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CropSow: An integrative remotely sensed crop modeling framework for 
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A B S T R A C T   

Crop planting timing is critical in regulating environmental conditions of crop growth throughout the season, and 
is an essential parameter in crop simulation models for estimating dry matter accumulation and yields. Accurate 
planting date information is key to characterizing crop growing dynamics under varying farming practices and 
facilitating agricultural adaptation to climate change. To date, the main methods to acquire planting dates 
include field survey methods, weather-dependent methods, and remote sensing phenological detecting methods. 
However, it is still challenging to effectively estimate the crop planting dates at field levels due to the lack of 
appropriate field-level modeling design as well as the dearth of ground planting reference data. In our study, we 
develop a novel CropSow modeling framework to estimate field-level planting dates by integrating the remote 
sensing phenological detecting method with the crop growth model. The remote sensing phenological detecting 
method is devised to retrieve the critical crop phenological metrics of farm fields from remote sensing time series, 
which are then integrated into the crop growth model for field planting date estimation in consideration of soil- 
crop-atmosphere continuum. CropSow leverages the rich physiological knowledge embedded in the crop growth 
model to scalably interpret satellite observations under a variety of environmental and management conditions 
for field-level planting date retrievals. With corn in Illinois, US as a case study, the developed CropSow out
performs three advanced benchmark models (i.e., the remote sensing accumulative growing degree day method, 
the weather-dependent method, and the shape model) in crop planting date estimation at the field level, with R 
square higher than 0.68, root mean square error (RMSE) lower than 10 days, and mean bias error (MBE) around 
5 days from 2016 to 2020. It achieves better generalization performance than the benchmark models, as well as 
stronger adaptability to abnormal weather conditions with more robust performance in estimating the planting 
dates of farm fields. CropSow holds considerable promise to extrapolate over space and time for estimating the 
timing of crop planting of individual farm fields at large scales.   

1. Introduction 

Food security will be increasingly challenged in the upcoming years 
with the world’s population growth, the growing scarcity of farmland, 
the changing consumption patterns, as well as the changing climate 
(Beddington, 2010). By 2050, 60 percent more food will need to be 
produced to feed a projected world population of 9.3 billion. Under 
these projected changing scenarios, adaptations of crop management 
practices are expected to be imperative in dealing with food security 
issues (Challinor et al., 2014). As one of the major crop management 
practices in determining the crop yield potential, the timing of crop 
planting plays a critical role in initializing the climatic and environ
mental conditions of crop growth and phenological development 

throughout the season (Baum et al., 2020). The adaptive management of 
crop planting can potentially mitigate the negative effects of heat or 
chilling stress on crop production, leading to substantial reduction in 
yield losses under future climate (Baum et al., 2020; Shew et al., 2020; 
Huang et al., 2020). In addition, planting date is an essential input 
variable of process-based crop growth models to estimate crop yields 
and assess food security prospects over space and time. Monitoring the 
timing of crop planting at field levels can largely facilitate the assess
ment of the gaps between achieved and achievable yields to enable more 
profitable and sustainable farm management adaptations (Jain et al., 
2016). 

Currently, the major methods of acquiring field-level planting date 
information can be divided into three categories: (1) field survey 
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methods, (2) weather-dependent methods, and (3) remote sensing 
phenological detecting methods. As the most traditional information 
collection method, field surveys can record accurate crop planting in
formation of individual farm fields. Yet conducting field surveys over 
wide geographical regions is labor-intensive, time-consuming, and 
costly. The field collection efforts may also be hampered when the farm 
fields are private or inaccessible. The weather-dependent methods 
typically utilize meteorological data around the planting season to es
timate the crop planting dates given that weather conditions (e.g., 
temperature and precipitation suitable for crop germination) are 
important for farmers’ planting decisions (Waha et al., 2012; Waongo 
et al., 2014; Dobor et al., 2016; Choi et al., 2017; Gümüşçü et al., 2020; 
Vijaya Kumar et al., 2021). For example, planting usually starts at the 
onset of the seasonal cycle of temperature when daily average temper
ature exceeds a certain threshold in the Midwestern US (Choi et al., 
2017). The threshold can be determined based on historical tempera
tures that facilitate the crop planting, and may vary across years, loca
tions, as well as crop types. In addition to setting the specific threshold, 
potential relationships between crop planting dates and meteorological 
data can be explored by machine learning techniques (Gümüşçü et al., 
2020). The weather-dependent methods show good potential for 
uncovering coarse crop planting patterns at regional to global scales, but 
their performance at local scales for farm field planting estimation 
cannot be guaranteed (Dobor et al., 2016). In addition to weather con
ditions, crop planting decisions are influenced by several other factors, 
such as soil conditions, crop species, and availability of machinery. 

In recent years, remote sensing has been increasingly utilized to 
retrieve crop planting dates with its improved resolutions, wide area 
coverage, and repeated viewing. Due to the intrinsic difficulty in directly 
capturing the crop planting signal, remote sensing phenological 
detecting methods have been mainly devised in two types. The first type 
of remote sensing methods, named phenology matching methods, 
characterize the crop planting dates of the satellite time series based on a 
priori crop reference phenological time series and corresponding refer
ence planting dates (Sakamoto et al., 2010; Zeng et al., 2016; Sakamoto 
2018; Zhang et al., 2020; Zeng et al., 2020; Diao et al., 2021; Liu et al., 
2022). These phenology matching methods (e.g., shape model) align the 
target satellite time series with the reference phenological time series via 
geometrical pattern matching. With the aligned relationship, the target 
planting date can then be estimated by mapping the reference planting 
date from the reference time series to the target time series. The crop 
reference phenological time series are pre-defined seasonal crop growth 
profiles characterized by time series of vegetation indices (VIs), and the 
reference planting dates are corresponding phenological transition dates 
of crop planting pre-defined on the reference time series. These crop 
references are mostly calibrated based on constrained field observations, 
and have been found to be a major source of uncertainties in crop 
phenological detection (Diao et al., 2021). The difficulty in formulating 
appropriate crop phenological reference may limit the ability of 
phenology matching methods to conduct field-level crop planting 
estimation. 

The second type of the remote sensing phenological detecting 
methods has mainly focused on retroactively estimating planting dates 
using the start of season (SOS) metrics identified from the satellite time 
series (Vyas et al., 2013; Lobell et al., 2013; Phan et al., 2018; Dong 
et al., 2019; Zhang et al., 2021). The remote sensing SOS metrics can 
typically be extracted from the time series curves of VIs via threshold- 
defined algorithms (e.g., 10% or 20% of the curve amplitude) (Chen 
et al., 2004; Delbart et al., 2006; Zeng et al., 2020) or inflection point 
algorithms (e.g., local maximum of the rate of curvature change) 
(Moulin et al., 1997; Schwartz et al., 2002; Zhang et al., 2003; Wu et al., 
2017; Gao et al., 2017; Diao, 2020; Diao and Li, 2022). The SOS metrics 
have been found to approximate the crop vegetative phenological stage 
after crop emergence, and have time lags for inferring the planting dates 
(Fig. S1). The time lag between the SOS and the planting date is often 
assumed unchanged in terms of the number of calendar days or 

accumulated growing degree days (AGDD) over defined areas and years. 
Compared to the calendar day-based time lag, the AGDD-based one has 
been found to perform better with stronger adaptability to different 
weather conditions by taking into account the thermal time accumula
tion in the crop growth process (Sacks and Kucharik, 2011; Dong et al., 
2019). Despite the important role of AGDD, the time lag between crop 
planting and SOS metrics involves several crop stages, including 
germination and emergence. The durations of these stages are affected 
by a combination of environmental factors (e.g., precipitation and soil 
conditions) and crop management factors (e.g., planting depth and crop 
cultivars), and the influence of those factors varies across stages. For 
instance, the timing of crop germination is mainly affected by the soil 
moisture content while the crop emergence timing can be affected by 
both planting depth and soil conditions (Lawlor and Tezara 2009; Way 
and Yamori 2014). At the farm field level, the SOS-based methods may 
be subject to biases and errors in estimating crop planting under varying 
environmental and management conditions. The lack of consideration of 
the complex soil-crop-atmosphere interactive process underlying crop 
physiological growth makes the estimation of planting dates chal
lenging, particularly at the field level. 

Process-based crop models may potentially help tackle this challenge 
by simulating field-level crop growth process under combined weather, 
soil, and management conditions. They integrate mathematical de
scriptions of the mechanisms affecting the interactive process among 
crop types, crop management practices, and environment to model crop 
physiological growth and yield (Asseng et al., 2014; Huang et al., 2019). 
The widely used crop growth models include Agricultural Production 
Systems sIMulator (APSIM) (Keating et al., 2003; Holzworth et al., 
2014), Decision Support System for Agrotechnology Transfer (DSSAT) 
(Jones et al., 2003), Multidisciplinary Simulator for Standard Crops 
(STICS) (Brisson et al., 1998; Brisson et al., 2003), etc. These models 
encompass comprehensive phenology development schemes with a 
multitude of stress terms and field management practices to account for 
the spatiotemporal variation in field-level crop growth and develop
ment. During the early season, such rich phenological and physiological 
information embedded in crop growth models enables the comprehen
sive simulation of crop phenological phases (e.g., planting to germina
tion, germination to emergence, and emergence to SOS) in response to a 
range of environmental and management factors, particularly at the 
field level. Those simulated phenological durations by the crop growth 
models may thus ease the challenge of the SOS-based planting date 
estimation methods caused by the insufficient consideration of soil-crop- 
atmosphere continuum. However, to our knowledge, the potential of 
crop growth models in retrieving crop planting dates has not been 
explored. 

The overarching goal of this study is to develop an innovative 
framework, named CropSow, to retrieve the crop planting dates at the 
field level. CropSow leverages the rich physiological knowledge 
embedded in the crop growth model to scalably interpret satellite ob
servations under a variety of environmental and anthropogenic condi
tions for planting date retrievals. With corn in Illinois, US as a case study, 
the specific aims of our study are threefold: (1) develop CropSow by 
integrating the remote sensing phenological detecting method with the 
crop growth model; (2) downscale regional aggregated crop planting 
information to the field level with rich spatiotemporal planting char
acteristics; (3) evaluate the CropSow performance upon comparison 
with three advanced benchmark methods, including the remote sensing 
AGDD method, the weather-dependent method, and the shape model. 

