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This paper extends the star set reachability approach to verify the robustness of feed-forward neural networks (FNNs) with

sigmoidal activation functions such as Sigmoid and TanH. The main drawbacks of the star set approach in Sigmoid/TanH

FNN veriication are scalability, feasibility, and optimality issues in some cases due to the linear programming solver usage.

We overcome this challenge by proposing a relaxed star (RStar) with symbolic intervals, which allows the usage of the

back-substitution technique in DeepPoly to ind bounds when overapproximating activation functions while maintaining the

valuable features of a star set. RStar can overapproximate a sigmoidal activation function using four linear constraints (RStar4)

or two linear constraints (RStar2), or only the output bounds (RStar0). We implement our RStar reachability algorithms in

NNV and compare them to DeepPoly via robustness veriication of image classiication DNNs benchmarks. The experimental

results show that the original star approach (i.e., no relaxation) is the least conservative of all methods yet the slowest. RStar4

is computationally much faster than the original star method and is the second least conservative approach. It certiies up to

40% more images against adversarial attacks than DeepPoly and on average 51 times faster than the star set. Last but not least,

RStar0 is the most conservative method, which could only verify two cases for the CIFAR10 small Sigmoid network, � = 0.014.

However, it is the fastest method that can verify neural networks up to 3528 times faster than the star set and up to 46 times

faster than DeepPoly in our evaluation.

CCS Concepts: · General and reference → Veriication; · Software and its engineering → Formal methods; ·

Computing methodologies→ Neural networks.

Additional Key Words and Phrases: Veriication, Deep Neural Networks, Formal Methods, Reachability Analysis.

1 INTRODUCTION

In recent years, deep neural network (DNN) has been a widely used technique for solving real-world tasks in
various areas. DNNs consist of multiple layers of many neurons with weights and biases that are randomly
initialized and transformed to high-dimensional vectors during the training throughout nonlinear activation
functions. Understanding and predicting the performance of DNNs are challenging due to the enormous number
of neurons, the non-linearity of activation, and the complex structure of a DNN. Thus, DNN is considered as a
black box. Despite its success in classiication and recognition, it is vulnerable to adversarial attacks [1, 19, 29].
A small adversarial attack on the input images that is indistinguishable from a human eye may lead DNNs to
classify incorrectly with high conidence [5]. Furthermore, generating adversarial examples for DNN models
does not require knowledge about the parameters and architecture of the models [22]. As neural networks are
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applied to safety-critical systems, formal methods for safety veriication and robustness certiication of DNNs are
critical and highly necessary.

Veriication and certiication of DNNs can be broadly categorized into exact and overapproximation analyses,
depending on activation functions and analysis methods. Nonlinear activation functions such as ReLU and leaky
ReLU can either be analyzed exactly or by overapproximation due to their piece-wise linear properties [30ś32, 34].
Nonlinear activation functions such as Sigmoid and TanH are generally analyzed with overapproximationmethods
as an exact approach is computationally intractable. Despite their wide usage in real-world neural networks,
sigmoidal DNNs have not been extensively researched, and only a few veriication approaches have been proposed
[6, 8, 9, 11, 18, 27, 38, 47]. These activation functions are much more challenging and complex to verify due to their
nonlinear properties. Most methods proposed recently for these functions are overapproximated with abstraction,
such as symbolic intervals [28, 46] that are limited to overapproximate an activation function with two linear
bounds. The exact veriication guarantees the soundness and completeness of the reachability analysis. However,
it is computationally expensive and may not be scalable to verify deep neural networks in a designated time
frame. On the other hand, overapproximation analysis is faster and more scalable than the exact analysis, but it
guarantees only the soundness of the results. Importantly, errors in overapproximation analysis may accumulate
quickly over layers. Therefore, loose overapproximation produces a conservative reachable set which may be
useless for veriication. Although a trade-of between scalability and precision is necessary, the conservativeness
of results may be dramatic on veriication.
This research is inspired by the star reachability [32] and DeepPoly [28] approach for FNNs veriication.

Previously, the star reachability was used to verify ReLU FNNs. This paper extends the star set approach
to verify networks with TanH and Sigmoid. The star set approach allows a nonlinear activation function to
be overapproximated by many linear constraints. Therefore, it produces tighter overapproximation than the
DeepPoly [28] and CROWN [46] approaches, which overapproximate activation functions such as ReLU, TanH,
and Sigmoid using only upper and lower linear constraints. Using two linear constraints allows these methods to
do back-substitution to ind the bound at each neuron quickly to perform overapproximation without solving
linear programming optimization. This key feature makes DeepPoly and CROWN more scalable than the star set
approach on large networks. However, using two linear constraints in overapproximation also makes DeepPoly
and CROWN more conservative than the star set approach. Based on this observation, we propose a new relaxed
star (RStar) approach utilizing symbolic intervals with the back-substitution technique similar to DeepPoly to
ind the state bounds in reachability analysis while maintaining eicient features of the star set representation to
reduce the conservativeness of DeepPoly. Users can choose to overapproximate the Sigmoid or TanH activation
function by four linear constraints (RStar4), two linear constraints (RStar2), or only the lower bound and upper
bound of the function’s output (RStar0). Our approach is implemented in NNV [35], a tool for verifying DNNs
and learning-enabled cyber-physical systems.
For the evaluation, we verify the robustness of the neural networks against the �∞ norm attack. A neural

network is considered robust to an input set if the classiied label of an image holds for any perturbation attack.
We prepare a set of three FNNs with diferent architectures that are trained with two datasets: MNIST [17] and
CIFAR10 [16]. We evaluate our proposed methods in comparison with the DeepPoly approach for verifying FNNs.
We discuss the evaluation in terms of scalability, time performance, conservativeness, and veriication result.
In short, the relaxed star approaches are more scalable than the original star set while less conservative than
DeepPoly on a set of DNN benchmarks. RStar0 is capable of verifying 3528 times faster than the original star
method. The RStar approaches have improved scalability due to discarding a linear programming (LP) solver
and employing symbolic intervals to ind the state bounds during reachability analysis. RStar4 can verify up to
40% more images than DeepPoly on bigger neural networks, while the star set approach can verify at most 17%
more images than RStar4 on MNIST DNNs. The evaluation reveals that applying more linear constraints while
overapproximating an activation function improves precision. Although a multi-core platform is not considered
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in this experiment, the star set’s scalability problem can be easily improved with parallel computation of the
reachable sets.

Contributions. In summary, the main contributions of the paper are as follows.
1) An extension of the star set to overapproximate reachability analysis of Sigmoid/TanH FNNs.
2) A new relaxed star (RStar) approach utilizing symbolic intervals with the back-substitution technique to

overapproximate a sigmoidal activation function that includes three variants (RStar4, RStar2, RStar0) to
balance between conservativeness and scalability.

3) An implementation of the star set and RStar representation and the reachability algorithms in NNV.
4) A thorough evaluation and comparison with DeepPoly on a set of benchmarks.
Organization. The remainder of the paper is organized as follows. Section 2 formally deines FNN and its

reachability, in which the deinition of generalized star set and symbolic intervals are stated in detail. In Section
3, we provide propositions and lemmas of how an overapproximation of non-linear functions such as Sigmoid
and TanH is applied based on the star set and symbolic intervals. Moreover, we describe the back-substitution of
the symbolic intervals and their composition. We then propose the relaxed star that employs the star set and
symbolic intervals for the reachability analysis of an FNN. In Section 4, we explain the reachability analysis of
each method based on the relaxed star reachability algorithm and show their diferences. Then, we present our
evaluation in Section 5. Section 6 reviews the related works, and Section 7 concludes the paper.

2 PRELIMINARIES

A �-layer feed-forward neural network F consists of an input layer, � − 1 hidden layers, and an output layer. Each
layer ℓ , 1 ≤ ℓ ≤ � , consists of �ℓ neurons that are interconnected to �ℓ−1 neurons in a preceding layer. A hidden
layer ℓ performs two operations: aine mapping and activating. The aine mapping operation is a function
� �ℓ : R�ℓ−1 → R�ℓ performing a linear transformation on a state vector �, which is the output of the previous
layer, i.e., layer ℓ − 1. The activating operation applies the activation function � �ℓ : R�ℓ → R�ℓ on the output state

vector from the aine mapping operation � �ℓ . The output vector � of the ℓ-th hidden layer is expressed as:

�ℓ = �ℓ (�ℓ−1) = � �ℓ ◦ �
�
ℓ (�ℓ−1) = � �ℓ (�ℓ�ℓ−1 + �ℓ ),

where�ℓ ∈ R
�ℓ×�ℓ−1 and �ℓ ∈ R

�ℓ are the weight matrix and the bias vector of the ℓ-th layer, respectively. In this
paper, we are interested in FNNs with Sigmoid activation functions deined by � � (�� ) =

1
1+�−�� or TanH deined

by � � (�� ) =
��� − �−��
��� +�−�� , where �� is the �-th neuron of an input vector � . The input-output relation of the FNN can

be written as:

�� = F (�), F = � �� ◦ �
�
�−1 ◦ �

�
�−1 ◦ �

�
�−2 ◦ �

�
�−2 ◦ . . . ◦ �

�
1 ◦ �

�
1 .

We note that the output layer is assumed to perform only an aine mapping operation, i.e., �� = � �
�
, while other

layers perform both aine mapping and activating operations, i.e., �ℓ = � �ℓ ◦ �
�
ℓ ,∀ℓ < � .

Deinition 2.1 (Reachability of an FNN). Given a bounded convex polytope input set I ≜ {� |�� ≤ �, � ∈ R�0 },
the reachability analysis of an FNN is to compute the output "reachable set" of the network deined recursively
below.

