07 (Example 3.2) and Q4.0 = {D;} at the output of the activation function. For RStar2, Q.0 = {D,}
but Q,.0 has different predicate P. P(a) £ @M.P A C7a% < d°A < 1S < a° < uf, where

0.0839 03359 -1 0 0.3416

o = —0.0839 -0.3359 1 0 4o = 0.3416 o_ —0.7615 4o = 0.761’/,’5
—0.0786  0.3145 0 -1/ 0.0688] @ -0.4621|" ¢ 0.4621}.
0.0786 —0.3145 0 1 0.0688

4 REACHABILITY ANALYSIS USING RELAXED STAR SETS

In this section, we present the algorithm for the reachability analysis of Sigmoid/Ta
star and how it can be modified for other proposed approaches.

Overapproximate Reachability Algorithm. In Algorithm 2, the reachab
using a relaxed star is achieved layer-by-layer. As mentioned in Section
mapping (line 4) and a sigmoidal activation function (line 6). Since the r

with the relaxed

f sigmoidal FNNs
en/ayer contains an affine
onsists of a star set and a set
star set and symbolic intervals
igmoid or TanH for both star set
per bounds of the state vector x.

contained in RStar (Proposition 3.8). The approX_o function ove
(line 13) and symbolic intervals (line 16, Proposition 3.3)

> input set and FNN
> the reachable output set

Output: R

procedure R = REACH(Q, )
I, =Q
fori=1:kdo

1, = 1, AFFINEM

if i < k then

1:
2
3
4 > [Prop. 3.8]
5:
6
7
8
9

12: > get ranges of x € Q, i.e. | < x < u [Prop. 3.5]
13: @ =0.0.sTAR_aPPrOX_0(l, 1) > [Lemma 3.1 or 3.9]
14: D ={D],..., D} =Q.D

15 DM = (DM puMy = . > m = length(D)
16: D = (D', D*7) = sSYMBOLIC_INTERVAL_APPROX_o (], 1) > [Prop. 3.3]
17: D), = composITION(D?, DM) > D! =D o DM [Prop. 3.4]

18: Q' =(0,D"
19: end procedure

ACM Trans. Des. Autom. Electron. Syst.
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Algorithm 2 Relaxed Star Reachability of a FNN. (continue)

20: procedure @' = APPRox_a(é), Lu)

21: n=0.dim

22: fori=1:ndo

23: 1, = apPrOX_0i(Zy, I, l;, u;)

24: end for

25: end procedure

26: procedure R = APPROX 0i(© = (&, V,P),i,l,u)
27: M=le;er - eji_10epq - e

% Y =f"(l),yu =f7(w).y, =f"'(l)=y; =f7 (u)

29: if | == u then

30: clil =y

31: R = (¢, MV, P)

32: else

33: P(a)— a<d/\l Sa<tga=laya - an]T
34: a =layaz- amamal’

35: C() = [C Omxl]’ d() =d

36 A= (yu— )/ (=1

37: if [ > 0 then

38: Cy=[AVIL:] -1],dy =-AE[i] - 1) -y,

39, Co= [y, VIL 1, dy =y (Eli] ) +y _
40: G =[-yVIL:] 1], ds = y;(c[i] = 1) +yl

41: C = [C();Cl;CZ;Cg,], d = [do;dl;dg

42: else if u < 0 then

43: Cl = [y;V[l, Z] -1], dl =

44: Cy=[-AV[i,:] 1],dy =2

45: Cs = [y, VI[i:] -1],ds =-y

46: [Co,C1,C2,C3] d = [

47: else

48: Y= mm(yl[

49: f f7 (0)ay + £(0)
50: = £ (0)by + £2(0)
(O

52: /5] -] dy = -y(elil = D) -y

53: =Tyl 1], dz—y(C[]—u)+yu

54: = [wVIi:] -1], ds = - (Eli] —u) - f7(u)
55: TCy = [ VIis:] 1], dy = p(C[i] = 1) + fo(1)
56: C" = [Co;C15Co;C3;Cy], d = [do; dy; das ds; dy]
57: end if