2. Study area and data 

2.1. Study area 

The study area is the state of Illinois, US, which is one of the largest 
corn-producing states in the US with its fertile and well-drained soils, as 
well as warm and humid summers. In Illinois, more than 95% of 
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croplands are taken up by corn and soybean, and these two major crops 
are typically rotated in consecutive years. As a rain-fed agricultural area, 
Illinois experiences various climate conditions across the state, resulting 
in a variety of corn growth phenological trajectories in different loca
tions and years. Based on climate conditions and cropping practices, 
nine agricultural statistics districts (ASDs) are defined by the US 
Department of Agriculture (USDA), namely southwest (SW), southeast 
(SE), west southwest (WSW), east southeast (ESE), west (W), central (C), 
east (E), northwest (NW), and northeast (NE) ASDs (Fig. 1). 

The study period spans from 2016 to 2020. In 2018, Illinois experi
enced dramatic temperature swings in the planting season, and had the 
second coldest April with a mean temperature of 10.7 ◦C yet the warmest 
May with a mean temperature of 20.7 ◦C on record dating back to 1895. 
In 2019, Illinois had excessive total precipitation of 1053 mm and the 
second wettest year on record (Li et al., 2019). These unique weather 
patterns add to the variability in corn phenological development across 
the state. The diverse corn phenological trajectories and large acreage of 
corn fields make Illinois a good study site for conducting field-level 
planting date estimation. 

2.2. Data 

To date, the most comprehensive and publicly available ground 
phenological reference data of US are crop progress reports (CPRs), 
published by the USDA. CPRs provide weekly cumulative percentages of 
major crops (e.g., corn) that reach certain crop phenological stages. In 
Illinois, CPRs record corn phenological progress from the end of March 
to the end of December at the state level from 2016 to 2020. Considering 
the cumulative corn planting percentage documented in CPRs are 
widely and openly accessible across US, this regional aggregated crop 
planting information is utilized to calibrate the CropSow framework. As 
for the satellite data, we acquire the Moderate Resolution Imaging 

Spectroradiometer (MODIS) MCD43A4 imagery for conducting the 
framework calibration. With the calibrated CropSow, we then utilize the 
Harmonized Landsat 8 and Sentinel-2 (HLS) imagery for estimating crop 
planting dates at the farm field level. During the process of framework 
calibration and field planting date estimation, the normalized difference 
vegetation index (NDVI), as the most widely used vegetation index for 
measuring crop growth conditions, is employed for crop phenology 
monitoring (Seo et al., 2019). 

We acquire the MODIS MCD43A4 (version 6) nadir Bidirectional 
Reflectance Distribution Function (BRDF) adjusted reflectance product 
with daily temporal resolution and 500 m spatial resolution for cali
brating the CropSow at the state level. The combination of spatial and 
temporal resolutions of MODIS is an adequate tradeoff for the state-level 
framework calibration. In particular, the MODIS daily observation fre
quency facilitates the detection of subtle changes around crop planting 
dates during the early growing season. The 500 m spatial resolution can 
help locate an adequate number of pure pixels of corn fields across Il
linois while maintaining the computational efficiency of the framework 
calibration. Specifically, we utilize the yearly Cropland Data Layer 
(CDL) data to select pure corn MODIS pixels. The CDL is a raster 
formatted crop-specific land cover map with a spatial resolution of 30 m, 
produced by the USDA (Boryan et al., 2011). It has been updated 
annually for various crop types (e.g., corn and soybean) over the 
Conterminous United States (CONUS) since 2008. The CDL products are 
highly accurate on corn and soybean classes (generally over 95% pro
ducer’s and user’s accuracies) (Sun et al., 2020), and are publicly 
available from CropScape (https://nassgeodata.gmu.edu/CropScape/). 
The pure corn MODIS pixels are identified as the pixels with the per
centage of corn higher than 90% based on CDLs. In total, there are 
30566, 26939, 24841, 23975, and 28,510 pure corn pixels for the years 
2016, 2017, 2018, 2019, and 2020, respectively. The CropSow frame
work is annually calibrated using the corresponding CPR based on the 
MODIS generated NDVI time series of all pure corn pixels in Illinois. 

With the calibrated CropSow framework, we then acquire the HLS 
Version 1.5 dataset for estimating corn planting dates of individual farm 
fields. The HLS dataset provides radiometrically consistent surface 
reflectance imagery from Landsat 8, Sentinel-2A, and Sentinel-2B sat
ellites. This harmonized product is generated through atmospheric 
correction and cloud masking, spatial co-registration, BRDF normali
zation, band pass adjustment, and temporal compositing. The harmo
nization of three satellites’ images can achieve a temporal resolution of 
every 2–3 days and a spatial resolution of 30 m (Li and Roy 2017). 
Because of the late launch of Sentinel-2B satellite in 2017, the HLS im
ages before 2017 are only generated from Landsat 8 and Sentinel-2A, 
and the temporal resolution of HLS images is relatively lower in the 
first year of our study period (2016) than that in the following years. The 
HLS images may also be subject to the influence of cloud, cloud shadow, 
and haze, resulting in varying numbers of high-quality images across 
locations and years. The HLS images are thus not directly utilized for the 
framework calibration but represent a good tradeoff for flexibly 
retrieving the phenological characteristics of individual corn fields in 
Illinois. The boundaries of Illinois corn fields are obtained from the 
Common Land Unit (CLU) dataset and corresponding CDLs. The CLU 
dataset, produced by the USDA, provides contiguous boundaries of the 
smallest unit of agricultural land. Within each individual corn field, 
high-quality pixels are selected from all available HLS images based on 
their corresponding quality assessment (QA) layers to eliminate the 
negative effects of cloud and haze. NDVI values of all selected pixels 
within the same cropland are averaged on a day-to-day basis each year 
to generate annual field-level NDVI time series for that targeted 
cropland. 

For the crop growth model of the CropSow framework, we obtain the 
data of essential model inputs regarding the soil and meteorological 
conditions. The soil inputs, such as layered soil hydraulic properties, soil 
pH, and soil organic matter, are queried from the Gridded Soil Survey 
Geographic (gSSURGO) dataset. The gSSURGO dataset is a 30 m spatial 

Fig. 1. Illinois agricultural statistics district (ASD) boundary and corn 
fields (2020). 
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soil raster map derived from the vector-based Soil Survey Geographic 
(SSURGO) database, in which many soil samples have been collected by 
the National Cooperative Soil Survey and further analyzed in labora
tories for the database construction. The daily meteorological inputs 
include daily minimum and maximum temperatures, precipitation, 
vapor pressure, shortwave radiation, snow water equivalent, and day 
length (Thornton et al., 2016). They are derived from the Daymet 
dataset, which is a long-term, continuous, 1 km × 1 km gridded dataset 
of daily meteorological variables over continental North America and 
Hawaii from 1980 to the end of the most recent full calendar year. With 
the soil and meteorological inputs, the crop growth model is utilized to 
simulate the corn phenological development from planting to following 
vegetative stages in CropSow. 

To validate the performance of CropSow, we also collect field-level 
corn planting date data from Beck’s Hybrids (publicly accessible via 
https://www.beckshybrids.com/Research/Yield-Data), with a total of 
379 field planting date samples from 2016 to 2020. The fields are 
distributed across nine ASDs of Illinois with an average size of around 
0.4 km2. The annual number of the collected corn field planting date 
records within each ASD is shown in Fig. 2. The number of corn planting 
records varies across ASDs and years, and in general the central ASD has 
more planting records than other ASDs. Given the difficulty in obtaining 
the field-level crop planting information at large scales, this dataset is 
only used for CropSow validation, but not for calibration. 

3. Methodology 

The CropSow framework mainly consists of two key components: 
remote sensing phenological detecting method and crop growth model 
(Fig. 3). The remote sensing phenological detecting method encom
passes time series phenological pre-processing, time series phenological 
fitting, and time series phenological characterization to extract the SOS 
phenological metrics from remote sensing image series. The crop growth 
model is utilized to estimate the time lag between the actual crop 
planting date and remote sensing SOS phenological metrics with 
consideration of soil-crop-atmosphere continuum. The crop growth 
model is calibrated through the MODIS time series and CPR-documented 
planting dates at the state level. With the calibrated CropSow, we then 
employ the HLS time series to estimate the crop planting dates at the 
field level. The CropSow’s performance is further assessed in compari
son with three advanced benchmark methods, namely the remote 
sensing AGDD method, the shape model, and the weather-dependent 
method. 

3.1. CropSow 

3.1.1. Remote sensing phenological detecting method 
The remote sensing phenological detecting method is developed to 

obtain the SOS phenological metrics with three main modules: time 
series phenological pre-processing, time series phenological fitting, and 
time series phenological characterization. 

Time series phenological pre-processing consists of two main steps, 
namely removal of outlier observations and removal of off-season peaks. 
Due to the influence of cloud and haze on remote sensing imagery, there 
exist spurious or implausible outliers that could potentially affect the 
subsequent phenological fitting processes. The first step utilizes a set of 
filtering algorithms (i.e., night filter, spline filter, and mad filter) 
sequentially to filter out those contaminated observations in the NDVI 
time series (Fig. S2). The night filter is employed to remove observations 
of low NDVI values that are typically caused by low illumination con
ditions, cloud, and snow. The NDVI values that are abnormally lower 
than the median off-season NDVI values are removed with this filter. The 
spline filter proposed by Migliavacca et al. (2011) is a cubic smoothing 
spline filter that suppresses unusually high or low observation values. To 
filter out the unusual values, a smoothing spline is first fitted based on 
original NDVI time series. Residuals are obtained by calculating the 
difference between the daily NDVI values and corresponding smoothing 
spline fitted values. The mean (µ) and standard deviation (σ) of the re
siduals are then derived, and unusual values are defined as the obser
vations with the absolute value of residuals larger than µ + 3σ. Those 
unusual values are removed recursively until no unusual observations 
are detected. The mad filter, following the method of Papale et al. 
(2006), is applied to remove spikes on the NDVI time series according to 
the median absolute deviation (MAD). MAD is a robust measure of how 
spreading out a set of data is. The NDVI values that cause large MAD are 
identified as spikes, which are then removed to improve the quality of 
NDVI time series. The gaps of outlier-removed NDVI time series are 
filled via linear interpolation. 

