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Crop planting timing is critical in regulating environmental conditions of crop growth throughout the season, and
is an essential parameter in crop simulation models for estimating dry matter accumulation and yields. Accurate
planting date information is key to characterizing crop growing dynamics under varying farming practices and
facilitating agricultural adaptation to climate change. To date, the main methods to acquire planting dates
include field survey methods, weather-dependent methods, and remote sensing phenological detecting methods.
However, it is still challenging to effectively estimate the crop planting dates at field levels due to the lack of
appropriate field-level modeling design as well as the dearth of ground planting reference data. In our study, we
develop a novel CropSow modeling framework to estimate field-level planting dates by integrating the remote
sensing phenological detecting method with the crop growth model. The remote sensing phenological detecting
method is devised to retrieve the critical crop phenological metrics of farm fields from remote sensing time series,
which are then integrated into the crop growth model for field planting date estimation in consideration of soil-
crop-atmosphere continuum. CropSow leverages the rich physiological knowledge embedded in the crop growth
model to scalably interpret satellite observations under a variety of environmental and management conditions
for field-level planting date retrievals. With corn in Illinois, US as a case study, the developed CropSow out-
performs three advanced benchmark models (i.e., the remote sensing accumulative growing degree day method,
the weather-dependent method, and the shape model) in crop planting date estimation at the field level, with R
square higher than 0.68, root mean square error (RMSE) lower than 10 days, and mean bias error (MBE) around
5 days from 2016 to 2020. It achieves better generalization performance than the benchmark models, as well as
stronger adaptability to abnormal weather conditions with more robust performance in estimating the planting
dates of farm fields. CropSow holds considerable promise to extrapolate over space and time for estimating the
timing of crop planting of individual farm fields at large scales.

1. Introduction

Food security will be increasingly challenged in the upcoming years
with the world’s population growth, the growing scarcity of farmland,
the changing consumption patterns, as well as the changing climate
(Beddington, 2010). By 2050, 60 percent more food will need to be
produced to feed a projected world population of 9.3 billion. Under
these projected changing scenarios, adaptations of crop management
practices are expected to be imperative in dealing with food security
issues (Challinor et al., 2014). As one of the major crop management
practices in determining the crop yield potential, the timing of crop
planting plays a critical role in initializing the climatic and environ-
mental conditions of crop growth and phenological development
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throughout the season (Baum et al., 2020). The adaptive management of
crop planting can potentially mitigate the negative effects of heat or
chilling stress on crop production, leading to substantial reduction in
yield losses under future climate (Baum et al., 2020; Shew et al., 2020;
Huang et al., 2020). In addition, planting date is an essential input
variable of process-based crop growth models to estimate crop yields
and assess food security prospects over space and time. Monitoring the
timing of crop planting at field levels can largely facilitate the assess-
ment of the gaps between achieved and achievable yields to enable more
profitable and sustainable farm management adaptations (Jain et al.,
2016).

Currently, the major methods of acquiring field-level planting date
information can be divided into three categories: (1) field survey
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methods, (2) weather-dependent methods, and (3) remote sensing
phenological detecting methods. As the most traditional information
collection method, field surveys can record accurate crop planting in-
formation of individual farm fields. Yet conducting field surveys over
wide geographical regions is labor-intensive, time-consuming, and
costly. The field collection efforts may also be hampered when the farm
fields are private or inaccessible. The weather-dependent methods
typically utilize meteorological data around the planting season to es-
timate the crop planting dates given that weather conditions (e.g.,
temperature and precipitation suitable for crop germination) are
important for farmers’ planting decisions (Waha et al., 2012; Waongo
et al., 2014; Dobor et al., 2016; Choi et al., 2017; Glimiiscii et al., 2020;
Vijaya Kumar et al., 2021). For example, planting usually starts at the
onset of the seasonal cycle of temperature when daily average temper-
ature exceeds a certain threshold in the Midwestern US (Choi et al.,
2017). The threshold can be determined based on historical tempera-
tures that facilitate the crop planting, and may vary across years, loca-
tions, as well as crop types. In addition to setting the specific threshold,
potential relationships between crop planting dates and meteorological
data can be explored by machine learning techniques (Giimiiscii et al.,
2020). The weather-dependent methods show good potential for
uncovering coarse crop planting patterns at regional to global scales, but
their performance at local scales for farm field planting estimation
cannot be guaranteed (Dobor et al., 2016). In addition to weather con-
ditions, crop planting decisions are influenced by several other factors,
such as soil conditions, crop species, and availability of machinery.

In recent years, remote sensing has been increasingly utilized to
retrieve crop planting dates with its improved resolutions, wide area
coverage, and repeated viewing. Due to the intrinsic difficulty in directly
capturing the crop planting signal, remote sensing phenological
detecting methods have been mainly devised in two types. The first type
of remote sensing methods, named phenology matching methods,
characterize the crop planting dates of the satellite time series based on a
priori crop reference phenological time series and corresponding refer-
ence planting dates (Sakamoto et al., 2010; Zeng et al., 2016; Sakamoto
2018; Zhang et al., 2020; Zeng et al., 2020; Diao et al., 2021; Liu et al.,
2022). These phenology matching methods (e.g., shape model) align the
target satellite time series with the reference phenological time series via
geometrical pattern matching. With the aligned relationship, the target
planting date can then be estimated by mapping the reference planting
date from the reference time series to the target time series. The crop
reference phenological time series are pre-defined seasonal crop growth
profiles characterized by time series of vegetation indices (VIs), and the
reference planting dates are corresponding phenological transition dates
of crop planting pre-defined on the reference time series. These crop
references are mostly calibrated based on constrained field observations,
and have been found to be a major source of uncertainties in crop
phenological detection (Diao et al., 2021). The difficulty in formulating
appropriate crop phenological reference may limit the ability of
phenology matching methods to conduct field-level crop planting
estimation.

The second type of the remote sensing phenological detecting
methods has mainly focused on retroactively estimating planting dates
using the start of season (SOS) metrics identified from the satellite time
series (Vyas et al., 2013; Lobell et al., 2013; Phan et al., 2018; Dong
et al., 2019; Zhang et al., 2021). The remote sensing SOS metrics can
typically be extracted from the time series curves of VIs via threshold-
defined algorithms (e.g., 10% or 20% of the curve amplitude) (Chen
et al., 2004; Delbart et al., 2006; Zeng et al., 2020) or inflection point
algorithms (e.g., local maximum of the rate of curvature change)
(Moulin et al., 1997; Schwartz et al., 2002; Zhang et al., 2003; Wu et al.,
2017; Gao et al., 2017; Diao, 2020; Diao and Li, 2022). The SOS metrics
have been found to approximate the crop vegetative phenological stage
after crop emergence, and have time lags for inferring the planting dates
(Fig. S1). The time lag between the SOS and the planting date is often
assumed unchanged in terms of the number of calendar days or
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accumulated growing degree days (AGDD) over defined areas and years.
Compared to the calendar day-based time lag, the AGDD-based one has
been found to perform better with stronger adaptability to different
weather conditions by taking into account the thermal time accumula-
tion in the crop growth process (Sacks and Kucharik, 2011; Dong et al.,
2019). Despite the important role of AGDD, the time lag between crop
planting and SOS metrics involves several crop stages, including
germination and emergence. The durations of these stages are affected
by a combination of environmental factors (e.g., precipitation and soil
conditions) and crop management factors (e.g., planting depth and crop
cultivars), and the influence of those factors varies across stages. For
instance, the timing of crop germination is mainly affected by the soil
moisture content while the crop emergence timing can be affected by
both planting depth and soil conditions (Lawlor and Tezara 2009; Way
and Yamori 2014). At the farm field level, the SOS-based methods may
be subject to biases and errors in estimating crop planting under varying
environmental and management conditions. The lack of consideration of
the complex soil-crop-atmosphere interactive process underlying crop
physiological growth makes the estimation of planting dates chal-
lenging, particularly at the field level.

Process-based crop models may potentially help tackle this challenge
by simulating field-level crop growth process under combined weather,
soil, and management conditions. They integrate mathematical de-
scriptions of the mechanisms affecting the interactive process among
crop types, crop management practices, and environment to model crop
physiological growth and yield (Asseng et al., 2014; Huang et al., 2019).
The widely used crop growth models include Agricultural Production
Systems sIMulator (APSIM) (Keating et al., 2003; Holzworth et al.,
2014), Decision Support System for Agrotechnology Transfer (DSSAT)
(Jones et al., 2003), Multidisciplinary Simulator for Standard Crops
(STICS) (Brisson et al., 1998; Brisson et al., 2003), etc. These models
encompass comprehensive phenology development schemes with a
multitude of stress terms and field management practices to account for
the spatiotemporal variation in field-level crop growth and develop-
ment. During the early season, such rich phenological and physiological
information embedded in crop growth models enables the comprehen-
sive simulation of crop phenological phases (e.g., planting to germina-
tion, germination to emergence, and emergence to SOS) in response to a
range of environmental and management factors, particularly at the
field level. Those simulated phenological durations by the crop growth
models may thus ease the challenge of the SOS-based planting date
estimation methods caused by the insufficient consideration of soil-crop-
atmosphere continuum. However, to our knowledge, the potential of
crop growth models in retrieving crop planting dates has not been
explored.