58: Pa')=Ca’ <d AN, <a <u,

59: ¢ =MV =MV, V' = [V’ &]

60: ly = e yil ug = [das yu]

61: R={(V',P)

62: end if

63: end procedure

> n is the dimension of the star set

> [Lemma 3.1] (for Lemma 3.9 remove additional constraints)

ut set’s predicate
new variable a1

> ama1 2 A = 1) +yi
> Uma1 < Yy (X —u) + Yy
> me1 <Y (i =) +y

> a1 2 Yy (x = 1) +y
> ami1 < AMxi = 1) +y
> A1 = Yy (X — U) + Yu

> o1 2 Y (i =D+
> i1 < Y(x—u) +y;
> amyr 2 P (x; —u) + f7(u)
> Ume1 < (X = 1) + (1)

> output set’s predicate
>yli] = f(x:) = am
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RStar uses the back-substitution of symbolic intervals to find the bounds of x with improved scalability over
LPs. In the sTaAR_APPROX_o function (line 13), as mentioned in the previous section, RStar4 applies up to four
linear constraints to overapproximate activation functions following Lemma 3.1, while RStar2 applies two linear
constraints, as shown in Lemma 3.9. Lines 40, 45, 54, and 55 are discarded for RStar2. Since RStar0 is an outer box
of RStar4/RStar2, ® = Star(l,u) in line 13 for RStar0. In order to further reduce the number of back-substitution
propagation, symbolic intervals of affine mapping, i.e., D™ and activation, i.e., D° are composed into a single
symbolic interval (line 17) based on Proposition 2.4. A new RStar is created with an overapproximated star set
and a set of symbolic intervals in line 18. In the case of the original star set reachability analysis, the state bounds
in line 12 are solved by an LP solver, and an overapproximation rule applies based on Lemma 3 1in line 13. All
functionality of symbolic intervals, lines 14-17, are discarded for the original star set.

Example 4.1 (Reachability analysis of a TanH FNN). Given the same 3-layer TanH FNN in Ex

0.5

* % *
T EF]
R RY]
558
| 2R3

ok k k k Kk ok Kk k kK
%*

-0.5

x2

o
* k Kk k k k Kk *k *x
EE I O O T O
* % k k ¥k k ¥k * *x

* % k ¥ k¥

visible as a star set is displayed on top of all figures. We can clearly see
least conservative method. RStar0 is the most conservative method.
ow the reachable output sets of the star set and the relaxed star sets used for

RStar4, ;resp ot
3-layer TanH FK
star sets as folloy

0O ={(.V,P(a) 2 Ca <dAly < a < u,), where

vt Ye=to ohamon= -]

For symbolic intervals, D = 0, [, = [-1, -1]7, and uo = [1,1]7. Initially, Qp = Q; = Q4 = (0, D, Iy, up).
Once overapproximate reachability analysis proceeded through the network, the reachable output sets of each
method at the output layer are shown below.

0 Qg, Q4 represent the reachable output sets. In other words, Q4 =F (Q4) leen a
addressed in Example 3.2, a bounded input set can be represented in the star set and relaxed

Cc =

ACM Trans. Des. Autom. Electron. Syst.
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O=(GV,P(a) 2Ca<dAl, <a<iy)
[ 0.0839 03359 -1 0] [0.3416]
—0.0786 03145 0 -1 0.0688
—0.0839 -0.3359 1 0 0.3416
. [o} 7o [o 0 03 -04 oo 0.078 —0.3145 0 1 io 0.0688
0|’ 0 0 -01 -0.38|° 0.1699  0.6799 —1 ’ 0.0883|°
—0.0953 03815 0 -1 0.0148
—0.1699 —0.6799 1 0 0.0883
 0.0953  —0.3815 0 1|
-1 1
| 1 I
«=_07615|" " ~ |0.7615|
—0.4621 0.4621

Since the relaxed star sets of each method use the same symbolic intervals
and an activation function, each relaxed star set contains equivalent syml
layer.

