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A Frequency Domain Approach to Predict Power
System Transients

Wengqi Cui

Abstract—The dynamics of power grids are governed by a large
number of nonlinear differential and algebraic equations (DAEs).
To safely operate the system, operators need to check that the
states described by these DAEs stay within prescribed limits af-
ter various potential faults. However, current numerical solvers
of DAEs are often too slow for real-time system operations. In
addition, detailed system parameters are often not exactly known.
Machine learning approaches have been proposed to reduce the
computational efforts, but existing methods generally suffer from
overfitting and failures to predict unstable behaviors. This paper
proposes a novel framework to predict power system transients by
learning in the frequency domain. The intuition is that although the
system behavior is complex in the time domain, there are relatively
few dominant modes in the frequency domain. Therefore, we learn
to predict by constructing neural networks with Fourier transform
and filtering layers. System topology and fault information are
encoded by taking a multi-dimensional Fourier transform, allowing
us to leverage the fact that the trajectories are sparse both in time
and spatial frequencies. We show that the proposed approach does
not need detailed system parameters, greatly speeds up prediction
computations and is highly accurate for different fault types.

Index Terms—Power system transients, prediction methods,
learning systems, frequency domain analysis.

I. INTRODUCTION

NCREASING the amount of renewable resources integrated
I in the electric grid is fundamental to reducing carbon emis-
sions and mitigating climate change. Many governments and
companies have set ambitious goals to generate their electricity
with close to 100% renewables by 2050 [1]. So far, much of the
attention has been paid to increasing the aggregate generation
capacities. However, increased renewable generation capacities
also lead to challenging problems in dynamic stability of the
grid [2]. A grid can be thought as a large interconnected system
of generators, loads and power electronic components, governed
by nonlinear differential and algebraic equations (DAEs) [3],
[4]. This system also undergos constant disturbances, from load
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Fig. 1. Frequency oscillations during the Florida blackout resulted from a
tripped line event in 2008 [6].

changes to line outages [5]. The predominant goal of power
system operations is to make sure that the system stays within
acceptable limits under these disturbances.

The system states are governed by different DAEs during
the transient across pre-fault, fault-on and post-fault stages [4].
Fig. 1 shows a tripped line in Florida that led to rolling blackouts
that impacted the lower two-thirds of state [6]. Ideally, a system
should withstand these types of single events without perfor-
mance degradation (/N — 1 security) [5], but this was not the case
in Fig. 1. A fundamental reason is that solving the governing
DAEs is extremely computationally challenging and not all
contingencies can be checked. These DAESs are highly nonlinear
and numerical methods (e.g., implicit and explicit integration)
are used to solve them [7]. To study transient stability, numerical
algorithms need to use fairly fine discretizations. Even for a
moderately sized system, existing numerical solvers may take
minutes to simulate only seconds of system trajectories [8].

Consequently, only a limited number of scenarios are studied
offline and operators tend to restrict the system to operate
close to these scenarios. As shown in Fig. 2, for certain given
conditions of power generation, demand and topology, system
operators simulate the system trajectories after disturbances
through solving the shifted DAEs. By studying scenarios of
system conditions offline, system operators will have a checklist
about what action needs to be taken in real time to ensure that
the systems’ states are within the permissible range after critical
contingencies. Since renewables have much larger uncertainties
than conventional resources, operators often curtail them to ar-
tificially limit their generation to avoid operating at “unknown”
regions [3]. For example, some European grids are not allowed to
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Fig. 2. Power system operators conduct dynamic power system transient
prediction by solving DAEs [4], [10], where = and y represent the set of state
variables and algebraic variables, respectively. The dynamics are described by
differential equations f(-) and algebraic equations h(-), with subscript F' and
PF indicating the fault-on and post-fault period divided by the fault time ¢ s
and the fault-clear time ¢y, respectively. Under certain conditions of power
generation, demand and topology, the system trajectory after disturbances is
simulated through solving the shifted DAEs.

operate at above 40% wind, no matter how much wind is actually
blowing [9]. Therefore, fast and accurate dynamic simulations
would greatly increase the actual utilization of renewables in the
system.

Recently, machine learning (ML) approaches have been pro-
posed for dynamical simulation instead of DAE solvers and can
reduce the computation time by orders of magnitude. Given
the fault information and present measurement of states, ML
methods learn feed-forward neural networks to predict future
trajectories. Most works focus on a binary classification to iden-
tify whether a system is stable. Long short-term memory-based
recurrent neural networks are commonly utilized to process
sequential data [11], [12]. A shaplet learning approach is pro-
posed to extract spatial-temporal correlations [13]. Convolu-
tional neural networks are adopted in [14], [15] to process data
from multiple sources. However, a binary prediction may not
provide sufficient information for real-time decision making.
For example, to prevent cascading outages, operators need to
know the magnitude of the states and the actual trajectories [4],
but binary predictions are too coarse for making these types of
assessments.

To alleviate the limitation of binary prediction, some recent
works provide finer trajectory prediction by learning the time
domain solutions to the governing DAEs. Polynomial basis
are used in [16] to approximate the solutions, but the number
of basis functions grows exponentially with the system size.
Extreme learning machine is utilized in [17] for online voltage
stability margin prediction, but the traces of the system variables
are not provided. Deep neural networks are used in [18], [19]
to directly learn to predict the future trajectory from past and
current measurements. However, since power systems are large
and sampled sparsely in time, direct regression on time-domain
data does not perform very well. A rolling prediction is used
in [18] to improve accuracy, but with a high computational cost.
Instead of the time-domain approach, eigenstates of linear swing
equations after eigenspace transformation are utilized in [20]
to infer system dynamics. However, the assumptions on the
linearized system model and uniform damping ratios may not
hold for realistic and large-scale systems.
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In addition, since the majority of trajectories used in training
are stable, the learned networks may fail to predict unstable be-
haviors. Physics-informed neural networks that directly attempt
to solve the DAEs have been proposed as an alternative [21], but
it does not currently scale beyond small networks.

