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Abstract—The dynamics of power grids are governed by a large
number of nonlinear differential and algebraic equations (DAEs).
To safely operate the system, operators need to check that the
states described by these DAEs stay within prescribed limits af-
ter various potential faults. However, current numerical solvers
of DAEs are often too slow for real-time system operations. In
addition, detailed system parameters are often not exactly known.
Machine learning approaches have been proposed to reduce the
computational efforts, but existing methods generally suffer from
overfitting and failures to predict unstable behaviors. This paper
proposes a novel framework to predict power system transients by
learning in the frequency domain. The intuition is that although the
system behavior is complex in the time domain, there are relatively
few dominant modes in the frequency domain. Therefore, we learn
to predict by constructing neural networks with Fourier transform
and filtering layers. System topology and fault information are
encoded by taking a multi-dimensional Fourier transform, allowing
us to leverage the fact that the trajectories are sparse both in time
and spatial frequencies. We show that the proposed approach does
not need detailed system parameters, greatly speeds up prediction
computations and is highly accurate for different fault types.

Index Terms—Power system transients, prediction methods,
learning systems, frequency domain analysis.

I. INTRODUCTION

I
NCREASING the amount of renewable resources integrated

in the electric grid is fundamental to reducing carbon emis-

sions and mitigating climate change. Many governments and

companies have set ambitious goals to generate their electricity

with close to 100% renewables by 2050 [1]. So far, much of the

attention has been paid to increasing the aggregate generation

capacities. However, increased renewable generation capacities

also lead to challenging problems in dynamic stability of the

grid [2]. A grid can be thought as a large interconnected system

of generators, loads and power electronic components, governed

by nonlinear differential and algebraic equations (DAEs) [3],

[4]. This system also undergos constant disturbances, from load
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Fig. 1. Frequency oscillations during the Florida blackout resulted from a
tripped line event in 2008 [6].

changes to line outages [5]. The predominant goal of power

system operations is to make sure that the system stays within

acceptable limits under these disturbances.

The system states are governed by different DAEs during

the transient across pre-fault, fault-on and post-fault stages [4].

Fig. 1 shows a tripped line in Florida that led to rolling blackouts

that impacted the lower two-thirds of state [6]. Ideally, a system

should withstand these types of single events without perfor-

mance degradation (N − 1 security) [5], but this was not the case

in Fig. 1. A fundamental reason is that solving the governing

DAEs is extremely computationally challenging and not all

contingencies can be checked. These DAEs are highly nonlinear

and numerical methods (e.g., implicit and explicit integration)

are used to solve them [7]. To study transient stability, numerical

algorithms need to use fairly fine discretizations. Even for a

moderately sized system, existing numerical solvers may take

minutes to simulate only seconds of system trajectories [8].

Consequently, only a limited number of scenarios are studied

offline and operators tend to restrict the system to operate

close to these scenarios. As shown in Fig. 2, for certain given

conditions of power generation, demand and topology, system

operators simulate the system trajectories after disturbances

through solving the shifted DAEs. By studying scenarios of

system conditions offline, system operators will have a checklist

about what action needs to be taken in real time to ensure that

the systems’ states are within the permissible range after critical

contingencies. Since renewables have much larger uncertainties

than conventional resources, operators often curtail them to ar-

tificially limit their generation to avoid operating at “unknown”

regions [3]. For example, some European grids are not allowed to
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Fig. 2. Power system operators conduct dynamic power system transient
prediction by solving DAEs [4], [10], where x and y represent the set of state
variables and algebraic variables, respectively. The dynamics are described by
differential equations f(·) and algebraic equations h(·), with subscript F and
PF indicating the fault-on and post-fault period divided by the fault time tf
and the fault-clear time tcf , respectively. Under certain conditions of power
generation, demand and topology, the system trajectory after disturbances is
simulated through solving the shifted DAEs.

operate at above 40% wind, no matter how much wind is actually

blowing [9]. Therefore, fast and accurate dynamic simulations

would greatly increase the actual utilization of renewables in the

system.

Recently, machine learning (ML) approaches have been pro-

posed for dynamical simulation instead of DAE solvers and can

reduce the computation time by orders of magnitude. Given

the fault information and present measurement of states, ML

methods learn feed-forward neural networks to predict future

trajectories. Most works focus on a binary classification to iden-

tify whether a system is stable. Long short-term memory-based

recurrent neural networks are commonly utilized to process

sequential data [11], [12]. A shaplet learning approach is pro-

posed to extract spatial-temporal correlations [13]. Convolu-

tional neural networks are adopted in [14], [15] to process data

from multiple sources. However, a binary prediction may not

provide sufficient information for real-time decision making.

For example, to prevent cascading outages, operators need to

know the magnitude of the states and the actual trajectories [4],

but binary predictions are too coarse for making these types of

assessments.

To alleviate the limitation of binary prediction, some recent

works provide finer trajectory prediction by learning the time

domain solutions to the governing DAEs. Polynomial basis

are used in [16] to approximate the solutions, but the number

of basis functions grows exponentially with the system size.

Extreme learning machine is utilized in [17] for online voltage

stability margin prediction, but the traces of the system variables

are not provided. Deep neural networks are used in [18], [19]

to directly learn to predict the future trajectory from past and

current measurements. However, since power systems are large

and sampled sparsely in time, direct regression on time-domain

data does not perform very well. A rolling prediction is used

in [18] to improve accuracy, but with a high computational cost.

Instead of the time-domain approach, eigenstates of linear swing

equations after eigenspace transformation are utilized in [20]

to infer system dynamics. However, the assumptions on the

linearized system model and uniform damping ratios may not

hold for realistic and large-scale systems.

In addition, since the majority of trajectories used in training

are stable, the learned networks may fail to predict unstable be-

haviors. Physics-informed neural networks that directly attempt

to solve the DAEs have been proposed as an alternative [21], but

it does not currently scale beyond small networks.

In this paper, we propose a novel framework for predicting

power system transients by learning and making predictions in

the frequency domain, which provides a computation speed up

of more than 400 times compared to existing power system tools.