D = {Dy, D1}, where Dy = (D}, ¢}), (D¥, g%)), Dz = (D}, g3), (D}

n affine mapping
ie, D, at the output

bl = 0.0839  0.3359] ; [-0.3416 D . _ |0.3416
17 120.0786  0.3145|°91 = | -0.0688|" 17 10.0688|°
;03 -04] ; . |0
D, = [—0.1 ~0.8|"7 -0.8]°92 = |o|"
Qo = (0, D, ly, uy), where 8, = (¢y, Co, Algo < @ < Tigp),

- ) ) ] .
0.4290} Co=[0 0],do=0ln0 = [_1] U0 = [1] )

(02,Co, Po(a) 2 Coot < dp Ao < @ < ),

0.0839  0.3359 -1 0 0.3416
03 —04] - _[-00839 —03359 1 0| ; _|03416
—0.1 —0.8]’ 27 |-0.0786 03145 0 —1["%" [0.0688|
0.0786 03145 0 1 0.0688

-1 1

P s U A I

@ = 1_0.7615|" " = |0.7615| "
~0.4621 0.4621
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Qq = (04, D, I, ug), where O, = (¢4,Cys, Py() 2 Caot < dy Ny < @ < Thga),

[ 0.0839 0.3359 -1 0 0.3416
—0.0839 —0.3359 1 0 0.3416
0.1699  0.6799 -1 0 0.0883
ool g0 0 03 -04] L _[-01699 06799 1 0| ; _|0.0883
7ol o 0 —0.1 —08|° %7 [-0.0786 0.3145 0 —1|’"* |0.0688|"
0.0786 —0.3145 0 1 0.0688
—-0.0953 0.3815 0 -1 0.0148
00953 —0.3815 0 1 0.0148

-1 1

|t oo 1

= _0.7615)" % T |0.7615|
~0.4621 0.4621

5 EVALUATION

Experimental Setup. In this section, we evaluate the proposed reachabili
star set and the relaxed star approaches compared to an existing overapp
proposed reachability algorithms are implemented in NNV [35], a tool]
learning-enabled CPS. To ensure fair and exact comparisons, w;

ased on the original
sthod DeepPoly [28]. The

ng deep neural networks and
bustness of our FNNs with the
21] toolbox. In this experiment,
nts) using an LP solver instead
of the back-substitution. rgs represents the verification time improvement of the RStar0 over the star set, rgp
represents the verification time improvement of the R8tar0, epPoly, and ‘——" denotes time-out in Tables 2
and 3. An experiment is considered time-out if it ta n 5 hours to verify 100 random images per 8. In
Figures 4 and 5, (N) represents NNV, and ents ERAN. We use two image datasets for our evaluation:
riprog optimizer is used for the star-set approach for the
to the in-feasibility of finding an optimal solution via the
imizer is applied for the reachability analysis. This experiment is

MNIST dataset only as part of reachability
gurobi optimizer [7]. Otherwise, the gurob

nﬁage Classification DNNs
handwritten images from 0 to 9. The CIFAR10 dataset contains 32 X 32 RGB

100 images that can be verified at least by one approach at § = 0.01 for each network. L., norm attack [1] applies
some bounded disturbance & to the normalized input vector x, i.e., ||x — x’||c < J, where x” is the perturbed
image. Then, we compute the reachable output sets for each perturbed image to prove the robustness of the
neural network. The neural network is classified as robust against Ly, norm attack if y. — y; > 0, where c is the
correctly classified index and y; € Ry — {y.}. Since we only need to determine that the correctly classified output
always has the maximum value in the set compared to other outputs, the softmax function is neglected in our
experiments. For each dataset, we train a set of three image classification FNNs with different architectures: small,
medium, and big. The architecture of these networks is shown in Table 1. For instance, a small MNIST model has
2 hidden layers and 200 hidden units, which means each hidden layer has 100 units. All neural networks trained
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based on the MNIST dataset set have a test accuracy of at least 94.9%, and those trained with CIFAR10 have a test
accuracy of at most 43.67% with unnormalized input data.