The overarching goal of this study is to develop an innovative
framework, named CropSow, to retrieve the crop planting dates at the
field level. CropSow leverages the rich physiological knowledge
embedded in the crop growth model to scalably interpret satellite ob-
servations under a variety of environmental and anthropogenic condi-
tions for planting date retrievals. With corn in Illinois, US as a case study,
the specific aims of our study are threefold: (1) develop CropSow by
integrating the remote sensing phenological detecting method with the
crop growth model; (2) downscale regional aggregated crop planting
information to the field level with rich spatiotemporal planting char-
acteristics; (3) evaluate the CropSow performance upon comparison
with three advanced benchmark methods, including the remote sensing
AGDD method, the weather-dependent method, and the shape model.

2. Study area and data
2.1. Study area
The study area is the state of Illinois, US, which is one of the largest

corn-producing states in the US with its fertile and well-drained soils, as
well as warm and humid summers. In Illinois, more than 95% of
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croplands are taken up by corn and soybean, and these two major crops
are typically rotated in consecutive years. As a rain-fed agricultural area,
Illinois experiences various climate conditions across the state, resulting
in a variety of corn growth phenological trajectories in different loca-
tions and years. Based on climate conditions and cropping practices,
nine agricultural statistics districts (ASDs) are defined by the US
Department of Agriculture (USDA), namely southwest (SW), southeast
(SE), west southwest (WSW), east southeast (ESE), west (W), central (C),
east (E), northwest (NW), and northeast (NE) ASDs (Fig. 1).

The study period spans from 2016 to 2020. In 2018, Illinois experi-
enced dramatic temperature swings in the planting season, and had the
second coldest April with a mean temperature of 10.7 °C yet the warmest
May with a mean temperature of 20.7 °C on record dating back to 1895.
In 2019, Illinois had excessive total precipitation of 1053 mm and the
second wettest year on record (Li et al., 2019). These unique weather
patterns add to the variability in corn phenological development across
the state. The diverse corn phenological trajectories and large acreage of
corn fields make Illinois a good study site for conducting field-level
planting date estimation.

2.2. Data

To date, the most comprehensive and publicly available ground
phenological reference data of US are crop progress reports (CPRs),
published by the USDA. CPRs provide weekly cumulative percentages of
major crops (e.g., corn) that reach certain crop phenological stages. In
Illinois, CPRs record corn phenological progress from the end of March
to the end of December at the state level from 2016 to 2020. Considering
the cumulative corn planting percentage documented in CPRs are
widely and openly accessible across US, this regional aggregated crop
planting information is utilized to calibrate the CropSow framework. As
for the satellite data, we acquire the Moderate Resolution Imaging
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Fig. 1. Illinois agricultural statistics district (ASD) boundary and corn
fields (2020).
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Spectroradiometer (MODIS) MCD43A4 imagery for conducting the
framework calibration. With the calibrated CropSow, we then utilize the
Harmonized Landsat 8 and Sentinel-2 (HLS) imagery for estimating crop
planting dates at the farm field level. During the process of framework
calibration and field planting date estimation, the normalized difference
vegetation index (NDVI), as the most widely used vegetation index for
measuring crop growth conditions, is employed for crop phenology
monitoring (Seo et al., 2019).

We acquire the MODIS MCD43A4 (version 6) nadir Bidirectional
Reflectance Distribution Function (BRDF) adjusted reflectance product
with daily temporal resolution and 500 m spatial resolution for cali-
brating the CropSow at the state level. The combination of spatial and
temporal resolutions of MODIS is an adequate tradeoff for the state-level
framework calibration. In particular, the MODIS daily observation fre-
quency facilitates the detection of subtle changes around crop planting
dates during the early growing season. The 500 m spatial resolution can
help locate an adequate number of pure pixels of corn fields across Il-
linois while maintaining the computational efficiency of the framework
calibration. Specifically, we utilize the yearly Cropland Data Layer
(CDL) data to select pure corn MODIS pixels. The CDL is a raster
formatted crop-specific land cover map with a spatial resolution of 30 m,
produced by the USDA (Boryan et al., 2011). It has been updated
annually for various crop types (e.g., corn and soybean) over the
Conterminous United States (CONUS) since 2008. The CDL products are
highly accurate on corn and soybean classes (generally over 95% pro-
ducer’s and user’s accuracies) (Sun et al., 2020), and are publicly
available from CropScape (https://nassgeodata.gmu.edu/CropScape/).
The pure corn MODIS pixels are identified as the pixels with the per-
centage of corn higher than 90% based on CDLs. In total, there are
30566, 26939, 24841, 23975, and 28,510 pure corn pixels for the years
2016, 2017, 2018, 2019, and 2020, respectively. The CropSow frame-
work is annually calibrated using the corresponding CPR based on the
MODIS generated NDVI time series of all pure corn pixels in Illinois.

With the calibrated CropSow framework, we then acquire the HLS
Version 1.5 dataset for estimating corn planting dates of individual farm
fields. The HLS dataset provides radiometrically consistent surface
reflectance imagery from Landsat 8, Sentinel-2A, and Sentinel-2B sat-
ellites. This harmonized product is generated through atmospheric
correction and cloud masking, spatial co-registration, BRDF normali-
zation, band pass adjustment, and temporal compositing. The harmo-
nization of three satellites’ images can achieve a temporal resolution of
every 2-3 days and a spatial resolution of 30 m (Li and Roy 2017).
Because of the late launch of Sentinel-2B satellite in 2017, the HLS im-
ages before 2017 are only generated from Landsat 8 and Sentinel-2A,
and the temporal resolution of HLS images is relatively lower in the
first year of our study period (2016) than that in the following years. The
HLS images may also be subject to the influence of cloud, cloud shadow,
and haze, resulting in varying numbers of high-quality images across
locations and years. The HLS images are thus not directly utilized for the
framework calibration but represent a good tradeoff for flexibly
retrieving the phenological characteristics of individual corn fields in
Illinois. The boundaries of Illinois corn fields are obtained from the
Common Land Unit (CLU) dataset and corresponding CDLs. The CLU
dataset, produced by the USDA, provides contiguous boundaries of the
smallest unit of agricultural land. Within each individual corn field,
high-quality pixels are selected from all available HLS images based on
their corresponding quality assessment (QA) layers to eliminate the
negative effects of cloud and haze. NDVI values of all selected pixels
within the same cropland are averaged on a day-to-day basis each year
to generate annual field-level NDVI time series for that targeted
cropland.

For the crop growth model of the CropSow framework, we obtain the
data of essential model inputs regarding the soil and meteorological
conditions. The soil inputs, such as layered soil hydraulic properties, soil
pH, and soil organic matter, are queried from the Gridded Soil Survey
Geographic (gSSURGO) dataset. The gSSURGO dataset is a 30 m spatial
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soil raster map derived from the vector-based Soil Survey Geographic
(SSURGO) database, in which many soil samples have been collected by
the National Cooperative Soil Survey and further analyzed in labora-
tories for the database construction. The daily meteorological inputs
include daily minimum and maximum temperatures, precipitation,
vapor pressure, shortwave radiation, snow water equivalent, and day
length (Thornton et al., 2016). They are derived from the Daymet
dataset, which is a long-term, continuous, 1 km x 1 km gridded dataset
of daily meteorological variables over continental North America and
Hawaii from 1980 to the end of the most recent full calendar year. With
the soil and meteorological inputs, the crop growth model is utilized to
simulate the corn phenological development from planting to following
vegetative stages in CropSow.

To validate the performance of CropSow, we also collect field-level
corn planting date data from Beck’s Hybrids (publicly accessible via
https://www.beckshybrids.com/Research/Yield-Data), with a total of
379 field planting date samples from 2016 to 2020. The fields are
distributed across nine ASDs of Illinois with an average size of around
0.4 km? The annual number of the collected corn field planting date
records within each ASD is shown in Fig. 2. The number of corn planting
records varies across ASDs and years, and in general the central ASD has
more planting records than other ASDs. Given the difficulty in obtaining
the field-level crop planting information at large scales, this dataset is
only used for CropSow validation, but not for calibration.

3. Methodology

The CropSow framework mainly consists of two key components:
remote sensing phenological detecting method and crop growth model
(Fig. 3). The remote sensing phenological detecting method encom-
passes time series phenological pre-processing, time series phenological
fitting, and time series phenological characterization to extract the SOS
phenological metrics from remote sensing image series. The crop growth
model is utilized to estimate the time lag between the actual crop
planting date and remote sensing SOS phenological metrics with
consideration of soil-crop-atmosphere continuum. The crop growth
model is calibrated through the MODIS time series and CPR-documented
planting dates at the state level. With the calibrated CropSow, we then
employ the HLS time series to estimate the crop planting dates at the
field level. The CropSow’s performance is further assessed in compari-
son with three advanced benchmark methods, namely the remote
sensing AGDD method, the shape model, and the weather-dependent
method.
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3.1. CropSow

3.1.1. Remote sensing phenological detecting method

The remote sensing phenological detecting method is developed to
obtain the SOS phenological metrics with three main modules: time
series phenological pre-processing, time series phenological fitting, and
time series phenological characterization.