This approach follows the intuition that the system tends to

undergo oscillations that have a few dominant temporal-spatial

modes. We adopt and extend the structure of Fourier Neural

Operator in [22] to learn in the frequency domain and recover the

time domain trajectories through the inverse Fourier transform.

Specifically, we design the dataframe to encode the power sys-

tem topology and fault information, which leads to a 3D Fourier

transform. This method is able to make smooth and accurate pre-

dictions, capturing both stable and unstable behaviors without

the need to manually tune the training data. It improves the MSE

prediction error by more than 70% compared with state-of-the-

art AI methods, and vastly improves the detection of unstable be-

havior. Code and data are available at https://github.com/Wenqi-

Cui/Predict-Power-System-Dynamics-Frequency-Domain.

In summary, the main contributions of the paper are:

1) We propose a novel machine learning approach to predict

transient dynamics in the frequency domain, which can

accurately predict state trajectories based on a few mea-

surements.

2) We develop a dataframe that encodes spatial-temporal

information about the system topology, which greatly re-

duces the computational complexity in multi-dimensional

Fourier transforms.

3) The time-varying active/reactive power injection and

fault-on/clear actions are incorporated in the proposed

framework, enabling the prediction of the transients sub-

ject to different net power injections and actions.

The remaining of this paper is organized as follows. Section II

introduces the problem formulation for predicting power system

dynamics and transients. Section III provides the setup and

intuition of learning in the frequency domain. Section IV shows

the proposed framework for dynamic transient prediction and

Section V illustrates the construction of dataframe to encode

spatial-temporal relationships. Section VI shows the simulation

results. Section VII concludes the paper.

II. MODEL AND PROBLEM FORMULATION

A. Power System Swing Equations

The dynamics of power systems depend on the interactions

of a myriad of components including governors, exciters, sta-

bilizers, etc., as illustrated in Fig. 3 [5]. Let x ∈ R
n, y ∈ R

m,

a ∈ R
d be all the state variables, algebraic variables and exter-

nal input variables, respectively.1 The complete power system

1Throughout this paper, vectors are denoted in lower case bold and matrices
are denoted in upper case bold, while scalars are unbolded. If not specified, all
the vectors are time-varying. The vectors followed by (t) denote the value at the
time t.
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Fig. 3. Different components contributing to power system transient dynam-
ics [5].

model for calculating system dynamic response relative to a

disturbance can be described by a set of DAEs as follows [4],

[16]:

{

ẋ = f(x,y,a)
0 = h(x,y,a)

(1)

where the differential equation f : R
n × R

m × R
d → R

n typi-

cally describes the internal dynamics of devices such as the speed

and angle of generator rotors, the response of generator control

systems (e.g., excitation systems, turbines, governors), the dy-

namics of equipment including DC lines, dynamically modeled

loads and their control systems. Correspondingly, x ∈ R
n is

the state variables such as generator rotor angles, generator ve-

locity deviations (speeds), electromagnetic flux, various control

system internal variables, etc. The set of algebraic equations

h : R
n × R

m × R
d → R

m describes the electrical transmis-

sion system and interface equations. Correspondingly, y ∈ R
m

is the algebraic variable such as voltage magnitude and angles.

The external input variables a ∈ R
d acting on the equations

are power injection from generators, automatic generation con-

trol systems, fault-response actions and so on [4], [23]. In this

paper, we mainly consider the uncertainties in power generation

and demand, as well as the fault-response actions u. Let the

active and reactive net power injection be p and q, then the

external input variables are sometimes written as the tuple

a = (p, q,u).
Under changing generator and load conditions, power systems

are operated to withstand the occurrence of certain contingen-

cies. To ensure that cascading outages will not occur for the set

of critical disturbances, the state variables need to stay within

permissible ranges during the transient process of power system

after disturbances [4], [24]. For even a moderate power system

with tens or hundreds of buses, it may be governed by hundreds

or thousands of DAEs.

B. Transient Dynamics

Disturbances lead to deviations in the states x and variables y

through a step change of parameters in (1). For example, a short

circuit on a transmission line will results in a sudden change of

the susceptance and conductance in the set of algebraic equa-

tions, depending on the specific fault types (e.g., single-phase-

to-ground, two-phase-to-ground, line-to-line, three-phase-to-

ground, etc.).

Suppose a fault happens at the time tf and is cleared at the

time tcl.
2 The pre-fault stage is defined as the period before the

fault happens at tf . The system evolves from the initial state

x(t0) as:
{

ẋ = f(x,y,a;x(t0))
0 = h(x,y,a)

, t0 ≤ t < tf (2)

The sudden parameter changes after disturbances will lead

to a shift of the swing equations. The fault-on system evolves

with k subsequent actions from system relays and circuit breaks.

Suppose the j-th action is taken at tF,j , the fault-on system is

described by several set of equations [4]
{

ẋ = fF,1(x,y,a;x(tf ))
0 = hF,1(x,y,a)

, tf ≤ t < tF,1

...
{

ẋ = fF,k(x,y,a;x(tF,k))
0 = hF,k(x,y,a)

, tF,k−1 ≤ t < tcl

(3)

The post-fault stage refers to the system after the fault is

cleared. The post-fault system evolves with the differential

equation starting from the post-fault initial state x(tcl), written

as [4]
{

ẋ = fPF (x,y,a;x(tcl))
0 = hPF (x,y,a)

, t ≥ tcl. (4)

Despite large numbers of variables x and y, not all of them

are observable to system operators. For a system with N buses,

typically the main variables of interest are the angle δi, rotor

angle speeds (frequency) deviation ωi and voltage vi at each bus

i. Denote [N ] := {1, . . . , N}, δ := (δi, i ∈ [N ]) ∈ R
N , ω :=

(ωi, i ∈ [N ]) ∈ R
N , v := (vi, i ∈ [N ]) ∈ R

N . These variables

of interest are described by a three-tuple, denoted by s =
(δ,ω,v) ∈ R

3N . Note that other variables can also be included

in s if they are observable. The key to the safe dynamic operation

of power systems is to predict the future of the system trajec-

tories, given the fault information, some observations s and the

expected clearing actions u. Based on these trajectories, interim

actions like load shedding or emergency generation can be taken

to reduce the impact of the faults [5], [7].