R1 ≜ {�1 |�1 = �1 (�), � ∈ � },

R2 ≜ {�2 |�2 = �2 (�1), �1 ∈ R1},

...

R� ≜ {�� |�� = �� (��−1), ��−1 ∈ R�−1},
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where the output reachable set R� = F (I) contains all the outputs of the FNN corresponding to all input vectors
� in the input set I.

Deinition 2.2 (Generalized Star Set [32]). A generalized star set (or simply star) Θ is a tuple ⟨�,� , �⟩ created
based on an input vector � ∈ Θ ⊆ R� , where � ∈ R� is a center vector, � = [�1, �2, · · · , ��] consists of a set of�
basis vectors � ∈ R� , and predicate � : R� → {⊤,⊥}. � (�) ≜ �� ≤ � ∧ �� ≤ � ≤ �� has a conjunction of � linear
constraints, where � ∈ R�×�, � ∈ R� , � is the predicate variable, and �� and �� are lower and upper predicate
bounds. The set of states can be represented as:

⟦Θ⟧ =
{
� | � = � +

�︁

�=1

���� such that � (�) = ⊤}.

A star is an empty set, i.e., Θ = ∅ if and only if the predicate � (�) is infeasible. Sometimes both the tuple Θ and
the set of states ⟦Θ⟧ are referred to as Θ.

We note that any polytope can be represented as a star set. Aine mapping and intersection with a half-space of
a star set is another star set that can be computed eiciently via matrix-vector multiplication [32]. The eiciency of
the star set in aine mapping and intersection with half-spaces makes it useful in the reachability analysis of ReLU
networks. The star-based reachability approach can compute an overapproximation of the exact reachable set of a
network by overapproximating the output of a ReLU activation on all neurons using three linear constraints, i.e.,
the triangle overapproximation rule [3]. This overapproximation reachability analysis requires the knowledge of
the lower and upper bound vectors of a state vector � in a star set, i.e., � ≤ � ≤ �. The star set approach inds
these bounds by solving 2� LP problems, i.e.���(���) � [ �] = � [ �] + Σ��=1���� , � .� . �� ≤ �, 1 ≤ � ≤ �. Solving LP
problem is the main bottleneck of the star set approach, making the star set approach time-consuming and less
scalable. Therefore, we apply symbolic intervals D ≜ ⟨D� ,D�⟩ that consider two aine transformers for inding
the state vector bounds via back-substitution. This approach provides enhanced scalability in the trade-of of
precision.

Deinition 2.3 (Symbolic Interval). Given a function � : R� → R� deining an application of either an aine
mapping, ReLU, Sigmoid or TanH on a state vector � ∈ � ⊆ R� , its corresponding symbolic interval is D ≜
⟨D� ,D�⟩ in which D�

= ⟨�� , �� ⟩ = ��� + �� and D�
= ⟨��, ��⟩ = ��� + �� are the lower and upper symbolic

bounds, respectively. We have: ∀� ∈ �,D� ≤ � (�) ≤ D� .

Since an aine mapping operation is a composition of a linear transformation and a translation on a set, we do
not need to overapproximate the aine mapping function. The lower and upper symbolic bounds of an aine
mapping, deined in the following proposition, are the same and equal to the aine function.

Proposition 2.4 (Symbolic Interval of an Affine Mapping Function). Symbolic interval of an aine

mapping operation � � , deined by a mapping matrix� and a bias vector �, on a state vector � is D = ⟨D� ,D�⟩,
D�

= D�
= � � (�) =�� + �.

Proof. The linear bounds of the symbolic interval are aine transformers, and each of them can exactly
represent an aine mapping. Hence ��

= ��
=� , and �� = �� = �. □

Symbolic intervals propagate to a symbolic input interval through a network to compute the lower bound and
upper bound of a state vector � . These bounds are essential to construct the convex set and overapproximate
Sigmoid/TanH. The key computation is to derive the tightest and optimal lower and upper symbolic constraints,
i.e., D� and D� , for each operation. This requires tight overapproximation rules for the sigmoidal activation
function discussed in the next section.

ACM Trans. Des. Autom. Electron. Syst.



Reachability Analysis of Sigmoidal Neural Networks • 5

3 OVERAPPROXIMATION OF SIGMOIDAL ACTIVATION FUNCTIONS

3.1 Star overapproximation of Sigmoid/TanH

Unlike aine mapping, the Sigmoid or TanH activation function � � is nonlinear. Therefore, the reachability
analysis of this function is based on overapproximation, which leads to a key diference between the DeepPoly
and our approaches proposed in this paper. The DeepPoly approach uses symbolic intervals (with two linear
symbolic constraints) to overapproximate the sigmoidal activation function. However, it uses the lower and upper
bounds of the states for verifying FNNs. A set of interval constraints, i.e., � =

>�
�=1 [�� , �� ], is used to verify the

robustness of neural networks [28].� is the number of operations in the FNN. Our star set approach, however,
has the lexibility for users to choose the number of linear constraints used for tighter/looser overapproximation.
Figure 1 shows three diferent ways of overapproximating the sigmoidal activation function.

Fig. 1. Overapproximation of TanH/Sigmoid. DP and RS represent DeepPoly and RStar, respectively. RS2 is in yellow

areas, which also includes the pink areas. Assume the computed state bounds from the LP solver and those from the back-

substitution are identical. All RS methods and DP use �1 and �2 linear bounds to find the state bounds with back-substitution,

while the star set applies all linear bounds to find the state bounds with the LP solver. Each method constrains its convex set

with �� and �� bounds. RS2 additionally constrains its set with �1 and �2. Only the star set and RS4 constrain their convex set

with all linear constraints and predicate bounds: �1, �2, �3, �4, �� , �� for case (d), and �1, �2, �3, �� , �� for cases (b) and (c). RS2 is

bounded by �1, �2, �� , and �� , meaning RS2 includes Star/RS4. Thus, ��4 ⊆ ��2 ⊆ ��0. Since �� == �� and �� = � � (�� ) is a
single point, the case (�) is not ploted. The linear bounds are defined in Lemma 3.9 and 3.1. In terms of constraining an

activation function, RS4 and Star are equivalent, but the star set uses an LP optimization, while RS4 uses symbolic intervals

to compute the state bounds. RS0 and DP apply very similar overapproximation; however, they are diferent in verifying

DNNs. Their reachable sets are presented as DP: � =

>�
�=1 [�� , �� ] and RS0: Ω = {� | � ∈ [�ℓ , �ℓ ]}.

Exploiting the convexity and concavity of the sigmoidal function on diferent input domains, we can overap-
proximate the function using two, three, or four linear constraints or simply by a rectangle. On the input regions
where the sigmoidal function is either convex or concave (Figure 1-b,c), symbolic intervals overapproximate this
function by two linear constraints �1 and �2, while the star set uses three constraints �1, �2 and �3 for a tighter
overapproximation. On other input regions where the sigmoidal function is neither convex nor concave (Figure
1-d), symbolic intervals still overapproximate the function by two linear constraints �1 and �2, while we apply
four constraints �1, �2, �3 and �4 for a star set. Clearly, a star set approach is less conservative than symbolic
intervals due to tighter overapproximation, which leads to the computation of tight upper and lower bounds.

Lemma 3.1 (Star Overapproximation Rule for a Sigmoidal Function). For any input vector � ∈ R� ,
� ≤ � ≤ � in which �� is �-th individual state of x, the output � = � � (�) ∈ R� satisies the following rules:

if �� == ��
�� = � � (�� ) (a)

ACM Trans. Des. Autom. Electron. Syst.
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if �� ≥ 0




�� ≥ �1 =
� � (�� )−�

� (�� )
��−��

× (�� − �� ) + �
� (�� ),

�� ≤ �2 = � �
′
(�� ) × (�� − �� ) + �

� (�� ),

�� ≤ �3 = � �
′
(�� ) × (�� − �� ) + �

� (�� ).

(b)

if �� ≤ 0




�� ≥ �1 = � �
′
(�� ) × (�� − �� ) + �

� (�� ),

�� ≤ �2 =
� � (�� )−�

� (�� )
��−��

× (�� − �� ) + �
� (�� ),

�� ≥ �3 = � �
′
(�� ) × (�� − �� ) + �

� (�� ).

(c)

if �� < 0 and �� > 0




�� ≥ �1 = � × (�� − �� ) + �
� (�� ),

�� ≤ �2 = � × (�� − �� ) + �
� (�� ),

�� ≥ �3 = �� × �� − �� × �� + �
� (�� ),

�� ≤ �4 = �� × �� − �� × �� + �
� (�� ).

(d)

where � =���(� �
′
(�� ), �

� ′ (�� )), �� =

� � (�� )−��
��−��

, �� =
� � (�� )−��
��−��

, �� = � �
′
(0)×��+�

� (0), �� =

� � (�� )−�×��−�
� (0)

� �
′
(0)−�

, ��

= � �
′
(0) × �� + �

� (0), �� =

� � (�� )−�×��−�
� (0)

� �
′
(0)−�

.

Proof. Since � � (�� ) is a single point for case (a), no overapproximation is needed. For either Si gmoid or TanH,
� � is a monotonically increasing function and � �

′
> 0. � � (�) for �� ∈ [0,∞) is convex and �

� (�� ) for �� ∈ (−∞, 0]
is concave. Therefore, � � (�� ) is overapproximated by tangent lines at � � (�� ), tangent line at �

� (�� ), and line
connecting � � (�� ) and � � (�� ) for cases (b) and (c). Otherwise, � � (�� ) for �� ∈ (−∞,∞) case (d) is neither convex
nor concave. Since � =���(� �

′
(�� ), �

� ′ (�� )), �1 and �2 overapproximate the function. Let � be the intersection
point of a tangent line at � �

′
(�� ) and a tangent line at � �

′
(0). �3 is a line connecting a point � � (�� ) and a point �.