In this paper, we propose a novel framework for predicting
power system transients by learning and making predictions in
the frequency domain, which provides a computation speed up
of more than 400 times compared to existing power system tools.
This approach follows the intuition that the system tends to
undergo oscillations that have a few dominant temporal-spatial
modes. We adopt and extend the structure of Fourier Neural
Operator in [22] to learn in the frequency domain and recover the
time domain trajectories through the inverse Fourier transform.
Specifically, we design the dataframe to encode the power sys-
tem topology and fault information, which leads to a 3D Fourier
transform. This method is able to make smooth and accurate pre-
dictions, capturing both stable and unstable behaviors without
the need to manually tune the training data. It improves the MSE
prediction error by more than 70% compared with state-of-the-
art Al methods, and vastly improves the detection of unstable be-
havior. Code and data are available at https://github.com/Wengqi-
Cui/Predict-Power-System- Dynamics- Frequency-Domain.

In summary, the main contributions of the paper are:

1) We propose a novel machine learning approach to predict
transient dynamics in the frequency domain, which can
accurately predict state trajectories based on a few mea-
surements.

2) We develop a dataframe that encodes spatial-temporal
information about the system topology, which greatly re-
duces the computational complexity in multi-dimensional
Fourier transforms.

3) The time-varying active/reactive power injection and
fault-on/clear actions are incorporated in the proposed
framework, enabling the prediction of the transients sub-
ject to different net power injections and actions.

The remaining of this paper is organized as follows. Section II
introduces the problem formulation for predicting power system
dynamics and transients. Section III provides the setup and
intuition of learning in the frequency domain. Section IV shows
the proposed framework for dynamic transient prediction and
Section V illustrates the construction of dataframe to encode
spatial-temporal relationships. Section VI shows the simulation
results. Section VII concludes the paper.

II. MODEL AND PROBLEM FORMULATION

A. Power System Swing Equations

The dynamics of power systems depend on the interactions
of a myriad of components including governors, exciters, sta-
bilizers, etc., as illustrated in Fig. 3 [5]. Let x € R", y € R™,
a € R? be all the state variables, algebraic variables and exter-
nal input variables, respectively.! The complete power system

IThroughout this paper, vectors are denoted in lower case bold and matrices
are denoted in upper case bold, while scalars are unbolded. If not specified, all
the vectors are time-varying. The vectors followed by (t) denote the value at the
time ¢.
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Fig. 3. Different components contributing to power system transient dynam-

ics [5].

model for calculating system dynamic response relative to a
disturbance can be described by a set of DAEs as follows [4],
[16]:

{i:f(mv'!ﬁa) (1)

0=h(x,y,a)

where the differential equation f : R™ x R™ x R? — R™ typi-
cally describes the internal dynamics of devices such as the speed
and angle of generator rotors, the response of generator control
systems (e.g., excitation systems, turbines, governors), the dy-
namics of equipment including DC lines, dynamically modeled
loads and their control systems. Correspondingly, € R" is
the state variables such as generator rotor angles, generator ve-
locity deviations (speeds), electromagnetic flux, various control
system internal variables, etc. The set of algebraic equations
h:R" x R™ x R? — R™ describes the electrical transmis-
sion system and interface equations. Correspondingly, y € R™
is the algebraic variable such as voltage magnitude and angles.

The external input variables @ € R acting on the equations
are power injection from generators, automatic generation con-
trol systems, fault-response actions and so on [4], [23]. In this
paper, we mainly consider the uncertainties in power generation
and demand, as well as the fault-response actions u. Let the
active and reactive net power injection be p and g, then the
external input variables are sometimes written as the tuple
a=(p,qu).

Under changing generator and load conditions, power systems
are operated to withstand the occurrence of certain contingen-
cies. To ensure that cascading outages will not occur for the set
of critical disturbances, the state variables need to stay within
permissible ranges during the transient process of power system
after disturbances [4], [24]. For even a moderate power system

with tens or hundreds of buses, it may be governed by hundreds
or thousands of DAE:s.

B. Transient Dynamics

Disturbances lead to deviations in the states & and variables y
through a step change of parameters in (1). For example, a short
circuit on a transmission line will results in a sudden change of
the susceptance and conductance in the set of algebraic equa-
tions, depending on the specific fault types (e.g., single-phase-
to-ground, two-phase-to-ground, line-to-line, three-phase-to-
ground, etc.).

Suppose a fault happens at the time ¢, and is cleared at the
time t.;.> The pre-fault stage is defined as the period before the
fault happens at ¢;. The system evolves from the initial state
x(to) as:

{i' =f@yaat)) oy oy 2)

0= h(z,y,a) ’

The sudden parameter changes after disturbances will lead
to a shift of the swing equations. The fault-on system evolves
with k subsequent actions from system relays and circuit breaks.
Suppose the j-th action is taken at ¢z ;, the fault-on system is
described by several set of equations [4]

{a‘c = fri(z,y,a;x(ty))

L tp<t<t
0=nhpi(x,y,a) J o

3

{il? = fF,k(wvyaa;w(tF,k)) tFk—l <t< tcl

0= hp’k(ﬂ% Yy, (1)

The post-fault stage refers to the system after the fault is
cleared. The post-fault system evolves with the differential
equation starting from the post-fault initial state @ (t.;), written
as [4]

= frr(z,y,a;x(ta))
{OhPF(m7yaa’) 7 tZtCl. (4)

Despite large numbers of variables x and vy, not all of them
are observable to system operators. For a system with IV buses,
typically the main variables of interest are the angle ¢;, rotor
angle speeds (frequency) deviation w; and voltage v; at each bus
i. Denote [N]:={1,...,N}, § := (6;,i € [N]) e RV, w :=
(wi,i € [N]) € RN, v := (v;,i € [N]) € RY. These variables
of interest are described by a three-tuple, denoted by s =
(8, w,v) € R3N. Note that other variables can also be included
in s if they are observable. The key to the safe dynamic operation
of power systems is to predict the future of the system trajec-
tories, given the fault information, some observations s and the
expected clearing actions u. Based on these trajectories, interim
actions like load shedding or emergency generation can be taken
to reduce the impact of the faults [5], [7].