C. Current Approaches and Challenges

Current approaches in power system dynamic prediction are

based on solving (2)–(4), which are highly nonlinear equations.

System operators typically rely on numerical integration, such

as Runge-Kutta (RK) methods or trapezoidal rule, to iteratively

approximate the solution of (2)–(4) in small time intervals [7].

However, because of the highly nonlinear nature of the DAEs,

very fine discretization steps are required for these numeri-

cal methods. As a result, these approaches may be too slow

for real-time decision-making. Some solvers use reduced-order

models and convert DAEs to ordinary differential equations

(ODEs) to simulate the dynamic response of generators [25].

For a moderately sized system, existing numerical solvers take

2The disturbance such as a short circuit on a transmission line is automatically
cleared by protective relay operation after a certain amount of time.
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Fig. 4. Illustration of the trajectory prediction starting at the time stamp ton

for τout number of time steps, using τin observations.

minutes to simulate only seconds of system trajectories [8].

As an alternative, system operators also use manual heuristics

to take action, but this strategy is becoming less tenable as

renewables introduce distinctly different operating scenarios.

III. LEARNING FOR DYNAMIC TRANSIENT PREDICTIONS

A. Problem Setup

Learning-based approaches try to find a mapping from present

measurements to future trajectories. The predictions are then ob-

tained through function evaluations, which significantly reduce

the computational time compared to the conventional numerical

approaches.

The problem we are interested in is to predict the trajectory

of the states s starting at the time stamp ton for τout number

of time steps with the sampling interval ∆t, as illustrated

in Fig. 4. The input are τin observations of the states from

s(ton − τin) to s(ton − 1), the external inputs from a(ton − τin)
to a(ton − 1), and the expected fault-clear actions from u(ton)
to u(ton + τout − 1). We write sin = (s(ton − τin), . . . , s(ton −
1)), a = (a(ton − τin), . . . ,a(ton − 1)), uout = (u(ton), . . . ,
u(ton + τout − 1)) and sout = (s(ton), . . . , s(ton + τout − 1)).

Our goal is to find a mapping G from the space of input (sin,

a, uout) to output trajectories sout. In this paper we consider the

mapping realized through (deep) neural networks with parame-

ters Φ. The prediction is then given by

ŝout = GΦ(sin,a,uout). (5)

The exact form of Φ depends on the structure of the neural

network used. In this paper, we adopt the Fourier neural operator

to learn in the frequency domain, and details will be specified

later in Section IV.

Let H be the batch size and ŝiout be the prediction of the

i-th sample for i = 1, . . . , H . The weights of neural network

Φ are updated by back-propagation to minimize loss function

L(Φ) defined by the mean absolute percentage error (MAPE)

between predicted trajectory and the actual trajectory L(Φ) =
1
H

∑H
i=1

||ŝi
out−s

i
out||1

||si
out||1

[22].

B. Current ML Approaches and Limitations

Learning the power system transient dynamics is not trivial

because states undergo nonlinear oscillations. Predictions with

three existing approaches are illustrated in Fig. 5. The blue line

is the trajectory of the frequency deviation on a bus before and

after a fault. The blue squares are the true trajectory sampled at

discrete times and the grey area is the prediction horizon.

Fig. 5. Illustration of power system transient prediction with existing machine
learning approaches. (a) Purely learning in the time domain tends to overfit. (b)
Since the vast majority of historical data are stable, a ML method tends to not
predict unstable trajectories. (c) Fitting the nonlinear dynamics with polynomial
basis also easily leads to over-fitting. (d) The accuracy of PINN decreases sharply
and fails to provide meaningful results for longer horizons.

A standard approach is to use a neural network to learn the

time-domain mapping from the input to the output. As illustrated

in Fig. 5(a) and Fig. 5(b), purely learning in the time domain

will easily overfit and cannot learn a smooth curve like the

true trajectories. More importantly, generic machine learning

approaches are prone to false negative errors. Since the vast

majority of historical trajectories are stable, a ML method tends

to not predict unstable trajectories. This would lead to catas-

trophic consequences if the system operator does not take action

to mitigate instabilities.

Similarly, fitting the nonlinear dynamics with polynomial ba-

sis will also easily lead to over-fitting, as illustrated in Fig. 5(c).

Recently, Physics-Informed Neural Networks have been pro-

posed in [26] to learn solutions that satisfy equations from

implicit Runge-Kutta (RK) integration. This approach has been

applied to power system swing dynamics in [21]. Since RK

method is the weighted sum of ODE solutions in discretized

intervals, its accuracy decreases sharply when predicting trajec-

tories with large oscillations for a longer horizon (e.g., larger

than 1 s), as illustrated in Fig. 5(d) (the prediction errors are

larger than the limit of the y-axis).

C. The Proposed Approach: System Dynamics in the

Frequency Domain

Because of the above challenges when learning in the time

domain, we propose a new approach for learning power system

transient dynamics in the frequency domain. Here we use a

simple swing equation model for transient dynamics to illustrate

the intuition for this approach [7], [27]:

δ̇i = ωi (6a)

Miω̇i = pi −Diωi −
N
∑

j=1,j �=i

Bij(δi − δj) (6b)

where i ∈ [N ] := {1, . . . , N} is the index of buses, M :=
diag(Mi, i ∈ [N ]) ∈ R

N×N are the generator inertia constants,
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Fig. 6. The structure of neural networks for power system transient prediction
using frequency-domain information. The input trajectory is first encoded using
the framework introduced later in Section V. The encoded data is then passed
through several Fourier Layers [22], where the input and output of the j-th layer
is gj and gj+1, respectively. The j-th layer consists of trainable weights θj for
learning in the Fourier domain, and trainable weights W j to keep the track of
aperiodic and distorted waveform.

D := diag(Di, i ∈ [N ]) ∈ R
N×N are damping coefficients,

p := (pi, i ∈ [N ]) ∈ R
N are the net power injections, B :=

[Bij ] ∈ R
N×N is the susceptance matrix.