Apart from outliers, the remote sensing time series may contain off- 
season plant growing cycles which are unrelated to the target crop 
species. Such off-season growing cycles are usually caused by weeds, 
cover crops, or double crops, and may affect the characterization of 
phenological metrics of the target crop. Therefore, the second step is to 
use a seasonality filter to further smooth out off-season growing cycles, 
so that only targeted growing cycles are retained (Fig. S2). Specifically, 
the seasonality filter employs a smoothing spline algorithm to capture 
the general dynamic patterns of plant growth using the outlier-removed 
NDVI time series. The turning points (i.e., peaks and pits) of the spline 

Fig. 2. Number of ground reference corn field planting date records of Illinois by agricultural statistics district (ASD) and year. Nine ASDs in Illinois are southwest 
(SW), southeast (SE), west southwest (WSW), east southeast (ESE), west (W), central (C), east (E), northwest (NW), and northeast (NE) ASDs. 
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smoothed curve are utilized to identify the growing cycle of the target 
crop species in consideration of corresponding peak NDVI values and 
crop calendars from CPRs. Specifically, the peak NDVI timing of the 
target growing cycle is constrained to be within the period from three 
weeks ahead of the start of corn silking stage to the start of maturity 
stage of CPRs. The other cycles with localized peaks during the off- 
season of the target crop are then removed. 

After time series phenological pre-processing, the phenological 
growing profile of the target crop is obtained through time series 
phenological fitting using the Beck’s double logistic method. Compared 
to other time series phenological fitting methods (e.g., asymmetric 
Gaussian fitting method, Savitzky–Golay fitting method, quadratic 
fitting method, and nonlinear spherical fitting method), the double lo
gistic fitting method can better characterize the phenological profiles of 
vegetation with rapid phenological transitions and relatively short 
growing seasons, without overestimating the growing season durations 
(Beck et al., 2006). It is thus employed in this study to detect crop 
phenological dynamic changes at the beginning of the growing season. 
Specifically, the Beck’s method fits the pre-processed NDVI time series 
using a generalized double logistic function with six parameters to 
model crop phenological development (Eq. (1)). 

f (t) = Vbase + (Vmax − Vbase)*
(

1
1 + e(−m1*(t−m2))

+
1

1 + e(−n1*(t−n2))
− 1

)

(1)  

where t is the day of year (DOY) and f(t) is the corresponding fitted NDVI 
value. Vbase is the off-season NDVI value, and Vmax is the maximum NDVI 
value over the course of a year. m2 and n2 denote the timing of inflection 
points of the curve rising and dropping, respectively. m1 and n1 corre
spond to the rates of curve change at those two points (m2 and n2), 
respectively. The six parameters are estimated via the least square 
method which minimizes the root mean square errors (RMSEs) between 
f(t) and the pre-processed NDVI time series. 

Lastly, the SOS phenological metrics are extracted from the Beck 
fitted NDVI time series via time series phenological characterization. 
Both threshold-based methods and inflection point methods can be used 
for phenological characterization. Compared to threshold-based 
methods, inflection point methods can more robustly and effectively 
extract phenological metrics for various crop types in different locations 
based on the curvature change characteristics of NDVI time series, 
without customizing cultivar- and location-specific thresholds (Zeng 
et al., 2020; Diao 2020). In this study, two inflection point methods, the 
curvature-based method and the GU-based method, are leveraged to 
retrieve the SOS phenological metrics (Fig. 4), as these two methods 
have been demonstrated to approximate the initial corn vegetative stage 
(e.g., corn V3 stage with about 2–4 leaves) (Gao et al., 2017; Diao 2020). 
The curvature-based method characterizes the SOS when the change 
rate of curvature of the fitted NDVI time series reaches its first local 

Fig. 3. Flowchart of CropSow for field-level crop planting date estimation.  
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maximum, and this curvature-derived SOS is termed as Greenup (Beck 
et al., 2006). The GU-based method characterizes the SOS as the time of 
intersection between the recovery line and base line of the fitted NDVI 
time series curve (Gu et al., 2009). The base line is defined as the hor
izontal line at the minimum value of the fitted NDVI time series curve. 
The recovery line is defined as the tangent line to the fitted NDVI time 
series curve at the curve point with the maximum first derivative. The 
GU-derived SOS is termed as Upturn in this study. The curvature-derived 
Greenup and GU-derived Upturn SOS metrics will be utilized in the 
subsequent crop growth model. 

In this study, the above procedures are leveraged to extract the SOS 
phenological metrics from both MODIS and HLS time series, with the 
MODIS metrics further used for crop model calibration and the HLS 
metrics used for field-level planting date estimation. 

3.1.2. Crop growth model (APSIM) 
Plant growth and development mainly depend on the interactions 

among crop types, crop management, and environment. Crop growth 
models take into account a variety of interactive processes underlying 
the soil-crop-atmosphere continuum to simulate crop phenological 
development. Hence, crop growth models have great potential in scal
ably and effectively estimating the duration between crop planting and 
following stages under varying weather conditions and crop manage
ment practices. APSIM, as one of widely used crop growth models in 
predicting corn phenological timing in the midwestern US, is utilized to 
estimate the time lag between the corn planting date and remote sensing 
SOS phenological metrics. 

After the planting of corn seed, corn experiences germination and 
emergence stages, and then reaches the SOS phenological metrics that 
are around the V3 stage. In APSIM, the commencement of the germi
nation is driven by soil water status. After the germination stage, the 
corn phenological development is driven by temperature accumulation 
termed as daily thermal time accumulation (in degree days). APSIM 
determines the duration of phenological phases by taking into account 
the speed and requirement of temperature accumulation. Factors such as 
water and nitrogen stress can impact the speed of temperature accu
mulation, and the thermal time requirement may vary depending on 
crop management practices and phenological stages. For example, the 
thermal time requirement from corn germination to emergence is 
mainly determined by the planting depth, as the seedling emergence is 
the process encompassing the plumule growth towards the soil surface 
and coming out from the soil. The thermal time requirement from 
emergence to the following vegetative stage is mainly determined by the 
number of corn-collared leaves and the thermal time requirement for the 
development of a leaf, namely phyllochron. The phyllochron is relatively 
comparable among various corn cultivars (Birch et al., 1998; Dos Santos 

et al., 2022; Morel et al., 2020; Plancade et al., 2022). Given the SOS 
metrics approaching the corn V3 stage (i.e., three collared leaves), the 
thermal time requirement from the emergence stage to remote sensing 
SOS metrics can also be assumed to be comparable across cultivars, and 
is defined as tt_emerg_to_sos in degree days. 

In APSIM, many modules are designed to simulate crop phenological 
progress, including the SoilWater module, the SoilNitrogen module, and 
the Phenology module. Each day, the SoilWater module calculates the 
daily soil moisture based on soil physical and weather conditions. Seeds 
germinate when the soil moisture is appropriate for the initiation of seed 
sprouting. The Phenology module calculates the daily thermal time 
using 3-hourly air temperatures interpolated from the daily minimum 
and maximum temperatures. The SoilWater and the SoilNitrogen mod
ules can also simulate the effects of soil water deficit and soil nitrogen 
deficit on the crop growth, respectively. The daily thermal time will be 
adjusted according to the water and nitrogen stresses calculated by these 
modules. The daily thermal time values are then accumulated into a 
thermal time sum to determine the duration between each two crop 
phenological stages. In this study, the thermal time sum tt_emerg_to_sos is 
calibrated using the state-level CPRs as well as pure MODIS pixels of 
Illinois to retrieve the duration from the corn emergence stage to remote 
sensing SOS metrics. The APSIM input variables (except planting dates) 
are set in reference to previous studies conducted for corn in the Mid
western US (Table 1) (Mandrini et al., 2022). A range of corn planting 
dates (i.e., April 1 – June 1) are attempted for the calibration of tt_e
merg_to_sos upon comparison to CPRs. 

Specifically, the calibration of thermal time sum tt_emerg_to_sos is 
shown in Fig. 5. Firstly, for each pure MODIS pixel, APSIM initially runs 
with the planting date of April 1 and the tt_emerg_to_sos of 0 ℃-day, as 
well as the soil, weather, and other crop management inputs (Table 1) to 
derive the model estimated SOS. If the model estimated SOS does not 
match with the MODIS pixel’s remote sensing SOS phenological metric, 
the planting date input is added by one day. The APSIM iteratively runs 
with an updated planting date until the model estimated SOS aligns with 
the pixel SOS phenological metric, and the updated planting date of this 
alignment is regarded as the model estimated planting date for this pixel. 
Under the condition of tt_emerg_to_sos being 0 ℃-day, all pure corn 
MODIS pixels’ planting dates are then estimated and utilized to generate 
temporal cumulative distribution of model estimated planting dates at 
the state level. This temporal cumulative distribution is compared to 
that of actual planting dates from CPRs. The degree of similarity is 
quantified by the RMSE between the cumulative planting percentages of 
CPRs and those of model estimation. By minimizing the RMSE, the 
optimal tt_emerg_to_sos can then be estimated from a range of 0–300 
℃-day for the parameter calibration. Given the SOS phenological met
rics derived from MODIS along with the complicated soil-crop- 

Fig. 4. Schematic of SOS metric extraction using curvature-based method (a) and GU-based method (b).  
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atmosphere interactive process simulated by APSIM, the tt_emerg_to_sos 
is calibrated on a yearly basis using the corresponding year-specific CPR. 

With the tt_emerg_to_sos parameter calibrated, APSIM can simulate 
the crop phenological development in the early season and estimate the 
number of days from corn planting to HLS-derived SOS phenological 
metrics of individual farm fields. The field-level corn planting dates can 
thus be estimated with the integration of remote sensing phenological 
detecting method and the calibrated APSIM model. 

3.2. Benchmark methods 

This section introduces three advanced benchmark methods for crop 
planting date estimation. The benchmark methods include the remote 
sensing AGDD method, the shape model, and the weather-dependent 
method. Similar to CropSow, the three benchmark methods are cali
brated using the MODIS time series and CPR-documented planting dates 
at the state level. After the method calibration, the HLS time series is 
employed to estimate corn planting dates at the farm field level. 