C. Current Approaches and Challenges

Current approaches in power system dynamic prediction are
based on solving (2)—(4), which are highly nonlinear equations.
System operators typically rely on numerical integration, such
as Runge-Kutta (RK) methods or trapezoidal rule, to iteratively
approximate the solution of (2)—(4) in small time intervals [7].
However, because of the highly nonlinear nature of the DAEs,
very fine discretization steps are required for these numeri-
cal methods. As a result, these approaches may be too slow
for real-time decision-making. Some solvers use reduced-order
models and convert DAEs to ordinary differential equations
(ODEs) to simulate the dynamic response of generators [25].
For a moderately sized system, existing numerical solvers take

2The disturbance such as a short circuit on a transmission line is automatically
cleared by protective relay operation after a certain amount of time.
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Fig. 4. Tllustration of the trajectory prediction starting at the time stamp £o,
for 7o, number of time steps, using 7, observations.

minutes to simulate only seconds of system trajectories [8].
As an alternative, system operators also use manual heuristics
to take action, but this strategy is becoming less tenable as
renewables introduce distinctly different operating scenarios.

III. LEARNING FOR DYNAMIC TRANSIENT PREDICTIONS
A. Problem Setup

Learning-based approaches try to find a mapping from present
measurements to future trajectories. The predictions are then ob-
tained through function evaluations, which significantly reduce
the computational time compared to the conventional numerical
approaches.

The problem we are interested in is to predict the trajectory
of the states s starting at the time stamp t,, for 7,, number
of time steps with the sampling interval At, as illustrated
in Fig. 4. The input are 7, observations of the states from
S(ton — Tin) t0 S(ton — 1), the external inputs from a(ton — Tin)
to a(tey, — 1), and the expected fault-clear actions from w (o)
t0 U(ton + Tow — 1). We write Sin = (S(ton — Tin), - - - » S(ton —
1)), a=(a(ton — Tin)s---,a(ton — 1)), wour = (w(ton),-- -,
U(ton + Tow — 1)) and Sou = (8(ton), - - - 5 $(ton + Tou — 1)).

Our goal is to find a mapping G from the space of input (i,
a, uqy) to output trajectories Sqy. In this paper we consider the
mapping realized through (deep) neural networks with parame-
ters ®. The prediction is then given by

'§0ut = G@(sin; a, uout)~ (5)

The exact form of ® depends on the structure of the neural
network used. In this paper, we adopt the Fourier neural operator
to learn in the frequency domain, and details will be specified
later in Section IV.

Let H be the batch size and &, be the prediction of the
i-th sample for ¢+ = 1,..., H. The weights of neural network
® are updated by back-propagation to minimize loss function
L(®) defined by the mean absolute percentage error (MAPE)
between predicted trajectory and the actual trajectory L(®) =

% Zinl |1300—Séull1 [22].

lls5ulln

B. Current ML Approaches and Limitations

Learning the power system transient dynamics is not trivial
because states undergo nonlinear oscillations. Predictions with
three existing approaches are illustrated in Fig. 5. The blue line
is the trajectory of the frequency deviation on a bus before and
after a fault. The blue squares are the true trajectory sampled at
discrete times and the grey area is the prediction horizon.
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Fig.5. Illustration of power system transient prediction with existing machine
learning approaches. (a) Purely learning in the time domain tends to overfit. (b)
Since the vast majority of historical data are stable, a ML method tends to not
predict unstable trajectories. (c) Fitting the nonlinear dynamics with polynomial
basis also easily leads to over-fitting. (d) The accuracy of PINN decreases sharply
and fails to provide meaningful results for longer horizons.

A standard approach is to use a neural network to learn the
time-domain mapping from the input to the output. As illustrated
in Fig. 5(a) and Fig. 5(b), purely learning in the time domain
will easily overfit and cannot learn a smooth curve like the
true trajectories. More importantly, generic machine learning
approaches are prone to false negative errors. Since the vast
majority of historical trajectories are stable, a ML method tends
to not predict unstable trajectories. This would lead to catas-
trophic consequences if the system operator does not take action
to mitigate instabilities.

Similarly, fitting the nonlinear dynamics with polynomial ba-
sis will also easily lead to over-fitting, as illustrated in Fig. 5(c).
Recently, Physics-Informed Neural Networks have been pro-
posed in [26] to learn solutions that satisfy equations from
implicit Runge-Kutta (RK) integration. This approach has been
applied to power system swing dynamics in [21]. Since RK
method is the weighted sum of ODE solutions in discretized
intervals, its accuracy decreases sharply when predicting trajec-
tories with large oscillations for a longer horizon (e.g., larger
than 1 s), as illustrated in Fig. 5(d) (the prediction errors are
larger than the limit of the y-axis).

C. The Proposed Approach: System Dynamics in the
Frequency Domain

Because of the above challenges when learning in the time
domain, we propose a new approach for learning power system
transient dynamics in the frequency domain. Here we use a
simple swing equation model for transient dynamics to illustrate
the intuition for this approach [7], [27]:

0; = w; (6a)
N
M;w; = p; — Diw; — Z B;;(6; — ;) (6b)
=1,k

where i € [N]:={1,...,N} is the index of buses, M :=
diag(M;,i € [N]) € RY¥*N are the generator inertia constants,
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Fig. 6. The structure of neural networks for power system transient prediction
using frequency-domain information. The input trajectory is first encoded using
the framework introduced later in Section V. The encoded data is then passed
through several Fourier Layers [22], where the input and output of the j-th layer
is g;j and g; 1 1, respectively. The j-th layer consists of trainable weights 8 ; for
learning in the Fourier domain, and trainable weights W' ; to keep the track of
aperiodic and distorted waveform.

D := diag(D;,i € [N]) € RV are damping coefficients,

p:= (pi,i € [N]) € RY are the net power injections, B :=
[Bi;] € RV*N is the susceptance matrix.