Time series phenological pre-processing consists of two main steps,
namely removal of outlier observations and removal of off-season peaks.
Due to the influence of cloud and haze on remote sensing imagery, there
exist spurious or implausible outliers that could potentially affect the
subsequent phenological fitting processes. The first step utilizes a set of
filtering algorithms (i.e., night filter, spline filter, and mad filter)
sequentially to filter out those contaminated observations in the NDVI
time series (Fig. S2). The night filter is employed to remove observations
of low NDVI values that are typically caused by low illumination con-
ditions, cloud, and snow. The NDVI values that are abnormally lower
than the median off-season NDVI values are removed with this filter. The
spline filter proposed by Migliavacca et al. (2011) is a cubic smoothing
spline filter that suppresses unusually high or low observation values. To
filter out the unusual values, a smoothing spline is first fitted based on
original NDVI time series. Residuals are obtained by calculating the
difference between the daily NDVI values and corresponding smoothing
spline fitted values. The mean (u) and standard deviation (o) of the re-
siduals are then derived, and unusual values are defined as the obser-
vations with the absolute value of residuals larger than p + 3c. Those
unusual values are removed recursively until no unusual observations
are detected. The mad filter, following the method of Papale et al.
(2006), is applied to remove spikes on the NDVI time series according to
the median absolute deviation (MAD). MAD is a robust measure of how
spreading out a set of data is. The NDVI values that cause large MAD are
identified as spikes, which are then removed to improve the quality of
NDVI time series. The gaps of outlier-removed NDVI time series are
filled via linear interpolation.

Apart from outliers, the remote sensing time series may contain off-
season plant growing cycles which are unrelated to the target crop
species. Such off-season growing cycles are usually caused by weeds,
cover crops, or double crops, and may affect the characterization of
phenological metrics of the target crop. Therefore, the second step is to
use a seasonality filter to further smooth out off-season growing cycles,
so that only targeted growing cycles are retained (Fig. S2). Specifically,
the seasonality filter employs a smoothing spline algorithm to capture
the general dynamic patterns of plant growth using the outlier-removed
NDVI time series. The turning points (i.e., peaks and pits) of the spline
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smoothed curve are utilized to identify the growing cycle of the target
crop species in consideration of corresponding peak NDVI values and
crop calendars from CPRs. Specifically, the peak NDVI timing of the
target growing cycle is constrained to be within the period from three
weeks ahead of the start of corn silking stage to the start of maturity
stage of CPRs. The other cycles with localized peaks during the off-
season of the target crop are then removed.

After time series phenological pre-processing, the phenological
growing profile of the target crop is obtained through time series
phenological fitting using the Beck’s double logistic method. Compared
to other time series phenological fitting methods (e.g., asymmetric
Gaussian fitting method, Savitzky-Golay fitting method, quadratic
fitting method, and nonlinear spherical fitting method), the double lo-
gistic fitting method can better characterize the phenological profiles of
vegetation with rapid phenological transitions and relatively short
growing seasons, without overestimating the growing season durations
(Beck et al., 2006). It is thus employed in this study to detect crop
phenological dynamic changes at the beginning of the growing season.
Specifically, the Beck’s method fits the pre-processed NDVI time series
using a generalized double logistic function with six parameters to
model crop phenological development (Eq. (1)).

- 1) (€]

1 1
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where tis the day of year (DOY) and f(t) is the corresponding fitted NDVI
value. Vs is the off-season NDVI value, and V,qy is the maximum NDVI
value over the course of a year. my and ny denote the timing of inflection
points of the curve rising and dropping, respectively. m; and n; corre-
spond to the rates of curve change at those two points (my and ny),
respectively. The six parameters are estimated via the least square
method which minimizes the root mean square errors (RMSEs) between
f(®) and the pre-processed NDVI time series.

Lastly, the SOS phenological metrics are extracted from the Beck
fitted NDVI time series via time series phenological characterization.
Both threshold-based methods and inflection point methods can be used
for phenological characterization. Compared to threshold-based
methods, inflection point methods can more robustly and effectively
extract phenological metrics for various crop types in different locations
based on the curvature change characteristics of NDVI time series,
without customizing cultivar- and location-specific thresholds (Zeng
et al., 2020; Diao 2020). In this study, two inflection point methods, the
curvature-based method and the GU-based method, are leveraged to
retrieve the SOS phenological metrics (Fig. 4), as these two methods
have been demonstrated to approximate the initial corn vegetative stage
(e.g., corn V3 stage with about 2-4 leaves) (Gao et al., 2017; Diao 2020).
The curvature-based method characterizes the SOS when the change
rate of curvature of the fitted NDVI time series reaches its first local
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Fig. 4. Schematic of SOS metric extraction using curvature-based method (a) and GU-based method (b).

maximum, and this curvature-derived SOS is termed as Greenup (Beck
et al., 2006). The GU-based method characterizes the SOS as the time of
intersection between the recovery line and base line of the fitted NDVI
time series curve (Gu et al., 2009). The base line is defined as the hor-
izontal line at the minimum value of the fitted NDVI time series curve.
The recovery line is defined as the tangent line to the fitted NDVI time
series curve at the curve point with the maximum first derivative. The
GU-derived SOS is termed as Upturn in this study. The curvature-derived
Greenup and GU-derived Upturn SOS metrics will be utilized in the
subsequent crop growth model.

In this study, the above procedures are leveraged to extract the SOS
phenological metrics from both MODIS and HLS time series, with the
MODIS metrics further used for crop model calibration and the HLS
metrics used for field-level planting date estimation.

3.1.2. Crop growth model (APSIM)

Plant growth and development mainly depend on the interactions
among crop types, crop management, and environment. Crop growth
models take into account a variety of interactive processes underlying
the soil-crop-atmosphere continuum to simulate crop phenological
development. Hence, crop growth models have great potential in scal-
ably and effectively estimating the duration between crop planting and
following stages under varying weather conditions and crop manage-
ment practices. APSIM, as one of widely used crop growth models in
predicting corn phenological timing in the midwestern US, is utilized to
estimate the time lag between the corn planting date and remote sensing
SOS phenological metrics.

After the planting of corn seed, corn experiences germination and
emergence stages, and then reaches the SOS phenological metrics that
are around the V3 stage. In APSIM, the commencement of the germi-
nation is driven by soil water status. After the germination stage, the
corn phenological development is driven by temperature accumulation
termed as daily thermal time accumulation (in degree days). APSIM
determines the duration of phenological phases by taking into account
the speed and requirement of temperature accumulation. Factors such as
water and nitrogen stress can impact the speed of temperature accu-
mulation, and the thermal time requirement may vary depending on
crop management practices and phenological stages. For example, the
thermal time requirement from corn germination to emergence is
mainly determined by the planting depth, as the seedling emergence is
the process encompassing the plumule growth towards the soil surface
and coming out from the soil. The thermal time requirement from
emergence to the following vegetative stage is mainly determined by the
number of corn-collared leaves and the thermal time requirement for the
development of a leaf, namely phyllochron. The phyllochron is relatively
comparable among various corn cultivars (Birch et al., 1998; Dos Santos
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et al., 2022; Morel et al., 2020; Plancade et al., 2022). Given the SOS
metrics approaching the corn V3 stage (i.e., three collared leaves), the
thermal time requirement from the emergence stage to remote sensing
SOS metrics can also be assumed to be comparable across cultivars, and
is defined as tt emerg to_sos in degree days.

In APSIM, many modules are designed to simulate crop phenological
progress, including the SoilWater module, the SoilNitrogen module, and
the Phenology module. Each day, the SoilWater module calculates the
daily soil moisture based on soil physical and weather conditions. Seeds
germinate when the soil moisture is appropriate for the initiation of seed
sprouting. The Phenology module calculates the daily thermal time
using 3-hourly air temperatures interpolated from the daily minimum
and maximum temperatures. The SoilWater and the SoilNitrogen mod-
ules can also simulate the effects of soil water deficit and soil nitrogen
deficit on the crop growth, respectively. The daily thermal time will be
adjusted according to the water and nitrogen stresses calculated by these
modules. The daily thermal time values are then accumulated into a
thermal time sum to determine the duration between each two crop
phenological stages. In this study, the thermal time sum tt emerg to_sos is
calibrated using the state-level CPRs as well as pure MODIS pixels of
Illinois to retrieve the duration from the corn emergence stage to remote
sensing SOS metrics. The APSIM input variables (except planting dates)
are set in reference to previous studies conducted for corn in the Mid-
western US (Table 1) (Mandrini et al., 2022). A range of corn planting
dates (i.e., April 1 — June 1) are attempted for the calibration of tt e-
merg to_sos upon comparison to CPRs.