3.2.1. Remote sensing AGDD method 
As a major SOS-based remote sensing phenological detecting 

method, the remote sensing AGDD method estimates the crop planting 
date retroactively using the remote sensing SOS metric and the AGDD- 
based time lag (Dong et al., 2019). The time lag from the crop 
planting date to the SOS date can usually be represented using the 
number of calendar days or AGDD. Compared to the calendar day-based 
time lag, the AGDD-based one has been found to perform better with 
stronger adaptability to different weather conditions by taking into ac
count the thermal time accumulation in the crop growth process, and is 
thus utilized in this study. The planting date can then be estimated by 
subtracting the AGDD-based time lag from the remote sensing SOS 
metric. In this study, the remote sensing SOS metric is the Greenup 
metric retrieved from the NDVI time series using the curvature-based 
method, similar to the Greenup metric in CropSow. The AGDD-based 

time lag is calibrated on a yearly basis using the MODIS time series 
and the corresponding year-specific CPR. Specifically, the AGDD from 
the planting to the SOS dates is optimized each year to minimize the 
RMSE between the estimated temporal cumulative distribution of 
planting dates of the pure corn MODIS pixels and the corresponding 
reference cumulative distribution of corn planting dates in CPRs at the 
state level. As a measure of heat accumulation to quantify plant devel
opment rates, the daily growing degree day (GDD) is calculated using 
the daily maximum temperature (Tmax), the daily minimum temperature 
(Tmin), the daily base temperature (Tbase), and the daily capped 
maximum temperature (Tcap) (Eq. (3)). In Illinois, the Tbase is usually set 
as 10 ◦C and the Tcap is typically set as 30 ◦C for corn (Wang, Azzari, and 
Lobell 2019).The corresponding AGDD is then calculated by summing 
up the daily GDD from the planting date to the SOS date (Eq. (2)). With 
the annual calibrated AGDD (AGDDsos), the planting dates of individual 
farm fields could be estimated using the curvature-derived Greenup SOS 
metrics from the HLS time series (Eq. (4)). 

AGDDsos =
∑SOS

doy=planting date
GDDdoy (2)  

GDDdoy = max
(

min
(
Tmax, Tcap

)
+ max(Tmin, Tbase)

2
− Tbase, 0

)

(3)  

Planting date = SOS − days(AGDDsos) (4)  

3.2.2. Shape model 
As a benchmark phenology matching method, the shape model is 

designed to estimate crop phenological transition dates (e.g., planting 
dates) through matching the geometrical patterns of the target and 
reference phenological time series (Sakamoto et al., 2010; Sakamoto 
2018; Liu et al., 2022) (Fig. 6). The target phenological time series is the 
NDVI time series of the target pixel for planting date estimation, and the 
reference phenological time series is the corn-specific NDVI time series 
curve defined as the 90th percentile of all the pure corn MODIS pixels’ 
NDVI curves on a yearly basis in reference to our previous study (Diao 
et al., 2021). The shape model assumes that the target phenological time 
series can be geometrically matched through the scaling and shifting of 
the reference phenological time series. With the geometrically matched 
relationship, the target planting date can be estimated by mapping the 
reference planting date from the reference phenological time series to 
the target phenological time series (Fig. 6). In this study, we calibrate 
the reference planting date on a yearly basis by searching all the dates 
within the range of two weeks before and after the median date of the 
corn planting in the corresponding CPRs. The reference planting date is 
calibrated as the date that leads to the lowest RMSE between the tem
poral cumulative distribution of corn planting dates from the CPRs and 
that of the planting dates of the pure corn MODIS pixels estimated by the 
shape model. With the calibrated reference planting date and pre- 
defined reference phenological time series, the shape model is then 
employed to estimate the planting dates of target farm fields using the 
HLS NDVI time series curves. 

The geometrical matching process of the shape model is defined in 
Eq. (5). 

f (DOY) = VIscale × r(DOYscale × (DOY + DOYshift)) (5)  

where the function r(DOY) represents the NDVI value of the reference 
phenological time series on a certain DOY, and f(DOY) refers to the 
NDVI value of the fitted phenological curve on the DOY. VIscale and 
DOYscale denote the magnitude of scaling of the reference phenological 
curve on the vertical and horizontal axes, respectively. DOYshift denotes 
the relative shift of phenological timing on the reference phenological 
curve. 

The optimum scaling parameters (e.g., VIscale, DOYscale, and DOYshift) 
are determined by minimizing the RMSE between the fitted phenolog
ical curve f(DOY) and the target phenological curve t(DOY) (Eq. (6)). 

Table 1 
Input variables for APSIM simulations.  

Variable Value Description Reference 

Fertilizer 160 kg/ha 
(Default) 

Amount of fertilizer Default in 
APSIM 

Initial 
nitrogen 

40 kg/ha Amount of Initial nitrogen (Mandrini 
et al., 2022) 

Planting 
dates 

April 1 – 
June 1 

Date when crop is planted CPRs 

Initial water 50% Amount of initial water on the 
first day of that year 

Default in 
APSIM 

Soil pH gSSURGO A measure of soil acidity or 
alkalinity 

USDA-NASS 

Soil 
hydraulic 
properties 

gSSURGO The hydraulic properties of the 
soil (infiltration, hydraulic 
conductivity, water retention, 
and available water capacity) 

USDA-NASS 

Soil organic 
matter 

gSSURGO The fraction of the soil that 
consists of plant or animal tissue 
in various stages of breakdown 
(decomposition) 

USDA-NASS 

Weather DAYMET Daily minimum and maximum 
temperature, precipitation, vapor 
pressure, shortwave radiation, 
snow water equivalent, and day 
length 

(Thornton 
et al., 2022) 

Initial 
surface 
residue 

2000 kg/ha 
of soybean 

Amount of initial residue from 
previous crop 

(Mandrini 
et al., 2022) 

Planting 
density 

9 plants/m2 Density of maize seed being sown (Mandrini 
et al., 2022) 

Planting 
depth 

50 mm Depth of maize seed being sown (Mandrini 
et al., 2022) 

Row spacing 760 mm Spacing between rows (Baum et al., 
2020)  
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The search ranges for these three parameters are empirically set as fol
lows: 0.3 < DOYscale < 1.5, 0.3 < VIscale < 1.5, and −80 < DOYshift < 80 
(Sakamoto et al., 2010). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
73

∑365

DOY=5,10,15⋯
(f (DOY) − t(DOY))

2

√
√
√
√ (6) 

With the calibrated reference phenological planting date and the 
optimum scaling parameters specifically fitted for each target pheno
logical curve, the planting date on the target phenological curve is 
estimated through the geometric transformation equation (Eq. (7)). 

PDt =
1

DOYopt
scale

× PDr − DOYopt
shift (7) 

Fig. 5. Workflow of the APSIM parameter calibration.  

Fig. 6. Schematic of geometric matching between reference and target phenological time series curves using the shape model.  
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where PDt is the estimated planting date on the target phenological 
curve, and PDr is the calibrated reference planting date on the reference 
phenological curve. DOYopt

scale and DOYopt
shift are the optimum scaling 

parameters. 

3.2.3. Weather-dependent method 
The weather-dependent methods typically utilize the meteorological 

data to estimate the crop planting dates, given that the weather condi
tions (e.g., temperature and precipitation) suitable for crop germination 
are important for farmers’ planting decisions. For example, too much 
rain can saturate the soil, causing poor soil aeration, poor germination, 
and poor stands. Too little rain may dry out the soils in rainfed areas, 
causing weak and small plants that may not withstand the weather over 
the subsequent growth stages (Heng et al., 2009). Lower or higher 
temperature can slow down the seed germination process (Covell et al., 
1986). 

In this study, the weather-dependent method employs a set of rules in 
consideration of the critical meteorological and environmental factors 
influencing the corn seed germination to estimate the planting dates 
(Dobor et al., 2016). With reference to previous studies and extension 
research in Illinois, the critical factors encompass the air temperature, 
soil temperature, and normalized water content (NWC). The rules for 
estimating the corn planting dates include: (1) the average air temper
ature is larger than t1 

◦C for five consecutive days before the planting 
dates, (2) the temperature of the topsoil from 0 to 15 cm is larger than 
t2 

◦C for five consecutive days before the planting dates, and (3) the 
NWC of the planting date is within the 20–80% range. The satellite data 
are not used in the weather-dependent method. The temperature pa
rameters, t1 and t2, are calibrated on a yearly basis through minimizing 
the RMSE between the annual temporal cumulative distribution of corn 
planting dates from the CPRs and that of the planting dates of the pure 
corn MODIS pixels estimated by the rules of the weather-dependent 
method. The NWC is defined as: 

NWC = 100 ×
θ − θr

θs − θr
(8)  

where θ is the volumetric water content. θr and θs are the residual and 
the saturated water content of the soil, respectively. Due to the lack of 
data on volumetric water content, θ is calculated via the SoilWater 
module of APSIM. θr and θs are retrieved from the gSSURGO dataset. 

3.3. Framework evaluation 

CropSow’s and other three benchmark methods’ corn field planting 
date estimations are directly compared with the reference field-level 
planting dates from the Beck’s dataset. The coefficient of determina
tion (R2), the mean bias error (MBE), and the RMSE are calculated to 
assess the accuracy of the estimated planting dates. The R2 measures the 
proportion of the variance in the observed planting dates explained by 
the corresponding estimated planting dates. The RMSE and MBE both 
measure the errors of the estimations. Specifically, the MBE captures the 
average bias in the estimation and the RMSE describes how close the 
observed planting dates are to the estimated ones. The RMSE, MBE and 
R2 are calculated using the Eqs. (9)–(11), respectively. The spa
tial–temporal patterns of those accuracy measures across ASDs and years 
are further investigated. Given the varying number and quality of HLS 
images across locations and years, the influence of HLS image avail
ability on the planting date estimation performance is also evaluated. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑n

i=1
(Pi − Oi)

2
√

(9)  

MBE =
1
N

∑n

i=1
(Pi − Oi) (10)  

R2 =

∑n
i=1(Pi − P)

2

∑n
i=1(Oi − P)

2 (11)  

where Pi is the estimated planting date and Oi is the observed plating 
date of the sample i. N denotes the number of samples; P denotes the 
mean value of all observed planting dates. 