With the assumption that the inertia and damping of the
buses are proportional to their power ratings (i.e, D;/M; = v
for all 7 € [N]), (6) can be explicitly solved [27]. Let C be
the incidence matrix. The (scaled) graph Laplacian matrix is
I' =M Y2CBC"M™'/2, where 0 =2 <Xy <+ <Ay
are the eigenvalues with corresponding orthonormal eigenvec-
torsry, o, ..., T N.Suppose there is a step change Ap in the net
power injection, and its decomposition along the eigenvectors is
Ap =, p;M'/?r;. Then, the solution of equations (6) is [27]

e¢i’+t — e‘j)“t) M_l/Qm (7

where ¢; 4 = el Vas V2’V2‘4" i = N \/2’72‘4)‘

Note that ¢;  are complex numbers with non-zero imaginary
part if ’yz — 4); < 0, which results in sinusoidal oscillations.
Thus, the sinusoidal basis in Fourier transform (and inverse
Fourier transform) is a natural fit for power system transient
dynamics. Because of the finite set of eigenvalues, there is a
finite number of modes in the frequency domain. As a result, the
trajectories are sparse in the frequency domain, making it easier
to learn after Fourier transform.

However, the analysis based on the linear model (6) cannot
be applied to more realistic systems as illustrated in Fig. 3,
where high-order nonlinear differential equations are involved.
This is the reason why we need learning to predict the transient
dynamics. In the next sections, we will show the framework
of learning in the frequency domain and conduct numerical
verification using the full-order model for system dynamics.

IV. LEARNING IN THE FREQUENCY DOMAIN
A. Structure of the Neural Network

We construct the structure of neural network shown in Fig. 6,
which consists of several Fourier layers for learning in the
frequency domain. The input trajectory is first passed through
an encoder to integrate the spatial-temporal relationships and

the fault information. The encoded data is then passed through
l level of Fourier Layers [22], where the input of the j-th layer
is g; and the outputis g;41 for j = 1,...,1. Each Fourier layer
consists of one path with trainable weights 8 ; that learns periodic
components in the frequency domain, and another path with
trainable weights W ; that directly operate on the time-domain
data. Intuitively, the second path (often called the pass-through
layer in Machine Learning literature) with weights W ; helps to
keep the track of aperiodic and high-frequency components. In
the following, we illustrate the structure of each Fourier Layer.
The dimension for each tensor will be specified later after we
elaborate the encoder in Section V.

B. Fourier Layer

For the input of each layer, we conduct discrete Fourier
transform F to convert the input trajectory into the frequency do-
main [28]. Inspired by the work in [22], we use neural networks
parameterized by 6; to learn in the frequency domain in each
layer j, and then recover the time-domain sequences by inverse
Fourier transform F 1. This process is defined as Fourier neural
operator Kg, (-) represented by

Ko, (g;) = F 1 (8; - ¢ (Fg;)), ®)

where the function () is a low-pass filter that truncates the
Fourier series at a maximum number of modes k. for efficient
computation [22]. Then 6, is the weight tensor that conducts a
linear combination of the modes in the frequency domain.

The output of the j-th layer adds up Fourier neural operator
with the initial time-domain sequence weighted by W to
recover aperiodic and high-frequency components

gj+1 =0 (W;g; +Ke, (95)) ©)

where o is anonlinear activation function whose action is defined
component-wise. We use ReLU in this paper.

Even though we limit at most k. Fourier modes after the
low-pass filter ¢ after the Fourier transform, the linear transform
W ; maintains high-frequency modes. The cut-off frequency
kmax of the low-pass filter is a tradeoff between the number of
frequency components that are kept versus the computational
complexity. If too few frequencies are selected, there is not
enough information in the frequency domain to learn well. If
too many frequencies are selected, then we need to learn a high
dimensional set of weights, negating the benefit of learning in the
frequency domain. The trade-off we adopted is to keep a small
number of modes in the frequency domain and pass them through
nonlinear layers, while still using a direct path as shown in Fig. 6.
Intuitively, this means that the low-frequency modes should be
learned in the frequency domain, while the higher-frequency
modes can be directly handled using the time domain signal.
The exact value of k.« involves some trial and error. We will
show the numerical study about the effect of k. in Section VL.

C. Multi-Dimensional Fourier Transforms

The above approach of learning the weights in the frequency
domain and recovering the trajectory with inverse Fourier trans-
form provides the advantage in fitting oscillatory functions,
by learning smooth curvatures and avoiding over-fitting. For
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a system with N buses, there are 3 N state variables we are
interested in: the voltage, angle, and frequency at each bus.
However, conducting Fourier transform with 3 N dimensions
is time-consuming even for moderatedly sized power systems.

Another choice is to neglect the dependence and purely con-
duct 1D Fourier transform on the time dimension. However, this
will degrade the prediction performance since the networked
structure is an important cause of the oscillations. Moreover, the
time-varying parameters and the fault-clear actions should be
considered as well.

To overcome these challenges, we design a novel dataframe
that encodes time-varying parameters, fault information, and
spatial-temporal relationships in transient dynamics in the next
section.

V. ENCODING SPATIAL-TEMPORAL RELATIONSHIPS
A. Spatial-Temporal Relationship in Transient Dynamics

We construct 3D tensors to encode the input trajectories such
that the spatial-temporal relationships in the power system can
be included. In addition, computation complexities of Fourier
transforms are also reduced. The proposed framework is shown
in Fig. 7(a). Each data point is indexed by three dimensions and
written as (go)a,y,=,. The = axis indexes the buses from 0 to
N — 1. The y axis indexes different state variables for each bus
with y = 0, 1, 2 stands for d,., w,,, V,., respectively. The z;, axis
is for input time interval and zj, = ton — Tin, - - ., ton — 1. For
example, (go)s,1,10 is the frequency at bus 5 at the time step 10,
and (go)e,2,10 is the voltage at bus 6 at the time step 10.