A similar idea applies to �4. Hence, �1, �2, �3, �4 overapproximate the function; please refer Fig. 1. □

Example 3.2 (The star set on a TanH FNN). Given a 3-layers TanH FNN with a bounded input set I = {� | − 1 ≤
�10 ≤ 1 ∧ −1 ≤ �20 ≤ 1}, we demonstrate back-substitution of symbolic intervals. Here, ��� represents the �-th

individual state of � at the �-th layer. The FNN has the following weights and biases:

�1 =

[
0.2 0.8

−0.1 0.4

]
,�2 =

[
0.3 −0.4
−0.1 −0.8

]
, �1 =

[
0

0

]
, �2 =

[
0

0

]
.

The star set. After an aine operation at the irst layer, the star set Θ�
1 has� =� , � = 02×1, and � (�) ≜ �� ≤

� ∧ �� ≤ � ≤ �� where � = 01×2, � = 0, �� = [−1,−1]� , �� = [1, 1]� . The state vector, ��1 ∈ Θ
� , has the lower

bound, ��1 = [−1,−0.5]� , and upper bound, ��1 = [1, 0.5]� . For the star set, these bounds are found with an LP

solver. The state bounds satisfy the TanH overapproximation rule case (d), ��2 < 0 and ��2 > 0, in Lemma 3.9, 3.1.
The star set applies four linear constraints to overapproximate TanH for case (d) in Lemma 3.1, i.e., ���� ≤ �� ,

ACM Trans. Des. Autom. Electron. Syst.
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and the lower and upper predicate bounds, i.e., ��� ≤ �� ≤ ��� .

��
=



0.0839 0.3359 −1 0

−0.0839 −0.3359 1 0

0.1699 0.6799 −1 0

−0.1699 −0.6799 1 0

−0.0786 0.3145 0 −1
0.0786 −0.3145 0 1

−0.0953 0.3815 0 −1
0.0953 −0.3815 0 1



, �� =



0.3416

0.3416

0.0883

0.0883

0.0688

0.0688

0.0148

0.0148



, ��� =

[
−0.7615
−0.4621

]
, ��� =

[
0.7615

0.4621

]
.

After an activating operation,Θ�
1 has� = [02×2, �2], � = 02×1, and � (�) ≜ Θ

�
1 .�∧���� ≤ ��∧ ≤ ��� ≤ �� ≤ ��� ,

where �� is an �-dimensional identity matrix. If the star applies two linear constraints instead (Lemma 3.9), then
the constraints in blue color are discarded (this approach is used for RStar2 with symbolic intervals instead of LP
solver; proposed in the section 3.3).

3.2 Symbolic interval overapproximation of Sigmoid/TanH

We have shown the overapproximation rule for the star set. Now, we derive how symbolic intervals overapproxi-
mate a sigmoidal activation function in the below.

Proposition 3.3 (Symbolic Interval of a Sigmoidal Activation Function). For any input vectors � ∈ R� ,
� ≤ � ≤ �, the symbolic interval of the Sigmoid/TanH activation function � � on � is D = ⟨��� + �� , ��� + ��⟩,
��

= ����(��
1, �

�
2, . . . , �

�
�), �

�
= [��1, �

�
2, . . . , �

�
�]

� , ��
= ����(��

1 , �
�
2 , . . . , �

�
� ), �

�
= [��1 , �

�
2 , . . . , �

�
�]

� , in which:

if �� == ��
��
� = ��

� = 0, ��� = ��� = � � (�� ). (a)

if �� ≥ 0 {
��
� =

� � (�� )−�
� (�� )

��−��
, ��� = � � (�� ) − �

�
� × �� ,

��
� = � �

′
(�� ), �

�
� = � � (�� ) − �

�
� × �� .

(b)

if �� ≤ 0 {
��
� = � �

′
(�� ), �

�
� = � � (�� ) − �

�
� × �� ,

��
� =

� � (�� )−�
� (�� )

��−��
, ��� = � � (�� ) − �

�
� × �� .

(c)

if �� < 0 and �� > 0 {
��
� = �, ��� = � � (�� ) − �

�
� × �� ,

��
� = �, ��� = � � (�� ) − �

�
� × �� ,

(d)

where � =���(� �
′
(�� ), �

� ′ (�� )), �
� ′ is the irst derivative of the function.

Proof. Based on Lemma 3.1,�1 and�2 are two linear functions that overapproximate a sigmoidal function. Since
symbolic intervals are aine transformers, two linear functions are stored in the form of an aine transformation.

□

Back-Substitution. One can see that the overapproximation is done based on the lower bound � and upper
bound � of the state vector � . When � is in a star set, these bounds can be found by solving LPs (Section 2),
which is time-consuming. To overcome this, we can use the back-substitution technique used in symbolic in-
tervals to estimate these bounds without solving LPs. To estimate the lower bound and upper bound vectors
(��
�
, ��

�
) of the output at the ��ℎ aine mapping operation ��

�
(i.e., ��

�
≤ ��

�
≤ ��

�
), we propagate the rela-

tionship from ��
�
→ ��

�−1
→ ��

�−1
→ · · · → ��1 → ��1 → �0 using previously constructed symbolic intervals

ACM Trans. Des. Autom. Electron. Syst.
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{D�
�
,D�

�−1
,D�

�−1
, . . . ,D�

1 ,D
�
1 }. Here, �0 is the input to the network, �0 ≤ �0 ≤ �0. The back-substitution

procedure consists of multiple back-substitution steps since it propagates function by function. We note that the
back-substitution of symbolic intervals is only applied to RStar sets deined in Deinition 3.7. The original star set
uses an LP solver to ind the state bounds.

From Prop. 3.3, one can see that ��,� and ��,� are diagonal matrices. Since diagonal matrices are commutative,
symbolic intervals of activation function and aine mapping can be composed into a single symbolic interval. For
example, D�−1 = D

�
�−1
◦ D�

�−1
is the symbolic interval of the composed function ��−1 = � �

�−1
◦ � �

�−1
representing

the polyhedral relationship within in the layer. Hence, the back-substitution can propagate layer by layer, reducing
memory consumption and computation. The composition of two consecutive symbolic intervals is given in below.

Proposition 3.4. The composition of two symbolic intervalsD1 = ⟨(�
�
1, �

�
1), (�

�
1 , �

�
1 )⟩ andD2 = ⟨(�

�
2, �

�
2), (�

�
2 , �

�
2 )

⟩ of two consecutive operation �1 and �2 is given by:

D2→1 = D2 ◦ D1 = ⟨(�
�
21, �

�
21), (�

�
21, �

�
21)⟩,

��
21 =��� (0, ��

2 ) · �
�
1 +���(��

2, 0) · �
�
1,

��21 = ��2 +��� (0, ��
2 ) · �

�
1 +���(��

2, 0) · �
�
1,

��
21 =��� (0, ��

2) · �
�
1 +���(��

2 , 0) · �
�
1 ,

��21 = ��2 +��� (0, ��
2) · �

�
1 +���(��

2 , 0) · �
�
1 .

Let �0 be the input to the irst operation �1, we have:

��
21�0 + �21 ≤ �2 (�1 (�0)) ≤ ��

21�0 + �
�
21.

Proof. Considering back-substitution equations and proof in Prop. 3.5,

D2 ◦ D1 (�0) = D2→1 (�0) = ⟨D
�
2→1,D

�
2→1⟩(�0),

D�
2→1 (�0) =��� (0, ��

2 ) · D
�
1 (�0) +���(��

2, 0) · D
�
1 (�0) + �

�
2

=��� (0, ��
2 ) · �

�
1 · �0 +���(��

2, 0) · �
�
1 · �0+

��2 +��� (0, ��
2 ) · �

�
1 +���(��

2, 0) · �
�
1

= ��
21 · �0 + �

�
21,

D�
2→1 (�0) =���(��

2 , 0) · D
�
1 (�0) +��� (0, ��

2) · D
�
1 (�0) + �

�
2

=���(��
2 , 0) · �

�
1 · �0 +��� (0, ��

2) · �
�
1 · �0+

��2 +���(��
2 , 0) · �

�
1 +��� (0, ��

2) · �
�
1

= ��
21 · �0 + �

�
21.

□

We note that the composition of two symbolic intervals happens only between activating operation and aine

mapping, i.e., Dℓ−1 = D
�
ℓ−1 ◦ D

�
ℓ−1 since �

�,� and ��,� are diagonal matrices having commutative properties.

Once two symbolic intervals are composed into a single symbolic interval, a set of symbolic intervals consists
of {D� ,D�−1, . . . ,D1}, where D� = D�

�
. Using the back-substitution of these symbolic intervals, we can achieve

lower bound and upper bound vectors (�� , �� ) of a state vector �� . The back-substitution propagation becomes
�� → ��−1 → · · · → �1 → �0 and is described in the following.
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Proposition 3.5 (Back-Substitution). For

�ℓ ≤ D
�
ℓ (�ℓ−1) ≤ �ℓ = �ℓ (�ℓ−1) ≤ D

�
ℓ (�ℓ−1) ≤ �ℓ ,

backward propagation of a single layer can be achieved with the following equations:

�ℓ =��� (0, ��
ℓ ) · �ℓ−1 +���(��

ℓ , 0) · �ℓ−1 + �
�
ℓ , (1)

�ℓ =���(��
ℓ , 0) · �ℓ−1 +��� (0, ��

ℓ ) · �ℓ−1 + �
�
ℓ . (2)

In order to propagate backward all the way to the input layer,�ℓ−1 → �ℓ−2 → · · · → �0 and �ℓ−1 → �ℓ−2 → · · · → �0.