As crop management input data might not always be available over 
large scales, we conduct a global sensitivity analysis to explore how 
model performance is affected by several input management variables 
(e.g., fertilizer, initial water, planting density, and planting depth) and 
our selected phenological parameter (i.e., tt_emerg_to_sos) for calibration. 
This sensitivity analysis is conducted using the Extended Fourier 
Amplitude Sensitivity Test (EFAST) method, with the range of each 
variable (or parameter) set according to literatures for the US corn 
management practices (Table S1) (Westgate et al., 1997; Mandrini et al., 
2022; Nemergut et al., 2021). EFAST employs a multi-phase Fourier 
series decomposition method to decompose the variance of the model 
output into partial variances associated with each variable (or param
eter). It enables the estimation of total and main effects of a variable (or 
parameter) by analyzing its contributions to the output variance. Total 
effect measures the overall impact of a tested variable (or parameter), 
including both its direct impact and the impact from its interactions with 
other variables (or parameters), while main effect measures the direct 
impact of an input variable (or parameter) on CropSow’s performance 
without considering the interaction effect. The performance of CropSow 
is evaluated via the comparison between the cumulative percentage 
distribution of estimated planting dates under different combinations of 
these five variables (or parameters) with corresponding reference cu
mulative distribution of planting dates from CPRs using RMSE. 

To further evaluate the CropSow performance at the ASD level, we 
compare the temporal cumulative distribution of estimated corn 
planting dates with that of CPR-documented planting dates for each ASD 
of Illinois. Specifically, within each ASD, we randomly select 200 corn 
fields using the CLU and CDL in consideration of both sample size and 
computational cost, and estimate the corresponding planting dates using 
CropSow. The temporal cumulative distribution of the estimated 
planting dates is then generated for the ASD-level framework evalua
tion. Since the ASD-level CPRs are not publicly available after 2017, the 
ASD-level framework evaluation is implemented in 2016 and 2017. 

With the ASD-level CPRs in 2016 and 2017, we further calibrate the 
CropSow at the ASD level for these two years to evaluate the influence of 
the spatial aggregation level of CPRs on the framework performance. For 
each ASD and year combination, CropSow is calibrated using the cor
responding cumulative corn planting information in CPRs. We then 
compare the performance of CropSow calibrated at the ASD level with 
that of CropSow calibrated at the state level using the Beck’s dataset. 

To evaluate the generalizability of the CropSow framework, we also 
estimate the field-level planting dates for one year (the target year) 
using the state-level CropSow framework calibrated with other years 
data. Specifically, for a target year, CropSow is calibrated with each of 
the other four years’ data, respectively. With the calibrated CropSow, 
the field-level planting dates of the target year can then be estimated and 
evaluated using the Beck’s data in terms of the accuracy metrics (RMSE, 
MBE and R2). For each accuracy metric, the average of the metric values 
of four calibrations for the target year is calculated to assess the 
generalizability of CropSow being calibrated using non-target years’ 
data. The generalizability of the benchmark methods is evaluated in the 
same fashion. We further generate the corn field planting date maps of 
the Champaign and Dekalb counties of Illinois from 2016 to 2020 using 
CropSow. The Champaign and Dekalb counties are located in central 
and northern Illinois, respectively. These two counties are under 
different weather conditions, with corn fields exhibiting various 
phenological trajectories. All the corn fields of these two counties are 
located using the CLU and CDL, and the planting dates of corn fields are 
estimated accordingly using CropSow. The spatio-temporal planting 
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date patterns of corn fields are then investigated and compared for these 
two counties to evaluate the framework. 

4. Results 

4.1. Temporal cumulative distribution of crop phenology 

In Illinois, field planting progress for corn was surveyed and reported 
in the CPRs. From 2016 to 2020, the annual temporal cumulative dis
tribution of planted corn fields in Illinois is shown in Fig. 7. The cu
mulative distribution curve of planted fields differs year by year. The 
planting windows in 2016, 2017, and 2020 are relatively comparable, 
mostly ranging from DOY 100 to DOY 160. The planting windows in 
2018 and 2019 are more disparate compared to the three other years. In 
2018, the planting practice happened mainly within a narrow window 
from DOY 110 to DOY 140, whereas it happened within an extremely 
wide window from DOY 110 to DOY 180 in 2019. The variability of 
planting progress is partly due to the various planting decisions made by 
farmers under different weather conditions (e.g., dramatic temperature 
swings may facilitate the corn planting in 2018; excessive precipitation 
may delay the corn planting in 2019). 

CropSow framework is calibrated with the temporal cumulative 
distribution of the remote sensing SOS metrics (e.g., Greenup or Upturn) 
extracted from pre-processed MODIS time series and that of planted 
fields from CPRs. Fig. 8 displays the annual temporal cumulative dis
tribution of actual planted fields and emerged fields from CPRs (solid red 
and green lines), Greenup and Upturn metrics extracted from MODIS 
time series (solid blue and yellow lines), and planting dates estimated by 
calibrated CropSow based on Greenup or Upturn (dashed blue and 
yellow lines) in Illinois from 2016 to 2020. The temporal cumulative 
distributions of planting dates estimated by calibrated CropSow 
(Greenup or Upturn) are well matched with those of actual planted fields 
from CPRs, demonstrating the validity of calibration of CropSow at the 
state level. In contrast, both of the two remote sensing SOS metrics’ 
curves tend to be closer to the CPR emerged curve instead of the CPR 
planted curve. The remote sensing signals of SOS metrics are generally 
detected 3–4 weeks after planting, except for 2019 when the excessive 
precipitation conditions complicate the remote sensing characterization 
of the SOS metrics. The early-season weed growth and delayed corn 
planting in 2019 changes the pattern of remote sensing time series and 
the distribution of SOS metrics. It is also noted that the temporal cu
mulative distribution curves of the Greenup metrics are around 3 days 
earlier than those of the Upturn metrics across all five years. 

4.2. Field-level planting date estimation 

Under the calibrated CropSow framework, field-level planting dates 
are estimated in Illinois from 2016 to 2020 through phenological 

metrics extracted from the HLS satellite time series and the physiological 
knowledge embedded in the APSIM. We assess the performance of the 
CropSow framework in estimating field-level planting dates in different 
years and spatial levels (i.e., state level and ASD level). We then explore 
the potential of improving the framework’s planting date estimation 
performance by calibrating the framework with ASD-level CPRs data 
available in 2016 and 2017. 

4.2.1. CropSow performance 
Fig. 9 shows the scatterplots of the planting dates estimated by 

annual calibrated CropSow (Greenup) or CropSow (Upturn) against the 
corresponding actual field-level planting dates in the Beck’s dataset 
from 2016 to 2020. Each point represents a record of an agricultural 
field in Beck’s dataset. In general, the data points in both scatterplots are 
close to the 1:1 line (solid diagonal line), with most points falling within 
the ±10 days boundaries (dashed lines). The distribution of the data 
points suggests the satisfactory performance of CropSow in estimating 
field-level planting dates. Compared to CropSow (Upturn), CropSow 
(Greenup) shows better performance in field-level planting date esti
mation with higher R2 (0.69 vs. 0.59), lower MBE (5.07 vs. 6.62 days), 
and lower RMSE (9.13 vs. 11.75 days). The scatterplots also suggest that 
the estimation bias (e.g., the fields with actual planting dates around 
DOY 110) is much smaller when CropSow (Greenup) is employed. 
Pairwise t-test is conducted to further test the difference between the 
estimations generated by the two SOS metrics, and the result (p < 0.01) 
reconfirms that CropSow (Greenup) exhibits significantly better per
formance compared to CropSow (Upturn). The good results demonstrate 
the applicability and validity of downscaling regional aggregated crop 
planting information to the field level through the integration of remote 
sensing observations and APSIM. 

Fig. 10 shows the yearly scatterplots of estimated planting dates 
against the Beck’s actual planting dates, using CropSow (Greenup) or 
CropSow (Upturn). Significant positive correlations are observed be
tween the estimated and actual planting dates in all combinations of 
years and SOS metrics, ranging from 0.52 to 0.91 (R2 between 0.27 and 
0.84). Overall, CropSow (Greenup) tends to yield higher R2, and lower 
RMSE and MBE compared to CropSow (Upturn). In 2016, 2017 and 
2019, CropSow (Upturn) substantially overestimates the planting dates, 
leading to a larger number of points skewed to the left of 1:1 line and 
falling out of the ±10 days boundaries. In contrast, the estimation re
sults of CropSow (Greenup) are closer to the diagonal 1:1 line. In 2018, 
data points are densely distributed in a narrow window for both two 
metrics, likely due to early planting caused by the warm spring in that 
year. In 2020, the two metrics achieve satisfactory estimation results, 
both with R2 over 0.8 and MBE lower than 3 days. In terms of quanti
tative measures, CropSow (Greenup) generates lower RMSE values 
compared to CropSow (Upturn) in all the five years. CropSow (Greenup) 
also gives substantially higher R2 from 2016 to 2018, and the two SOS 
metrics generate almost the same R2 values in 2019 and 2020. As for 
MBE, CropSow (Greenup) demonstrates significantly better perfor
mance in 2016 (6.7 vs. 11.11 days) and 2019 (7.74 vs. 12.04 days), 
while the two SOS metrics generate comparable MBE values in other 
years. It is also well noted that CropSow (Greenup) achieves much lower 
MBE in 2019 when extreme precipitation conditions occurred, sug
gesting that the Greenup metric holds the great potential in contributing 
to more stable and robust estimation of field-level planting dates. 
Considering that the better performance of CropSow (Greenup) mani
fests the greater stability and potential of this curvature-based remote 
sensing SOS metric, Greenup is selected as the phenological SOS indi
cator in the CropSow framework for the following analyses in this study. 

The field-level planting date estimation results from the state-level 
CropSow framework are further aggregated and validated in the nine 
ASDs across Illinois, in an effort to obtain a more comprehensive un
derstanding of the model performance. As mentioned before, CropSow 
(Greenup) is selected due to its better stability and accuracy. For each 
ASD, 200 randomly distributed corn fields are sampled, and the 

Fig. 7. Annual temporal cumulative distribution of planted corn fields from 
CPRs in Illinois from 2016 to 2020. 
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temporal cumulative distribution of those sampled fields is validated 
against the ASD-level CPRs. Given that the ASD-level CPRs are only 
available in 2016 and 2017 during the study period, only the estimation 
results in these two years are aggregated and analyzed. In general, the 
temporal cumulative distributions of estimated planting dates align with 
those of ASD-level CPRs in these two years, with comparable planting 
progress across ASDs (Fig. 11). The RMSEs between actual planting 
curves and estimated planting curves are <7 days in most ASDs, and the 
errors tend to be smaller around central Illinois. Specifically, RMSEs are 
all smaller than 7 days in 2016, except for the ESE (9.7 days) and SE 
(14.3 days) ASDs. The relatively large errors in these two ASDs are likely 
due to more disparate planting patterns (e.g., planting cumulative dis
tributions) compared to the state-level planting pattern. In 2017, the 
RMSEs are relatively more homogeneous across the nine ASDs, with 

RMSE values mostly ranging from 6 to 9 days. The different temporal 
cumulative distributions of estimated planting dates also reflect the 
discrepancy of planting decisions made across different ASDs of Illinois 
with various environmental conditions. The overall agreement between 
estimated planting date distribution and regional statistics from CPRs 
confirms the feasibility of downscaling statistics data from state-level 
CPRs to higher spatial resolution through integrating remote sensing 
SOS metrics and crop growth models. 