With the assumption that the inertia and damping of the

buses are proportional to their power ratings (i.e, Di/Mi = γ
for all i ∈ [N ]), (6) can be explicitly solved [27]. Let C be

the incidence matrix. The (scaled) graph Laplacian matrix is

Γ = M−1/2CBC�M−1/2, where 0 = λ1 < λ2 ≤ · · · ≤ λN

are the eigenvalues with corresponding orthonormal eigenvec-

tors r1, r2, . . . , rN . Suppose there is a step change∆p in the net

power injection, and its decomposition along the eigenvectors is

∆p =
∑

i p̂iM
1/2ri. Then, the solution of equations (6) is [27]

ω(t) =

N
∑

i=1

p̂i
√

γ2 − 4λi

(

eφi,+t − eφi,−t
)

M−1/2ri (7)

where φi,+ :=
−γ+

√
γ2−4λi

2 φi,− :=
−γ−

√
γ2−4λi

2 .
Note that φi,+ are complex numbers with non-zero imaginary

part if γ2 − 4λi < 0, which results in sinusoidal oscillations.

Thus, the sinusoidal basis in Fourier transform (and inverse

Fourier transform) is a natural fit for power system transient

dynamics. Because of the finite set of eigenvalues, there is a

finite number of modes in the frequency domain. As a result, the

trajectories are sparse in the frequency domain, making it easier

to learn after Fourier transform.

However, the analysis based on the linear model (6) cannot

be applied to more realistic systems as illustrated in Fig. 3,

where high-order nonlinear differential equations are involved.

This is the reason why we need learning to predict the transient

dynamics. In the next sections, we will show the framework

of learning in the frequency domain and conduct numerical

verification using the full-order model for system dynamics.

IV. LEARNING IN THE FREQUENCY DOMAIN

A. Structure of the Neural Network

We construct the structure of neural network shown in Fig. 6,

which consists of several Fourier layers for learning in the

frequency domain. The input trajectory is first passed through

an encoder to integrate the spatial-temporal relationships and

the fault information. The encoded data is then passed through

l level of Fourier Layers [22], where the input of the j-th layer

is gj and the output is gj+1 for j = 1, . . . , l. Each Fourier layer

consists of one path with trainable weightsθj that learns periodic

components in the frequency domain, and another path with

trainable weights W j that directly operate on the time-domain

data. Intuitively, the second path (often called the pass-through

layer in Machine Learning literature) with weights W j helps to

keep the track of aperiodic and high-frequency components. In

the following, we illustrate the structure of each Fourier Layer.

The dimension for each tensor will be specified later after we

elaborate the encoder in Section V.

B. Fourier Layer

For the input of each layer, we conduct discrete Fourier

transformF to convert the input trajectory into the frequency do-

main [28]. Inspired by the work in [22], we use neural networks

parameterized by θj to learn in the frequency domain in each

layer j, and then recover the time-domain sequences by inverse

Fourier transformF−1. This process is defined as Fourier neural

operator Kθj
(·) represented by

Kθj
(gj) = F−1 (θj · ψ (Fgj)) , (8)

where the function ψ(·) is a low-pass filter that truncates the

Fourier series at a maximum number of modes kmax for efficient

computation [22]. Then θj is the weight tensor that conducts a

linear combination of the modes in the frequency domain.

The output of the j-th layer adds up Fourier neural operator

with the initial time-domain sequence weighted by W j to

recover aperiodic and high-frequency components

gj+1 = σ
(

W jgj +Kθj
(gj)

)

, (9)

whereσ is a nonlinear activation function whose action is defined

component-wise. We use ReLU in this paper.

Even though we limit at most kmax Fourier modes after the

low-pass filterψ after the Fourier transform, the linear transform

W j maintains high-frequency modes. The cut-off frequency

kmax of the low-pass filter is a tradeoff between the number of

frequency components that are kept versus the computational

complexity. If too few frequencies are selected, there is not

enough information in the frequency domain to learn well. If

too many frequencies are selected, then we need to learn a high

dimensional set of weights, negating the benefit of learning in the

frequency domain. The trade-off we adopted is to keep a small

number of modes in the frequency domain and pass them through

nonlinear layers, while still using a direct path as shown in Fig. 6.

Intuitively, this means that the low-frequency modes should be

learned in the frequency domain, while the higher-frequency

modes can be directly handled using the time domain signal.

The exact value of kmax involves some trial and error. We will

show the numerical study about the effect of kmax in Section VI.

C. Multi-Dimensional Fourier Transforms

The above approach of learning the weights in the frequency

domain and recovering the trajectory with inverse Fourier trans-

form provides the advantage in fitting oscillatory functions,

by learning smooth curvatures and avoiding over-fitting. For
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Fig. 7. Structure of power system transient prediction using Fourier Neural Operator (a) The data frame that incorporate time-varying parameters and fault-on/clear
actions within input time slots. (b) Incorporation of future fault-clear actions in the output time slots. (c) Fourier layer for Learning in the the frequency domain [22].

a system with N buses, there are 3N state variables we are

interested in: the voltage, angle, and frequency at each bus.

However, conducting Fourier transform with 3N dimensions

is time-consuming even for moderatedly sized power systems.

Another choice is to neglect the dependence and purely con-

duct 1D Fourier transform on the time dimension. However, this

will degrade the prediction performance since the networked

structure is an important cause of the oscillations. Moreover, the

time-varying parameters and the fault-clear actions should be

considered as well.

To overcome these challenges, we design a novel dataframe

that encodes time-varying parameters, fault information, and

spatial-temporal relationships in transient dynamics in the next

section.

V. ENCODING SPATIAL-TEMPORAL RELATIONSHIPS

A. Spatial-Temporal Relationship in Transient Dynamics

We construct 3D tensors to encode the input trajectories such

that the spatial-temporal relationships in the power system can

be included. In addition, computation complexities of Fourier

transforms are also reduced. The proposed framework is shown

in Fig. 7(a). Each data point is indexed by three dimensions and

written as (g0)x,y,zin
. The x axis indexes the buses from 0 to

N − 1. The y axis indexes different state variables for each bus

with y = 0, 1, 2 stands for δx, ωx, Vx, respectively. The zin axis

is for input time interval and zin = ton − τin, . . . , ton − 1. For

example, (g0)5,1,10 is the frequency at bus 5 at the time step 10,

and (g0)6,2,10 is the voltage at bus 6 at the time step 10.