Specifically, the calibration of thermal time sum tt emerg to_sos is
shown in Fig. 5. Firstly, for each pure MODIS pixel, APSIM initially runs
with the planting date of April 1 and the tt emerg to_sos of 0 °C-day, as
well as the soil, weather, and other crop management inputs (Table 1) to
derive the model estimated SOS. If the model estimated SOS does not
match with the MODIS pixel’s remote sensing SOS phenological metric,
the planting date input is added by one day. The APSIM iteratively runs
with an updated planting date until the model estimated SOS aligns with
the pixel SOS phenological metric, and the updated planting date of this
alignment is regarded as the model estimated planting date for this pixel.
Under the condition of tt emerg to_sos being 0 °C-day, all pure corn
MODIS pixels’ planting dates are then estimated and utilized to generate
temporal cumulative distribution of model estimated planting dates at
the state level. This temporal cumulative distribution is compared to
that of actual planting dates from CPRs. The degree of similarity is
quantified by the RMSE between the cumulative planting percentages of
CPRs and those of model estimation. By minimizing the RMSE, the
optimal tt emerg to_sos can then be estimated from a range of 0-300
°C-day for the parameter calibration. Given the SOS phenological met-
rics derived from MODIS along with the complicated soil-crop-
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Table 1
Input variables for APSIM simulations.
Variable Value Description Reference
Fertilizer 160 kg/ha Amount of fertilizer Default in
(Default) APSIM
Initial 40 kg/ha Amount of Initial nitrogen (Mandrini
nitrogen et al., 2022)
Planting April 1 - Date when crop is planted CPRs
dates June 1

Initial water 50% Amount of initial water on the Default in
first day of that year APSIM

Soil pH gSSURGO A measure of soil acidity or USDA-NASS
alkalinity

Soil gSSURGO The hydraulic properties of the USDA-NASS

hydraulic soil (infiltration, hydraulic
properties conductivity, water retention,
and available water capacity)

Soil organic gSSURGO The fraction of the soil that USDA-NASS

matter consists of plant or animal tissue
in various stages of breakdown
(decomposition)

Weather DAYMET Daily minimum and maximum (Thornton
temperature, precipitation, vapor et al.,, 2022)
pressure, shortwave radiation,
snow water equivalent, and day
length

Initial 2000 kg/ha Amount of initial residue from (Mandrini

surface of soybean previous crop et al., 2022)
residue

Planting 9 plants/m? Density of maize seed being sown ~ (Mandrini

density et al., 2022)

Planting 50 mm Depth of maize seed being sown (Mandrini

depth et al., 2022)
Row spacing 760 mm Spacing between rows (Baum et al.,
2020)

atmosphere interactive process simulated by APSIM, the tt emerg to_sos
is calibrated on a yearly basis using the corresponding year-specific CPR.

With the tt emerg to sos parameter calibrated, APSIM can simulate
the crop phenological development in the early season and estimate the
number of days from corn planting to HLS-derived SOS phenological
metrics of individual farm fields. The field-level corn planting dates can
thus be estimated with the integration of remote sensing phenological
detecting method and the calibrated APSIM model.

3.2. Benchmark methods

This section introduces three advanced benchmark methods for crop
planting date estimation. The benchmark methods include the remote
sensing AGDD method, the shape model, and the weather-dependent
method. Similar to CropSow, the three benchmark methods are cali-
brated using the MODIS time series and CPR-documented planting dates
at the state level. After the method calibration, the HLS time series is
employed to estimate corn planting dates at the farm field level.

3.2.1. Remote sensing AGDD method

As a major SOS-based remote sensing phenological detecting
method, the remote sensing AGDD method estimates the crop planting
date retroactively using the remote sensing SOS metric and the AGDD-
based time lag (Dong et al., 2019). The time lag from the crop
planting date to the SOS date can usually be represented using the
number of calendar days or AGDD. Compared to the calendar day-based
time lag, the AGDD-based one has been found to perform better with
stronger adaptability to different weather conditions by taking into ac-
count the thermal time accumulation in the crop growth process, and is
thus utilized in this study. The planting date can then be estimated by
subtracting the AGDD-based time lag from the remote sensing SOS
metric. In this study, the remote sensing SOS metric is the Greenup
metric retrieved from the NDVI time series using the curvature-based
method, similar to the Greenup metric in CropSow. The AGDD-based
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time lag is calibrated on a yearly basis using the MODIS time series
and the corresponding year-specific CPR. Specifically, the AGDD from
the planting to the SOS dates is optimized each year to minimize the
RMSE between the estimated temporal cumulative distribution of
planting dates of the pure corn MODIS pixels and the corresponding
reference cumulative distribution of corn planting dates in CPRs at the
state level. As a measure of heat accumulation to quantify plant devel-
opment rates, the daily growing degree day (GDD) is calculated using
the daily maximum temperature (Tpqy), the daily minimum temperature
(Tmin), the daily base temperature (Tpqse), and the daily capped
maximum temperature (Tcqp) (EQ. (3)). In Illinois, the Tpqs is usually set
as 10 °C and the T is typically set as 30 °C for corn (Wang, Azzari, and
Lobell 2019).The corresponding AGDD is then calculated by summing
up the daily GDD from the planting date to the SOS date (Eq. (2)). With
the annual calibrated AGDD (AGDDj;), the planting dates of individual
farm fields could be estimated using the curvature-derived Greenup SOS
metrics from the HLS time series (Eq. (4)).

SOS

AGDD,, = Zdoy:planting date GDD oy 2
] Tmaxs Tca + Tmim T, ase

DDy, — max (mm( ») : max( base) e 0> 3)

Planting date = SOS — days(AGDDy,,) (©))

3.2.2. Shape model

As a benchmark phenology matching method, the shape model is
designed to estimate crop phenological transition dates (e.g., planting
dates) through matching the geometrical patterns of the target and
reference phenological time series (Sakamoto et al., 2010; Sakamoto
2018; Liu et al., 2022) (Fig. 6). The target phenological time series is the
NDVI time series of the target pixel for planting date estimation, and the
reference phenological time series is the corn-specific NDVI time series
curve defined as the 90th percentile of all the pure corn MODIS pixels’
NDVI curves on a yearly basis in reference to our previous study (Diao
etal., 2021). The shape model assumes that the target phenological time
series can be geometrically matched through the scaling and shifting of
the reference phenological time series. With the geometrically matched
relationship, the target planting date can be estimated by mapping the
reference planting date from the reference phenological time series to
the target phenological time series (Fig. 6). In this study, we calibrate
the reference planting date on a yearly basis by searching all the dates
within the range of two weeks before and after the median date of the
corn planting in the corresponding CPRs. The reference planting date is
calibrated as the date that leads to the lowest RMSE between the tem-
poral cumulative distribution of corn planting dates from the CPRs and
that of the planting dates of the pure corn MODIS pixels estimated by the
shape model. With the calibrated reference planting date and pre-
defined reference phenological time series, the shape model is then
employed to estimate the planting dates of target farm fields using the
HLS NDVI time series curves.

The geometrical matching process of the shape model is defined in
Eq. (5).

F(DOY) = VI ye X r(DOY seqe x (DOY + DOY.\./,,:,-,)) 5)
where the function r(DOY) represents the NDVI value of the reference
phenological time series on a certain DOY, and f(DOY) refers to the
NDVI value of the fitted phenological curve on the DOY. Vi g, and
DOYq1 denote the magnitude of scaling of the reference phenological
curve on the vertical and horizontal axes, respectively. DOYgs; denotes
the relative shift of phenological timing on the reference phenological
curve.

The optimum scaling parameters (e.g., Vlscate, DOYscate, and DOY i)
are determined by minimizing the RMSE between the fitted phenolog-
ical curve f(DOY) and the target phenological curve t(DOY) (Eq. (6)).
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The search ranges for these three parameters are empirically set as fol-
lows: 0.3 < DOYcqie < 1.5, 0.3 < Vgeqre < 1.5, and —80 < DOYpr < 80

(Sakamoto et al., 2010).
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1
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(f(DOY) — t(DOY))? (6)

With the calibrated reference phenological planting date and the

optimum scaling parameters specifically fitted for each target pheno-
logical curve, the planting date on the target phenological curve is
estimated through the geometric transformation equation (Eq. (7)).
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where PD; is the estimated planting date on the target phenological
curve, and PD; is the calibrated reference planting date on the reference
phenological curve. DOY?",

e and DOYen, are the optimum scaling

parameters.

3.2.3. Weather-dependent method

The weather-dependent methods typically utilize the meteorological
data to estimate the crop planting dates, given that the weather condi-
tions (e.g., temperature and precipitation) suitable for crop germination
are important for farmers’ planting decisions. For example, too much
rain can saturate the soil, causing poor soil aeration, poor germination,
and poor stands. Too little rain may dry out the soils in rainfed areas,
causing weak and small plants that may not withstand the weather over
the subsequent growth stages (Heng et al., 2009). Lower or higher
temperature can slow down the seed germination process (Covell et al.,
1986).

In this study, the weather-dependent method employs a set of rules in
consideration of the critical meteorological and environmental factors
influencing the corn seed germination to estimate the planting dates
(Dobor et al., 2016). With reference to previous studies and extension
research in Illinois, the critical factors encompass the air temperature,
soil temperature, and normalized water content (NWC). The rules for
estimating the corn planting dates include: (1) the average air temper-
ature is larger than t; °C for five consecutive days before the planting
dates, (2) the temperature of the topsoil from 0 to 15 c¢m is larger than
ty °C for five consecutive days before the planting dates, and (3) the
NWC of the planting date is within the 20-80% range. The satellite data
are not used in the weather-dependent method. The temperature pa-
rameters, t; and tp, are calibrated on a yearly basis through minimizing
the RMSE between the annual temporal cumulative distribution of corn
planting dates from the CPRs and that of the planting dates of the pure
corn MODIS pixels estimated by the rules of the weather-dependent
method. The NWC is defined as:

NWC = 100 x g_ s

s r

(€))

where 0 is the volumetric water content. 8, and 6; are the residual and
the saturated water content of the soil, respectively. Due to the lack of
data on volumetric water content, 0 is calculated via the SoilWater
module of APSIM. 6, and 6; are retrieved from the gSSURGO dataset.