We would like to highlight that the spatial information in this
manuscript can be understood as the inherent spatial similarity

of signals. For example, it is well known that the angle speed
of generators tend to appear as groups that swing in similar
patterns [29]. This indicates the correlation along the axis of
bus indexes. Moreover, the angle, angle speed and voltage also
typically oscillate at similar frequency. This indicates the corre-
lation along the axis of the type of signals. The Fourier transform
is most commonly defined along the axis of time, namely, the
1D Fourier transform along the time series. In this paper, we
conduct 3D Fourier transform along the dimension of x, y and
the time horizon. This way, the correlations along different
buses, along type of signals and along the time horizon are
extracted.

B. Encoding On-Fault and Fault-Clear Information

Importantly, we aim to predict the trajectories under changing
net injections and faults. This is different from most previous
works that learn a static mapping from input to output time se-
quences for fixed parameters. Therefore, we encode parameters
and fault-clear actions explicitly in the input tensor as shown
in Fig. 7(a). Note that the fault-clear action may not be known
in advance, and we set up an expected relay time to predict
the dynamic behaviors. The aim is to use the learning-based
method to reproduce the results from solvers. That is, given the
relay actions after the fault happens, the solvers can compute
the trajectories after the fault. Likewise, we envision the relay
actions as an extra input encoded in the data frame.

The fault information is encoded in u;(¢) and us(t), which
are variables that contain the location of the fault and the type of
fault at the time step ¢, respectively. For example, suppose the
fault at the time step zoy + ton includes the trip of line 100 and
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the fault type is a line-to-line fault. We encode the fault location
as 100 and this fault type as 20. Then, u; (zou + ton) = 100 and
u2(Zout + ton) = 20, respectively. For the time step zou + ton
between the line tripping and line relay, w1 (2ou + ton) 7 0 and
u2(Zout + ton) # 0. If there is no fault happening at the time
step Zout + ton, then s (Zou + ton) = 0 and ug (2o + ton) = 0.
Hence, the information of line tripping and relay is inherently
included when we add u; (t) and ua(t) to the data frame for
t =ton — Tiny- - -, ton + Tour — 1. Next, we show how to attach
w and net injections to the dataframe.

C. Encoding Time-Varying Parameters and Actions

Time-varying parameters include the net active power in-
jection p(t) = (p1(t),...,pn(t)) and reactive power q(t) =
(q1(t),...,qn(t)). We stack them on the y axis on y = 3 and
y = 4 as shownin blue part of Fig. 7(a). The benefit of this design
is that the variance of p(t) and g(¢) through time is naturally
incorporated in the zi, axis. The fault information w;(¢) and
us(t) for t = ton — Tin, - - -, ton — 1 are stacked to the y-axis as
y = 5 and y = 6, shown in red part of Fig. 7(a).

Fault-clear actions may happen in the predicted time horizon
[ton, ton + Tour — 1]. To incorporate future actions and temporal
dependence in the prediction time steps, we expand the 3D input
tensor in Fig. 7(b) along the output time sequence, with the new
axis zout = 0, . .., Tour — 1 correspond to the time stamp from ¢,
to ton + Tour — 1. Thisis visualized in the green part of the Tensor
in Fig. 7(b), where the axis of zj, is attached with zout + ton,
U1 (Zout + ton) and us(zow + ton), respectively. Each data point
in the 4D tensor is written as (g1)z,,.,»,y,2,» Where = indexes
bus, y indexes the type of signals (e.g., y = 0, 1, 2 corresponds
to the angle, angle speed, and voltage, respectively), and 2oy
indexes the output time steps. The index zij, =0,...,ton — 1
corresponds to the time stamp of the input trajectory. The index
Zin = ton Stands for the location of the fault, z;, = t,, + 1 stands
for the type of the fault, and z;, = t,, + 2 stands for the time
stamp, respectively. For example, suppose the fault at the time
stamp zoy + ton includes the trip of line 100 and the fault type
is a line-to-line fault. We encode this fault type as number 20
and the faultlocation as number 100. Then (g1) -, z,y,t,, = 100,
(gl)z(,m,a:,y,t‘,nJrl = 20and (gl)z(,ul,z,y,thrQ = (Zoul + ton)At for
all z and y. Namely, the fault type as number 20, the fault location
as number 100, and the time (2oy + ton) At are duplicated along
the dimension of x and y. This way, fault-clearing actions and
the output time stamps are encoded in the dataframe without
adding extra complexity for batch operation.

After such an encoder, the data frame is converted from a 3D
tensor with dimension R Y%7 to a 4D tensor with dimension
R7ouxNxYx(7nt3) We train the neural network on a batch of
trajectories and the number of trajectories is B. Hence, the full
size of input data is with the dimension R B> TouxNxYx(7+3)
We use the Great Britain transmission network with 2224 nodes
that will appear later in the case study to give an impression of
the size of the data. For the time steps 7, = 20 and 7oy = 150,
the memory space for one input trajectory (B = 1) in the Great
Britain transmission network is 0.016 GB, and the memory space
for 200 input trajectory (B = 200) in training is 3.2 GB. The

memory space for other sizes of systems will scale linearly with
the number of buses.

The faults of interest in the paper are mainly transmission
line faults, and therefore we envision that the p and g during
the prediction horizon of less than 10 s will not deviate too
much from the values in the input trajectory. Hence, the encoding
of p and q in horizon of the input trajectory already provides
enough information to guide a good prediction. The goal is to
use neural networks to map the input tensor to the output tensor
with dimension R7«*V*3 for the predicted dynamics of &, w
and V along 7, time steps for NV buses.

D. 3D Fourier Transform

After the encoder, the Fourier transform in (8) is reduced to
3D Fourier transform along the axis of x, y and 2y, computed
as

(FGi)er 0,652
Tout—1l N—1Y -1

) zout€1 +I£z+y§3
SDIDID M ) (9 cunrions (10)

Zou=0 =0 y=0

where &1, & and &3 are modes in the frequency domain in the
three dimensions after the discrete Fourier transform. Impor-
tantly, 3D FFT has been supported by most machine learning
frameworks (e.g., Pytorch), which is computationally efficient
for both backward propagation in training and forward propa-
gation in prediction.