We would like to highlight that the spatial information in this

manuscript can be understood as the inherent spatial similarity

of signals. For example, it is well known that the angle speed

of generators tend to appear as groups that swing in similar

patterns [29]. This indicates the correlation along the axis of

bus indexes. Moreover, the angle, angle speed and voltage also

typically oscillate at similar frequency. This indicates the corre-

lation along the axis of the type of signals. The Fourier transform

is most commonly defined along the axis of time, namely, the

1D Fourier transform along the time series. In this paper, we

conduct 3D Fourier transform along the dimension of x, y and

the time horizon. This way, the correlations along different

buses, along type of signals and along the time horizon are

extracted.

B. Encoding On-Fault and Fault-Clear Information

Importantly, we aim to predict the trajectories under changing

net injections and faults. This is different from most previous

works that learn a static mapping from input to output time se-

quences for fixed parameters. Therefore, we encode parameters

and fault-clear actions explicitly in the input tensor as shown

in Fig. 7(a). Note that the fault-clear action may not be known

in advance, and we set up an expected relay time to predict

the dynamic behaviors. The aim is to use the learning-based

method to reproduce the results from solvers. That is, given the

relay actions after the fault happens, the solvers can compute

the trajectories after the fault. Likewise, we envision the relay

actions as an extra input encoded in the data frame.

The fault information is encoded in u1(t) and u2(t), which

are variables that contain the location of the fault and the type of

fault at the time step t, respectively. For example, suppose the

fault at the time step zout + ton includes the trip of line 100 and
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the fault type is a line-to-line fault. We encode the fault location

as 100 and this fault type as 20. Then, u1(zout + ton) = 100 and

u2(zout + ton) = 20, respectively. For the time step zout + ton

between the line tripping and line relay, u1(zout + ton) �= 0 and

u2(zout + ton) �= 0. If there is no fault happening at the time

step zout + ton, then u2(zout + ton) = 0 and u2(zout + ton) = 0.

Hence, the information of line tripping and relay is inherently

included when we add u1(t) and u2(t) to the data frame for

t = ton − τin, . . . , ton + τout − 1. Next, we show how to attach

u and net injections to the dataframe.

C. Encoding Time-Varying Parameters and Actions

Time-varying parameters include the net active power in-

jection p(t) = (p1(t), . . . , pN (t)) and reactive power q(t) =
(q1(t), . . . , qN (t)). We stack them on the y axis on y = 3 and

y = 4 as shown in blue part of Fig. 7(a). The benefit of this design

is that the variance of p(t) and q(t) through time is naturally

incorporated in the zin axis. The fault information u1(t) and

u2(t) for t = ton − τin, . . . , ton − 1 are stacked to the y-axis as

y = 5 and y = 6, shown in red part of Fig. 7(a).

Fault-clear actions may happen in the predicted time horizon

[ton, ton + τout − 1]. To incorporate future actions and temporal

dependence in the prediction time steps, we expand the 3D input

tensor in Fig. 7(b) along the output time sequence, with the new

axis zout = 0, . . . , τout − 1 correspond to the time stamp from ton

to ton + τout − 1. This is visualized in the green part of the Tensor

in Fig. 7(b), where the axis of zin is attached with zout + ton,

u1(zout + ton) and u2(zout + ton), respectively. Each data point

in the 4D tensor is written as (g1)zout,x,y,zin
, where x indexes

bus, y indexes the type of signals (e.g., y = 0, 1, 2 corresponds

to the angle, angle speed, and voltage, respectively), and zout

indexes the output time steps. The index zin = 0, . . . , ton − 1
corresponds to the time stamp of the input trajectory. The index

zin = ton stands for the location of the fault, zin = ton + 1 stands

for the type of the fault, and zin = ton + 2 stands for the time

stamp, respectively. For example, suppose the fault at the time

stamp zout + ton includes the trip of line 100 and the fault type

is a line-to-line fault. We encode this fault type as number 20

and the fault location as number 100. Then (g1)zout,x,y,ton
= 100,

(g1)zout,x,y,ton+1 = 20 and (g1)zout,x,y,ton+2 = (zout + ton)∆t for

allx andy. Namely, the fault type as number 20, the fault location

as number 100, and the time (zout + ton)∆t are duplicated along

the dimension of x and y. This way, fault-clearing actions and

the output time stamps are encoded in the dataframe without

adding extra complexity for batch operation.

After such an encoder, the data frame is converted from a 3D

tensor with dimension R
N×Y ×τin to a 4D tensor with dimension

R
τout×N×Y ×(τin+3). We train the neural network on a batch of

trajectories and the number of trajectories is B. Hence, the full

size of input data is with the dimension R
B×τout×N×Y ×(τin+3).

We use the Great Britain transmission network with 2224 nodes

that will appear later in the case study to give an impression of

the size of the data. For the time steps τin = 20 and τout = 150,

the memory space for one input trajectory (B = 1) in the Great

Britain transmission network is 0.016 GB, and the memory space

for 200 input trajectory (B = 200) in training is 3.2 GB. The

memory space for other sizes of systems will scale linearly with

the number of buses.

The faults of interest in the paper are mainly transmission

line faults, and therefore we envision that the p and q during

the prediction horizon of less than 10 s will not deviate too

much from the values in the input trajectory. Hence, the encoding

of p and q in horizon of the input trajectory already provides

enough information to guide a good prediction. The goal is to

use neural networks to map the input tensor to the output tensor

with dimension R
τout×N×3 for the predicted dynamics of δ, ω

and V along τout time steps for N buses.

D. 3D Fourier Transform

After the encoder, the Fourier transform in (8) is reduced to

3D Fourier transform along the axis of x, y and zout computed

as

(Fgj)ξ1,ξ2,ξ3,zin

=

τout−1
∑

zout=0

N−1
∑

x=0

Y −1
∑

y=0

e−2πi( zoutξ1
τout

+
xξ2
N

+
yξ3
Y ) · (gj)zout,x,y,zin

, (10)

where ξ1, ξ2 and ξ3 are modes in the frequency domain in the

three dimensions after the discrete Fourier transform. Impor-

tantly, 3D FFT has been supported by most machine learning

frameworks (e.g., Pytorch), which is computationally efficient

for both backward propagation in training and forward propa-

gation in prediction.

