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Periodic spin–orbit motion is ubiquitous in nature, observed from electrons orbiting 
nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting 
motions, along circular and noncircular paths, in soft mobile robotics is crucial for 
adaptive and intelligent exploration of unknown environments—a grand challenge yet 
to be accomplished. Here, we report leveraging a closed- loop twisted ring topology 
with a defect for an autonomous soft robot capable of achieving periodic spin- orbiting 
motions with programmed circular and re- programmed irregular- shaped trajectories. 
Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed- loop 
ring topology, the robot exhibits three coupled periodic self- motions in response to 
constant temperature or constant light sources: inside- out flipping, self- spinning around 
the ring center, and self- orbiting around a point outside the ring. The coupled spinning 
and orbiting motions share the same direction and period. The spinning or orbiting 
direction depends on the twisting chirality, while the orbital radius and period are 
determined by the twisted ring geometry and thermal actuation. The flip–spin and 
orbiting motions arise from the twisted ring topology and a bonding site defect that 
breaks the force symmetry, respectively. By utilizing the twisting- encoded autonomous 
flip–spin–orbit motions, we showcase the robot’s potential for intelligently mapping 
the geometric boundaries of unknown confined spaces, including convex shapes like 
circles, squares, triangles, and pentagons and concaves shapes with multi- robots, as well 
as health monitoring of unknown confined spaces with boundary damages.

spin–orbit coupling | defect | twisted ring topology | autonomous soft robot |  

liquid crystal elastomers

Motions observed in nature can be classified into two distinct types: one is non- periodic 
motions, such as linear motion that moves in a straight line and in one direction (e.g., 
the path of a laser beam) and irregular motions without fixed patterns (e.g., the flying 
tack of a fly). The other is periodic motions, such as oscillating or flapping motion (e.g., 
pistons, waves, pendulums, or flapping wings) and rotary motion (e.g., the spinning and 
orbiting Earth). Achieving autonomous non- periodic and periodic motions in soft mobile 
robotics is crucial for adaptive and intelligent exploration of priori unknown environments 
(1–3). Soft active materials, such as external environmental stimuli- responsive soft mate-
rials, hold immense promise for creating autonomous soft robots (1, 4–6). These materials 
enable the soft robots to autonomously interact with and adapt to the environment without 
the need for on- board power and control systems, because they can embody self- powering, 
self- sensing, and self- actuation capabilities in materials, enabling built- in close- looped 
feedback control known as materials intelligence (7–9).

By combining materials intelligence with different well- designed structures (8), soft 
active materials–based robots can achieve various autonomous non- periodic (10–20) and 
periodic motions (21–25) in response to constant external stimuli, without requiring 
spatiotemporal control of those stimuli (26). For example, soft robots made of light- , 
thermal- , or photothermal- responsive materials, such as hydrogels, polydimethylsiloxane 
(PDMS), and liquid crystal polymers or elastomers (LCPs or LCEs), have demonstrated 
autonomous linear motion when exposed to constant light sources or temperature (10–20). 
These robots often possess simple structural forms such as wavy or twisted ribbons, rods, 
helices, rings, and lattices (10–20). When placed in unstructured environments with 
obstacles, some self- rolling robots can perceive obstacles and autonomously redirect their 
motion (14–16, 19), enabling obstacle avoidance and even navigating simple obstacle 
courses and complex mazes through adaptive interactions with the obstacles (14, 19). 
Similarly, cantilever beams or fibers made of active materials, such as LCPs, LCEs, hydro-
gels, or bilayer LCE–PDMS composites, can undergo periodic self- oscillations under a 
constant light source (21–25), enabling flapping- based autonomous swimming and crawl-
ing (23, 25).
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Despite extensive research on autonomous linear and oscillating 
motions (10–25), periodic self- orbiting motion in autonomous 
soft mobile robots remains largely unexplored (see summary 
SI Appendix, Table S1), particularly in the context of periodic 
coupled spin–orbit motion commonly observed in nature, from 
atomic systems to celestial bodies. Within an atom, electrons spin 
and orbit around the nucleus. In the universe, planets spin and 
orbit around the Sun. Specially, the Earth exhibits both spinning 
and orbiting directions counterclockwise with different rotating 
periods (1 d vs. 1 y), while the Moon spins and orbits the Earth 
counterclockwise with the same periods (a month). More impor-
tantly, achieving periodic self- orbit motion beyond the conven-
tional circular trajectory, for example, noncircular trajectories such 
as square and polygon shapes, or even irregular- shaped closed- loop 
trajectories, remains largely unexplored in autonomous soft mobile 
robots. Realizing these motions holds significant potential for 
autonomous and intelligent exploration in unstructured environ-
ments (1–3), as well as mapping (27–29), inspection (28), and 
structural health monitoring (30, 31) of unknown environments. 
These capabilities pose a grand challenge in the realm of autono-
mous soft mobile robotics yet to be accomplished (1–3).

Inspired by the periodic coupled spin–orbit motion observed 
in the universe, here, we report a celestial- like autonomous soft 
robot capable of periodic clockwise or counterclockwise spin–orbit 
motion under constant temperature or a constant light source. 
The robot takes a twisted ring topology with a defect, created by 
simply bonding the two ends of an open- end twisted ribbon made 
of thermal and photothermal- responsive LCEs (14) (Fig. 1A) with 
the defect located right at the binding site (red line in Fig. 1A). 
The twisted ring robot exhibits controllable, autonomous periodic 
synchronized flip–spin–orbit motions with circular and adaptive 
noncircular orbital paths in both a free space and confined spaces, 
respectively. Such controllable periodic self- orbiting motions are 
dramatically distinct from that of the reported open- end twisted 
ribbon, i.e., unidirectional linear motion in a free space and 
uncontrollable random motion in confined spaces (14), as well as 
that of the reported symmetric wavy LCE rings without chiral 
twists (16, 18), i.e., either sole inside- out self- flipping in place via 
snapping or linear motion after breaking the front- rear symmetric 
frictions (SI Appendix, Table S1). We validate experimentally and 
theoretically that it is the unique closed- loop twisted ring topology 
alongside the defect that leads to the distinct self- motions and 
underlying motion mechanisms from that of the open- end twisted 
ribbon (14).