3.3. Framework evaluation

CropSow’s and other three benchmark methods’ corn field planting
date estimations are directly compared with the reference field-level
planting dates from the Beck’s dataset. The coefficient of determina-
tion (RZ), the mean bias error (MBE), and the RMSE are calculated to
assess the accuracy of the estimated planting dates. The R? measures the
proportion of the variance in the observed planting dates explained by
the corresponding estimated planting dates. The RMSE and MBE both
measure the errors of the estimations. Specifically, the MBE captures the
average bias in the estimation and the RMSE describes how close the
observed planting dates are to the estimated ones. The RMSE, MBE and
R? are calculated using the Egs. (9)-(11), respectively. The spa-
tial-temporal patterns of those accuracy measures across ASDs and years
are further investigated. Given the varying number and quality of HLS
images across locations and years, the influence of HLS image avail-
ability on the planting date estimation performance is also evaluated.

1 n
RMSE = ,/NZ[:](P,- -0 Q)
1 n
MBE = 3 " (Pi=0) (10)
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n D\2
RZ — ZI:I(PI' 75)2 (11)
>i1(0i = P)
where P; is the estimated planting date and O; is the observed plating
date of the sample i. N denotes the number of samples; P denotes the
mean value of all observed planting dates.

As crop management input data might not always be available over
large scales, we conduct a global sensitivity analysis to explore how
model performance is affected by several input management variables
(e.g., fertilizer, initial water, planting density, and planting depth) and
our selected phenological parameter (i.e., tt emerg to_sos) for calibration.
This sensitivity analysis is conducted using the Extended Fourier
Amplitude Sensitivity Test (EFAST) method, with the range of each
variable (or parameter) set according to literatures for the US corn
management practices (Table S1) (Westgate et al., 1997; Mandrini et al.,
2022; Nemergut et al., 2021). EFAST employs a multi-phase Fourier
series decomposition method to decompose the variance of the model
output into partial variances associated with each variable (or param-
eter). It enables the estimation of total and main effects of a variable (or
parameter) by analyzing its contributions to the output variance. Total
effect measures the overall impact of a tested variable (or parameter),
including both its direct impact and the impact from its interactions with
other variables (or parameters), while main effect measures the direct
impact of an input variable (or parameter) on CropSow’s performance
without considering the interaction effect. The performance of CropSow
is evaluated via the comparison between the cumulative percentage
distribution of estimated planting dates under different combinations of
these five variables (or parameters) with corresponding reference cu-
mulative distribution of planting dates from CPRs using RMSE.

To further evaluate the CropSow performance at the ASD level, we
compare the temporal cumulative distribution of estimated corn
planting dates with that of CPR-documented planting dates for each ASD
of Illinois. Specifically, within each ASD, we randomly select 200 corn
fields using the CLU and CDL in consideration of both sample size and
computational cost, and estimate the corresponding planting dates using
CropSow. The temporal cumulative distribution of the estimated
planting dates is then generated for the ASD-level framework evalua-
tion. Since the ASD-level CPRs are not publicly available after 2017, the
ASD-level framework evaluation is implemented in 2016 and 2017.

With the ASD-level CPRs in 2016 and 2017, we further calibrate the
CropSow at the ASD level for these two years to evaluate the influence of
the spatial aggregation level of CPRs on the framework performance. For
each ASD and year combination, CropSow is calibrated using the cor-
responding cumulative corn planting information in CPRs. We then
compare the performance of CropSow calibrated at the ASD level with
that of CropSow calibrated at the state level using the Beck’s dataset.

To evaluate the generalizability of the CropSow framework, we also
estimate the field-level planting dates for one year (the target year)
using the state-level CropSow framework calibrated with other years
data. Specifically, for a target year, CropSow is calibrated with each of
the other four years’ data, respectively. With the calibrated CropSow,
the field-level planting dates of the target year can then be estimated and
evaluated using the Beck’s data in terms of the accuracy metrics (RMSE,
MBE and R?). For each accuracy metric, the average of the metric values
of four calibrations for the target year is calculated to assess the
generalizability of CropSow being calibrated using non-target years’
data. The generalizability of the benchmark methods is evaluated in the
same fashion. We further generate the corn field planting date maps of
the Champaign and Dekalb counties of Illinois from 2016 to 2020 using
CropSow. The Champaign and Dekalb counties are located in central
and northern Illinois, respectively. These two counties are under
different weather conditions, with corn fields exhibiting various
phenological trajectories. All the corn fields of these two counties are
located using the CLU and CDL, and the planting dates of corn fields are
estimated accordingly using CropSow. The spatio-temporal planting
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date patterns of corn fields are then investigated and compared for these
two counties to evaluate the framework.

4. Results
4.1. Temporal cumulative distribution of crop phenology

In Mllinois, field planting progress for corn was surveyed and reported
in the CPRs. From 2016 to 2020, the annual temporal cumulative dis-
tribution of planted corn fields in Illinois is shown in Fig. 7. The cu-
mulative distribution curve of planted fields differs year by year. The
planting windows in 2016, 2017, and 2020 are relatively comparable,
mostly ranging from DOY 100 to DOY 160. The planting windows in
2018 and 2019 are more disparate compared to the three other years. In
2018, the planting practice happened mainly within a narrow window
from DOY 110 to DOY 140, whereas it happened within an extremely
wide window from DOY 110 to DOY 180 in 2019. The variability of
planting progress is partly due to the various planting decisions made by
farmers under different weather conditions (e.g., dramatic temperature
swings may facilitate the corn planting in 2018; excessive precipitation
may delay the corn planting in 2019).

CropSow framework is calibrated with the temporal cumulative
distribution of the remote sensing SOS metrics (e.g., Greenup or Upturn)
extracted from pre-processed MODIS time series and that of planted
fields from CPRs. Fig. 8 displays the annual temporal cumulative dis-
tribution of actual planted fields and emerged fields from CPRs (solid red
and green lines), Greenup and Upturn metrics extracted from MODIS
time series (solid blue and yellow lines), and planting dates estimated by
calibrated CropSow based on Greenup or Upturn (dashed blue and
yellow lines) in Illinois from 2016 to 2020. The temporal cumulative
distributions of planting dates estimated by calibrated CropSow
(Greenup or Upturn) are well matched with those of actual planted fields
from CPRs, demonstrating the validity of calibration of CropSow at the
state level. In contrast, both of the two remote sensing SOS metrics’
curves tend to be closer to the CPR emerged curve instead of the CPR
planted curve. The remote sensing signals of SOS metrics are generally
detected 3-4 weeks after planting, except for 2019 when the excessive
precipitation conditions complicate the remote sensing characterization
of the SOS metrics. The early-season weed growth and delayed corn
planting in 2019 changes the pattern of remote sensing time series and
the distribution of SOS metrics. It is also noted that the temporal cu-
mulative distribution curves of the Greenup metrics are around 3 days
earlier than those of the Upturn metrics across all five years.

4.2. Field-level planting date estimation

Under the calibrated CropSow framework, field-level planting dates
are estimated in Illinois from 2016 to 2020 through phenological
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Fig. 7. Annual temporal cumulative distribution of planted corn fields from

CPRs in Illinois from 2016 to 2020.
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metrics extracted from the HLS satellite time series and the physiological
knowledge embedded in the APSIM. We assess the performance of the
CropSow framework in estimating field-level planting dates in different
years and spatial levels (i.e., state level and ASD level). We then explore
the potential of improving the framework’s planting date estimation
performance by calibrating the framework with ASD-level CPRs data
available in 2016 and 2017.

4.2.1. CropSow performance

Fig. 9 shows the scatterplots of the planting dates estimated by
annual calibrated CropSow (Greenup) or CropSow (Upturn) against the
corresponding actual field-level planting dates in the Beck’s dataset
from 2016 to 2020. Each point represents a record of an agricultural
field in Beck’s dataset. In general, the data points in both scatterplots are
close to the 1:1 line (solid diagonal line), with most points falling within
the +10 days boundaries (dashed lines). The distribution of the data
points suggests the satisfactory performance of CropSow in estimating
field-level planting dates. Compared to CropSow (Upturn), CropSow
(Greenup) shows better performance in field-level planting date esti-
mation with higher R? (0.69 vs. 0.59), lower MBE (5.07 vs. 6.62 days),
and lower RMSE (9.13 vs. 11.75 days). The scatterplots also suggest that
the estimation bias (e.g., the fields with actual planting dates around
DOY 110) is much smaller when CropSow (Greenup) is employed.
Pairwise t-test is conducted to further test the difference between the
estimations generated by the two SOS metrics, and the result (p < 0.01)
reconfirms that CropSow (Greenup) exhibits significantly better per-
formance compared to CropSow (Upturn). The good results demonstrate
the applicability and validity of downscaling regional aggregated crop
planting information to the field level through the integration of remote
sensing observations and APSIM.