Proof.

�ℓ ≥ �ℓ = �ℓ (�ℓ−1)

=��� (0, ��
ℓ ) · �ℓ−1 +���(��

ℓ , 0) · �ℓ−1 + �
�
ℓ

≥ ��� (0, ��
ℓ ) · D

�
ℓ−1 (�ℓ−2) +���(��

ℓ , 0) · D
�
ℓ−1 (�ℓ−2) + �

�
ℓ

≥ ��� (0, ��
ℓ ) · �ℓ−1 (�ℓ−2) +���(��

ℓ , 0) · �ℓ−1 (�ℓ−2) + �
�
ℓ

=��� (0, ��
ℓ ) · �ℓ−1 +���(��

ℓ , 0) · �ℓ−1 + �
�
ℓ .

�ℓ ≤ �ℓ = �ℓ (�ℓ−1)

=���(��
ℓ , 0) · �ℓ−1 +��� (0, ��

ℓ ) · �ℓ−1 + �
�
ℓ

≤ ���(��
ℓ , 0) · D

�
ℓ−1 (�ℓ−2) +��� (0, ��

ℓ ) · D
�
ℓ−1 (�ℓ−2) + �

�
ℓ

≤ ���(��
ℓ , 0) · �ℓ−1 (�ℓ−2) +��� (0, ��

ℓ ) · �ℓ−1 (�ℓ−2) + �
�
ℓ

=���(��
ℓ , 0) · �ℓ−1 +��� (0, ��

ℓ ) · �ℓ−1 + �
�
ℓ .

□

The lower and upper bounds of ��
�

are achieved using the back-substitution of the symbolic intervals at the

output of the ��ℎ aine mapping. With these bounds, we can construct the symbolic interval D�
�
of the ��ℎ

activating operation using Prop. 3.3. This symbolic interval is composed of a symbolic interval of the ��ℎ aine
mapping, D�

�
. The composed symbolic interval is then used (with previously constructed symbolic intervals) to

calculate the lower bound and upper bound vectors (��+1, ��+1) of ��+1, the output state vector of the (� + 1)
�ℎ

aine mapping. The back-substitution algorithm is shown in Algorithm 1. Based on eq. (1) the ubBackSub

function propagates backward in lines 4-7 and inds the upper state bound in line 9. Similarly, the lbBacksub
function applies back-substitution propagation in lines 14-17 and computes lower state bound using eq. (2) in
line 19.

Example 3.6 (Symbolic Intervals on a TanH FNN). Consider the same FNN and input set as in Example 3.2.
The predeined FNN is shown in Figure 2. We demonstrate the back-substitution of symbolic intervals. Here, ���
represents the �-th individual state of � at the �-th layer.

Symbolic Intervals. The symbolic intervals at aine mapping, D�
1 has ��,�

1 = ��,�
1 = � , and ��,�1 =

��,�1 = �1 (Proposition 2.4). Following Proposition 3.3, the symbolic interval of the 1�� layer TanH, D�
1 =

⟨(��,�
1 , ��,�1 ), (�

�,�
1 , ��,�1 )⟩ =

〈 ([
0.42 0

0 0.79

]
,

[
−0.34
−0.07

] )
,

( [
0.42 0

0 0.79

]
,

[
0.34

0.07

] ) 〉
, is constructed based on the

lower and upper bounds of ��1 , the output state vector of the 1�� aine mapping, found by back-substitution. Then,
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Algorithm 1 Back-substitution algorithm.

Input: D, �0, �0 ⊲ lower and upper symbolic constraints and input vector bounds
Output: �, � ⊲ upper and lower bounds

1: procedure � = ubBackSub(D� ,D�, �0, �0)
2: � = ��

�
⊲ � is number of functions, �����ℎ(D�)

3: �� = 0�×1, �� = ��
�

⊲ n is number of neurons of the layer
4: for � ← � to 0 do

5: � =���(�, 0) · ��
� +��� (0, �) · ��

�

6: �� =���(�, 0) · ��� + ��
7: �� =��� (0, �) · ��� + ��
8: end for

9: � =���(�, 0) · �0 + �� +��� (0, �) · �0 + ��
10: end procedure

11: procedure � = lbBackSub(D, �0, �0)
12: � = ��

�
⊲ � is number of functions, �����ℎ(�� )

13: �� = ��
�
, �� = 0�×1 ⊲ n is number of neurons of the layer

14: for � ← � to 0 do

15: � =��� (0, �) · ��
� +���(�, 0) · ��

�

16: �� =��� (0, �) · ��� + ��
17: �� =���(�, 0) · ��� + ��
18: end for

19: � =��� (0, �) · �0 + �� +���(�, 0) · �0 + ��
20: end procedure

Fig. 2. An example of TanH FNN

D�
1 is composed with D�

1 such that D1 = D
�
1 ◦ D

�
1 =

〈([
0.08 0.34

−0.08 0.31

]
,

[
−0.34
−0.07

] )
,

( [
0.08 0.34

−0.08 0.31

]
,

[
0.34

0.07

] )〉

(Proposition 3.4). Once the symbolic interval of the 2�� layer aine mapping is constructed, we can achieve the
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output bounds of the FNN by applying the back-substitution. Based on Proposition 3.5,

��2 ≤ ���

( [
0.3 −0.4
−0.1 −0.8

]
, 0

) ( [
0.08 0.33

−0.08 0.31

]
�1 +

[
0.34

0.07

] )

+���

(
0,

[
0.3 −0.4
−0.1 −0.8

] ) ( [
0.08 0.33

−0.08 0.31

]
�1 +

[
−0.34
−0.07

] )

=

[
0.056 −0.025
0.056 −0.281

]
�1 +

[
−0.13
−0.09

]

≤ ���

( [
0.056 −0.025
0.056 −0.281

]
, 0

) [
1

1

]
+���

(
0,

[
0.056 −0.025
0.056 −0.281

] ) [
−1
−1

]
=

[
−0.21
−0.43

]
.

The output bounds of the FNN are ��2 =

[
−0.21, −0.43

]⊺
and ��2 =

[
0.21, 0.43

]⊺
with back-substitution

of symbolic intervals. If the bounds are solved by an LP solver based on the star set that applies four linear
constraints, ��2 =

[
−0.15, −0.43

]⊺
and ��2 =

[
0.15, 0.43

]⊺
. The star set achieved tighter bounds than the

symbolic interval as it applied four linear constraints to overapproximate the TanH.

3.3 Relaxed-star overapproximation of Sigmoid/TanH

A star set can achieve the tightest bounds of the state vector by overapproximating the sigmoidal activation
function with multiple linear constraints, albeit its scalability is limited due to linear programming optimization.
In some cases, an LP solver computes the state bounds, which leads to a star set being an infeasible reachable
set due to a loating point error in an LP solver. Therefore, taking advantage of the star set [32] and symbolic
intervals that have the back-substitution, we introduce a relaxed star set representation. A relaxed star, deined in
the following, is a star set [32] with symbolic intervals. Since the bounds of state variables computed by symbolic
intervals are looser than those computed by an LP solver that considers multiple linear constraints, relaxation in
terminology means ła star set with less tight state bounds.ž

Deinition 3.7 (Relaxed Star Set). A relaxed star set (or simply RStar) Ω is a tuple ⟨Θ,D, �0, �0⟩, where Θ is a star
set, D is a set of symbolic intervals, �0 and �0 are input bounds for the back-substitution of symbolic intervals.
The lower bound � and upper bound � of the state vector � ∈ Θ can be achieved by the back-substitution of
symbolic intervals D. The set of states can be represented as:

⟦Ω⟧ =
{
� | � = Θ.� +

�︁

�=1

��Θ.�� such that

Θ.� (�) = ⊤, � ≤ � ≤ �}.

We note that an RStar is an empty set, i.e. Ω = ∅ if the predicate Θ.� (�) is infeasible. Sometimes both Ω and
⟦Ω⟧ are referred as Ω.

Proposition 3.8 (Affine Mapping of a Relaxed Star). Given a weight matrix� ∈ R�ℓ×�ℓ−1 and a bias vector

� ∈ R�ℓ , the aine mapping of a RStar Ω is another RStar and can be deined as:

Ω̄ = ⟨⟨�̄, �̄ , �̄⟩, D̄, �0, �0⟩,

where �̄ =�� + �, �̄ =��, �̄ ≡ � , D̄ = {D1...� , D�+1},D�+1 = ⟨(�,�), (�,�)⟩.