Specially, the twisted ring robot exhibits three coupled 
self- rotatory motions: flipping around the circular centerline, 
spinning around the ring center, and orbiting along a circular path 
(Fig. 1B). Similar to the spin- orbiting motion of the Moon, it 
exhibits both identical spinning and orbiting directions and syn-
chronized spinning and orbital periods, but differently with tun-
able clockwise and counterclockwise orbiting direction by the 
respective left-  and right- handed twist chirality. The orbital periods 
and radius can be programmed by the geometry of the twisted 
ring, including ring radius, ribbon width, and twist density. 
Through combined analytical modeling and experiments, we find 
that the synchronized motion is driven by both the chiral twisted 
ring topology and the symmetry breaking of the tangential driving 
forces induced by the defect at the bonding site. Furthermore, we 
explore the robot’s ability to perform re- programmed self- orbiting 
motions within confined spaces bounded by rigid walls, including 
both circular and non- circular orbits. The robot demonstrates 
intelligent mapping of the geometrical boundaries of diverse con-
fined spaces with regular and irregular shapes, as well as the detec-
tion of structural damages along these confined spaces.

Results

Autonomous Flip–Spin–Orbit Twisted LCE Ring. In constructing 
the twisted LCE ring, we follow a two- stage reaction method to 
synthesize the LCE materials (32) and then simply bond the two 
ends of the fabricated twisted LCE ribbon (14) without changing 
its twisting chirality (Fig. 1A and Materials and Methods). The 
geometry of the twisted ring can be characterized by the ribbon 
width Ws, ring radius rs, and pitch angle θs that describes its twist 
density ( � = 2�∕N  , where N is the number of twists).

When placed on a hot surface with a surface temperature T 
over 60 °C, the twisted LCE ring exhibits celestial- like autono-
mous periodic coupled flip–spin–orbit motions (Fig. 1B, the 
optical images are shown in SI Appendix, Fig. S1). The coupled 
motions consist of continuous inside- out self- flipping around its 
circular centerline (Movie S1), self- spin around its ring center, 
and self- orbiting following a circular path (Movie S2). Similar 
flip–spin–orbit motions can be observed under remote near-  
infrared (NIR) light, with a reversed outside- in self- flipping 
(Movie S3). The coupled motions can be described by the angular 
velocities � or equivalently period P = 2�∕� of flipping ( �f  or Pf),  

spinning ( �s or Ps), and orbiting ( �o or Po) motions, respectively, 
and the orbiting radius Ro. We find that �s and �o exhibit  
the same rotary direction (Fig. 1B) and magnitude ( �s and �o ) 

A

Twisted LCE ribbon

Two-end binding

Twisted LCE ring

B
Orbit

Spin

Flip

s

f 

o

W
s

s r
s

R
o

, Po

, Ps

, Pf 

C
 1.2 mm 

 2.2 mm 

 3.0 mm 

 4.0 mm 

60 °C 80 °C 100 °C

W
s

Fig.  1. Autonomous flip–spin–orbiting twisted LCE ring. (A) Schematics of 
constructing a twisted ring by simply binding the two ends of a prefabricated 
twisted LCE ribbon. The red lines denote the bonding site. Ws denotes the 
ribbon width. rs and θs denote the ring radius and pitch angle, respectively. (B) 
Schematics of the exhibited coupled flipping, spinning, and orbiting motions 
around a circular path in response to constant temperature on a hot surface 
or a constant NIR light source �f    , �s   , and �o   denote the flipping, spinning, and 
orbiting angular velocities, respectively, with Pf, Ps, and Po as the corresponding 
periods. Ro denotes the orbital radius. (C) The ratio of the difference between 
measured orbital period Po and spinning period Ps to Ps for samples with 
different ribbon width in response to different surface temperatures.
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regardless of the surface temperature and twisted ring geometry, 
i.e., the same orbital period shown in Fig. 1C. We note that �s 
and �o are over 250 times slower than �f  (Fig. 2), i.e.,

 
[1]

The rotating direction is dependent of the twisted chirality (20). 
For a left- handed (right- handed) twisting ring, it spins and orbits 
clockwise (counterclockwise). We note that similar self- flipping 
was reported in a PDMS torus (12) on hot surfaces and wavy LCE 
rings on a hot surface (16, 18) or under a constant infrared light 
source (16), however, without observed both self- spinning and 
self- orbiting motion (12, 16, 18). Similar light- guided flip–spin 
motion was also reported in a bilayer LCE Mobius strip with 
defect- free designs (33), however, such a flip–spin motion is not 
autonomous since it needs external rotational controls of light 
sources with the absence of orbiting motion (33). We note that 

the observed flip–spin–orbit motion is a result of the actuation of 
monodomain LCEs, rather than the sole thermal expansion of 
elastomers (SI Appendix, Fig. S2 and Note S1).

Next, we explore how the geometrical parameters and surface 
temperature T affect the coupled motions. Considering that 
𝜔s = 𝜔o ≪𝜔f    in Eq. 1, we use the orbital period Po and flipping 
angular velocity �f  to describe the periodic motions. We find that 

Po (similarly, �f  ) increases (decreases) with increasing Ws (Fig. 2 A 

and D), rs (Fig. 2 B and E), and θs (Fig. 2 C and F), while decreasing 
(increasing) with T. In other words, a lower twist density and surface 
temperature, or a larger ribbon width and ring radius, result in a 
longer orbiting period and a slower flipping speed.