The structure of the Fourier layer with the 3D Fourier

Transform is visualized in Fig. 7(c). After truncating the

Fourier series at a maximum number of modes kmax,i for the

i-th dimension, an equivalent convolution in the frequency

domain is conducted using dot-product with weights θj ∈
R

kmax,1×kmax,2×kmax,3×(τin+3)×(τin+3) defined by

(θj · ψ (Fgj))ξ1,ξ2,ξ3,zin

=

τin+2
∑

v=0

(θj)ξ1,ξ2,ξ3,zin,v (Fgj)ξ1,ξ2,ξ3,v (11)

for ξ1 = 0, . . . , kmax,1 − 1, ξ2 = 0, . . . , kmax,2 − 1, ξ3 = 0
, . . . , kmax,3 − 1, zin = 0, . . . , τin + 2 and j = 1, . . . , l.

The time domain signal is recovered by inverse Fourier trans-

form as follows:
(

Kθj
(gj)

)

zout,x,y,zin

=
(

F−1 (θj · ψ (Fgj))
)

zout,x,y,zin

=

kmax,1−1
∑

ξ1=0

kmax,2−1
∑

ξ2=0

kmax,3−1
∑

ξ3=0

e2πi(
zoutξ1
τout

+
xξ2
N

+
yξ3
Y )

· (θj · ψ (Fgj))ξ1,ξ2,ξ3,zin
, (12)

for zout = 0, . . . , τout − 1, x = 0, . . . , N − 1, y = 0, . . . , Y −
1, zin = 0, . . . , τin + 2 and j = 1, . . . , l.

Plugging (12) into (9) gives the output of the j-th layergj+1 ∈
R

τout×N×Y ×(τin+3). The predicted trajectory ŝout ∈ R
τout×N×3

are obtained from the output of the last layer after a dense
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Fig. 8. Topology of Northeastern Power Coordinating Council (NPCC)
48-machine, 140-bus power system [25], [30].

combination weight W l+1 ∈ R
(τin+3)×1.

(ŝout)zout,x,y
=

τin+2
∑

zin=0

(gl+1)zout,x,y,zin
(W l+1)zin

(13)

for zout = 0, . . . , τout − 1, x = 0, . . . , N − 1, y = 0, 1, 2. The

index y = 0, 1, 2 corresponds to the prediction of angle, angle

speed, and voltage, respectively. Typically, increased layer l
enables the structure to learn more complex dynamic patterns.

In the simulation, we found that four layers are sufficient. In

practice, the encoder may also conduct a linear combination

on the 4D tensor along the dimension of zin to increase the

representation capability of the neural networks [22]. In that

case, the dimension of W l+1 needs to be adjusted accordingly

and all the other computations still remain the same.

E. Algorithm

The pseudo-code for our proposed method is given in Algo-

rithm 1. The variables to be trained are weights Φ = {θ,W }
shown in Fig. 6. Adam algorithm is adopted to update weights in

each episode. The main practical benefit is that the learned neural

networks are feedforward functions, which can be evaluated

orders-of-magnitude faster than conventional iterative solvers.

To be clear, these neural networks are not replacements for

conventional solvers. Rather, they can be used by system op-

erators to study a much larger set of scenarios of how the system

would behave under various types of disturbances. They would

be valuable tools that would enable better characterization of

the dynamic behavior of the systems, and complement existing

tools such as high-fidelity simulators.

VI. CASE STUDY

In this section, we conduct several case studies to illustrate

the effectiveness of the proposed method. We validate the per-

formance of the proposed approach on a realistic power grid

by the case studies with the Northeastern Power Coordinating

Council (NPCC) 48-machine, 140-bus test system as shown in

Fig. 8 [25], [30]. Then, we verify the performance on large-scale

Algorithm 1: Training and Predicting Power System Tran-

sients.

Training: Learning rate α, batch size H , number of

episodes I , dataset for training

Initialisation: Initial weights Φ of the neural network

1: for episode = 1 to I do

2: Encode the input trajectory siin and the output

trajectory siout for i = 1, . . . , H with fault

information in the dataset

3: Using the current weights Φ of the neural network,

compute the predicted trajectory ŝiout for

i = 1, . . . , H
4: Calculate total loss of all the batches

Loss = 1
H

∑H
i=1

||ŝi
out−s

i
out||1

||si
out||1

.

5: Update weights in the neural network by passing

Loss to Adam optimizer: Φ ← Φ− αAdam(Loss)
6: end for

Predicting: Pre-trained weights Φ of the neural network

7: Encode the input trajectory sin with the setup of

fault-clear actions

8: Using the pre-trained weights Φ of the neural network,

compute the predicted trajectory ŝout

power systems using the Great Britain (GB) transmission net-

work, which consists of 2224 nodes, 3207 branches and 394

generators [31]. In Appendix-A of the longer online version of

this paper [32], a simple single-machine infinite bus system is

used to show the benefit of learning in the frequency domain

compared to the time domain.

A. Simulation and Hyper-Parameter Setup

We construct the network in Fig. 7 with four Fourier layers.

We normalize the data of different physical meanings and thus

eliminate the effect of the magnitude of features brought by

different units. The maximum number of modes in the frequency

domain is set to be kmax,1 = 6, kmax,2 = 3 and kmax,3 = 3. The

episode number and the batch size are 4000 and 800, respec-

tively. Weights of neural networks are updated using Adam with

the learning rate initializes at 0.02 and decays every 100 steps

with a base of 0.85. We use Pytorch and a single Nvidia Tesla

P100 GPU with 16 GB memory. We use the generic deep neural

network (DNN) as a benchmark to compare the performance

with the proposed method (labeled as FNO). The DNN has a

dense structure and seven layers with ReLU activation, where

the width of each layer is 20. The hyper-parameters of DNN

are also tuned to achieve their best performances for different

tasks. The episode number and the batch size are set the same as

FNO.