Table 1. The architecture of neural networks.

Dataset ~ Model  #Hidden Layers #Hidden units

MNIST Small 2 200
Medium 6 900

Large 4 1600

CIFAR10 Small 2 200
Medium 6 900

Large 4 1600

MNIST_small_tanh

MNIST_medium_tanh

100

—o—RStar4 (N) —o—RStar4 (N)
«° % —=—RStar2 (N) —=—RStar2 (N)
80 80| —6—RStar0 (N) —e—RStar0 (N)
70 DeepPoly (E) DeepPoly (E)

70

60 60

50 50

IS
3

——RStar4 (N)
—=—RStar2 (N)
—e—RStar0 (N)
20 DeepPoly (E)
10 {—4—Star (N) 3
* - AbsDom LP (N) ) .
001 0012 0014 0016 0018 002 001
1)
MNIST_small_sigmoid

40

30

Verified Images (%)
Verified Images (%)

20

0.014 0.016 0.018 770.02
)
sigmoid MNIST_big_sigmoid

——o—RStar4 (N) —o—RStar4 (N)

%0 —=—RStar2 (N) % —s—RStar2 (N)
8 —e—RStar0 (N) 80 —o—RStar0 (N)
E 0 S DeepPoly (E)| & DeepPoly (E)
(%] » »
% o0 % % 60
E w £ E 50
B 40 |—¢—RStar4 (N) 3 3
£ —=—RStar2 (N) LS &
S ¥ o Rs o ¢
> tar0 (N) = -

20 DeepPoly (E) 20

10 |—2—Star (N) 10

* - AbsDom LP (N) Y
0

14

0.01 0.012 0014 0.016 0.018 0.02 0.01 0.012 0.014 0.016 0.018 0.02

Fig. 4. Robustness verification of MNIST neural networks.

5.2 Verification Results and Time performance.

We are interested in the verification time and the number of images that can be verified by each method to
guarantee the robustness of neural networks under different disturbances.

Scalability. Non-linear activation functions such as TanH and Sigmoid are bounded and have saturation
regions. For example, TanH saturates inputs to range between [-1, 1]. Upper bounds tend to result closer to each
other, approaching the value of 1 as reachability analysis passes through the layers. In contrast, lower bounds
result closer to each other, approaching the value of -1. Due to these behaviors, the computation time of the LP
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CIFAR10_small_tanh CIFAR10_medium_tanh N CIFAR10_big_tanh

6—RStar4 (N) —o—RStard (N) 1 ——RStar4 (N)
%0 —=—RStar2 (N) %0 —=—RStar2 (N) %0 —=—RStar2 (N)
80 —e—RStar0 (N) 80 —o—RStar0 (N) 80 —e—RStar0 (N)
0 DeepPoly (E) 0 DeepPoly (E) 0 DeepPoly (E)
N |—2—Star (N)
60 “N\Jg. - AbsDom LP (N) 60 60
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40

N
5
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Verified Images (%)

Verified Images (%)
Verified Images (%)

20

0
0.004 0.006 0.008 0.01 0.012 0.014 0.004 0.005 0.006 0.007 0.008 0.009 0
§ 1)
CIFAR10_small_sigmoid

CIFAR10_medium_sigmoid

,,,,, 100
% ¢ %0
~ 8or 80
& o} E 5
1%} [}
% 60 - % 60
E s0r £ 50
B 40—¢—RStar4 ( A B 4
£ /7= Rstar2(N) E ©
L 7 |—e—Rstar0 (N) L 7|—o—Rstar4 (N)
0 DeepPoly (E) 20 —=—RStar2 (N)
10 —2—Star (N) 10 —e—RStar0 (N) RStar0 (N)
AbsDom LP (N) DeepPoly (E)| DeepPoly (E)

0.004 0.006 0.008 0.01 0012 0014 0.002 0.003 0.004 0.005 0.001 0.002 0.003 0.004 0.005

r layers. In the worst case, LP solvers could not
find feasible bounds. As a result, the star, / ot persist in scalability for deeper neural networks
(medium and big) with these activation fi ever, the RStar approaches maintain improved scalability