Among all the geometric parameters, Ws shows a more pro-
nounced effect on both Po and �f  , especially at high temperatures 

of 120 °C, where Po increases from ~8 to ~33 min (Fig. 2A) and 
�f  decreases from ~4.5 to ~1.8 rad/s (Fig. 2D). However, surface 

�s = �o with 𝜔s = 𝜔o ≪𝜔f .
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Fig. 2. Temperature and geometric effects on the flip–spin–orbit motion. (A–C) the orbital period Po at different actuation temperatures as a function of ribbon 
width Ws (A), ring radius rs (B), and pitch angle θs (C). (D–F) the flipping angular velocity �f  at different actuation temperatures as a function of Ws (D), rs (E), and θs 
(F). (G–I) the orbiting radius Ro at different actuation temperatures as a function of Ws (G), rs (H), and θs (I). In (A), (D), and (G), rs = 24 mm, θs = 40° (9 twists). In (B), 
(E), and (H), Ws = 2.2 mm, θs = 40° (9 twists). In (C), (F), and (I), Ws = 3 mm, rs = 24 mm.D
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temperature has the most prominent effect on both Po and �f  . As 

T increases from 60 to 120 °C, the average Po for different rings 
dramatically decreases from ~110 to ~10 min (Fig. 2 A–C), while 
the average �f  increases from ~0.25 to ~3 rad/s (Fig. 2 D–F). 

Specially, for the twisted ring with smaller θs (more twists), e.g., 
θs = 20°, when T ≥ 100 °C, it results in supercoiling (34) into an 
“8”- shape due to the higher stored twisting strain energy (Movie 
S4), which accounts for the missing data in Fig. 2 D and G. Similar 
supercoiling can be observed for all the twisted rings at a high 
temperature over 130 °C (SI Appendix, Fig. S3).

In contrast to the angular velocities, the orbiting radius Ro is 
significantly affected by both surface temperature and geometrical 
parameters (Fig. 2 G–I). Ro decreases with increasing T for all the 
studied twisted rings. However, the surface temperature shows a 
more pronounced effect for the rings with thinner ribbon width 
or larger ring radius or fewer twists. For example, as T rises from 
60 to 120 °C, Ro decreases steeply from ~255 to ~100 mm for the 
twisted ring with Ws = 1.2 mm, over 2.5 times reduction, as 
opposed to the moderate decreases of Ro from ~50 to ~25 mm for 
the ring with Ws = 4 mm (Fig. 2G). Moreover, Ro shows a steep 
decrease with Ws (Fig. 2G) and a sharp increase with both rs 
(Fig. 2H) and θs (Fig. 2I), especially at lower T of 60 and 80 °C. 
For example, when Ws increases from 1.2 to 4.0 mm, Ro decreases 
from ~255 to ~50 mm at 60 °C (Fig. 2G), while an increase in rs 
from 21 to 35 mm results in an increase of Ro from ~100 to ~285 
mm at 60 °C (Fig. 2H), which corresponds to an increase in Ro/rs 
from ~5 to ~8.

Furthermore, based on the data of orbiting radius Ro and period 
Po, the linear velocity of the orbiting ring vo can be obtained in 
terms of vo = 2πRo/Po. SI Appendix, Fig. S4 plots vo as a function 
of ribbon width Ws, ring radius rs, and pitch angle θs at different 
surface temperature T (SI Appendix). It shows that similar to ωf, 
vo increases dramatically with T for the rings with thinner ribbon 
width or larger ring radius. Similar to Ro, vo decreases dramatically 
with Ws while it increases with rs at higher temperature, where Ws 
and rs show a more prominent effect than θs on vo (SI Appendix, 
Fig. S4).

Mechanisms Underpinning Flip–Spin–Orbit Motions. To gain 
further insight into the autonomous coupled motions observed 
in our experiments, we employ a combination of simplified 
theoretical modeling and experiments. Our investigations 
suggest that the observed coupled motions are attributed to a 
combination of factors, including temperature gradient- induced 
flipping moment in the LCE ring, the geometry of the twisting 
ring, and the breaking of symmetry at the two- end bonding spot, 
as discussed below.

Flip–Spin Motion. The twisted ring exhibits discrete thermal contact 
with the hot surface (Fig. 3 A and B), which results in temperature 
gradients across the ring height (SI Appendix, Figs. S5 and S6). This 
leads to the bottom contact regions of the ring shrinking, thereby 
engendering a moment M that drives the inside- out flipping (12, 
13) (Inset of Fig. 3 C, SI Appendix, Note S1). As the ring self- 
flips, the initially heated regions on the bottom rotate to the top 
and become cooled down from natural convection. Despite the 
fast self- flipping angular velocity (e.g., ~4.5 rad/s in Fig.  2D), 
the dynamic thermal gradient is still preserved. Repeating such a 
cyclic heating and cooling process leads to the observed sustained 
self- slipping in experiments (SI Appendix, Fig. S7). The driving 
force F can be defined as F = ∂M/∂α, where α represents the flip 
angle (Fig. 3C). Due to the twisting of the ring, the tangential 
directions of the circular centerline lc and the twisted boundaries 

lb do not align with each other, showing an intersecting angle θ 
that changes along the twist boundary (Fig. 3C). As a result, the 
direction of F is perpendicular to lb due to the evolving contact of 
the boundaries with the hot surfaces, i.e., F ⊥   lb. Decomposing F 
along lc and the radial direction of the circular centerline generates 
the driving force for spinning Fs (Fs ‖   lc) and flipping Ff (Ff ⊥   lc) 
with their magnitudes of Fs= F sin θ and Ff= F cos θ, respectively 
(Fig.  3C). Depending on its chirality, Fs leads to clockwise or 
counterclockwise spinning of the ring with left- handedness and 
right- handedness (Fig. 3C), respectively, which is consistent with 
the experiments. The relationship between �s and �f  can be given 

by (see details in SI Appendix, Note S1)

 

[2]

At the boundary contact, we have a small angle mismatch of θ < 
1° for the studied twisted rings. Thus, it renders a much faster 
flipping than spinning observed in the experiments.