Proof. Based on the deinition of star set [32], after ainemapping, Θ̄ = {� |� =��+�+
∑�

�=1 (����� ) such that
� (�) = ⊤} implies another star with the center �̄ = �� + �, basic vectors �̄ = [��1,� �2, . . . ,� ��], and has
the same predicate as the star set, Ω.Θ. D�+1 = ⟨(�,�), (�,�)⟩ implies another symbolic interval with upper
symbolic constraint ��

�+1
= (�,�) and lower symbolic constraint ��

�+1
= (�,�). Hence, Ω̄ = ⟨Θ̄, D̄⟩ = {� | � =
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Θ̄.� +
∑�

�=1 ��Θ̄.�� such that Θ̄.� (�) = ⊤, �̄ ≤ � ≤ �̄} is another relaxed star, where a set of symbolic intervals D̄ =

{D1...� , D�+1}, �̄ and �̄ are new bounds of the state vector from the back-substitution of symbolic intervals. □

Lemma 3.9 (RStar2 Overapproximation Rule of a Sigmoidal Activation Function). For any input vectors

� ∈ R� , � ≤ � ≤ � in which �� is the �-th individual state of x, the output � = � � (�) ∈ R� satisies the following

rules:

if �� == ��
�� = � � (�� ). (a)

if �� ≥ 0 {
�� ≥ �1 =

� � (�� )−�
� (�� )

��−��
× (�� − �� ) + �

� (�� ),

�� ≤ �2 = � �
′
(�� ) × (�� − �� ) + �

� (�� ).
(b)

if �� ≤ 0 {
�� ≥ �1 = � �

′
(�� ) × (�� − �� ) + �

� (�� ),

�� ≤ �2 =
� � (�� )−�

� (�� )
��−��

× (�� − �� ) + �
� (�� ).

(c)

if �� < 0 and �� > 0 {
�� ≥ �1 = � × (�� − �� ) + �

� (�� ),

�� ≤ �2 = � × (�� − �� ) + �
� (�� ).

(d)

where � =���(� �
′
(�� ), �

� ′ (�� )), and � �
′
is the irst derivative of the function.

Proof. Based on Lemma 3.1, we know �1 and �2 overapproximate � � (�� ) for all cases. Unlike the original star
set, RStar2 considers only �1 and �2. □

Unlike the original star set, which requires overapproximation of an activation function with three constraints
for cases (b) and (c) to compute the tightest state bounds, the star set inside the relaxed star, i.e., Θ ∈ Ω, doesn’t
necessarily need to apply the same overapproximation rule as the original star set. If the original star set applies
the same two constraints as symbolic intervals for all cases, then the state bounds computed from an LP solver
will be the same as those achieved from the symbolic intervals. However, the scalability of the star set does not
increase. Therefore, the relaxed star uses symbolic intervals for inding bounds to improve scalability. In this
paper, we propose three diferent variants of the relaxed star: RStar4, RStar2, and RStar0. The key diference
between these methods lies in the overapproximation rule of a Sigmoid/TanH activation function using the star
set. The relaxed star requires the star set to construct a convex polytope to perform neural network veriication.
We remind that the overapproximation of a star set involves the intersection between a star set and half-spaces
(linear constraints). Since the relax star uses symbolic intervals to ind the state bounds, it has the lexibility
to constrain the activation function with two linear constraints (Lemma 3.9) for RStar2 or up to four linear
constraints (Lemma 3.1) for RStar4. RStar0 is a special case in which only state vector bounds are used to generate
the star set, i.e., Ω = {� | � ∈ [�ℓ , �ℓ ]}. The star set inside RStar0 does not aine map nor overapproximate an
activating operation; it gets recreated after each function by the state bounds found from the back-substitution of
symbolic intervals. In other words, RStar0 is an outer box of the RStar4 and RStar2 reachable set.

Example 3.10 (Relaxed star on a TanH FNN). We demonstrate the overapproximation of the relaxed star based
on Example 3.2 and 3.6. Let Ω4 and Ω2 represent RStar4 and RStar2, respectively.
After the irst aine mapping, Ω2 = Ω4 as their diferences come during overapproximation. Since symbolic

intervals are exact on ainemappings, no overapproximation error is present. Ω2 = ⟨Θ2,D, �0, �0⟩, whereΘ2 = Θ
�
1

(from Example 3.2), D = {D�
1 }, where D

�
1 is deined in Example 3.6. For the overapproximation of TanH, both

relaxed stars ind the state bounds of ��1 with symbolic intervals by back-substitution. ��1 = [−1,−0.5]� and
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��1 = [1, 0.5]� . After the activation function, D1 = D
�
1 ◦ D

�
1 (Example 3.6). We note that the bounds, ��1 and ��1 ,

are not found by the back-substitution since ��1 = � �1 (�
�
1 ) and �

�
1 = � �1 (�

�
1 ). If these bounds are computed by the

back-substitution, then the bounds will have an overapproximation error. Symbolic intervals are incomplete on
activation functions due to overapproximation. Since no overapproximation error is presented in the irst layer,
Ω4 .Θ = Θ

�
1 (Example 3.2) and Ω4 .D = {D1} at the output of the activation function. For RStar2, Ω2.D = {D1}

but Ω2.Θ has diferent predicate � . � (�) ≜ Θ
�
1 .� ∧���� ≤ ��∧ ≤ ��� ≤ �� ≤ ��� , where

��
=



0.0839 0.3359 −1 0

−0.0839 −0.3359 1 0

−0.0786 0.3145 0 −1
0.0786 −0.3145 0 1



, �� =



0.3416

0.3416

0.0688

0.0688



, ��� =

[
−0.7615
−0.4621

]
, ��� =

[
0.7615

0.4621

]
.

4 REACHABILITY ANALYSIS USING RELAXED STAR SETS

In this section, we present the algorithm for the reachability analysis of Sigmoid/TanH FNNs with the relaxed
star and how it can be modiied for other proposed approaches.
Overapproximate Reachability Algorithm. In Algorithm 2, the reachability analysis of sigmoidal FNNs

using a relaxed star is achieved layer-by-layer. As mentioned in Section 2, each hidden layer contains an aine
mapping (line 4) and a sigmoidal activation function (line 6). Since the relaxed star consists of a star set and a set
of symbolic intervals, aine mapping of RStar is simply an aine mapping of a star set and symbolic intervals
contained in RStar (Proposition 3.8). The approx_� function overapproximates Sigmoid or TanH for both star set
(line 13) and symbolic intervals (line 16, Proposition 3.3) using lower and upper bounds of the state vector � .

Algorithm 2 Relaxed Star Reachability of a FNN.

Input: Ω = ⟨Θ,D, �0, �0⟩, F = {(�1, �1), ..., (�� , �� )} ⊲ input set and FNN
Output: � ⊲ the reachable output set

1: procedure � = reach(Ω, F )
2: Iℓ = Ω

3: for � = 1 : � do

4: Iℓ = Iℓ .affineMap(�� , �� ) ⊲ [Prop. 3.8]
5: if i < k then

6: Iℓ =approx_�(Iℓ )
7: end if

8: end for

9: � = Iℓ
10: end procedure

11: procedure Ω
′ = approx_�(Ω̃)

12: [�, �] = Ω̃.��������� ⊲ get ranges of � ∈ Ω̃, i.e. � ≤ � ≤ � [Prop. 3.5]

13: Θ
′
= Ω̃.Θ.star_approx_�(�, �) ⊲ [Lemma 3.1 or 3.9]

14: D′ = {D′1, . . . ,D
′
�} = Ω̃.D

15: D�
= ⟨D�,� ,D�,� ⟩ = D′� ⊲� = �����ℎ(D)

16: D�
= ⟨D�,� ,D�,� ⟩ = symbolic_interval_approx_�(�, �) ⊲ [Prop. 3.3]

17: D′� = composition(D� ,D� ) ⊲ D′� = D� ◦ D� [Prop. 3.4]
18: Ω

′
= ⟨Θ′,D′⟩

19: end procedure
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Algorithm 2 Relaxed Star Reachability of a FNN. (continue)

20: procedure Θ′ = approx_�(Θ̃, �, �)

21: � = Θ̃.��� ⊲ � is the dimension of the star set
22: for � = 1 : � do

23: Iℓ = approx_�� (Iℓ , �, �� , �� ) ⊲ [Lemma 3.1] (for Lemma 3.9 remove additional constraints)
24: end for
25: end procedure
26: procedure �̃ = approx_�� (Θ̃ = ⟨�̃, �̃ , �̃⟩, �, �, �)
27: � = [�1 �2 · · · ��−1 0 ��+1 · · · ��]
28: �� = � � (�), �� = � � (�), �′

�
= � �

′
(�), �′� = � �

′
(�)

29: if � == � then

30: �̃ [�] = ��
31: �̃ = ⟨�̃, ��̃ , �̃⟩
32: else

33: �̃ (�) ≜ �̃� ≤ �̃ ∧ �̃� ≤ � ≤ �̃� , � = [�1 �2 · · · ��]
⊺

⊲ input set’s predicate
34: � ′ = [�1 �2 · · · �� ��+1]

⊺
⊲ new variable ��+1

35: �0 = [�̃ 0�×1], �0 = �̃

36: � = (�� − �� )/(� − �)
37: if � ≥ 0 then

38: �1 = [��̃ [� , :] -1], �1 = -�(�̃ [�] − �) − �� ⊲ ��+1 ≥ �(�� − �) + ��
39: �2 = [-�

′
��̃ [� , :] 1], �2 = �′� (�̃ [�] − �) + �� ⊲ ��+1 ≤ �′� (�� − �) + ��

40: �3 = [-�
′
�
�̃ [� , :] 1], �3 = �′

�
(�̃ [�] − �) + �� ⊲ ��+1 ≤ �′

�
(�� − �) + ��

41: �′ = [�0;�1;�2;�3], �
′
= [�0;�1;�2;�3]

42: else if � ≤ 0 then

43: �1 = [�
′
�
�̃ [�, :] -1], �1 = -�′

�
(�̃ [�] − �) − �� ⊲ ��+1 ≥ �′

�
(�� − �) + ��

44: �2 = [-��̃ [�, :] 1], �2 = �(�̃ [�] − �) + �� ⊲ ��+1 ≤ �(�� − �) + ��
45: �3 = [�

′
��̃ [�, :] -1], �3 = -�′� (�̃ [�] − �) − �� ⊲ ��+1 ≥ �′� (�� − �) + ��

46: �′ = [�0;�1;�2;�3], �
′
= [�0;�1;�2;�3]

47: else
48: � =���(�′

�
[�], �′� [�])

49: �� =

� � (� )−��−� � (0)

� �
′
(0)−�

, �� = � �
′
(0)�� + �

� (0)

50: �� =

� � (� )−��−� � (0)

� �
′
(0)−�

, �� = � �
′
(0)�� + �

� (0)

51: �� =

� � (� )−��
�−��

, �� =
� � (� )−��
�−��

52: �1 = [��̃ [�, :] -1], �1 = -� (�̃ [�] − �) − �� ⊲ ��+1 ≥ � (�� − �) + ��
53: �2 = [-��̃ [�, :] 1], �2 = � (�̃ [�] − �) + �� ⊲ ��+1 ≤ � (�� − �) + ��
54: �3 = [���̃ [�, :] -1], �3 = -�� (�̃ [�] − �) − � � (�) ⊲ ��+1 ≥ �� (�� − �) + �

� (�)

55: �4 = [-�� ˜� [�, :] 1], �4 = �� (�̃ [�] − �) + �
� (�) ⊲ ��+1 ≤ �� (�� − �) + �

� (�)
56: �′ = [�0;�1;�2;�3;�4], �

′
= [�0;�1;�2;�3;�4]

57: end if
58: � ′ (� ′) ≜ �′� ′ ≤ � ′ ∧ � ′� ≤ � ′ ≤ �′� ⊲ output set’s predicate

59: �′ = ��̃,� ′ = ��̃ ,� ′ = [� ′ �� ] ⊲ � [�] = � � (�� ) = ��+1
60: � ′� = [�̃� ;�� ], �

′
� = [�̃� ;��]

61: �̃ = ⟨�′,� ′, � ′⟩
62: end if
63: end procedure
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RStar uses the back-substitution of symbolic intervals to ind the bounds of � with improved scalability over
LPs. In the star_approx_� function (line 13), as mentioned in the previous section, RStar4 applies up to four
linear constraints to overapproximate activation functions following Lemma 3.1, while RStar2 applies two linear
constraints, as shown in Lemma 3.9. Lines 40, 45, 54, and 55 are discarded for RStar2. Since RStar0 is an outer box
of RStar4/RStar2, Θ′ = ���� (�, �) in line 13 for RStar0. In order to further reduce the number of back-substitution
propagation, symbolic intervals of aine mapping, i.e., D� and activation, i.e., D� are composed into a single
symbolic interval (line 17) based on Proposition 2.4. A new RStar is created with an overapproximated star set
and a set of symbolic intervals in line 18. In the case of the original star set reachability analysis, the state bounds
in line 12 are solved by an LP solver, and an overapproximation rule applies based on Lemma 3.1 in line 13. All
functionality of symbolic intervals, lines 14-17, are discarded for the original star set.

Example 4.1 (Reachability analysis of a TanH FNN). Given the same 3-layer TanH FNN in Example 3.2. Figure 3
visualizes the reachable intermediate set of each operation and the reachable output set of FNN for all methods.

Fig. 3. Reachability analysis of TanH FNN

Initially, 121 star-shaped points are uniformly distributed within the convex input set. We consider these points
to check the soundness and conservativeness of each method. For this example, although the bounds of the state
variable at the output reachable set of RStar4 are more conservative than those of a star set, RStar4 has the same
polyhedral coniguration as a star set. If an LP solver is used instead of symbolic intervals, then the bounds of
RStar4 at the reachable output set will be the same as those of a star set. In Figure 3, RStar4 (cyan color) matches
exactly to a star set; therefore, it is not visible as a star set is displayed on top of all igures. We can clearly see
that a star set and RStar4 are the least conservative method. RStar0 is the most conservative method.
Now, we straightforwardly show the reachable output sets of the star set and the relaxed star sets used for

neural network veriication. Let Θ, Ω0, Ω2, Ω4 represent input sets of the original star set, RStar0, RStar2, and
RStar4, respectively. Θ̄, Ω̄0, Ω̄2, Ω̄4 represent the reachable output sets. In other words, Ω̄4 = F (Ω4). Given a
3-layer TanH FNN addressed in Example 3.2, a bounded input set can be represented in the star set and relaxed
star sets as follows:

Θ = ⟨�,� , � (�) ≜ �� ≤ � ∧ �� ≤ � ≤ �� ⟩, where

� =

[
0

0

]
,� =

[
1 0

0 1

]
,� =

[
0 0

]
, � = 0, �� =

[
−1
−1

]
, �� =

[
1

1

]
.

For symbolic intervals, D = ∅, �0 = [−1,−1]
� , and �0 = [1, 1]

� . Initially, Ω0 = Ω2 = Ω4 = ⟨Θ,D, �0, �0⟩.
Once overapproximate reachability analysis proceeded through the network, the reachable output sets of each

method at the output layer are shown below.
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Θ̄ = ⟨�̄, �̄ , �̄ (�) ≜ �̄� ≤ �̄ ∧ �̄� ≤ � ≤ �̄� ⟩:

�̄ =

[
0

0

]
, �̄ =

[
0 0 0.3 −0.4
0 0 −0.1 −0.8

]
, �̄ =



0.0839 0.3359 −1 0

−0.0786 0.3145 0 −1
−0.0839 −0.3359 1 0

0.0786 −0.3145 0 1

0.1699 0.6799 −1 0

−0.0953 0.3815 0 −1
−0.1699 −0.6799 1 0

0.0953 −0.3815 0 1



, �̄ =



0.3416

0.0688

0.3416

0.0688

0.0883

0.0148

0.0883

0.0148



,

�̄� =



−1
−1

−0.7615
−0.4621



, �̄� =



1

1

0.7615

0.4621



.

Since the relaxed star sets of each method use the same symbolic intervals algorithms on an aine mapping
and an activation function, each relaxed star set contains equivalent symbolic intervals, i.e., D̄, at the output
layer.
D̄ = {D2,D1}, where D1 = ⟨(�

�
1, �

�
1), (�

�
1 , �

�
1 )⟩, D2 = ⟨(�

�
2, �

�
2), (�

�
2 , �

�
2 )⟩,

��
1 =

[
0.0839 0.3359

−0.0786 0.3145

]
, ��1 =

[
−0.3416
−0.0688

]
,��

1 =

[
0.0839 0.3359

−0.0786 0.3145

]
, ��1 =

[
0.3416

0.0688

]
,

��
2 =

[
0.3 −0.4
−0.1 −0.8

]
, ��2 =

[
0

0

]
,��

2 =

[
0.3 −0.4
−0.1 −0.8

]
, ��2 =

[
0

0

]
.

Ω̄0 = ⟨Θ̄0, D̄, �0, �0⟩, where Θ̄0 = ⟨�̄0, �̄0, �̄0 (�) ≜ �̄0� ≤ �̄0 ∧ �̄�0 ≤ � ≤ �̄�0⟩,

�̄0 =

[
0

0

]
, �̄0 =

[
0.2117 0

0 0.4290

]
, �̄0 =

[
0 0

]
, �̄0 = 0, �̄�0 =

[
−1
−1

]
, �̄�0 =

[
1

1

]
.

Ω̄2 = ⟨Θ̄2, D̄, �0, �0⟩, where Θ̄2 = ⟨�̄2, �̄2, �̄2 (�) ≜ �̄2� ≤ �̄2 ∧ �̄�2 ≤ � ≤ �̄�2⟩,

�̄2 =

[
0

0

]
, �̄2 =

[
0 0 0.3 −0.4
0 0 −0.1 −0.8

]
, �̄2 =



0.0839 0.3359 −1 0

−0.0839 −0.3359 1 0

−0.0786 0.3145 0 −1
0.0786 −0.3145 0 1



, �̄2 =



0.3416

0.3416

0.0688

0.0688



,

�̄�2 =



−1
−1

−0.7615
−0.4621



, �̄�2 =



1

1

0.7615

0.4621



.
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Ω̄4 = ⟨Θ̄4, D̄, �0, �0⟩, where Θ̄4 = ⟨�̄4, �̄4, �̄4 (�) ≜ �̄4� ≤ �̄4 ∧ �̄�4 ≤ � ≤ �̄�4⟩,

�̄4 =

[
0

0

]
, �̄4 =

[
0 0 0.3 −0.4
0 0 −0.1 −0.8

]
, �̄4 =



0.0839 0.3359 −1 0

−0.0839 −0.3359 1 0

0.1699 0.6799 −1 0

−0.1699 −0.6799 1 0

−0.0786 0.3145 0 −1
0.0786 −0.3145 0 1

−0.0953 0.3815 0 −1
0.0953 −0.3815 0 1



, �̄4 =



0.3416

0.3416

0.0883

0.0883

0.0688

0.0688

0.0148

0.0148



,

�̄�4 =



−1
−1

−0.7615
−0.4621



, �̄�4 =



1

1

0.7615

0.4621



.