We further quantify the sensitivity of CropSow’s performance to 
several input management variables (i.e., fertilizer, initial water, 
planting density, and planting depth) and our selected phenological 
parameter (i.e., tt_emerg_to_sos) for calibration. Specifically, we calculate 
the sensitivity index of each variable (or parameter) to evaluate its in
fluence on CropSow’s planting date estimation performance (Fig. 12). 

Fig. 8. Annual temporal cumulative distribution of emerged fields and planted fields from CPRs, Greenup and Upturn metrics extracted from MODIS imagery, and 
planting dates estimated by calibrated CropSow (Greenup or Upturn) in Illinois from 2016 to 2020. 

Fig. 9. Overall field-level planting date estimation results of CropSow using Greenup metric (a) and Upturn metric (b).  
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Fig. 10. Annual field-level planting date estimation results of CropSow (Greenup) (a) and CropSow (Upturn) (b).  
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The main and total effect sensitivity indices show that the model per
formance is mostly affected by the calibration of tt_emerg_to_sos and is not 
that sensitive to input management variables. It confirms the validity of 
calibrating tt_emerg_to_sos in CropSow for planting date estimation. 

4.2.2. Impacts of HLS image availability 
While CropSow is able to retrieve field-level planting dates with 

generally satisfactory accuracy, the results of RMSEs and MBEs in Fig. 10 
also suggest that the CropSow framework tends to estimate planting 
dates later than the actual ones for some corn fields. We examine the 
corresponding HLS NDVI time series of those overestimated fields, and 
hypothesize that the estimation error pattern may originate from the 
relatively scarce high-quality HLS images. To investigate the effect of 
HLS dataset’s quality on planting date estimation performance, we 
define the planting date window as 30 days before and after the actual 
planting date of a given field. Then we count the number of high-quality 
HLS images during the planting date window for each field. Due to the 
late launch of the Sentinel 2B satellite in 2017, the high-quality HLS 
images in 2016 and the corresponding planting window are relatively 
scarcer than those in the next few years (Table 2). 

We further analyze the impact of the number of high-quality HLS 
images within planting date windows on CropSow (Greenup) planting 
date estimation performance. Fig. 13 shows the boxplot of the absolute 
errors generated by CropSow (Greenup) with regard to the number of 
high-quality HLS images within the planting date window during the 
five years; the yellow lines represent the median of absolute error be
tween actual and estimated planting dates; error bars represent the 95% 
confidence interval of absolute error between actual and estimated 
planting dates. In general, larger numbers of high-quality images around 
the actual planting date lead to lower absolute errors and more stable 
model performance (narrower range of fluctuations in absolute error). 
Thus, the degraded estimation accuracy can be explained by the lack of 
sufficient observations around the planting season, which likely causes 
inaccurate fitting process of the phenological time series and affects 
model performance. Though 2017 may lack high-quality HLS images in 
the planting date window, the overall larger number of HLS images for 
the whole year could help provide sufficient observations for the time 
series fitting process, ensuring relatively satisfactory model perfor
mance. In summary, sufficient high-quality satellite images in the 
growing season are critical for obtaining accurate planting date 

Fig. 11. ASD-level temporal cumulative distributions of planting dates estimated by CropSow (Greenup) (dashed blue lines) and those of actual planting dates from 
CPRs (solid red lines) in 2016 (a) and 2017 (b) for Illinois. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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estimations at the field level. 

4.2.3. Impacts of calibration dataset’s spatial level 
To evaluate the impacts of the calibration dataset’s spatial levels on 

the performance of CropSow’s estimation, we compare the planting date 
estimation performance of CropSow (Greenup) calibrated using ASD- 
level CPRs (ASD-level models) with that of CropSow calibrated using 
state-level CPRs (state-level models). The comparison is conducted for 
two of our study years, 2016 and 2017, during which a total of 18 ASD- 
level models are generated. Table 3 shows the field-level planting date 
estimation results of the ASD-level and state-level models. Pairwise t-test 
is performed to analyze the difference between the estimations gener
ated by the two different spatial-level CropSow frameworks. The result 
(p < 0.05) suggests that ASD-level models exhibit significantly better 
performance compared to state-level models. Compared to state-level 
models, the overall MBE of ASD-level models decreases from 6.7 to 
4.5 days in 2016 and from 3.5 to 1.6 days in 2017. The overall RMSE 
decreases from 9.9 to 8.6 days in 2016, and from 8.1 to 7.6 days in 2017. 
The advantage of the ASD-level models is more substantial for ASDs with 
more than ten validation fields. In 2016, the MBE decreases from 2.7 to 
−0.1 days in the NW ASD, from 8.3 to 5.8 days in the NE ASD, from 3.8 

to 1.9 days in the W ASD, and from 8.9 to 5.5 days in the E ASD. In 2017, 
the MBE decreases from 3.9 to 0.6 days in the NW ASD, from 3.0 to 0.6 
days in the C ASD, and from 1.8 to −0.7 days in the E ASD. The cali
bration of CropSow with more detailed ASD-level planting date statistics 
further accommodates the change of thermal time requirement from 
emergence to SOS metrics at a finer spatial level, leading to the 
improvement in estimation accuracy. Overall, a calibration dataset with 
a finer spatial level could facilitate a more accurate downscaling of 
regional planting date information and generate more satisfactory field- 
level planting date estimations. 

4.3. Comparison of CropSow and benchmark models 

Three state-of-the-art benchmark models are selected and compared 
with CropSow in terms of model performances on field-level planting 
date estimation. To be consistent with CropSow, all the benchmark 
models are calibrated with state-level CPRs and validated with Beck’s 
field data. As shown in Fig. 14, CropSow shows the best performance in 
estimating field-level planting dates compared to the other three 
benchmark models in terms of R2, RMSE, and MBE (0.69, 9.13, and 5.07, 
respectively). With the performance second only to CropSow, the remote 

Fig. 11. (continued). 
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sensing AGDD method achieves a relatively satisfactory result with R2 of 
0.66, RMSE of 11.23 days, and MBE of 7.11 days. Shape model ranks the 
third with R2 of 0.44, RMSE of 13.73 days, and MBE of 9.04 days. While 
these three methods’ estimates at the field level are all relatively aligned 
with the in-situ planting data, CropSow is able to produce the results 
with less overestimation. This advantage can be partially attributed to 
the introduction of the APSIM in CropSow. The weather-dependent 
method gives a relatively poorer field-level planting date estimation 

performance with respect to its R2 and RMSE (0.02 and 18.24, respec
tively), yet it produces a relatively small MBE (4.08 days). Different from 
the other three models (Fig. 14(a)–(c)), the weather-dependent model 
generates data points that are evenly distributed on both sides of the 
diagonal (Fig. 14(d)). The small MBE also indicates that the weather- 
dependent model can capture the general planting timing across the 
state. However, Fig. 14(d) alongside the R2 and RMSE values reveals that 
the weather-related variables cannot explain the variation of planting 
dates at the field level. 

From the perspective of annual estimation results, CropSow performs 
consistently better than the benchmark models during the study period, 
with its RMSE values ranging from 7.3 to 13.3 days, MBE values ranging 
from 2.4 to 7.7 days, and R2 values ranging from 0.28 to 0.84 (Fig. 15). 
In 2019, CropSow shows stronger adaptability to extreme weather 
conditions than benchmark models, likely due to the consideration of 
soil-crop-atmosphere interaction in APSIM. The remote sensing AGDD 
method yields the best estimation accuracy among the three benchmark 
models in all the five years, with RMSE values ranging from 7.9 to 19.2 
days, MBE values ranging from 3.9 to 15.7 days, and R2 values around 
0.5. The shape model generates relatively higher RMSE and MBE values 
and lower R2 values than CropSow and the remote sensing AGDD 
method. The weather-dependent method generates the highest RMSE in 
most years and the lowest R2 in all the years. It exhibits extreme fluc
tuations and uncertainties in planting date estimations among the study 
years. The lowest MBEs in 2016, 2018 and 2019 reindicate that the 
weather-dependent model can capture the general planting timing 
across the state. Overall, these results demonstrate the ability of Crop
Sow to provide reliable field-level planting date estimations under 
various weather conditions across the five years. 

To further evaluate the generalizability of the CropSow framework, 
we estimate the field-level planting dates for one year (the target year) 
using state-level CropSow (Greenup) framework calibrated with other 
years data. Among the benchmark models, the remote sensing AGDD 
method achieves the best performance and is thus compared with the 
CropSow framework. Fig. 16 displays the planting date estimation re
sults under three scenarios. Firstly, the CropSow framework is calibrated 
and evaluated using the same year’s data (scenario 1). Secondly, the 
CropSow framework is calibrated and evaluated using different years’ 
data (scenario 2). Thirdly, the remote sensing AGDD method is cali
brated and evaluated using different years’ data (scenario 3). For these 
three scenarios, scenario 1 achieves a better performance in field-level 
planting date estimation than scenario 2. Among these five years, the 
MBEs values stabilize at around 5 days under scenario 1 and the RMSE 
values are mostly lower than 10 days. Though degraded performance is 
observed under scenario 2, CropSow calibrated with other years’ data 
can still control the MBE and RMSE values within two weeks in all the 
years except 2017. When both calibrated with the different years’ data, 
CropSow (scenario 2) shows consistently better stability and accuracy 
than the remote sensing AGDD method (scenario 3). The R2 values under 
scenario 2 are consistently higher than those under scenario 3 except in 
2018. Scenario 2 also produces lower MBEs and RMSEs than scenario 3 
for almost all the years. The consistent advantage indicates the higher 
potential generalizability of the CropSow framework. Through the 
incorporation of physiological mechanisms, CropSow achieves higher 
scalability when it is applied to estimate the planting dates in other years 
that are different from the framework’s calibration year. 