Spin–Orbit Motion. The orbiting motion is attributed to the 
force balance breaking induced by the defect at the two- end 
bonding site, where the twisted mesogen alignments along the 
centerline become discontinuous. For a perfect defect- free twisted 
ring (Fig. 3C) with N twists, all the discrete twisted boundaries 
remain contact with the hot surface during motion, and we 

have 
∑N

i=1
F
i

s
= 0 due to its closed- loop geometry, where F i

s
 is 

�s = cot��f .
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Fig.  3. Mechanism of the flip–spin–orbit motion. (A and B) Isometric and 
side view of an orbiting twisted ring on a hot surface (rs = 24 mm, Ws = 2.2 
mm, θs = 36° (10 twists), and right- handed chirality, T = 70 °C). White dashed 
circles highlight the contact points and the red dashed circle highlights the 
non- contact point (a small gap) right next to the BP. (Scale bar: 5 mm.) (C) 
Schematic of the driving forces for the motion in a twisted ring. lc and lb denote 
the tangential directions of the circular centerline and the twisted boundaries, 
respectively. Fs and Ff denote the spinning and flipping force components of 
the driving force F along lc and lb, respectively, with F ⊥   lb, Fs ‖   lb, and Ff ⊥   lc. 
Inset shows the schematics of the driving moment M of the ring induced by 
the temperature gradient. (D) Schematic of the spinning driving forces F i

s
   at 

the ith contact point and the orbiting driving force Fo   of the orbiting twisted 
ring at the left position of (E). Os and Q are the ring center and the noncontact 
point, respectively. nR denotes the vector of OsQ that points to the center of the 
orbiting circle OO in (E). (E) Overlapped optical images of the circular orbiting 
ring in (A) on a hot surface at four different time lapses located at the Top and 
Bottom, Left and Right of the orbit. Green and red dots highlight the BP and the 
non- contact point Q during orbiting, respectively (Scale bar: 5 cm.)
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the spinning driving force at the ith twisted boundary with its 
direction tangential to the circular centerline (Fig. 3D). However, 
we observe that for the two- end bonded twisted ring, all of the 
discrete twisted boundaries are in contact with the hot surface 

during motion except for the one denoted as F
p
s  (Fig. 3D). Such 

a non- contact point is located right next to the binding point 
(BP), as evidenced by the small gap shown in Fig. 3B induced by 
the periodic slight lift- up during spinning motion (Movie S5). 
We note that the relative locations between the non- contact point 
and the BP can change depending on the geometry of the twisted 
ring. As a result, it breaks the balance among F i

s
 , generating a 

net force 
∑N

i=1 F
i
s = − F

p
s = F o that drives the orbiting of the 

twisted ring along the same spinning direction (Fig. 3 D and E 
and SI Appendix, Fig. S8 and Note S2).

The spinning and orbiting dynamics of the ring are intricately 
linked, as the location of the defect (BP) undergoes circular 
motion along the circular centerline while the ring self- spins 
(Fig. 3E). Consequently, the direction of the net force acting on 
the ring undergoes rotation in tandem with the spinning defect. 
Remarkably, the ring completes a full circle of self- spinning right 
before the defect returns to its original position, leading to the 
completion of a full circle in the orbiting motion (Fig. 3E and 
SI Appendix, Fig. S8 and Note S2). Thus, the synchronized spin-
ning and orbiting dynamics underpin the observed identical peri-
ods in both motions.

The net force also governs the direction of the ring’s orbit. 
Specifically, a vector nR connecting from the ring’s center Os to 
the non- contact point Q (Fig. 3D) points to the center of the 
orbiting circle Oo (Fig. 3E). As a result, the orbiting direction no, 
which denotes the tangential direction of the orbiting circle, 
remains perpendicular to nR throughout the orbiting motion, i.e., 
no ⊥ nR. This finding is consistent with the experimental observa-
tions depicted in Fig. 3E.

Effects of Temperature and Geometry on Flip–Spin–Orbit 
Motion. To qualitatively understand the surface temperature 
and geometrical parameters on the flip–spin–orbit motions, we 
develop a simplified dynamics model on predicting the flipping 
angular velocity �f  (see more details in SI Appendix, Note S3), 

which scales as:

 

[3]

where α and L denote the thermal expansion coefficient and 
the sample length, respectively, ΔT = T—Tambient (Tambient is the 
ambient temperature) is the temperature difference, � s = 1∕rs   is 
the curvature of the ring, and the function arcsinh is monotonic. 
SI Appendix, Fig. S9 shows the comparison of ωf between the 
analytical model and experimental data as a function of ribbon 
width Ws, ring radius rs, and pitch number N at varying actuation 
temperatures T. The model shows that ωf diminishes with increas-
ing Ws and rs. On the other hand, ωf rises with a higher pitch 
number N. Compared to these geometric parameters, the surface 
temperature T shows a more notable effect, where ωf surges with 
T, which are consistent with the experiments (Fig. 2 A–F and 
SI Appendix, Fig. S9).

The orbiting radius Ro can be expressed as in terms of the cen-
tripetal force (SI Appendix, Note S3)

 [4]

where Cf is the dynamic coefficient of friction and g   is the gravi-
tational constant. Eq. 4 shows that Ro is inversely proportional to 
the self- spinning frequency, �o   . Accordingly, Ro increases as �o   
decreases, and since �o   is linearly proportional to the self- flipping 
frequency, �f    , as described by Eqs. 1–3, decreasing �f    will also 

lead to an increase in Ro. This is consistent with the experimental 

observations presented in Fig. 2. Similarly, as indicated by Eq. 3, 
increasing rs and θs or decreasing Ws and T will result in a reduced 

�f  and hence a decreased �o , leading to an increase in Ro. Notably, 

since Ro is inversely proportional to �2

o
 , geometrical parameters 

and surface temperature will present a more prominent effect on 
Ro than on �f  , which is also consistent with the experiments.