B. Performance on NPCC Test System

The performance of the proposed method on a practical

power system is verified by simulations on Northeastern Power

Coordinating Council (NPCC) test system, which represents

the power grid of the northeastern United States and Canada
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Fig. 9. Stable dynamics of angle δ (left), frequency deviation ω (middle) and voltage V (right) in NPCC corresponding to (a) the ground truth produced by
a solver. (b) Prediction of FNO. The grey area shows the envelope of the trajectories for all generator buses. Lines with different colors show the trajectories in
selected generator buses. The proposed method predicts both the magnitude and oscillations accurately.

and was involved in the 2003 blackout event [30]. The power

system toolbox in MATLAB is used to generate dataset of power

system transient dynamics with the full 6-order generator model,

turbine-governing system and exciters [25]. The power system

toolbox utilizes kron-reduced admittance matrix and simulates

dynamics with equivalent ordinary differential equations [25].

The trajectories are generated considering the actions of protec-

tive relays in 4–20 cycles [33]. We create cases with stressed

conditions (stable and unstable) by increasing the level of loads

until the system is unstable. The cases with stressed conditions

account for 15% in the training set.

The input trajectories evolve τin = 20 time steps, with time

interval ∆t between neighbouring time steps to be 0.03 (i.e.,

approximate two cycles that can be attained by most phasor

measurement unit (PMU)). We predict the subsequent trajec-

tories of the length τout = 150 for a total duration of 4.5 s.

The training time of 4000 episodes is 4424.33 s. We quantify

the prediction accuracy through the relative mean squared error

(RMSE) defined as ||sout − ŝout||22/||sout||22.

Fig. 9 shows true (i.e., simulated) and predicted trajectories

of the system after a three-phase line fault between bus 54 and

bus 103 cleared at the time of 0.3 s. Let the time of fault happens

as the time t = 0. The prediction starts at ton = 0.06 s, which

means one time step in the input trajectories corresponds to the

fault-on system. The grey area is the envelope of trajectories

in all generator buses and the lines are the trajectories in ten

generator buses. For all the three states variables (i.e., δ, ω and

V ), the predicted trajectories in Fig. 9(b) has similar envelope

as the accurate trajectories in Fig. 9(a). The RMSE for the

prediction in Fig. 9 is 0.0041. The convergence of the envelope

in frequency deviation ω to zeros indicates that the system is

stable after the fault and its clear action. Moreover, both the

magnitude and the periodic oscillations in the ten generator buses

are all captured by the prediction with FNO for the on-fault and

post-fault period. As illustrated in Fig. 7, the type of fault and

the fault-clear action at t = 0.3 s is encoded in the input tensor

of FNO. Correspondingly, Fig. 9(b) predicts a step increase of

voltage at t = 0.3 s, which is the same as Fig. 9(a). Notably, the

magnitude of the voltage at bus 54 and bus 101 is below 0.8 p.u.

before t = 1 s, exceeding the permissible ranges of 5% from

nominal. This may cause low-voltage curtailment of the gener-

ators and warrant attention from system operators. Therefore,

the proposed prediction can provide sufficient information for

identifying how danger the system is.

To illustrate the performance of the proposed method in pre-

dicting an unstable system, Fig. 10 shows true (i.e., simulated)

and predicted trajectories of the system after a line-to-line fault

between bus 75 and bus 124 and recovered at the time of 0.3 s.

Especially, it is a stressed unstable test case by gradually increas-

ing the level of loads until the system is unstable. Although the

magnitude of the trajectories is still bounded, the drifted angle

and the collapse of voltage have reflected the unstable behaviors.

The proposed method captures both the trend and oscillations of

the unstable behaviors. The RMSE for the prediction in Fig. 10 is

0.1198. Moreover, the accuracy in terms of predicting unstable

cases is to identify the unstable behaviors. In the next subsection,

we verify in the test set that the proposed method can predict all

the unstable systems accurately shortly after a fault happens.

The trajectory in the frequency domain (computed by Fast

Fourier Transform) for the stable case in Fig. 9 and the unstable

case in Fig. 10 is given in Fig. 11 and Fig. 12, respectively.

The proposed method also achieves high accuracy in the fre-

quency domain. Moreover, the high-frequency component in

both Fig. 11 and Fig. 12 is almost zero. This provides the intuition

why the low-pass filter can reduce computational complexity

without affecting the prediction performances.

Numerical studies about the effect of kmax on the low-

pass filter can be found in Appendix-B of the longer online

version [32]. The visualization of the predictions with different

influence factors including fault-on/clear actions, fault type, and

fault location is shown in Appendix-C of the longer online

version of this paper [32].

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 13,2024 at 22:42:09 UTC from IEEE Xplore.  Restrictions apply. 



474 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 1, JANUARY 2024

Fig. 10. Unstable dynamics of angle δ (left), frequency deviation ω (middle) and voltage V (right) in NPCC corresponding to (a) the ground truth produced by
a solver. (b) Prediction of FNO. The grey area shows the envelope of the trajectories for all generator buses. Lines with different colors shows the trajectories in
selected generator buses. The proposed method predicts both the magnitude and oscillations accurately.

Fig. 11. Frequency-domain trajectories of angle δ (left), angle speed deviation ω (middle) and voltage V (right) for stable dynamics in NPCC corresponding to
(a) the ground truth produced by a solver. (b) Prediction of FNO.

C. Quantifying the Performance on NPCC

As shown in Fig. 9 and Fig. 10, the dynamics of the power

system transient states differ greatly with different fault types

and system parameters. To quantify the performance of the

proposed method in stochastic scenarios, we calculate the mean

prediction error in the test set with 100 cases where initial

states, location of fault, type of fault and fault-clearing time

are randomly generated. Three metrics are included:

1) Relative mean squared error (RMSE).

2) Type1-error: Unstable cases predicted to be stable. This is

the more severe type of error (instability is declared when

the average value of ω from t = 4 s to t = 4.5 s exceed

0.5 Hz).

3) Type2-error: Stable cases predicted to be unstable.