Fig. 10 shows the yearly scatterplots of estimated planting dates
against the Beck’s actual planting dates, using CropSow (Greenup) or
CropSow (Upturn). Significant positive correlations are observed be-
tween the estimated and actual planting dates in all combinations of
years and SOS metrics, ranging from 0.52 to 0.91 (R? between 0.27 and
0.84). Overall, CropSow (Greenup) tends to yield higher R2, and lower
RMSE and MBE compared to CropSow (Upturn). In 2016, 2017 and
2019, CropSow (Upturn) substantially overestimates the planting dates,
leading to a larger number of points skewed to the left of 1:1 line and
falling out of the £10 days boundaries. In contrast, the estimation re-
sults of CropSow (Greenup) are closer to the diagonal 1:1 line. In 2018,
data points are densely distributed in a narrow window for both two
metrics, likely due to early planting caused by the warm spring in that
year. In 2020, the two metrics achieve satisfactory estimation results,
both with R? over 0.8 and MBE lower than 3 days. In terms of quanti-
tative measures, CropSow (Greenup) generates lower RMSE values
compared to CropSow (Upturn) in all the five years. CropSow (Greenup)
also gives substantially higher R? from 2016 to 2018, and the two SOS
metrics generate almost the same R? values in 2019 and 2020. As for
MBE, CropSow (Greenup) demonstrates significantly better perfor-
mance in 2016 (6.7 vs. 11.11 days) and 2019 (7.74 vs. 12.04 days),
while the two SOS metrics generate comparable MBE values in other
years. It is also well noted that CropSow (Greenup) achieves much lower
MBE in 2019 when extreme precipitation conditions occurred, sug-
gesting that the Greenup metric holds the great potential in contributing
to more stable and robust estimation of field-level planting dates.
Considering that the better performance of CropSow (Greenup) mani-
fests the greater stability and potential of this curvature-based remote
sensing SOS metric, Greenup is selected as the phenological SOS indi-
cator in the CropSow framework for the following analyses in this study.

The field-level planting date estimation results from the state-level
CropSow framework are further aggregated and validated in the nine
ASDs across Illinois, in an effort to obtain a more comprehensive un-
derstanding of the model performance. As mentioned before, CropSow
(Greenup) is selected due to its better stability and accuracy. For each
ASD, 200 randomly distributed corn fields are sampled, and the
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temporal cumulative distribution of those sampled fields is validated
against the ASD-level CPRs. Given that the ASD-level CPRs are only
available in 2016 and 2017 during the study period, only the estimation
results in these two years are aggregated and analyzed. In general, the
temporal cumulative distributions of estimated planting dates align with
those of ASD-level CPRs in these two years, with comparable planting
progress across ASDs (Fig. 11). The RMSEs between actual planting
curves and estimated planting curves are <7 days in most ASDs, and the
errors tend to be smaller around central Illinois. Specifically, RMSEs are
all smaller than 7 days in 2016, except for the ESE (9.7 days) and SE
(14.3 days) ASDs. The relatively large errors in these two ASDs are likely
due to more disparate planting patterns (e.g., planting cumulative dis-
tributions) compared to the state-level planting pattern. In 2017, the
RMSEs are relatively more homogeneous across the nine ASDs, with
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RMSE values mostly ranging from 6 to 9 days. The different temporal
cumulative distributions of estimated planting dates also reflect the
discrepancy of planting decisions made across different ASDs of Illinois
with various environmental conditions. The overall agreement between
estimated planting date distribution and regional statistics from CPRs
confirms the feasibility of downscaling statistics data from state-level
CPRs to higher spatial resolution through integrating remote sensing
SOS metrics and crop growth models.

We further quantify the sensitivity of CropSow’s performance to
several input management variables (i.e., fertilizer, initial water,
planting density, and planting depth) and our selected phenological
parameter (i.e., tt emerg to_sos) for calibration. Specifically, we calculate
the sensitivity index of each variable (or parameter) to evaluate its in-
fluence on CropSow’s planting date estimation performance (Fig. 12).
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Fig. 10. Annual field-level planting date estimation results of CropSow (Greenup) (a) and CropSow (Upturn) (b).
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Fig. 11. ASD-level temporal cumulative distributions of planting dates estimated by CropSow (Greenup) (dashed blue lines) and those of actual planting dates from
CPRs (solid red lines) in 2016 (a) and 2017 (b) for Illinois. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

The main and total effect sensitivity indices show that the model per-
formance is mostly affected by the calibration of tt emerg to_sos and is not
that sensitive to input management variables. It confirms the validity of
calibrating tt emerg to_sos in CropSow for planting date estimation.

4.2.2. Impacts of HLS image availability

While CropSow is able to retrieve field-level planting dates with
generally satisfactory accuracy, the results of RMSEs and MBEs in Fig. 10
also suggest that the CropSow framework tends to estimate planting
dates later than the actual ones for some corn fields. We examine the
corresponding HLS NDVI time series of those overestimated fields, and
hypothesize that the estimation error pattern may originate from the
relatively scarce high-quality HLS images. To investigate the effect of
HLS dataset’s quality on planting date estimation performance, we
define the planting date window as 30 days before and after the actual
planting date of a given field. Then we count the number of high-quality
HLS images during the planting date window for each field. Due to the
late launch of the Sentinel 2B satellite in 2017, the high-quality HLS
images in 2016 and the corresponding planting window are relatively
scarcer than those in the next few years (Table 2).
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We further analyze the impact of the number of high-quality HLS
images within planting date windows on CropSow (Greenup) planting
date estimation performance. Fig. 13 shows the boxplot of the absolute
errors generated by CropSow (Greenup) with regard to the number of
high-quality HLS images within the planting date window during the
five years; the yellow lines represent the median of absolute error be-
tween actual and estimated planting dates; error bars represent the 95%
confidence interval of absolute error between actual and estimated
planting dates. In general, larger numbers of high-quality images around
the actual planting date lead to lower absolute errors and more stable
model performance (narrower range of fluctuations in absolute error).
Thus, the degraded estimation accuracy can be explained by the lack of
sufficient observations around the planting season, which likely causes
inaccurate fitting process of the phenological time series and affects
model performance. Though 2017 may lack high-quality HLS images in
the planting date window, the overall larger number of HLS images for
the whole year could help provide sufficient observations for the time
series fitting process, ensuring relatively satisfactory model perfor-
mance. In summary, sufficient high-quality satellite images in the
growing season are critical for obtaining accurate planting date
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Fig. 11. (continued).

estimations at the field level.

4.2.3. Impacts of calibration dataset’s spatial level

To evaluate the impacts of the calibration dataset’s spatial levels on
the performance of CropSow’s estimation, we compare the planting date
estimation performance of CropSow (Greenup) calibrated using ASD-
level CPRs (ASD-level models) with that of CropSow calibrated using
state-level CPRs (state-level models). The comparison is conducted for
two of our study years, 2016 and 2017, during which a total of 18 ASD-
level models are generated. Table 3 shows the field-level planting date
estimation results of the ASD-level and state-level models. Pairwise t-test
is performed to analyze the difference between the estimations gener-
ated by the two different spatial-level CropSow frameworks. The result
(p < 0.05) suggests that ASD-level models exhibit significantly better
performance compared to state-level models. Compared to state-level
models, the overall MBE of ASD-level models decreases from 6.7 to
4.5 days in 2016 and from 3.5 to 1.6 days in 2017. The overall RMSE
decreases from 9.9 to 8.6 days in 2016, and from 8.1 to 7.6 days in 2017.
The advantage of the ASD-level models is more substantial for ASDs with
more than ten validation fields. In 2016, the MBE decreases from 2.7 to
—0.1 days in the NW ASD, from 8.3 to 5.8 days in the NE ASD, from 3.8
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to 1.9 days in the W ASD, and from 8.9 to 5.5 days in the E ASD. In 2017,
the MBE decreases from 3.9 to 0.6 days in the NW ASD, from 3.0 to 0.6
days in the C ASD, and from 1.8 to —0.7 days in the E ASD. The cali-
bration of CropSow with more detailed ASD-level planting date statistics
further accommodates the change of thermal time requirement from
emergence to SOS metrics at a finer spatial level, leading to the
improvement in estimation accuracy. Overall, a calibration dataset with
a finer spatial level could facilitate a more accurate downscaling of
regional planting date information and generate more satisfactory field-
level planting date estimations.

4.3. Comparison of CropSow and benchmark models

Three state-of-the-art benchmark models are selected and compared
with CropSow in terms of model performances on field-level planting
date estimation. To be consistent with CropSow, all the benchmark
models are calibrated with state-level CPRs and validated with Beck’s
field data. As shown in Fig. 14, CropSow shows the best performance in
estimating field-level planting dates compared to the other three
benchmark models in terms of R2, RMSE, and MBE (0.69, 9.13, and 5.07,
respectively). With the performance second only to CropSow, the remote
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Fig. 12. The total and main effect sensitivity indices of four crop management
input variables (i.e., fertilizer, initial water, planting density, and planting
depth) and the key phenological parameter (ttemergto sos) calibrated
in CropSow.

Table 2
Annual mean number of high-quality HLS images of Beck’s fields for both whole
year and planting window.