Autonomous Exploration of Confined Spaces. Next, we explore 
leveraging the observed autonomous flip–spin–orbit motion of 
the twisted rings in free space as a soft robot for programmed 
autonomous periodic motions in different confined spaces on hot 
surfaces (90 °C), as well as its applications in intelligent mapping 
and health monitoring of its boundary shapes. The confined spaces 
are constructed from enclosed spaces with different geometrically 
shaped wooden walls.

Upon randomly placing the left- handed twist ring (Fig. 4A and 
Movie S6) with its radius R smaller than its free- space orbiting 
radius Ro (i.e., R ≤ Ro) inside a circular confine space, we observe 
that the soft robot first self- move to the wall and then exhibit a 
periodic self- orbiting motion along the inner boundary of the 
circular wall, demonstrating a similar flip–spin–orbit motion with 
identical spinning and orbiting periods. However, due to the side 
interaction (i.e., friction) of the ring with the wall, the orbiting 
direction no does not adhere to the rule in Eq. 3 with no ⊥ nR. 
While R ≤ Ro serves as a sufficient condition for self- orbiting 
around the confined circular wall, it is not a necessary condition 
as the ring- wall interaction and friction play an important role.

We further explore the self- orbiting behavior of the twist ring 
robot in non- circular- shaped confined spaces, such as a square 
and equilateral triangular shape, as shown in Fig. 4B (Movie S7) 
and Fig. 4C (Movie S8), respectively. We constrain the projection 
of the side length of both shapes to the horizontal direction (Lh) 
and the vertical direction (Lv) to be Lh ≤ Ro and Lv ≤ Ro. However, 
such constraints only represent a sufficient condition. Nevertheless, 
the soft robot can self- orbit periodically around both square and 
triangular- shaped walls after one or two trials of orbiting motions. 
We observe that its orbiting motions are very different from the 
coupled flip–spin–orbit motion observed in free spaces and con-
fined circular spaces. When it contacts the straight side wall, the 
twist ring robot moves linearly along the wall irrespective of its 
orientation. Interestingly, the ring only self- flips and does not 
self- spin around its circular centerline during its linear motion, as 
indicated by the non- spinning motion of the defect (Fig. 4 B, ii, 
Fig. 4 C, iii, SI Appendix, Fig. S10, and Movies S7 and S8). The 
absence of self- spinning motion results from the suppression of 
its spinning driving force Fs by the friction force f from the side 
wall, where Fs and f are aligned with opposite directions along the 
straight wall.

However, whenever it moves to a corner, it starts to self- spin 
and self- turn and then transits to linear motion, accomplished by 
the cessation of self- spinning with only flipping (Fig. 4 B, iii, Fig. 4 
C, ii, SI Appendix, Fig. S10, and Movies S7 and S8). This behavior 
results from the spinning driving moment generated by the two 
angled spinning driving forces against the angled walls (SI Appendix, 
Fig. S11 and Note S4). After one complete cycle of orbiting, we 
observe that the twist ring returns to its original position when it 
first meets the side wall, as indicated by the identical defect 

�f ∝
N� s�ΔTL

arcsinh(NWs� s)
,

Ro =
gCf

�
2
o

,
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positions before and after orbiting, indicating that the same spin-
ning and orbiting periods still hold true in confined spaces.

Intelligent Mapping and Structural Health Monitoring of 

Confined Spaces. Expanding on its self- orbiting capability, we 
further explore its potential application in intelligently mapping 
the boundary shapes of enclosed confined spaces. To demonstrate 
this, we coat the robot's body with fluorescent powder and place it 
in a priori unknown confined space in complete darkness (Fig. 5 
A, i and Movie S9). Tracking the glowing orbiting trajectory of 
the robot reveals a pentagon- shaped profile, which matches the 
shape of the boundary walls (Fig. 5 A, ii and iii). Not limited to 
convex shapes like squares, triangles, and pentagons with interior 
angles less than 180°, we also explore the robot's potential to 
map concave shapes with an interior angle greater than 180°, 
such as the Chinese character “凹”- shaped confined space shown 
in Fig. 5B (Movie S10). The robot effectively captures the left 
part of the boundary shape using both linear motion at straight 
boundaries and self- turning at convex corners (Fig.  5 B, i). 
However, when self- navigating to the concave corner, it transits 
to free- space circular orbiting motion due to the loss of contact 
(SI Appendix, Fig. S11 and Note S4). The robot then quickly moves 
to the bottom wall and repeats this hybrid linear- arc orbiting 
motion, represented by the green dotted trajectory UL in Fig. 5 B, 
i. To cover the entire boundary shape, we use another twist ring 
robot with opposite handedness, i.e., right- handed, to capture 
the other half of the boundary, as shown by the orange color 
dotted trajectory UR in Fig. 5 B, ii. Fig. 5 B, iii shows the union 
of the two sets of the trajectories, i.e., UL ∪   UR, which provides 
an approximate profile of the entire boundary shape (Fig. 5 B, iv). 
We note that the detection resolution of the geometric boundaries 
of a confined space is determined by the orbiting radius of the 
ring. To achieve higher detection resolution, i.e., confined spaces 
with smaller sizes, as indicated by Eqs. 3 and 4, a smaller ring size 
with relatively wider ribbon width or more twists is preferred. 

However, it is challenging for small- sized rings to sustain sufficient 
thermal gradient, making them homogenously heated and tend 
to supercoil, losing its orbiting mobility.