Notably, we fix the length of the input trajectories sin to be

τin = 20. The input trajectories contain data before and after

the fault (similar to a rolling window). As illustrated in Fig. 4,

more data point after the fault will be observed if the prediction

starting point ton is larger (if we wait longer after the fault to

do a prediction). The more steps after the fault in sin, the better

the prediction performance. Table I summarizes the metrics for

the prediction error corresponding to different number of on-

fault cycles (one cycle is 1/60 = 0.017 s) involved in the input

trajectories sin.

From Table I, the RMSE of FNO is much lower than the case

in DNN, respectively. Interestingly, DNN has the Type2-error to

be approximately zero while extremely high Type1-error. The

reason is that DNN will easily overfit since the majority (93%)

of training samples is stable. By contrast, FNO brings zero
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Fig. 12. Frequency-domain trajectories of angle δ (left), angle speed deviation ω (middle) and voltage V (right) for unstable dynamics in NPCC corresponding
to (a) true trajectories the ground truth produced by a solver. (b) Prediction of FNO.

TABLE I
PERFORMANCE METRICS IN THE TEST SET WITH 100 RANDOMLY GENERATED CASES

TABLE II
RMSE FOR THE DATASET WITHOUT STRESSED UNSTABLE CASES

Type1-error and Type2-error once there is an on-fault data

point entered in the input trajectories. Therefore, the proposed

prediction with FNO will capture all the dangerous unstable

cases. The low RMSE indicates that the proposed method can

also simulate the dynamics of trajectories accurately.

Considering that unstable behaviors may not be observed in

real measurements, we also investigate the performance of the

proposed method where unstable behaviors are not present in

the training set. Table II shows the comparison of RMSE on

the dataset without unstable cases. The RMSE decreases greatly

after eliminating the unstable cases. Of course, this is an easier

problem, and the RMSE decreases greatly after eliminating the

unstable cases.

Lastly, we compare the average computational time in the

test set for FNO and Power System Toolbox in MATLAB as

shown in Table III. The execution time for 3D Fourier Transform

and 3D inverse Fourier Transform in one layer is 7.79× 10−5 s

and 1.21× 10−4 s, respectively. For the prediction time horizon

ranges from 3 s, 4.5, and 6 s, the computational time of FNO

is 0.0036 s, 0.0037 s, 0.0039 s, respectively. By contrast, the

TABLE III
AVERAGE COMPUTATIONAL TIME

computational time of MATLAB toolbox are 469, 605 and 867

times slower than FNO. Therefore, the proposed approach will

significantly speed up the simulation for power system transient

dynamics.

D. Case Study on the Great Britain Transmission Network

We conduct a case study on GB system to test the performance

of the proposed method on large power networks. We use AN-

DES (an open source package for power system dynamic simu-

lation) to generate dataset of power system transient dynamics

with the full 6-order generator model, turbine-governing system

and exciters [31]. Differential-algebraic equations are solved for

dynamic simulation [31]. The input trajectories evolve τin = 20
time steps, with a sampling period of 1/30 s (i.e., two cycles). We

predict the subsequent trajectories of the length τout = 150 steps,

for a total duration of 5 s. We use 200 trajectories for training

and the training time of 4000 episodes is 9257 s. Using more

trajectories may improve the performance, but 200 is sufficient

for our simulations.
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Fig. 13. Dynamics of angle δ (left), frequency deviation ω (middle) and voltage V (right) in GB corresponding to (a) the ground truth produced by a solver
(b) prediction of FNO. The grey area shows the envelope of the trajectories for all generator buses. Lines with different colors shows the trajectories in selected
generator buses. The proposed method predicts both the magnitude and oscillations accurately.

Let the fault happens as the time t = 0. The prediction starts at

ton = 2/30 s, which means one time step in the input trajectories

corresponds to the on-fault system. Fig. 13 shows the prediction

on a line fault (a three-phase-to-ground fault between buses 56

and bus 637 and recovered 0.13 s later) that is not in the training

set. The grey area is the envelope of trajectories in all generator

buses and the lines are the trajectories in ten generator buses.

For all the three states variables (i.e., δ, ω and V ), the predicted

trajectories in Fig. 13(b) have similar envelopes as the simulated

(i.e., ground-truth) trajectories in Fig. 13(a). Moreover, both

magnitude and the periodic oscillations in the generator buses

are captured by the prediction with FNO for the on-fault and

post-fault period.

In 100 test cases where initial states, location of fault, and

fault-clearing time are randomly generated, the mean value of

RMSE for DNN is 0.0034. By contrast, the mean value of RMSE

for FNO is 0.0001, which is 97% smaller than DNN. Hence, the

proposed method achieves much higher accuracy compared with

generic deep neural networks.

The above experiments show that the neural network is not

simply memorizing but generalizing as well [34], [35]. Since

the power system is a synchronized and connected network,

transients from different faults could be related. We conjecture

that there should be some sparse pattern behind the transient

dynamics of the system, and this is the reason why we can learn

well with a moderate amount of data. These relationships may be

hard to visualize or analytically characterize, which makes ma-

chine learning useful. Theoretical analysis of the phenomenon

is an important future direction for us.

VII. CONCLUSION

This paper proposes a frequency domain approach for predict-

ing power system transient dynamics. Inspired by the intuition

that there are relatively few dominant modes in the frequency

domain, we construct neural networks with Fourier transform

and filtering layers. We design the dataframe to encode the power

system topology and fault-on/clear information in transient dy-

namics, allowing the extraction of spatial-temporal relationships

through 3D Fourier transform. Simulation results show that

the proposed approach speeds up prediction computations by

orders of magnitude and is highly accurate for different fault

types. Compared with state-of-the-art AI methods, the proposed

method reduces MSE prediction error by more than 50% and

vastly improves the detection of unstable dynamics.

The simulation results point to an interesting observation that

there are sparse patterns behind the transient dynamics of the sys-

tem, and it is this sparsity that allows the neural networks to learn

and predict. Making the theory rigorous is an important future di-

rection for us. The RAM space of GPU resources constrains the

amount of data that can be processed to train the neural networks.

Investigating the parallel training on multiple GPU resources and

the better usage of RAM space are also important future direc-

tions for the proposed method to be utilized in larger systems.
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