5 EVALUATION

Experimental Setup. In this section, we evaluate the proposed reachability algorithms based on the original
star set and the relaxed star approaches compared to an existing overapproximate method DeepPoly [28]. The
proposed reachability algorithms are implemented in NNV [35], a tool for verifying deep neural networks and
learning-enabled CPS. To ensure fair and exact comparisons, we verify the robustness of our FNNs with the
star set and RStar approaches in the NNV and DeepPoly method via the ERAN [21] toolbox. In this experiment,
AbsDom LP represents the star-based approach of RStar2 (two linear constraints) using an LP solver instead
of the back-substitution. ��� represents the veriication time improvement of the RStar0 over the star set, ���
represents the veriication time improvement of the RStar0 over DeepPoly, and ‘−−’ denotes time-out in Tables 2
and 3. An experiment is considered time-out if it takes more than 5 hours to verify 100 random images per � . In
Figures 4 and 5, (N) represents NNV, and (E) represents ERAN. We use two image datasets for our evaluation:
MNIST [17], and CIFAR10 [16]. We note that MATLAB linprog optimizer is used for the star-set approach for the
MNIST dataset only as part of reachability analysis due to the in-feasibility of inding an optimal solution via the
gurobi optimizer [7]. Otherwise, the gurobi optimizer is applied for the reachability analysis. This experiment is
done on a computer with the following conigurations: Intel Core i7-10700 CPU @ 2.90GHz × 8 Processor, 63.7
GiB Memory, 64-bit Ubuntu 18.04.6 LTS OS.

5.1 Robustness Certification of Image Classification DNNs

MNIST dataset consists of 28 × 28 handwritten images from 0 to 9. The CIFAR10 dataset contains 32 × 32 RGB
images of 10 categories, such as ship, truck, bird, etc. A network is considered robust to an input set if the
classiied label of an image holds for any perturbation attack. To verify the robustness of the neural networks, we
perform the �∞ norm attack on images correctly classiied by the respective neural network and randomly select
100 images that can be veriied at least by one approach at � = 0.01 for each network. �∞ norm attack [1] applies
some bounded disturbance � to the normalized input vector � , i.e., | |� − � ′ | |∞ ≤ � , where � ′ is the perturbed
image. Then, we compute the reachable output sets for each perturbed image to prove the robustness of the
neural network. The neural network is classiied as robust against �∞ norm attack if �� − �� > 0, where � is the
correctly classiied index and �� ∈ R� − {�� }. Since we only need to determine that the correctly classiied output
always has the maximum value in the set compared to other outputs, the softmax function is neglected in our
experiments. For each dataset, we train a set of three image classiication FNNs with diferent architectures: small,
medium, and big. The architecture of these networks is shown in Table 1. For instance, a small MNIST model has
2 hidden layers and 200 hidden units, which means each hidden layer has 100 units. All neural networks trained
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based on the MNIST dataset set have a test accuracy of at least 94.9%, and those trained with CIFAR10 have a test
accuracy of at most 43.67% with unnormalized input data.

Table 1. The architecture of neural networks.

Dataset Model #Hidden Layers #Hidden units

MNIST Small 2 200

Medium 6 900

Large 4 1600

CIFAR10 Small 2 200

Medium 6 900

Large 4 1600

Fig. 4. Robustness verification of MNIST neural networks.

5.2 Verification Results and Time performance.

We are interested in the veriication time and the number of images that can be veriied by each method to
guarantee the robustness of neural networks under diferent disturbances.
Scalability. Non-linear activation functions such as TanH and Sigmoid are bounded and have saturation

regions. For example, TanH saturates inputs to range between [-1, 1]. Upper bounds tend to result closer to each
other, approaching the value of 1 as reachability analysis passes through the layers. In contrast, lower bounds
result closer to each other, approaching the value of -1. Due to these behaviors, the computation time of the LP
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Fig. 5. Robustness verification of CIFAR10 neural networks.

solver to compute the state vector’s bounds increases for deeper layers. In the worst case, LP solvers could not
ind feasible bounds. As a result, the star set approach does not persist in scalability for deeper neural networks
(medium and big) with these activation functions. However, the RStar approaches maintain improved scalability
by acquiring the back-substitution throughout the experiment.
Time performance. The computation time of the reachability analysis of RStar is signiicantly reduced by

using symbolic intervals with back-substitution. In our experiment, RStar0 veriies neural networks up to 3528
times faster than the original star set approach. Our most computationally expensive relaxed star approach,
RStar4, veriied on average 51 times faster than the star set. For MNIST FNNs, RStar0 veriies a number of images
close to that of DeepPoly, but it veriies up to 20 times faster than DeepPoly. For CIFIAR10 FNNs, RStar0 veriies
neural networks up to 46 times faster than DeepPoly. In general, both RStar2 and RStar4 verify faster than the
star set but slower than DeepPoly. RStar0 is the fastest approach among all methods to verify DNNs. Unlike all
other methods, the relaxed star approaches can choose a number of linear constraints for overapproximation to
trade of computation time and scalability over precision and conservativeness.
Conservativness. Figures 4 and 5 show the number of images each method veriies on CIFAR10 and MNIST

DNNs. Both star set and RStar4 apply up to four linear constraints to overapproximate the sigmoidal activation
function (Lemma 3.1). However, RStar4 is more conservative than the star set as it inds the state bounds using
symbolic intervals with two linear constraints on each activating operation. The star set uses all bounds proposed
in Fig. 1, i.e., �� , �� , �1, �2, �3, �4, on each activating operation with an LP solver to the state bounds. As expected,
the star set veriies the most images due to solving multiple linear constraints based on the LP solver. Hence, the
star set is the least conservative method, and ���� ⊆ �����4 ⊆ �����2 ⊆ �����0. DeepPoly applies two linear
constraints to ind a state vector’s lower and upper bounds. However, it uses only the lower and upper bounds
that overapproximate the two symbolic intervals when it comes to neural network veriication. A set of interval
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Table 2. Verification time of MNIST neural networks.

Model � Veriication Time of 100 images (sec)
Star AbsDom LP RStar4 RStar2 RStar0 DeepPoly ��� ���

Small 0.010 1960.31 2312.60 26.39 13.36 1.43 7.17 1370.84 × 5.01 ×
TanH 0.012 1999.55 2323.64 31.42 15.42 1.43 7.87 1398.29 × 5.50 ×

0.014 2015.20 2333.79 41.76 17.25 1.41 9.09 1429.22 × 6.45 ×
0.016 2059.38 2253.97 49.45 19.84 1.40 9.92 1470.98 × 7.09 ×
0.018 2131.21 2289.73 59.76 21.25 1.43 10.37 1490.36 × 7.25 ×
0.020 2222.42 2284.14 58.34 21.06 1.49 10.69 1491.56 × 7.17 ×

Med 0.010 −− −− 368.85 215.37 6.95 75.31 10.84 ×
TanH 0.012 −− −− 461.19 234.28 6.69 107.77 16.11 ×

0.014 −− −− 474.15 229.68 6.65 117.19 17.62 ×
0.016 −− −− 482.83 227.95 6.68 120.59 18.05 ×
0.018 −− −− 492.67 223.52 6.68 125.99 18.86 ×
0.020 −− −− 497.44 218.41 6.59 127.63 19.37 ×

Big 0.010 −− −− 2489.53 1452.67 23.42 243.37 10.39 ×
TanH 0.012 −− −− 2598.16 1255.24 22.82 250.23 10.97 ×

0.014 −− −− 2608.51 1512.07 22.58 291.11 12.89 ×
0.016 −− −− 2947.90 1054.31 22.84 391.98 17.16 ×
0.018 −− −− 2803.49 1061.04 23.78 463.65 19.49 ×
0.020 −− −− 2931.64 1047.88 25.04 464.72 18.56 ×

Small 0.010 2083.11 2257.16 27.47 9.67 1.56 6.824 1335.32 × 4.37 ×
Sigmoid 0.012 2102.27 2200.89 29.72 15.31 1.47 7.359 1430.11 × 5.01 ×

0.014 2122.31 2212.71 36.18 26.18 1.44 8.181 1473.83 × 5.68 ×
0.016 2128.31 2253.01 43.68 32.30 1.42 8.919 1498.81 × 6.28 ×
0.018 2168.24 2230.74 50.07 38.75 1.44 9.286 1505.72 × 6.45 ×
0.020 2191.55 2203.99 56.38 44.95 1.46 9.694 1501.06 × 6.64 ×

Med 0.010 −− −− 369.28 223.44 6.61 71.88 10.87 ×
Sigmoid 0.012 −− −− 426.42 233.75 6.90 93.56 13.56 ×

0.014 −− −− 447.59 236.06 6.96 103.44 14.86 ×
0.016 −− −− 478.85 233.16 7.00 114.65 16.38 ×
0.018 −− −− 505.24 237.95 6.77 123.36 18.22 ×
0.020 −− −− 503.56 238.86 6.58 125.54 19.07 ×

Big 0.010 −− −− 2694.19 1049.52 24.93 273.225 10.96 ×
Sigmoid 0.012 −− −− 3016.54 1069.88 24.23 311.305 12.85 ×

0.014 −− −− 2997.89 1106.53 24.90 357.426 14.35 ×
0.016 −− −− 3299.61 1128.53 23.30 399.484 17.15 ×
0.018 −− −− 3186.45 1141.06 23.68 425.632 17.97 ×
0.020 −− −− 3415.57 1142.41 23.01 458.542 19.93 ×

constraints, i.e., � =

>�
�=1 [�� , �� ], is used to verify the robustness of the neural network [28].� is the number of

operations in the DNN. Therefore, DeepPoly is more conservative than RStar2. Given �-layers FNN, the reachable
output set with RStar0 is Ω = {� | � ∈ [�� , �� ]}, meaning it only considers the state bounds at the output layer.
Since the symbolic interval approach is one of the abstract interpolation methods, and abstract transformers
in DeepPoly apply the same linear bounds �1 and �2, we expect DeepPoly to be less conservative than RStar0.
According to Fig 4 and 5, DeepPoly veriies more images than RStar0 generally. However, we notice that DeepPoly
proves fewer images than RStar0 on the CIFAR10 medium TanH network for � = 0.008 and CIFAR10 big TanH
network for � = {0.0001, 0.001, 0.0015}. We believe there is some bug in DeepPoly.
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Table 3. Verification time of CIFAR10 neural networks.