Furthermore, we explore its ability of detecting structural dam-
ages in the boundary of enclosed confined spaces for potential 
applications in structural health monitoring. Fig. 5C shows one 
example of the same enclosed square- shaped confined space in 
Fig. 4B but with one gap as structural damage in one side wall. 
Depending on the relative gap size lg to the ring diameter ds, the 
soft robot is capable of either still self- orbiting around the bound-
ary but with an abrupt change in its tracked trajectory when lg ≤ 
ds (Fig. 5 C, i and ii and Movie S11), i.e., a non- continuous slight 
jump at the gap site, or self- escaping from the confined space when 
lg > ds due to the contact loss at the gap (Fig. 5 C, iii and iv and 
Movie S12). These signs indicate the damage and its approximate 
damage size in the enclosed wall. For a confined space with more 
damages in other side walls, a combination of left- handed and 
right- handed twisted rings could be utilized to detect multiple 
damage sites.

Lastly, we demonstrate the versatility of the twist ring robot by 
programming it to exhibit autonomous reciprocating motion in an 
open- end channeled space, as depicted in Fig. 5D (Movie S13). 
The channel width w and length L are set to 50 mm and 600 mm, 
respectively, with w slightly wider than the ring diameter of 45 mm 
and L much larger than the free- space orbiting diameter 2Ro = 120 
mm. The robot moves back and forth within the channel by utiliz-
ing the coupled flip–spin–orbit motion and the interactions with 
both channel walls. Specifically, it initially moves linearly to the 
right, then turns around and moves linearly to the left, followed by 
another turnaround at the left end. This periodic back- and- forth 

motion is attributed to the spatiotemporal variation of the driving 

force 
∑N

i=1 F
i
s = − F

p
s  , coupled with the sidewall friction from 

both channel walls (SI Appendix, Fig. S11 and Note S4). Interestingly, 
we find that the distance between two turnaround points is approx-
imately equal to 2Ro. Thus, the original circular orbiting motion of 

A

B

C

i ii iii iv

no 

spin

spin

spin

no  

spin

Fig. 4. Autonomous periodic orbiting around circular and non- circular paths. (A–C) Periodic orbiting motions of a randomly placed twisted ring robot (rs = 24 

mm, Ws = 3 mm, θs = 40° (9 twists, and left- handed chirality) in circular (A), square (B), and triangular (C) confined spaces by plastic sheets or wooden walls on 
hot surfaces (90 °C). The dashed curves show the tracked motion trajectories. (Scale bar: 5 cm.)
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the twist ring is converted into a reciprocating motion through this 
one- dimensional confined channel.

Discussions

We demonstrated leveraging a defected, closed- loop twisted ring 
topology for a thermally actuated self- orbiting LCE soft robot. It 
can autonomously and periodically orbit in both free and confined 
spaces with programmed circular and reprogrammed non- circular 
trajectories and period via coupled flip–spin–orbit motions. The 
flip- spin motion is attributed to the closed- loop twisted ring topol-
ogy, while the orbiting motion arises from the defect at the two- 

end binding site that breaks the balance of the spinning driving 
forces due to the loss of contact. Through the adaptive contact 
interactions between the flip–spin–orbit soft robot and the bound-
ary walls, it can either periodically self- orbit along the boundaries 
of confined spaces with both concave and convex shapes, or peri-
odically self- oscillate along a straight line in an open- end chan-
neled space, by means of spontaneously and adaptively enabling 
or disabling the spinning motion. The self- orbiting single or multi- 
soft robots are capable of mapping the boundary’s geometric 
shapes of priori unknown confined spaces and detecting the dam-
ages of their boundary.

All these unprecedented autonomous periodic motions in both 
free and confined spaces are attributed to the synergy between the 
closed- loop twisted ring topology and the binding defect, which 
is absent in previous studies on self- motion structures with either 
open- end or closed- loop geometries (10–19). Topologically, the 

twisted ring is dramatically distinct from the open- end twisted 
ribbon (14). After binding and bending into a twisted ring, it 
offers several unique benefits compared to the open- end twisted 
ribbon: 1) the closed- loop twisted topology prevents the untwist-
ing in the open- end twisted ribbon, preserving a constant number 
of twists for stable spinning. 2) The defect breaks the rotational 
symmetry of the twisted ring during spinning motion due to the 
loss of contact, which enables the coupled spinning- orbiting 
motion. Without the defect, in principle, the ring can only flip 
and spin and cannot orbit. 3) The closed- loop twisted topology 
enables handedness- governed spin- orbit motion. The clockwise 
or counterclockwise spin or orbit depends on the handedness, 
while both the linear motion and random motion in the open- end 
ribbon are independent of its handedness (14).

Moreover, for self- motion structures in a closed- loop ring topol-
ogy, the absence of either twisted features or defects leads to dis-
tinct motions from the adaptive flip- spin- orbit motion in this 
work. For example, a twist- free PDMS or nylon fiber- based torus 
with a binding defect only exhibits self- flipping motion in place 
on hot surfaces (12). Similar sole self- flipping motion is also 
reported in a 2D wavy LCE ring on a hot plate composed of 
multiple connected pre- curved non- twisted cylindrical fibers with 
multiple binding defects (18), as well as in a defect- free 3D wavy 
LCE dancing ring on hot surfaces or under constant NIR light 
(16). The absence of the coupled spin–orbit motion in these ring 
structures is due to their highly symmetric ring geometry. Despite 
the presence of defects, the symmetric ring geometry without 
chiral twists (16, 18) cannot generate a similar tangential driving 