The structure of the Fourier layer with the 3D Fourier
Transform is visualized in Fig. 7(c). After truncating the
Fourier series at a maximum number of modes kmax ; for the
i-th dimension, an equivalent convolution in the frequency

domain is conducted using dot-product with weights 0; €
kaux,Ikaax,Z kaax,SX(Tin"F?’)X(Tin"Fg) deﬁned by

(647‘ : ’(/} (fgj))€1,§2,§37zin

Tin+2
= Z (65)e1,62.€5,2m0 (]'—gj)ghgz,gg,v (1)
v=0
for 61 :Ow-wkmax}l -1, 52 :Oa---akmax,Q_l, §3 =0
a-”akmax,?)_lazin :Oa'“aTin_"Qade: 1a---7l'

The time domain signal is recovered by inverse Fourier trans-
form as follows:

(/Cg]. (gj))zm“,z,y,zm
= (F1(6;-v(Fg))))

kmax,1—1 kmax,2—1 kmax,3—1

)R DD

Zout, LY, Zin

2mi( Tl T2 4 058 )

§1=0 §2=0 §3=0
' (03 Y (fgj))§17£27f37ziu ’ (12)
for 2o =0,..., 7o — 1L, 2=0,..., N—1, y=0,...,Y —

1,2n=0,....,7m+2andj=1,... L

Plugging (12) into (9) gives the output of the j-thlayer g, €
R7oux NxYx(7+3)  The predicted trajectory 8oy € R7ow*N*3
are obtained from the output of the last layer after a dense
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Fig. 8. Topology of Northeastern Power Coordinating Council (NPCC)
48-machine, 140-bus power system [25], [30].

combination weight W ; € R(7nt3)x1

Tin+2

(éom)zom,z,y - Z (gl"‘l)zouux,y,mn (Wl"‘l)Zin

Zm=0

for 2oy =0,...,7ou — 1, 2=0,...,N —1, y=0,1,2. The
index y = 0, 1, 2 corresponds to the prediction of angle, angle
speed, and voltage, respectively. Typically, increased layer [
enables the structure to learn more complex dynamic patterns.
In the simulation, we found that four layers are sufficient. In
practice, the encoder may also conduct a linear combination
on the 4D tensor along the dimension of zj, to increase the
representation capability of the neural networks [22]. In that
case, the dimension of W1 needs to be adjusted accordingly
and all the other computations still remain the same.

13)

E. Algorithm

The pseudo-code for our proposed method is given in Algo-
rithm 1. The variables to be trained are weights ® = {6, W}
shown in Fig. 6. Adam algorithm is adopted to update weights in
each episode. The main practical benefit is that the learned neural
networks are feedforward functions, which can be evaluated
orders-of-magnitude faster than conventional iterative solvers.
To be clear, these neural networks are not replacements for
conventional solvers. Rather, they can be used by system op-
erators to study a much larger set of scenarios of how the system
would behave under various types of disturbances. They would
be valuable tools that would enable better characterization of
the dynamic behavior of the systems, and complement existing
tools such as high-fidelity simulators.

VI. CASE STUDY

In this section, we conduct several case studies to illustrate
the effectiveness of the proposed method. We validate the per-
formance of the proposed approach on a realistic power grid
by the case studies with the Northeastern Power Coordinating
Council (NPCC) 48-machine, 140-bus test system as shown in
Fig. 8 [25], [30]. Then, we verify the performance on large-scale

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 1, JANUARY 2024

Algorithm 1: Training and Predicting Power System Tran-
sients.
Training: Learning rate «, batch size H, number of
episodes I, dataset for training
Initialisation: Initial weights ® of the neural network
1: for episode = 1to I do
2: Encode the input trajectory s! and the output
trajectory st fori = 1,..., H with fault
information in the dataset
3: Using the current weights @ of the neural network,
compute the predicted trajectory ﬁef)m for
i=1,...,H
4. Calculate total}}ossgf all the batches
Sou—S4
Loss = 7 3,1, sl
5: Update weights in the neural network by passing
Loss to Adam optimizer: ® < & — cAdam(Loss)
6: end for
Predicting: Pre-trained weights @ of the neural network
7:  Encode the input trajectory s;j, with the setup of
fault-clear actions
8:  Using the pre-trained weights ® of the neural network,
compute the predicted trajectory oy

power systems using the Great Britain (GB) transmission net-
work, which consists of 2224 nodes, 3207 branches and 394
generators [31]. In Appendix-A of the longer online version of
this paper [32], a simple single-machine infinite bus system is
used to show the benefit of learning in the frequency domain
compared to the time domain.

A. Simulation and Hyper-Parameter Setup

We construct the network in Fig. 7 with four Fourier layers.
We normalize the data of different physical meanings and thus
eliminate the effect of the magnitude of features brought by
different units. The maximum number of modes in the frequency
domain is set to be kmax,1 = 6, kmax,2 = 3 and Kpax,3 = 3. The
episode number and the batch size are 4000 and 800, respec-
tively. Weights of neural networks are updated using Adam with
the learning rate initializes at 0.02 and decays every 100 steps
with a base of 0.85. We use Pytorch and a single Nvidia Tesla
P100 GPU with 16 GB memory. We use the generic deep neural
network (DNN) as a benchmark to compare the performance
with the proposed method (labeled as FNO). The DNN has a
dense structure and seven layers with ReLU activation, where
the width of each layer is 20. The hyper-parameters of DNN
are also tuned to achieve their best performances for different
tasks. The episode number and the batch size are set the same as
FNO.

B. Performance on NPCC Test System

The performance of the proposed method on a practical
power system is verified by simulations on Northeastern Power
Coordinating Council (NPCC) test system, which represents
the power grid of the northeastern United States and Canada
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Fig. 9.