-substitution. In our experiment, RStar0 verifies neural networks up to 3528
set approach. Our most computationally expensive relaxed star approach,
 fagter than the star set. For MNIST FNNs, RStar0 verifies a number of images

tion time and scalability over precision and conservativeness.

ss. Figures 4 and 5 show the number of images each method verifies on CIFAR10 and MNIST
DNNs. Both star set and RStar4 apply up to four linear constraints to overapproximate the sigmoidal activation
function (Lemma 3.1). However, RStar4 is more conservative than the star set as it finds the state bounds using
symbolic intervals with two linear constraints on each activating operation. The star set uses all bounds proposed
in Fig. 1, i.e., I;, u;, Y1, Y2, U3, Y4, on each activating operation with an LP solver to the state bounds. As expected,
the star set verifies the most images due to solving multiple linear constraints based on the LP solver. Hence, the
star set is the least conservative method, and Star C RStar4 C RStar2 C RStar0. DeepPoly applies two linear
constraints to find a state vector’s lower and upper bounds. However, it uses only the lower and upper bounds
that overapproximate the two symbolic intervals when it comes to neural network verification. A set of interval
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Table 2. Verification time of MNIST neural networks.

Model 1 Verification Time of 100 images (sec)
Star AbsDom LP RStar4 RStar2 RStar0 DeepPoly RS rRD
Small | 0.010 1960.31 2312.60 26.39 13.36 1.43 7.17 1370.84 X 5.01 X
TanH | 0.012 1999.55 2323.64 31.42 15.42 1.43 7.87 1398.29 X  5.50 X
0.014 2015.20 2333.79 41.76 17.25 1.41 9.09 1429.22 X  6.45 X
0.016 2059.38 2253.97 49.45 19.84 1.40 9.92 1470.98 X  7.09 X
0.018 2131.21 2289.73 59.76 21.25 1.43 10.37 1490.36 X 7.25 X
0.020 2222.42 2284.14 58.34 21.06 1.49 10.69 1491.56 X 7.17 X
Med 0.010 - —— 368.85  215.37 6.95 75.31
TanH | 0.012 - - 461.19  234.28 6.69 107.77
0.014 - - 474.15  229.68 6.65 117.19
0.016 - —— 482.83  227.95 6.68 120.59
0.018 - - 492.67  223.52 6.68 125.99
0.020 - - 497.44 21841 6.59 127.63
Big 0.010 - - 2489.53 1452.67 23.42
TanH | 0.012 - - 2598.16 1255.24  22.82
0.014 - - 2608.51 1512.07 22.58

0.016 - - 2947.90 1054.31 22.84
0.018 - - 2803.49 1061.04 23.78
0.020 - - 2931.64 1047.88

Small | 0.010 2083.11 2257.16 27.47 9.67
Sigmoid | 0.012 2102.27 2200.89 29.72
0.014 212231 2212.71 36.18
0.016 2128.31 2253.01 43.68
0.018 2168.24 2230.74
2191.55 2203.99

. 133532 x 437X
7. 1430.11 X  5.01 X
8.181 1473.83 X  5.68 X
8.919 1498.81 X 6.28 X
9.286 1505.72 X  6.45 X
9.694 1501.06 X  6.64 X

Med 6.61 71.88 10.87 x
Sigmoid 233.75 6.90 93.56 13.56 X
236.06 6.96 103.44 14.86 X

478.85  233.16 7.00 114.65 16.38 X

505.24  237.95 6.77 123.36 18.22 X

503.56  238.86 6.58 125.54 19.07 X

Big 2694.19 1049.52 24.93 273.225 10.96 X
Sigmoid 3016.54 1069.88 24.23 311.305 12.85 X
2997.89 1106.53  24.90 357.426 14.35 X