Temporal Range 2016 2017 2018 2019 2020
Whole Year 18 25 37 34 37
Planting Window 3 3 5 5 6
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Fig. 13. The number of high-quality HLS images within the planting date
window vs the absolute error of planting dates estimated by CropSow
(Greenup). The yellow lines represent the median of absolute error between
actual and estimated planting dates. Error bars are the 95% confidence interval
of absolute error between actual and estimated planting dates. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

sensing AGDD method achieves a relatively satisfactory result with R? of
0.66, RMSE of 11.23 days, and MBE of 7.11 days. Shape model ranks the
third with R? of 0.44, RMSE of 13.73 days, and MBE of 9.04 days. While
these three methods’ estimates at the field level are all relatively aligned
with the in-situ planting data, CropSow is able to produce the results
with less overestimation. This advantage can be partially attributed to
the introduction of the APSIM in CropSow. The weather-dependent
method gives a relatively poorer field-level planting date estimation
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performance with respect to its RZ and RMSE (0.02 and 18.24, respec-
tively), yet it produces a relatively small MBE (4.08 days). Different from
the other three models (Fig. 14(a)—(c)), the weather-dependent model
generates data points that are evenly distributed on both sides of the
diagonal (Fig. 14(d)). The small MBE also indicates that the weather-
dependent model can capture the general planting timing across the
state. However, Fig. 14(d) alongside the R? and RMSE values reveals that
the weather-related variables cannot explain the variation of planting
dates at the field level.

From the perspective of annual estimation results, CropSow performs
consistently better than the benchmark models during the study period,
with its RMSE values ranging from 7.3 to 13.3 days, MBE values ranging
from 2.4 to 7.7 days, and R? values ranging from 0.28 to 0.84 (Fig. 15).
In 2019, CropSow shows stronger adaptability to extreme weather
conditions than benchmark models, likely due to the consideration of
soil-crop-atmosphere interaction in APSIM. The remote sensing AGDD
method yields the best estimation accuracy among the three benchmark
models in all the five years, with RMSE values ranging from 7.9 to 19.2
days, MBE values ranging from 3.9 to 15.7 days, and R? values around
0.5. The shape model generates relatively higher RMSE and MBE values
and lower R? values than CropSow and the remote sensing AGDD
method. The weather-dependent method generates the highest RMSE in
most years and the lowest R? in all the years. It exhibits extreme fluc-
tuations and uncertainties in planting date estimations among the study
years. The lowest MBEs in 2016, 2018 and 2019 reindicate that the
weather-dependent model can capture the general planting timing
across the state. Overall, these results demonstrate the ability of Crop-
Sow to provide reliable field-level planting date estimations under
various weather conditions across the five years.

To further evaluate the generalizability of the CropSow framework,
we estimate the field-level planting dates for one year (the target year)
using state-level CropSow (Greenup) framework calibrated with other
years data. Among the benchmark models, the remote sensing AGDD
method achieves the best performance and is thus compared with the
CropSow framework. Fig. 16 displays the planting date estimation re-
sults under three scenarios. Firstly, the CropSow framework is calibrated
and evaluated using the same year’s data (scenario 1). Secondly, the
CropSow framework is calibrated and evaluated using different years’
data (scenario 2). Thirdly, the remote sensing AGDD method is cali-
brated and evaluated using different years’ data (scenario 3). For these
three scenarios, scenario 1 achieves a better performance in field-level
planting date estimation than scenario 2. Among these five years, the
MBEs values stabilize at around 5 days under scenario 1 and the RMSE
values are mostly lower than 10 days. Though degraded performance is
observed under scenario 2, CropSow calibrated with other years’ data
can still control the MBE and RMSE values within two weeks in all the
years except 2017. When both calibrated with the different years’ data,
CropSow (scenario 2) shows consistently better stability and accuracy
than the remote sensing AGDD method (scenario 3). The R? values under
scenario 2 are consistently higher than those under scenario 3 except in
2018. Scenario 2 also produces lower MBEs and RMSEs than scenario 3
for almost all the years. The consistent advantage indicates the higher
potential generalizability of the CropSow framework. Through the
incorporation of physiological mechanisms, CropSow achieves higher
scalability when it is applied to estimate the planting dates in other years
that are different from the framework’s calibration year.

4.4. Field-level planting date mapping

Using the CropSow framework, we produce the field-level corn
planting date maps for the counties of Champaign and Dekalb alongside
their corresponding temporal cumulative distributions of planting dates
from 2016 to 2020 (Fig. 17). These maps reveal the spatiotemporal
variability of planting dates among cropland field parcels, with a more
significant change of planting dates observed across years than loca-
tions. From the temporal cumulative distributions, the trend of planting
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Table 3
Field-level planting date estimation results using CropSow (Greenup) calibrated by state-level and ASD-level CPRs, respectively (The ASDs with more than 10 Beck’s
fields are in bold).
2016 2017
State-CPR ASD-CPR State-CPR ASD-CPR
RMSE MBE RMSE MBE RMSE MBE RMSE MBE
NwW 9.0 2.7 9.8 —0.1 9.1 3.9 8.4 0.6
NE 13.1 8.3 11.7 5.8 11.4 7.6 9.8 4.8
w 5.8 3.8 4.8 1.9 5.4 -2.0 4.7 2.0
C 11.9 10.9 8.8 7.5 6.7 3.0 5.9 0.6
E 10.5 8.9 7.7 5.5 8.8 1.8 8.8 —-0.7
WSwW 9.5 5.2 8.4 3.2 7.4 4.4 7.4 4.0
ESE 8.3 5.9 10.8 9 12.8 12.5 8.2 7.5
SW NA NA NA NA 6.4 5.7 7.7 7.0
SE 1.0 1.0 7.0 7.0 5.4 2.0 8.2 6.0
Overall 9.9 6.7 8.6 4.5 8.1 3.5 7.6 1.6
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Fig. 14. Overall field-level planting date estimation results of CropSow (Greenup) (a), shape model (b), remote sensing AGDD method (c), and weather-dependent

method (d) calibrated using state-level CPRs from 2016 to 2020.

dates varies during these five years. In 2018, planting dates are densely
distributed in a relatively short three-week window from DOY 120 to
DOY 140 for these two counties, showing the effect of extreme tem-
perature swings on planting management. As a result of the excessive
precipitation in spring, planting in 2019 mainly occurs after DOY 140,
which is much later than that in other years. In 2020, these two counties
experience more considerable variations in planting dates compared to
other years, reflecting varying farmers’ decisions on planting
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management under the rapidly changing situation with the spread of
COVID-19 and its attendant health threats in that year (Schnitkey et al.,
2020). The annual maps show that the planting dates are generally later
in Dekalb than those in Champaign in these years. Such later planting
decisions in the Dekalb county are resulted from its higher latitude and
lower temperature. Overall, the CropSow framework demonstrates its
capability in capturing field-level spatial and temporal variability of the
estimated planting dates, and the model derived variability patterns are
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Fig. 17. Corn field-level planting date maps estimated by CropSow (Greenup) for the counties of (a) Champaign and (b) Dekalb from 2016 to 2020 with their

corresponding county-level temporal distributions of planting dates.

generally consistent with our understanding of the different planting
practices during the five years of the study period. The mapping results
further confirm CropSow’s ability to accurately estimate field-level
planting dates, which can largely be attributed to the utilization of
spatially explicit NDVI time series for individual fields and the consid-
eration of the interactions among crop types, crop management, and
environment.

5. Discussion

In this study, we develop a novel CropSow modeling framework to
estimate the crop planting dates at the field level by integrating the
remote sensing phenological detecting method and the crop growth
model. The remote sensing phenological detecting method encompasses
the time series phenological pre-processing, time series phenological
fitting, and time series phenological characterization. With a suite of
methods devised to remove the spurious and abnormal observations of
NDVI time series, as well as diminishing the influence of off-season
vegetation (e.g., weeds and cover crops), the phenological profile of
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the target crop can be extracted and modeled to retrieve the SOS
phenological metrics. As both curvature-based Greenup and GU-based
Upturn SOS metrics have been demonstrated to approximate the corn
initial vegetative stage (e.g., corn V3 stage with about 2-4 leaves), these
two SOS metrics have been retrieved in this study via the remote sensing
phenological detecting method for the subsequent integration into the
crop growth model for corn planting date estimation. Compared to the
GU-based Upturn metric, CropSow with the curvature-based Greenup
metric achieves higher accuracy in estimating the corn planting dates at
the field level. The Greenup metric is retrieved via the change rate of the
curvature, whereas the Upturn metric is extracted via the intersection
between the recovery line and base line of the fitted NDVI time series
curve (Fig. 4). The use of several curves may bring more uncertainties in
the GU-based phenological metric retrieval, which further affects the
performance of CropSow. The good performance of the curvature-based
Greenup metric in detecting crop phenology has also been suggested by
previous studies (Diao and Li, 2022).