D

B

A

C

lg< ds

ds

i ii iii iv

U
L

U
R

UL ∪ UR

lg > ds

Fig. 5. Intelligent mapping and damage detections of confined spaces. (A) Mapping of the boundary shape of a priori unknown confined space in complete 
darkness via autonomous periodic orbiting of the twisted ring robot. The robot is coated with fluorescent powder to track its moving trajectory highlighted by the 
green dashed lines in (i–iii). (iv) shows the image of the pentagon- shaped confined space. (B) Boundary shape mapping of a concave- shaped confined space using 
two orbiting twisted ring robots with right- handed (i) and left- handed chirality (ii). (i), (ii), and (iii) show the two tracked trajectories (UL and UR) and the union of two 
sets of UL and UR (i.e., UL ∪   UR), respectively. (iv) shows the tracked trajectory after removing the intersection of the two sets that matches the concave boundary 
shape of the confined space. (C) Orbiting motions in square- shaped confined spaces with damages (a gap) in the bottom side walls with smaller (i and ii) and larger 
(iii and iv) gap size lg than the ring diameter ds, respectively. lg = 25 mm in (i and ii) and lg = 80 mm in (iii and iv) with ds = 48 mm. The white color dashed curves 
and lines show the motion trajectories. Red curves denote the motion trajectories when meeting the gaps. (D) Autonomous one- dimensional (1D) reciprocating 
motion in an open- end channeled confined space. All the demos are on hot surfaces (90 °C). In (A–C), rs = 24 mm, Ws = 3 mm, θs = 40° (9 twists), and right- handed 
chirality in (A) and (B, ii) and left- handed chirality in (B, i) and (C). In (D), rs = 24 mm, Ws = 2 mm, θs = 30° (12 twists), and left- handed chirality. (Scale bar: 5 cm.)
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force for self- spinning to the twisted ring (Fig. 3 C–E). To generate 
a continuous flip–spin motion in a defect- free bilayer LCE Mobius 
strip, it requires spatiotemporal control of the NRI light along the 
ring (33). Furthermore, we observe that the size and number of 
the defects in the twisted LCE ring can also change its orbiting 
motion. For example, a larger defect size could result in a smaller 
orbital radius (SI Appendix, Fig. S12). The orbiting motions in 
the twisted rings with multiple defects become more complex due 
to the interplay of the multiple defects (SI Appendix, Fig. S13). 
Generally, as the number of defects increases, the twisted rings 
become more unstable and tend to supercoil into “8” shapes even 
at lower actuation temperature (SI Appendix, Fig. S13). The effect 
of the number of binding defects on the spin- orbiting motion of 
the twisted ring will be explored in the future.

The self- orbiting soft robot and swarms can find potential appli-
cations in intelligent exploration, mapping, and health monitoring 
of priori unknown environments and confined spaces (27–31).

Materials and Methods

The twisted LCE rings were fabricated by gluing the two ends of a twisted LCE 
ribbon that was manufactured by following the two- stage reaction method in our 
previous work (14). Two g of 1,4- Bis- [4- (3- acryloyloxypropyloxy) benzoyloxy]- 
2- methylbenzene (RM257) (Wilshire Company, 95%) was fully dissolved into 
0.7 g of toluene (Sigma Aldrich, 99.8%) at 85 °C under magnetic stirring. Then, 
0.012 g of (2- hydroxyethoxy)- 2- methylpropiophenone (HHMP; Sigma- Aldrich, 
98%), 0.42 g of 2,2′- (ethylenedioxy) diethanethiol (EDDET, Sigma Aldrich, 95%), 
and 0.19 g of pentaerythritol tetrakis (3- mercaptopropionate) (PETMP, Sigma 

Aldrich, 95%) were then added to the solution. The solution was stirred at 85 °C for  
20 min. After cooling down to room temperature, 0.006 g of catalyst, dipro-
pylamine (DPA; Sigma- Aldrich, 98%) was added and stirred at room temperature 
for 3 min. Then, the solution was poured in the mold and let stand overnight 
for fully reaction. The sample is left in the mold and dried at 75 °C for 24 h. The 
twisted LCE ribbon was obtained by first stretching the dried ribbon to about 
150% of its initial length and then twisted and exposed under UV irradiation for 
10 min to finish the crosslinker process. The two ends of the twisted ribbon were 
bonded using UV epoxy resin (Limino) for 3 min under 395 nm UV flashlight to 
achieve the twisted LCE ring (the defect shape and size are shown in Fig. 3 A and B). 
The two ends were glued using UV adhesive resin with compatible geometrical 
connections to preserve the twisting chirality. The ribbon was stretched to 150% 
of its initial length and twisted for UV curing. The spin–flip–orbiting motion of 
all the twisted LCE rings was performed on a 18''×24'' hotplate (McMaster- Carr) 
with aluminum heating surface and tracked by a DSLR camera (Sony ILCE7M3). 
Metal polishing method was applied to the aluminum surface to ensure uniform 
surface friction. All the motions were measured in the steady states (SI Appendix, 
Fig. S14) with at least four samples for each data point. The error bar stands for the 
SD of the measurements. The BP was marked with colored markers to track the 
motion. The infrared images were taken with an infrared camera (FLIR A655sc). 
The enclosed walls in the confined spaces were created by gluing thin wood bars 
cut by a laser cuter (Epilog Laser Mini) to construct the studied different shaped 
boundaries. The twisted ring was coated with lime- color fluorescent powder that 
emits glows after being charged under sunlight to track its motion in a dark room.

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information.

ACKNOWLEDGMENTS. J.Y. acknowledges the funding support from NSF, award 
# CMMI- 2005374 and CMMI- 2126072.

1. C. Majidi, Soft- matter engineering for soft robotics. Adv. Mater. Technol. 4, 1800477 (2019).
2. S. I. Rich, R. J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102–112 (2018).
3. J. Pinskier, D. Howard, From bioinspiration to computer generation: Developments in autonomous 

soft robot design. Adv. Intell. Syst. 4, 2100086 (2022).
4. L. Hines, K. Petersen, G. Z. Lum, M. Sitti, Soft actuators for small- scale robotics. Adv. Mater. 29, 

1603483 (2017).
5. Y. Y. Xiao, Z. C. Jiang, Y. Zhao, Liquid crystal polymer- based soft robots. Adv. Intell. Syst. 2, 2000148 

(2020).
6. Z. Shen, F. Chen, X. Zhu, K. T. Yong, G. Gu, Stimuli- responsive functional materials for soft robotics. J. 