Stable dynamics of angle § (left), frequency deviation w (middle) and voltage V' (right) in NPCC corresponding to (a) the ground truth produced by

a solver. (b) Prediction of FNO. The grey area shows the envelope of the trajectories for all generator buses. Lines with different colors show the trajectories in
selected generator buses. The proposed method predicts both the magnitude and oscillations accurately.

and was involved in the 2003 blackout event [30]. The power
system toolbox in MATLAB is used to generate dataset of power
system transient dynamics with the full 6-order generator model,
turbine-governing system and exciters [25]. The power system
toolbox utilizes kron-reduced admittance matrix and simulates
dynamics with equivalent ordinary differential equations [25].
The trajectories are generated considering the actions of protec-
tive relays in 4-20 cycles [33]. We create cases with stressed
conditions (stable and unstable) by increasing the level of loads
until the system is unstable. The cases with stressed conditions
account for 15% in the training set.

The input trajectories evolve 73, = 20 time steps, with time
interval At between neighbouring time steps to be 0.03 (i.e.,
approximate two cycles that can be attained by most phasor
measurement unit (PMU)). We predict the subsequent trajec-
tories of the length 7., = 150 for a total duration of 4.5 s.
The training time of 4000 episodes is 4424.33 s. We quantify
the prediction accuracy through the relative mean squared error
(RMSE) defined as ||Sout — Sout||3/|Sout]|3-

Fig. 9 shows true (i.e., simulated) and predicted trajectories
of the system after a three-phase line fault between bus 54 and
bus 103 cleared at the time of 0.3 s. Let the time of fault happens
as the time ¢ = 0. The prediction starts at t,, = 0.06 s, which
means one time step in the input trajectories corresponds to the
fault-on system. The grey area is the envelope of trajectories
in all generator buses and the lines are the trajectories in ten
generator buses. For all the three states variables (i.e., d, w and
V), the predicted trajectories in Fig. 9(b) has similar envelope
as the accurate trajectories in Fig. 9(a). The RMSE for the
prediction in Fig. 9 is 0.0041. The convergence of the envelope
in frequency deviation w to zeros indicates that the system is
stable after the fault and its clear action. Moreover, both the
magnitude and the periodic oscillations in the ten generator buses
are all captured by the prediction with FNO for the on-fault and
post-fault period. As illustrated in Fig. 7, the type of fault and
the fault-clear action at t = 0.3 s is encoded in the input tensor

of FNO. Correspondingly, Fig. 9(b) predicts a step increase of
voltage att = 0.3 s, which is the same as Fig. 9(a). Notably, the
magnitude of the voltage at bus 54 and bus 101 is below 0.8 p.u.
before ¢ = 1 s, exceeding the permissible ranges of 5% from
nominal. This may cause low-voltage curtailment of the gener-
ators and warrant attention from system operators. Therefore,
the proposed prediction can provide sufficient information for
identifying how danger the system is.

To illustrate the performance of the proposed method in pre-
dicting an unstable system, Fig. 10 shows true (i.e., simulated)
and predicted trajectories of the system after a line-to-line fault
between bus 75 and bus 124 and recovered at the time of 0.3 s.
Especially, itis a stressed unstable test case by gradually increas-
ing the level of loads until the system is unstable. Although the
magnitude of the trajectories is still bounded, the drifted angle
and the collapse of voltage have reflected the unstable behaviors.
The proposed method captures both the trend and oscillations of
the unstable behaviors. The RMSE for the prediction in Fig. 101s
0.1198. Moreover, the accuracy in terms of predicting unstable
cases is to identify the unstable behaviors. In the next subsection,
we verify in the test set that the proposed method can predict all
the unstable systems accurately shortly after a fault happens.

The trajectory in the frequency domain (computed by Fast
Fourier Transform) for the stable case in Fig. 9 and the unstable
case in Fig. 10 is given in Fig. 11 and Fig. 12, respectively.
The proposed method also achieves high accuracy in the fre-
quency domain. Moreover, the high-frequency component in
both Fig. 11 and Fig. 12 is almost zero. This provides the intuition
why the low-pass filter can reduce computational complexity
without affecting the prediction performances.

Numerical studies about the effect of k., on the low-
pass filter can be found in Appendix-B of the longer online
version [32]. The visualization of the predictions with different
influence factors including fault-on/clear actions, fault type, and
fault location is shown in Appendix-C of the longer online
version of this paper [32].
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Fig. 11.
(a) the ground truth produced by a solver. (b) Prediction of FNO.

C. Quantifying the Performance on NPCC

As shown in Fig. 9 and Fig. 10, the dynamics of the power
system transient states differ greatly with different fault types
and system parameters. To quantify the performance of the
proposed method in stochastic scenarios, we calculate the mean
prediction error in the test set with 100 cases where initial
states, location of fault, type of fault and fault-clearing time
are randomly generated. Three metrics are included:

1) Relative mean squared error (RMSE).

2) Typel-error: Unstable cases predicted to be stable. This is
the more severe type of error (instability is declared when
the average value of w from ¢t =4 s to ¢t = 4.5 s exceed
0.5 Hz).

3) Type2-error: Stable cases predicted to be unstable.

Frequency-domain trajectories of angle § (left), angle speed deviation w (middle) and voltage V' (right) for stable dynamics in NPCC corresponding to

Notably, we fix the length of the input trajectories sj, to be
Tin = 20. The input trajectories contain data before and after
the fault (similar to a rolling window). As illustrated in Fig. 4,
more data point after the fault will be observed if the prediction
starting point ¢, is larger (if we wait longer after the fault to
do a prediction). The more steps after the fault in s;,, the better
the prediction performance. Table I summarizes the metrics for
the prediction error corresponding to different number of on-
fault cycles (one cycle is 1/60 = 0.017 s) involved in the input
trajectories Siy.