Model � Veriication Time of 100 images (sec)
Star AbsDom LP RStar4 RStar2 RStar0 DeepPoly ��� ���

Small 0.004 3112.38 2018.85 64.34 43.62 2.06 20.30 1510.86 × 9.85 ×
TanH 0.006 3201.92 2107.30 70.90 47.31 2.14 21.96 1496.22 × 10.26 ×

0.008 3298.00 2151.06 78.97 55.33 2.26 26.14 1459.29 × 11.57 ×
0.010 3398.84 2181.15 92.20 58.79 2.18 30.25 1559.10 × 13.88 ×
0.012 3455.41 2186.51 93.22 57.92 2.02 33.75 1710.59 × 16.71 ×
0.014 3527.98 2196.18 97.52 59.93 2.02 37.11 1746.52 × 18.37 ×

Med 0.004 −− −− 1526.09 559.85 9.83 223.80 22.77 ×
TanH 0.005 −− −− 1770.22 873.69 10.60 293.72 27.71 ×

0.006 −− −− 1874.22 620.33 9.63 345.78 35.91 ×
0.007 −− −− 1896.33 908.76 10.22 361.63 35.38 ×
0.008 −− −− 1947.69 594.78 9.53 374.66 39.31 ×
0.009 −− −− 1999.03 873.76 9.48 392.00 41.35 ×

Big 0.0001 −− −− 14709.54 5620.24 31.37 845.36 26.95 ×
TanH 0.0005 −− −− 9362.07 5703.62 31.30 1011.02 32.30 ×

0.0010 −− −− 10408.27 6098.98 31.76 1133.33 35.68 ×
0.0015 −− −− 11034.17 6296.57 31.75 1353.34 42.62 ×
0.0020 −− −− 15664.43 6296.57 31.90 1428.80 44.79 ×
0.0025 −− −− 11781.70 6880.26 31.17 1439.27 46.17 ×

Small 0.004 6880.94 4669.78 81.06 53.03 1.95 25.44 3528.68 × 13.05 ×
Sig. 0.006 6870.19 4770.13 96.80 62.33 2.03 26.65 3384.33 × 13.13 ×

0.008 6875.68 4835.67 113.62 72.54 2.11 29.43 3258.61 × 13.95 ×
0.010 6870.88 4897.19 129.60 80.57 2.15 32.22 3195.75 × 14.99 ×
0.012 6793.01 4927.98 137.37 81.83 2.17 37.86 3130.41 × 17.45 ×
0.014 6793.60 4952.63 142.23 86.61 2.18 40.30 3116.33 × 18.49 ×

Med 0.002 −− −− 1455.14 730.53 10.01 226.87 22.66 ×
Sigmoid 0.003 −− −− 1558.18 767.03 10.35 242.19 23.40 ×

0.004 −− −− 1508.76 824.71 11.18 261.67 23.41 ×
0.005 −− −− 1649.89 981.90 11.61 273.46 23.55 ×
0.006 −− −− 1684.02 890.23 11.24 282.25 25.11 ×
0.007 −− −− 1736.53 949.26 11.33 295.17 26.05 ×

Big 0.0001 −− −− 8323.97 5401.24 33.64 841.84 25.02 ×
Sigmoid 0.0010 −− −− 8840.37 5436.69 31.99 907.47 28.37 ×

0.0020 −− −− 9097.82 5618.01 31.78 956.15 30.09 ×
0.0030 −− −− 9295.44 5404.40 31.86 1063.38 33.38 ×
0.0040 −− −− 9545.42 5517.04 32.58 1156.23 35.49 ×
0.0050 −− −− 9762.18 5719.41 32.19 1192.44 37.04 ×

Veriication results. The experiments show that the star-based approach veriies the most images. However,
due to the time restriction of the experiment, it could not verify all networks with architecture larger than a small
size. For the rest of the networks, RStar4 veriies the most images. In Figures 4 and 5, we can see that RStar2
veriies almost the same number of images as AbsDom LP (N). On the MNIST dataset, AbsDom LP (N) veriies
at most one more image than RStar2 as it uses MATLAB linprog optimizer instead of gurobi optimizer. If the
state bounds of RStar2 are computed based on MATLAB linprog, RStar2 veriies the same number of images
as AbsDom LP. On the MNIST dataset, the star set veriies at most 17% more images than RStar4, while on the
CIFAR10 dataset, it veriies at most 1% more. These results show that RStar4 holds its precision on the larger
dataset. RStar4 veriies up to 40% more images against �∞ norm attack than DeepPoly. RStar0 performs very
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poorly on CIFAR10 neural networks with Sigmoid activation function. However, the precision of RStar0 is very
close to the precision of DeepPoly for MNIST NNs and CIFAR10 TanH NNs (medium and big). Except for CIFAR10
Sigmoid NNs and small CIFAR10 TanH NN, RStar0 veriies at most 5% fewer images than DeepPoly in the worst
case.

6 RELATED WORK

Veriication of DNNs receives great attention with many approaches proposed for feedforward neural networks
(FNNs) and convolutional neural networks (CNNs) such as polytope [33, 40, 43], star [32, 34], ImageStar [30, 31],
zonotope [4, 27], symbolic interval [36, 41], simulation-based [39], satisiability modulo theories (SMT) [10, 14, 15],
Mixed-Integer Linear Programming (MILP) [2, 20], CROWN [46], FastLin and FastLip [37], and abstraction [23].
Lately, veriication of recurrent neural networks (RNNs) has been investigated using unrolling techniques [13]
and invariant inference [12, 25, 45].

Approximation of sigmoidal activation functions. In 2010, Pulina at el. [24] veriied Sigmoidal FNNs by
splitting the sigmoidal function into � intervals. Due to the exponential explosion of abstraction, this approach is
not scalable. Grundt et al. [6] converted an interval constraint propagator into the SMT solver iSAT problem.
They also encapsulated the sigmoid function into multiple interval boxes with a ixed width for an approximating
approach. Fast-Lin [37] and DeepZono [27] overapproximated non-linear activations by applying two parallel
linear bounds. DeepPoly [28] and CROWN [46] proposed the back-substitution method to quickly estimate
the state vector � without solving LPs. To allow the back-substitution work, they overapproximated functions
by two independent linear bounds. Zhang et al. [47] implemented network-wise approximation, NeWise, by
solving the optimization problems. They stated if the network is monotonous, the composition of all neuron-wise
tightest approximations is as tight as the network-wise approximations. In comparison with VeriNet [8] and
RobustVeriier [18], Zhang et al. mentioned in their paper that diferent methods of tight overapproximation by
two linear bounds vary case by case. Henriksen et al. implemented VeriNet [8, 9], which has symbolic interval
propagation and a branch and bound-based reinement phase. The authors proposed a unique upper linear bound
for the tangent function. DeepCert [38] adopted a ine-grained linear approximation approach that considers
the slopes of two linear constraints according to the bounds of the state vector. Lin et al. (RobustVeriier [18])
transformed sigmoid DNNs into equivalent LP problems with relaxation. Ivanov et al. [11] transformed the
sigmoidal neural network into an equivalent hybrid system for veriication and applied the Taylor model approach
for better scalability.

Veriication of ReLU DNNs. Unlike sigmoidal operations, ReLU functions have been extensively researched
in neural network veriication. The star set [32] veriies ReLU networks with exact and overapproximation
approaches. It applied three linear constraints known as triangular relaxation to overapproximate ReLU with LP
solvers. An extension of the star set, ImageStar [30] can prove the robustness of real-world convolutional neural
networks (CNN) such as VGG19. The authors showed the formal method to verify the robustness of semantic
segmentation neural networks. Recently, Yang et al. proposed the Facet-Vertex Incidence approach (FVI) [42ś44]
to verify ReLU DNNs. An FVI matrix has a containment relation of facets and vertices to compute a complete and
eicient reachability analysis. Instead of overapproximation ReLU of a single neuron, Singh et al. [26] initiated a
parametric framework that can approximate the output of multiple ReLUs jointly.

7 CONCLUSION AND FUTURE WORKS

We propose the star and the relaxed star-based overapproximate reachability analysis for FNNs with Sigmoid or
TanH activation functions. Although the star set is the least conservative approach, it could not handle large
neural networks as it used LP solver to compute the state bounds. The experiments show that RStar2 and RStar4
are scalable and more precise than the existing polytope approach to verifying large neural networks against
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adversarial attacks. For a bigger dataset, CIFAR10, the relaxed star approaches verify fairly close to the number of
images the star set veriied. We show that the symbolic intervals using back-substitution are a promising method
to substitute LP optimization for DNNs with bounded nonlinear activation functions such as TanH and Sigmoid.
Therefore, our relaxed star methods are very promising for verifying the robustness of deeper neural networks
and the star method for smaller neural networks.

Future works. We are interested in applying the proposed methods to verify real-time learning-based cyber-
physical systems and extending our work to verify long short-term memory (LSTM) and gated recurrent unit
(GRU) neural networks. To increase scalability, we plan to exploit the beneit of GPU computing and parallel
processing of CPUs. We plan to explore and improve overapproximation reachability by improving the quality of
upper and lower linear constraints of nonlinear activation functions. We are also considering splitting methods
to reduce accumulated overapproximation errors.
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