3299.61 1128.53  23.30 399.484 17.15 X

3186.45 1141.06 23.68 425.632 17.97 X

3415.57 114241 23.01 458.542 19.93 x

constraints, i€, X = X2 [I;, u;], is used to verify the robustness of the neural network [28]. m is the number of
operations in the DNN. Therefore, DeepPoly is more conservative than RStar2. Given k-layers FNN, the reachable
output set with RStar0 is Q = {x | x € [l, ux]}, meaning it only considers the state bounds at the output layer.
Since the symbolic interval approach is one of the abstract interpolation methods, and abstract transformers
in DeepPoly apply the same linear bounds y; and y,, we expect DeepPoly to be less conservative than RStar0.
According to Fig 4 and 5, DeepPoly verifies more images than RStar0 generally. However, we notice that DeepPoly
proves fewer images than RStar0 on the CIFAR10 medium TanH network for § = 0.008 and CIFAR10 big TanH
network for § = {0.0001,0.001, 0.0015}. We believe there is some bug in DeepPoly.
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Table 3. Verification time of CIFAR10 neural networks.

Model ) Verification Time of 100 images (sec)
Star  AbsDom LP  RStar4  RStar2 RStar0 DeepPoly RS rRD
Small 0.004 3112.38 2018.85 64.34 43.62 2.06 20.30 1510.86 X 9.85 X
TanH 0.006 3201.92 2107.30 70.90 47.31 2.14 21.96 1496.22 X 10.26 X
0.008  3298.00 2151.06 78.97 55.33 2.26 26.14 1459.29 X 11.57 X
0.010 3398.84 2181.15 92.20 58.79 2.18 30.25 1559.10 X 13.88 X
0.012 3455.41 2186.51 93.22 57.92 2.02 33.75 1710.59 X 16.71 X
0.014 3527.98 2196.18 97.52 59.93 2.02 37.11 1746.52 X 18.37 X
Med 0.004 —— —— 1526.09 559.85 9.83 223.80
TanH 0.005 —— —— 1770.22 873.69 10.60 293.72
0.006 —— —— 1874.22 620.33 9.63 345.78
0.007 —— —— 1896.33 908.76 10.22 361.63
0.008 —— —— 1947.69 594.78 9.53 374.66
0.009 —— —— 1999.03 873.76 9.48 392.00
Big 0.0001 —— —— 14709.54 5620.24 31.37 8
TanH 0.0005 —— —— 9362.07 5703.62 31.30
0.0010 —— —— 10408.27 6098.98
0.0015 —— —— 11034.17 6296.57
0.0020 —— —— 15664.43 6296.57
0.0025 —— —— 11781.70  6880.26
Small 0.004 6880.94 4669.78 81.06 3528.68 X 13.05 X
Sig. 0.006 6870.19 4770.13 96.80 3384.33 x 13.13 X

29.43 3258.61x 13.95 X
. 32.22 3195.75 X  14.99 X
17 37.86 3130.41x 17.45 X
2.18 40.30 3116.33 X 18.49 X

0.008  6875.68 4835.67 113.62
0.010 6870.88 4897.19 129.60
0.012 6793.01 4927.98
0.014 6793.60 4952.63

Med 10.01 226.87 22.66 X
Sigmoid 10.35 242.19 23.40 x
824.71  11.18 261.67 23.41x

164989  981.90  11.61 273.46 23.55 %

1684.02  890.23  11.24 282.25 25.11 X

1736.53  949.26  11.33 295.17 26.05 x

Big 8323.97 5401.24 33.64 841.84 25.02 x
Sigmoid 8840.37 5436.69  31.99 907.47 28.37 x
9097.82 5618.01 31.78 956.15 30.09 x

9295.44 540440 31.86 1063.38 33.38 x

954542  5517.04 32.58 1156.23 35.49 x

9762.18 5719.41  32.19 1192.44 37.04 X

due to the timg restriction of the experiment, it could not verify all networks with architecture larger than a small
size. For the rest of the networks, RStar4 verifies the most images. In Figures 4 and 5, we can see that RStar2
verifies almost the same number of images as AbsDom LP (N). On the MNIST dataset, AbsDom LP (N) verifies
at most one more image than RStar2 as it uses MATLAB linprog optimizer instead of gurobi optimizer. If the
state bounds of RStar2 are computed based on MATLAB linprog, RStar2 verifies the same number of images
as AbsDom LP. On the MNIST dataset, the star set verifies at most 17% more images than RStar4, while on the
CIFAR10 dataset, it verifies at most 1% more. These results show that RStar4 holds its precision on the larger
dataset. RStar4 verifies up to 40% more images against L, norm attack than DeepPoly. RStar0 performs very

ACM Trans. Des. Autom. Electron. Syst.