4.4. Field-level planting date mapping 

Using the CropSow framework, we produce the field-level corn 
planting date maps for the counties of Champaign and Dekalb alongside 
their corresponding temporal cumulative distributions of planting dates 
from 2016 to 2020 (Fig. 17). These maps reveal the spatiotemporal 
variability of planting dates among cropland field parcels, with a more 
significant change of planting dates observed across years than loca
tions. From the temporal cumulative distributions, the trend of planting 

Fig. 12. The total and main effect sensitivity indices of four crop management 
input variables (i.e., fertilizer, initial water, planting density, and planting 
depth) and the key phenological parameter (tt_emerg_to_sos) calibrated 
in CropSow. 

Table 2 
Annual mean number of high-quality HLS images of Beck’s fields for both whole 
year and planting window.  

Temporal Range 2016 2017 2018 2019 2020 

Whole Year 18 25 37 34 37 
Planting Window 3 3 5 5 6  

Fig. 13. The number of high-quality HLS images within the planting date 
window vs the absolute error of planting dates estimated by CropSow 
(Greenup). The yellow lines represent the median of absolute error between 
actual and estimated planting dates. Error bars are the 95% confidence interval 
of absolute error between actual and estimated planting dates. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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dates varies during these five years. In 2018, planting dates are densely 
distributed in a relatively short three-week window from DOY 120 to 
DOY 140 for these two counties, showing the effect of extreme tem
perature swings on planting management. As a result of the excessive 
precipitation in spring, planting in 2019 mainly occurs after DOY 140, 
which is much later than that in other years. In 2020, these two counties 
experience more considerable variations in planting dates compared to 
other years, reflecting varying farmers’ decisions on planting 

management under the rapidly changing situation with the spread of 
COVID-19 and its attendant health threats in that year (Schnitkey et al., 
2020). The annual maps show that the planting dates are generally later 
in Dekalb than those in Champaign in these years. Such later planting 
decisions in the Dekalb county are resulted from its higher latitude and 
lower temperature. Overall, the CropSow framework demonstrates its 
capability in capturing field-level spatial and temporal variability of the 
estimated planting dates, and the model derived variability patterns are 

Table 3 
Field-level planting date estimation results using CropSow (Greenup) calibrated by state-level and ASD-level CPRs, respectively (The ASDs with more than 10 Beck’s 
fields are in bold).   

2016 2017 

State-CPR ASD-CPR State-CPR ASD-CPR  

RMSE MBE RMSE MBE RMSE MBE RMSE MBE 

NW 9.0 2.7 9.8 ¡0.1  9.1  3.9  8.4  0.6 
NE 13.1 8.3 11.7 5.8  11.4  7.6  9.8  4.8 
W 5.8 3.8 4.8 1.9  5.4  −2.0  4.7  2.0 
C 11.9 10.9 8.8 7.5  6.7  3.0  5.9  0.6 
E 10.5 8.9 7.7 5.5  8.8  1.8  8.8  ¡0.7 
WSW 9.5 5.2 8.4 3.2  7.4  4.4  7.4  4.0 
ESE 8.3 5.9 10.8 9  12.8  12.5  8.2  7.5 
SW NA NA NA NA  6.4  5.7  7.7  7.0 
SE 1.0 1.0 7.0 7.0  5.4  2.0  8.2  6.0 
Overall 9.9 6.7 8.6 4.5  8.1  3.5  7.6  1.6  

Fig. 14. Overall field-level planting date estimation results of CropSow (Greenup) (a), shape model (b), remote sensing AGDD method (c), and weather-dependent 
method (d) calibrated using state-level CPRs from 2016 to 2020. 
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Fig. 15. RMSE (a), R2 (b), and MBE (c) of annual field-level planting date estimation results among CropSow (Greenup) and three benchmark models.  

Fig. 16. Field-level planting date estimation accuracy measures (RMSE, MBE, and R2) across five years under three scenarios. Scenario 1 (S1): CropSow (Greenup) 
framework is calibrated and evaluated using the same year’s data; scenario 2 (S2): CropSow (Greenup) framework is calibrated and evaluated using different years’ 
data; scenario 3 (S3): Remote Sensing AGDD method is calibrated and evaluated using different years’ data. 
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generally consistent with our understanding of the different planting 
practices during the five years of the study period. The mapping results 
further confirm CropSow’s ability to accurately estimate field-level 
planting dates, which can largely be attributed to the utilization of 
spatially explicit NDVI time series for individual fields and the consid
eration of the interactions among crop types, crop management, and 
environment. 

5. Discussion 

In this study, we develop a novel CropSow modeling framework to 
estimate the crop planting dates at the field level by integrating the 
remote sensing phenological detecting method and the crop growth 
model. The remote sensing phenological detecting method encompasses 
the time series phenological pre-processing, time series phenological 
fitting, and time series phenological characterization. With a suite of 
methods devised to remove the spurious and abnormal observations of 
NDVI time series, as well as diminishing the influence of off-season 
vegetation (e.g., weeds and cover crops), the phenological profile of 

the target crop can be extracted and modeled to retrieve the SOS 
phenological metrics. As both curvature-based Greenup and GU-based 
Upturn SOS metrics have been demonstrated to approximate the corn 
initial vegetative stage (e.g., corn V3 stage with about 2–4 leaves), these 
two SOS metrics have been retrieved in this study via the remote sensing 
phenological detecting method for the subsequent integration into the 
crop growth model for corn planting date estimation. Compared to the 
GU-based Upturn metric, CropSow with the curvature-based Greenup 
metric achieves higher accuracy in estimating the corn planting dates at 
the field level. The Greenup metric is retrieved via the change rate of the 
curvature, whereas the Upturn metric is extracted via the intersection 
between the recovery line and base line of the fitted NDVI time series 
curve (Fig. 4). The use of several curves may bring more uncertainties in 
the GU-based phenological metric retrieval, which further affects the 
performance of CropSow. The good performance of the curvature-based 
Greenup metric in detecting crop phenology has also been suggested by 
previous studies (Diao and Li, 2022). 

The crop growth model in CropSow further enables the compre
hensive modeling of crop phenological development in consideration of 

Fig. 17. Corn field-level planting date maps estimated by CropSow (Greenup) for the counties of (a) Champaign and (b) Dekalb from 2016 to 2020 with their 
corresponding county-level temporal distributions of planting dates. 
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soil-crop-atmosphere continuum. It takes into account a variety of 
weather, soil, and management factors to model the phenological 
progress from corn planting to germination, germination to emergence, 
as well as emergence to SOS stages. The integration of the remote 
sensing phenological detecting method and the crop growth model thus 
enables CropSow to estimate crop planting dates under varying envi
ronmental and management conditions. By accommodating the complex 
soil-crop-atmosphere interactive process underlying crop physiological 
growth, CropSow shows unique strength particularly in field-level 
planting date estimation. It can capture the spatiotemporal variation 
in field-level crop phenological development by integrating the field- 
specific remotely sensed crop growth signals and the associated field 
environmental characteristics. The calibration of crop growth model in 
CropSow facilitates the downscaling of the regional aggregated crop 
planting information to the field level with farm-tailored planting in
formation. The global sensitivity analysis of crop growth model further 
indicates that the model performance is mostly affected by the calibra
tion of the phenological parameter tt_emerg_to_sos and is substantially 
less sensitive to crop management inputs. This is consistent with the 
mechanism underlying corn plant growth that these crop management 
practices mainly influence simulations of corn phenology after the end 
of the juvenile stage as well as subsequent crop yield, rather than initial 
corn phenology (Peng et al., 2018). The sensitivity analysis demon
strates the importance of calibrating tt_emerg_to_sos in CropSow, as well 
as the potential in estimating field-level planting dates when accurate 
crop management inputs are not readily available. Given the state-level 
CPRs publicly accessible in the US, CropSow holds strong promise to 
systematically conduct field-level crop planting date estimations at large 
scales with the CPR-enabled calibration and downscaling. The ASD-level 
CPRs for defined regions and years might further improve the corre
sponding field planting date estimations, given the potential influence of 
calibration dataset’s spatial level. Owing to the consideration of the 
physiological mechanism, CropSow also shows stronger adaptability 
than other approaches to abnormal weather conditions (e.g., excessive 
rainfall in 2019) with more stable and accurate estimations of field-level 
planting dates. 

Among the three benchmark methods, the remote sensing AGDD 
method achieves higher accuracy in field-level planting date estimation 
with the consideration of the thermal time accumulation in the crop 
growth process. As a measure of heat accumulation, AGDD is used to 
quantify the plant development rate and is a major factor determining 
crop phenological growth. The time lag between planting dates and 
remote sensing SOS metrics can be estimated in terms of AGDD to infer 
the planting dates. Compared to the calendar-based time lag, the AGDD- 
based one exhibits significantly lower normalized variance of all the 
corn fields of Beck’s dataset (p < 0.001), according to the Brown- 
Forsythe test (Fig. S3). This finding indicates the advantage of AGDD 
over calendar length in representing the time lag between SOS and 
planting time. However, the crop phenological progress from planting to 
SOS encompasses several stages (e.g., germination and emergence), with 
the duration of each stage affected by a combination of environmental 
and management factors. Despite the important role of AGDD, other 
factors (e.g., soil conditions and water stress) may also affect the crop 
phenological development. CropSow is able to simulate the crop 
phenological development from planting to SOS with comprehensive 
consideration of crop thermal time requirement, crop management 
practices, as well as water and nitrogen stress. The superior performance 
of CropSow over the remote sensing AGDD method further demonstrates 
the importance of accommodating the complex soil-crop-atmosphere 
interactive process in conducting the planting date estimations at the 
field level. 