From Table I, the RMSE of FNO is much lower than the case
in DNN, respectively. Interestingly, DNN has the Type2-error to
be approximately zero while extremely high Typel-error. The
reason is that DNN will easily overfit since the majority (93%)
of training samples is stable. By contrast, FNO brings zero
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TABLE I

15 0

PERFORMANCE METRICS IN THE TEST SET WITH 100 RANDOMLY GENERATED CASES

475

Frequency-domain trajectories of angle ¢ (left), angle speed deviation w (middle) and voltage V' (right) for unstable dynamics in NPCC corresponding

Metric Relative mse Typel Error Type2 Error
Cycle after fault 0 2 4 10 20 01214 10 20 0 21 4 10 20
FNO 0.0144 | 0.0063 | 0.0055 | 0.0053 | 0.0051 0 0 0 0.011 | 0| O 0 0
DNN 0.0778 0.0712 0.0655 0.0654 0.0656 1| 1] 1]0667 ]| 0.167 0 0010011 0

TABLE II TABLE III
RMSE FOR THE DATASET WITHOUT STRESSED UNSTABLE CASES AVERAGE COMPUTATIONAL TIME
Cycle after fault 0 2 4 10 20 Methods FNO Matlab toolbox  Speed up

FNO 0.0077 | 0.0011 | 0.0009 | 0.0008 | 0.0007 Prediction horizon = 3s 0.0036 1.69 469x
DNN 0.0154 | 0.0146 | 0.0141 | 0.0125 | 0.0104 Prediction horizon = 4.5s  0.0037 2.24 605x
Prediction horizon = 6s 0.0039 3.38 867x

Typel-error and Type2-error once there is an on-fault data
point entered in the input trajectories. Therefore, the proposed
prediction with FNO will capture all the dangerous unstable
cases. The low RMSE indicates that the proposed method can
also simulate the dynamics of trajectories accurately.

Considering that unstable behaviors may not be observed in
real measurements, we also investigate the performance of the
proposed method where unstable behaviors are not present in
the training set. Table II shows the comparison of RMSE on
the dataset without unstable cases. The RMSE decreases greatly
after eliminating the unstable cases. Of course, this is an easier
problem, and the RMSE decreases greatly after eliminating the
unstable cases.

Lastly, we compare the average computational time in the
test set for FNO and Power System Toolbox in MATLAB as
shown in Table III. The execution time for 3D Fourier Transform
and 3D inverse Fourier Transform in one layer is 7.79 x 107° s
and 1.21 x 10~* s, respectively. For the prediction time horizon
ranges from 3 s, 4.5, and 6 s, the computational time of FNO
is 0.0036 s, 0.0037 s, 0.0039 s, respectively. By contrast, the

computational time of MATLAB toolbox are 469, 605 and 867
times slower than FNO. Therefore, the proposed approach will
significantly speed up the simulation for power system transient
dynamics.

D. Case Study on the Great Britain Transmission Network

We conduct a case study on GB system to test the performance
of the proposed method on large power networks. We use AN-
DES (an open source package for power system dynamic simu-
lation) to generate dataset of power system transient dynamics
with the full 6-order generator model, turbine-governing system
and exciters [31]. Differential-algebraic equations are solved for
dynamic simulation [31]. The input trajectories evolve 73, = 20
time steps, with a sampling period of 1/30 s (i.e., two cycles). We
predict the subsequent trajectories of the length 7o, = 150 steps,
for a total duration of 5 s. We use 200 trajectories for training
and the training time of 4000 episodes is 9257 s. Using more
trajectories may improve the performance, but 200 is sufficient
for our simulations.
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(b) Predicted trajectories (lines) and envelope (grey area) after a three-phase-to-ground fault between bus 56
and bus 637 and recovered at the time of 0.13s
Fig. 13. Dynamics of angle § (left), frequency deviation w (middle) and voltage V' (right) in GB corresponding to (a) the ground truth produced by a solver

(b) prediction of FNO. The grey area shows the envelope of the trajectories for all generator buses. Lines with different colors shows the trajectories in selected
generator buses. The proposed method predicts both the magnitude and oscillations accurately.

Let the fault happens as the time ¢ = 0. The prediction starts at
ton = 2/30 s, which means one time step in the input trajectories
corresponds to the on-fault system. Fig. 13 shows the prediction
on a line fault (a three-phase-to-ground fault between buses 56
and bus 637 and recovered 0.13 s later) that is not in the training
set. The grey area is the envelope of trajectories in all generator
buses and the lines are the trajectories in ten generator buses.
For all the three states variables (i.e., J, w and V), the predicted
trajectories in Fig. 13(b) have similar envelopes as the simulated
(i.e., ground-truth) trajectories in Fig. 13(a). Moreover, both
magnitude and the periodic oscillations in the generator buses
are captured by the prediction with FNO for the on-fault and
post-fault period.

In 100 test cases where initial states, location of fault, and
fault-clearing time are randomly generated, the mean value of
RMSE for DNN is 0.0034. By contrast, the mean value of RMSE
for FNO is 0.0001, which is 97% smaller than DNN. Hence, the
proposed method achieves much higher accuracy compared with
generic deep neural networks.

The above experiments show that the neural network is not
simply memorizing but generalizing as well [34], [35]. Since
the power system is a synchronized and connected network,
transients from different faults could be related. We conjecture
that there should be some sparse pattern behind the transient
dynamics of the system, and this is the reason why we can learn
well with a moderate amount of data. These relationships may be
hard to visualize or analytically characterize, which makes ma-
chine learning useful. Theoretical analysis of the phenomenon
is an important future direction for us.

VII. CONCLUSION

This paper proposes a frequency domain approach for predict-
ing power system transient dynamics. Inspired by the intuition
that there are relatively few dominant modes in the frequency

domain, we construct neural networks with Fourier transform
and filtering layers. We design the dataframe to encode the power
system topology and fault-on/clear information in transient dy-
namics, allowing the extraction of spatial-temporal relationships
through 3D Fourier transform. Simulation results show that
the proposed approach speeds up prediction computations by
orders of magnitude and is highly accurate for different fault
types. Compared with state-of-the-art Al methods, the proposed
method reduces MSE prediction error by more than 50% and
vastly improves the detection of unstable dynamics.

The simulation results point to an interesting observation that
there are sparse patterns behind the transient dynamics of the sys-
tem, and it is this sparsity that allows the neural networks to learn
and predict. Making the theory rigorous is an important future di-
rection for us. The RAM space of GPU resources constrains the
amount of data that can be processed to train the neural networks.
Investigating the parallel training on multiple GPU resources and
the better usage of RAM space are also important future direc-
tions for the proposed method to be utilized in larger systems.
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