The crop growth model in CropSow further enables the compre-
hensive modeling of crop phenological development in consideration of
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soil-crop-atmosphere continuum. It takes into account a variety of
weather, soil, and management factors to model the phenological
progress from corn planting to germination, germination to emergence,
as well as emergence to SOS stages. The integration of the remote
sensing phenological detecting method and the crop growth model thus
enables CropSow to estimate crop planting dates under varying envi-
ronmental and management conditions. By accommodating the complex
soil-crop-atmosphere interactive process underlying crop physiological
growth, CropSow shows unique strength particularly in field-level
planting date estimation. It can capture the spatiotemporal variation
in field-level crop phenological development by integrating the field-
specific remotely sensed crop growth signals and the associated field
environmental characteristics. The calibration of crop growth model in
CropSow facilitates the downscaling of the regional aggregated crop
planting information to the field level with farm-tailored planting in-
formation. The global sensitivity analysis of crop growth model further
indicates that the model performance is mostly affected by the calibra-
tion of the phenological parameter tt emerg to_sos and is substantially
less sensitive to crop management inputs. This is consistent with the
mechanism underlying corn plant growth that these crop management
practices mainly influence simulations of corn phenology after the end
of the juvenile stage as well as subsequent crop yield, rather than initial
corn phenology (Peng et al., 2018). The sensitivity analysis demon-
strates the importance of calibrating tt emerg to_sos in CropSow, as well
as the potential in estimating field-level planting dates when accurate
crop management inputs are not readily available. Given the state-level
CPRs publicly accessible in the US, CropSow holds strong promise to
systematically conduct field-level crop planting date estimations at large
scales with the CPR-enabled calibration and downscaling. The ASD-level
CPRs for defined regions and years might further improve the corre-
sponding field planting date estimations, given the potential influence of
calibration dataset’s spatial level. Owing to the consideration of the
physiological mechanism, CropSow also shows stronger adaptability
than other approaches to abnormal weather conditions (e.g., excessive
rainfall in 2019) with more stable and accurate estimations of field-level
planting dates.

Among the three benchmark methods, the remote sensing AGDD
method achieves higher accuracy in field-level planting date estimation
with the consideration of the thermal time accumulation in the crop
growth process. As a measure of heat accumulation, AGDD is used to
quantify the plant development rate and is a major factor determining
crop phenological growth. The time lag between planting dates and
remote sensing SOS metrics can be estimated in terms of AGDD to infer
the planting dates. Compared to the calendar-based time lag, the AGDD-
based one exhibits significantly lower normalized variance of all the
corn fields of Beck’s dataset (p < 0.001), according to the Brown-
Forsythe test (Fig. S3). This finding indicates the advantage of AGDD
over calendar length in representing the time lag between SOS and
planting time. However, the crop phenological progress from planting to
SOS encompasses several stages (e.g., germination and emergence), with
the duration of each stage affected by a combination of environmental
and management factors. Despite the important role of AGDD, other
factors (e.g., soil conditions and water stress) may also affect the crop
phenological development. CropSow is able to simulate the crop
phenological development from planting to SOS with comprehensive
consideration of crop thermal time requirement, crop management
practices, as well as water and nitrogen stress. The superior performance
of CropSow over the remote sensing AGDD method further demonstrates
the importance of accommodating the complex soil-crop-atmosphere
interactive process in conducting the planting date estimations at the
field level.

As a rule-based method, the weather-dependent method shows po-
tential in capturing the general crop planting timing at the regional
scale, but is challenging in estimating the planting dates of individual
farm fields. This challenge may partly be explained by the subjective
decisions of farmers on crop management in practice. Even under
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suitable environmental conditions, farmers may postpone the planting
practices due to the machine unavailability. The weather-dependent
method thus exhibits large fluctuations and uncertainties in field-level
planting date estimation. Yet compared to other methods that leverage
remotely sensed crop growth signals, the weather-dependent method
may be more suitable for estimating crop planting dates in a near-real
time manner. With a priori crop reference phenological time series
and reference planting date, the shape model can estimate the planting
date of the target time series via the geometrical matching. Despite the
flexibility in potentially estimating any phenological stages with corre-
sponding reference, the shape model may have limited capability in
estimating the planting dates of individual farm fields. On one hand, the
formulation (or calibration) of reference phenological profile and
reference planting date remains a significant challenge in phenology
matching models (Sakamoto, 2018; Liu et al., 2022). On the other hand,
the pre-defined phenological reference templates may not adequately
adapt to the target farm fields for phenological retrievals, particularly
for the planting stage that is subject to management decisions. The shape
model thus may not perform as well as CropSow and the remote sensing
AGDD method in field-level planting date estimations, yet outperforms
the weather-dependent method in this study.

The CropSow framework also demonstrates good performance in
estimating the field-level planting dates in the years that are different
from the framework’s calibration year. Under the scenario of the lack of
target year’s calibration data, CropSow exhibits a stronger temporal
generalization capability than the remote sensing AGDD method. It in-
dicates that simulating crop phenological progress with the consider-
ation of soil-crop-atmosphere interactive process can make the planting
date estimation more robust in comparison with only the consideration
of AGDD. We further evaluate the spatial generalization ability of
CropSow by calibrating the framework using the CPR of one represen-
tative ASD (East) and evaluating the planting date estimation perfor-
mance in all ASDs of Illinois. Comparable estimation performance is
achieved across all the nine ASDs (Table S2), indicating good spatial
generalization ability of CropSow across Illinois. In future studies, the
generalization ability of CropSow for farm field planting date estima-
tions can further be evaluated over extended regions (e.g., US corn belt).

Despite the strength of CropSow in field-level planting date estima-
tion, the simultaneous use of remote sensing and crop growth model
may potentially bring uncertainty to the estimation results. Given the
impact of the availability of HLS images (particularly around the
planting window) on planting estimation accuracies, fusion of HLS and
MODIS images to generate temporally dense observations (e.g., daily
temporal resolution) at the 30 m spatial resolution can be explored in
future studies. The limited HLS observations may potentially affect the
process of phenological fitting and cause a bias in extracting corre-
sponding remote sensing phenological metrics. By fusing the high-
spatial-low-temporal-resolution images (e.g., HLS) and high-temporal-
low-spatial-resolution images (e.g., MODIS) to generate the images of
both high spatial and temporal resolutions, the spatiotemporal image
fusion methods can help reduce uncertainty from remote sensing to
facilitate the field-level crop phenological monitoring (Yang et al., 2021;
Sadeh et al., 2021; Zhu et al., 2022). Additionally, the calibration of
CropSow as well as three benchmark methods using state-level planting
date information may introduce bias to field-level planting date esti-
mation. The overall delayed estimation of planting dates of reference
corn fields may partly be due to the uncertainty in the downscaling
process (e.g., environmental and planting practice uncertainty) as well
as the potential bias (e.g., survey bias) in CPRs. Calibrating the CropSow
framework with in-situ field-level planting date and phenological stage
information would be desired in future to reduce the calibration and
downscaling bias, yet the collection of a large number of in-situ field-
level phenological data over large scales could be challenging. With the
comprehensive mechanisms embedded in crop growth models for
simulating crop growth and phenological development, the complexity
of crop models might potentially bring uncertainty to the estimation
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results, particularly the need of crop management data. The sensitivity
analysis of APSIM in this study facilitates the evaluation of the influence
of crop input management variables on model performance. Despite
relatively low sensitivity index values, the uncertainty caused by vary-
ing crop management inputs in planting date estimations could be
further evaluated.

With the essential environmental conditions affecting crop planting
and subsequent phenological development accommodated in CropSow,
the devised framework holds strong potential in mapping field-level
crop planting dates at large scales. Future investigations of other crops
over extended geographical regions will be desired for more compre-
hensive planting date mapping across the US. The spatial distribution of
the field-level planting date maps can be utilized to explore the potential
effect of climate change on crop management practices of individual
farm fields. Along with field-level crop yield maps, the field-level
planting maps can provide auxiliary data sources to analyze the poten-
tial reasons of crop yield gaps among the cropland fields, especially for
those fields with different planting patterns. The assessment of the gaps
between achieved and achievable yields can enable more profitable and
sustainable farm management adaptations, as well as more effective
policy decisions for addressing food insecurity. Furthermore, the Crop-
Sow framework holds potential for in-season planting date estimation.
As the first logistic curve of the Beck’s method can be fitted using the
remote sensing data up to the period of corn tasseling or silking, the SOS
metrics could be extracted accordingly to facilitate more prompt
decision-making by farmers and policymakers.

6. Conclusions

In this study, we develop an innovative CropSow framework that
integrates the remote sensing phenological detecting method and the
crop growth model to robustly estimate planting dates of corn fields
under varying soil and weather conditions. The CropSow framework is
evaluated alongside three benchmark methods (the remote sensing
AGDD method, the weather-dependent method, and the shape model).
With its integrative remote sensing and crop physiological design,
CropSow demonstrates its enhanced capability in accurately estimating
planting dates of corn fields without field-level ground truth data for
calibration. In Illinois, CropSow with the Greenup metric can estimate
planting dates of corn fields with R higher than 0.68, RMSE lower than
10 days, and MBE around 5 days from 2016 to 2020. It shows stronger
adaptability than the benchmark methods to abnormal weather condi-
tions with more robust performance, as well as stronger generalizability
than the benchmark method of best performance (i.e., the remote
sensing AGDD method). The estimated field-level crop planting dates
can provide valuable information for more accurate simulations of crop
growth models and the analysis of the underlying reason for yield gaps
at the field level. The spatiotemporal patterns of planting dates can help
design proactive adaptation strategies to overcome the negative effect of
climate change.
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