Mater. Chem. B 8, 8972–8991 (2020).
7. Y. Zhao et al., Stimuli- responsive polymers for soft robotics. Ann. Rev. Control Rob. Auton. Syst. 5, 

515–545 (2022).
8. Y. Chi et al., Bistable and multistable actuators for soft robots: Structures, materials, and 

functionalities. Adv. Mater. 34, 2110384 (2022).
9. Y. Chi, Y. Zhao, Y. Hong, Y. Li, J. Yin, A perspective on miniature soft robotics: Actuation, fabrication, 

control, and applications. Adv. Intell. Syst. 2300063 (2023).
10. A. H. Gelebart et al., Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).
11. C. Ahn, K. Li, S. Cai, Light or thermally powered autonomous rolling of an elastomer rod. ACS Appl. 

Mater. Interface 10, 25689–25696 (2018).
12. A. Baumann et al., Motorizing fibres with geometric zero- energy modes. Nat. Mater. 17, 523–527 (2018).
13. A. Bazir, A. Baumann, F. Ziebert, I. M. Kulić, Dynamics of fiberboids. Soft Matter 16, 5210–5223 (2020).
14. Y. Zhao et al., Twisting for soft intelligent autonomous robot in unstructured environments. Proc. 

Natl. Acad. Sci. U.S.A. 119, e2200265119 (2022).
15. F. Zhai et al., 4D- printed untethered self- propelling soft robot with tactile perception: Rolling, 

racing, and exploring. Matter 4, 3313–3326 (2021).
16. Y. Zhao et al., Self- sustained snapping drives autonomous dancing and motion in free- standing 

wavy rings. Adv. Mater. 35, 2207372 (2023).
17. J. J. Wie, M. R. Shankar, T. J. White, Photomotility of polymers. Nat. Commun. 7, 13260 (2016).
18. D. S. Kim, Y. J. Lee, Y. B. Kim, Y. Wang, S. Yang, Autonomous, untethered gait- like synchronization of 

lobed loops made from liquid crystal elastomer fibers via spontaneous snap- through. Sci. Adv. 9, 
eadh5107 (2023).

19. Y. Zhao et al., Physically intelligent autonomous soft robotic maze escaper. Sci. Adv. 9, eadi3254 
(2023).

20. L. Yin et al., Chiral liquid crystalline elastomer for twisting motion without preset alignment of 
mesogens. ACS Macro Lett. 10, 690–696 (2021).

21. H. Zeng et al., Light- fuelled freestyle self- oscillators. Nat. Commun. 10, 5057 (2019).
22. Q. He et al., Electrospun liquid crystal elastomer microfiber actuator. Sci. Rob. 6, eabi9704 (2021).
23. Y. Zhao et al., Soft phototactic swimmer based on self- sustained hydrogel oscillator. Sci. Rob. 4, 

eaax7112 (2019).
24. R. Yoshida, T. Ueki, Evolution of self- oscillating polymer gels as autonomous polymer systems. NPG 

Asia Mater. 6, e107 (2014).
25. Y. Zhao et al., Sunlight- powered self- excited oscillators for sustainable autonomous soft robotics. 

Sci. Rob. 8, eadf4753 (2023).
26. Y. Kim, X. Zhao, Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).
27. S. Thrun, W. Burgard, D. Fox, “A real- time algorithm for mobile robot mapping with applications to 

multi- robot and 3D mapping” in Proceedings 2000 ICRA. Millennium Conference. IEEE International 
Conference on Robotics and Automation. Symposia Proceedings (IEEE, San Francisco, CA, 2000), pp. 
321–328.

28. H. J. S. Feder, J. J. Leonard, C. M. Smith, Adaptive mobile robot navigation and mapping. Int. J. Rob. 
Res. 18, 650–668 (1999).

29. F. Amigoni, “Experimental evaluation of some exploration strategies for mobile robots” in 2008 IEEE 
International Conference on Robotics and Automation (IEEE, Pasadena, CA, 2008), pp. 2818–2823.

30. Y. Tian, C. Chen, K. Sagoe- Crentsil, J. Zhang, W. Duan, Intelligent robotic systems for structural 
health monitoring: Applications and future trends. Autom. Constr. 139, 104273 (2022).

31. R. G. Lins, S. N. Givigi, “Autonomous robot system architecture for automation of structural health 
monitoring” in 2016 Annual IEEE Systems Conference (SysCon) (IEEE, Orlando, FL, 2016), pp. 1–7.

32. C. M. Yakacki et al., Tailorable and programmable liquid- crystalline elastomers using a two- stage 
thiol–acrylate reaction. RSC Adv. 5, 18997–19001 (2015).

33. Z. Z. Nie et al., Light- driven continuous rotating Mobius strip actuators. Nat. Commun. 12, 2334 
(2021).

34. A. Clement et al., Complexity from simplicity: Confinement directs morphogenesis and motility in 
nematic polymers. Extreme Mech. Lett. 47, 101362 (2021).

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
E

R
S

IT
Y

 N
C

S
U

 H
U

N
T

 L
IB

R
A

R
Y

 o
n
 J

an
u
ar

y
 1

0
, 
2
0
2
4
 f

ro
m

 I
P

 a
d
d
re

ss
 1

5
2
.1

4
.1

1
4
.1

3
3
.


	Defected twisted ring topology for autonomous periodic flip–spin–orbit soft robot
	Significance
	Results
	Autonomous Flip–Spin–Orbit Twisted LCE Ring.
	Mechanisms Underpinning Flip–Spin–Orbit Motions.
	Flip–Spin Motion.
	Spin–Orbit Motion.
	Effects of Temperature and Geometry on Flip–Spin–Orbit Motion.
	Autonomous Exploration of Confined Spaces.
	Intelligent Mapping and Structural Health Monitoring of Confined Spaces.

	Discussions
	Materials and Methods
	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 23