22 « Choietal.

poorly on CIFAR10 neural networks with Sigmoid activation function. However, the precision of RStar0 is very
close to the precision of DeepPoly for MNIST NNs and CIFAR10 TanH NNs (medium and big). Except for CIFAR10
Sigmoid NNs and small CIFAR10 TanH NN, RStar0 verifies at most 5% fewer images than DeepPoly in the worst
case.

6 RELATED WORK

Verification of DNNs receives great attention with many approaches proposed for feedforward neural networks
(FNNs) and convolutional neural networks (CNNs) such as polytope [33, 40, 43], star [32, 34], ImageStar [30, 31],
zonotope [4, 27], symbolic interval [36, 41], simulation-based [39], satisﬁability modulo theories (SMT) [10 14, 15],

and invariant inference [12, 25, 45].
Approximation of sigmoidal activation functions. In 2010, Pulina at eI [24] verif ,
s approach is

not scalable. Grundt et al. [6] converted an 1nterval constraint propagator i iSAT problem.
They also encapsulated the sigmoid function into multiple interval boxes with an approximating
approach. Fast-Lin [37] and DeepZono [27] overapproximated non-line by applying two parallel
linear bounds. DeepPoly [28] and CROWN [46] proposed the back-sul method to quickly estimate
the state vector x without solving LPs. To allow the back-substitution wor overapproximated functions

ise approximation, NeWise, by
e composition of all neuron-wise

by two independent linear bounds. Zhang et al. [47] implemen
solving the optimization problems. They stated if the network

propagation and a branch and bound-bas
for the tangent function. DeepCert [38] ad >
the slopes of two linear constraints acco ounds of the state vector. Lin et al. (RobustVerifier [18])
ems with relaxation. Ivanov et al. [11] transformed the
sigmoidal neural network int quivalent hybrid system for verification and applied the Taylor model approach
for better scalability.

Verification of ReLU

r set [32] verifies ReLU networks with exact and overapproximation
constraints known as triangular relaxation to overapproximate ReLU with LP

. An FVI matrix has a containment relation of facets and vertices to compute a complete and
efficient reachability analysis. Instead of overapproximation ReLU of a single neuron, Singh et al. [26] initiated a
parametric framework that can approximate the output of multiple ReLUs jointly.

7 CONCLUSION AND FUTURE WORKS

We propose the star and the relaxed star-based overapproximate reachability analysis for FNNs with Sigmoid or
TanH activation functions. Although the star set is the least conservative approach, it could not handle large
neural networks as it used LP solver to compute the state bounds. The experiments show that RStar2 and RStar4
are scalable and more precise than the existing polytope approach to verifying large neural networks against
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adversarial attacks. For a bigger dataset, CIFAR10, the relaxed star approaches verify fairly close to the number of
images the star set verified. We show that the symbolic intervals using back-substitution are a promising method
to substitute LP optimization for DNNs with bounded nonlinear activation functions such as TanH and Sigmoid.
Therefore, our relaxed star methods are very promising for verifying the robustness of deeper neural networks
and the star method for smaller neural networks.

Future works. We are interested in applying the proposed methods to verify real-time learning-based cyber-
physical systems and extending our work to verify long short-term memory (LSTM) and gated recurrent unit
(GRU) neural networks. To increase scalability, we plan to exploit the benefit of GPU computing and parallel
processing of CPUs. We plan to explore and improve overapproximation reachability by improving the quality of
upper and lower linear constraints of nonlinear activation functions. We are also considering s
to reduce accumulated overapproximation errors.
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