As a rule-based method, the weather-dependent method shows po
tential in capturing the general crop planting timing at the regional 
scale, but is challenging in estimating the planting dates of individual 
farm fields. This challenge may partly be explained by the subjective 
decisions of farmers on crop management in practice. Even under 

suitable environmental conditions, farmers may postpone the planting 
practices due to the machine unavailability. The weather-dependent 
method thus exhibits large fluctuations and uncertainties in field-level 
planting date estimation. Yet compared to other methods that leverage 
remotely sensed crop growth signals, the weather-dependent method 
may be more suitable for estimating crop planting dates in a near-real 
time manner. With a priori crop reference phenological time series 
and reference planting date, the shape model can estimate the planting 
date of the target time series via the geometrical matching. Despite the 
flexibility in potentially estimating any phenological stages with corre
sponding reference, the shape model may have limited capability in 
estimating the planting dates of individual farm fields. On one hand, the 
formulation (or calibration) of reference phenological profile and 
reference planting date remains a significant challenge in phenology 
matching models (Sakamoto, 2018; Liu et al., 2022). On the other hand, 
the pre-defined phenological reference templates may not adequately 
adapt to the target farm fields for phenological retrievals, particularly 
for the planting stage that is subject to management decisions. The shape 
model thus may not perform as well as CropSow and the remote sensing 
AGDD method in field-level planting date estimations, yet outperforms 
the weather-dependent method in this study. 

The CropSow framework also demonstrates good performance in 
estimating the field-level planting dates in the years that are different 
from the framework’s calibration year. Under the scenario of the lack of 
target year’s calibration data, CropSow exhibits a stronger temporal 
generalization capability than the remote sensing AGDD method. It in
dicates that simulating crop phenological progress with the consider
ation of soil-crop-atmosphere interactive process can make the planting 
date estimation more robust in comparison with only the consideration 
of AGDD. We further evaluate the spatial generalization ability of 
CropSow by calibrating the framework using the CPR of one represen
tative ASD (East) and evaluating the planting date estimation perfor
mance in all ASDs of Illinois. Comparable estimation performance is 
achieved across all the nine ASDs (Table S2), indicating good spatial 
generalization ability of CropSow across Illinois. In future studies, the 
generalization ability of CropSow for farm field planting date estima
tions can further be evaluated over extended regions (e.g., US corn belt). 

Despite the strength of CropSow in field-level planting date estima
tion, the simultaneous use of remote sensing and crop growth model 
may potentially bring uncertainty to the estimation results. Given the 
impact of the availability of HLS images (particularly around the 
planting window) on planting estimation accuracies, fusion of HLS and 
MODIS images to generate temporally dense observations (e.g., daily 
temporal resolution) at the 30 m spatial resolution can be explored in 
future studies. The limited HLS observations may potentially affect the 
process of phenological fitting and cause a bias in extracting corre
sponding remote sensing phenological metrics. By fusing the high- 
spatial-low-temporal-resolution images (e.g., HLS) and high-temporal- 
low-spatial-resolution images (e.g., MODIS) to generate the images of 
both high spatial and temporal resolutions, the spatiotemporal image 
fusion methods can help reduce uncertainty from remote sensing to 
facilitate the field-level crop phenological monitoring (Yang et al., 2021; 
Sadeh et al., 2021; Zhu et al., 2022). Additionally, the calibration of 
CropSow as well as three benchmark methods using state-level planting 
date information may introduce bias to field-level planting date esti
mation. The overall delayed estimation of planting dates of reference 
corn fields may partly be due to the uncertainty in the downscaling 
process (e.g., environmental and planting practice uncertainty) as well 
as the potential bias (e.g., survey bias) in CPRs. Calibrating the CropSow 
framework with in-situ field-level planting date and phenological stage 
information would be desired in future to reduce the calibration and 
downscaling bias, yet the collection of a large number of in-situ field- 
level phenological data over large scales could be challenging. With the 
comprehensive mechanisms embedded in crop growth models for 
simulating crop growth and phenological development, the complexity 
of crop models might potentially bring uncertainty to the estimation 
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results, particularly the need of crop management data. The sensitivity 
analysis of APSIM in this study facilitates the evaluation of the influence 
of crop input management variables on model performance. Despite 
relatively low sensitivity index values, the uncertainty caused by vary
ing crop management inputs in planting date estimations could be 
further evaluated. 

With the essential environmental conditions affecting crop planting 
and subsequent phenological development accommodated in CropSow, 
the devised framework holds strong potential in mapping field-level 
crop planting dates at large scales. Future investigations of other crops 
over extended geographical regions will be desired for more compre
hensive planting date mapping across the US. The spatial distribution of 
the field-level planting date maps can be utilized to explore the potential 
effect of climate change on crop management practices of individual 
farm fields. Along with field-level crop yield maps, the field-level 
planting maps can provide auxiliary data sources to analyze the poten
tial reasons of crop yield gaps among the cropland fields, especially for 
those fields with different planting patterns. The assessment of the gaps 
between achieved and achievable yields can enable more profitable and 
sustainable farm management adaptations, as well as more effective 
policy decisions for addressing food insecurity. Furthermore, the Crop
Sow framework holds potential for in-season planting date estimation. 
As the first logistic curve of the Beck’s method can be fitted using the 
remote sensing data up to the period of corn tasseling or silking, the SOS 
metrics could be extracted accordingly to facilitate more prompt 
decision-making by farmers and policymakers. 

6. Conclusions 

In this study, we develop an innovative CropSow framework that 
integrates the remote sensing phenological detecting method and the 
crop growth model to robustly estimate planting dates of corn fields 
under varying soil and weather conditions. The CropSow framework is 
evaluated alongside three benchmark methods (the remote sensing 
AGDD method, the weather-dependent method, and the shape model). 
With its integrative remote sensing and crop physiological design, 
CropSow demonstrates its enhanced capability in accurately estimating 
planting dates of corn fields without field-level ground truth data for 
calibration. In Illinois, CropSow with the Greenup metric can estimate 
planting dates of corn fields with R2 higher than 0.68, RMSE lower than 
10 days, and MBE around 5 days from 2016 to 2020. It shows stronger 
adaptability than the benchmark methods to abnormal weather condi
tions with more robust performance, as well as stronger generalizability 
than the benchmark method of best performance (i.e., the remote 
sensing AGDD method). The estimated field-level crop planting dates 
can provide valuable information for more accurate simulations of crop 
growth models and the analysis of the underlying reason for yield gaps 
at the field level. The spatiotemporal patterns of planting dates can help 
design proactive adaptation strategies to overcome the negative effect of 
climate change. 
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Huang, J., Gómez-Dans, J.L., Huang, H., Ma, H., Wu, Q., Lewis, P.E., Liang, S., Chen, Z., 
Xue, J.-H., Wu, Y., Zhao, F., Wang, J., Xie, X., 2019. Assimilation of remote sensing 
into crop growth models: current status and perspectives. Agric. For. Meteorol. 276- 
277, 107609. https://doi.org/10.1016/j.agrformet.2019.06.008. 

Huang, M., Wang, J., Wang, B., Liu, D.L., Qiang, Y.u., He, D.i., Wang, N.a., Pan, X., 2020. 
Optimizing sowing window and cultivar choice can boost China’s maize yield under 
1.5 ◦C and 2 ◦C global warming. Environ. Res. Lett. 15 (2), 024015 https://doi.org/ 
10.1088/1748-9326/ab66ca. 

Jain, M., Srivastava, A., Balwinder-Singh, R.J., McDonald, A., Royal, K., Lisaius, M., 
Lobell, D., 2016. Mapping smallholder wheat yields and sowing dates using micro- 
satellite data. Remote Sens. (Basel) 8 (10), 860. https://doi.org/10.3390/rs8100860. 

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., 
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping 
system model. Eur. J. Agron. 18 (3–4), 235–265. https://doi.org/10.1016/S1161- 
0301(02)00107-7. 

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., 
Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., 
Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., 
Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An 
overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 
18 (3–4), 267–288. 

Lawlor, D.W., Tezara, W., 2009. Causes of decreased photosynthetic rate and metabolic 
capacity in water-deficient leaf cells: a critical evaluation of mechanisms and 
integration of processes. Ann. Bot. 103 (4), 561–579. https://doi.org/10.1093/aob/ 
mcn244. 

Li, Y., Guan, K., Schnitkey, G.D., DeLucia, E., Peng, B., 2019. Excessive rainfall leads to 
maize yield loss of a comparable magnitude to extreme drought in the United States. 
Glob. Chang. Biol. 25 (7), 2325–2337. https://doi.org/10.1111/gcb.14628. 

Li, J., Roy, D., 2017. A global analysis of sentinel-2A, sentinel-2B and landsat-8 data 
revisit intervals and implications for terrestrial monitoring. Remote Sens. (Basel) 9 
(9), 902. https://doi.org/10.3390/rs9090902. 

Liu, L., Cao, R., Chen, J., Shen, M., Wang, S., Zhou, J.i., He, B., 2022. Detecting crop 
phenology from vegetation index time-series data by improved shape model fitting 
in each phenological stage. Remote Sens. Environ. 277 (August), 113060 https://doi. 
org/10.1016/j.rse.2022.113060. 

Lobell, D.B., Ivan Ortiz-Monasterio, J., Sibley, A.M., Sohu, V.S., 2013. Satellite detection 
of earlier wheat sowing in India and implications for yield trends. Agr. Syst. 115 
(February), 137–143. https://doi.org/10.1016/j.agsy.2012.09.003. 

Mandrini, G., Archontoulis, S.V., Pittelkow, C.M., Mieno, T., Martin, N.F., 2022. 
Simulated dataset of corn response to nitrogen over thousands of fields and multiple 
years in Illinois. Data Brief 40 (February), 107753. https://doi.org/10.1016/j. 
dib.2021.107753. 

Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O., 
Cogliati, S., Manca, G., Diotri, F., Busetto, L., Cescatti, A., Colombo, R., Fava, F., 
Morra di Cella, U., Pari, E., Siniscalco, C., Richardson, A.D., 2011. Using digital 
repeat photography and eddy covariance data to model grassland phenology and 
photosynthetic CO2 uptake. Agric. For. Meteorol. 151 (10), 1325–1337. https://doi. 
org/10.1016/j.agrformet.2011.05.012. 

Morel, J., Parsons, D., Halling, M.A., Kumar, U., Peake, A., Bergkvist, G., Brown, H., 
Hetta, M., 2020. Challenges for simulating growth and phenology of silage maize in 
a nordic climate with APSIM. Agronomy 10 (5), 645. https://doi.org/10.3390/ 
agronomy10050645. 

Moulin, S., Kergoat, L., Viovy, N., Dedieu, G., 1997. Global-scale assessment of 
vegetation phenology using NOAA/AVHRR satellite measurements. J. Clim. 10 (6), 
1154–1170. https://doi.org/10.1175/1520-0442(1997)010<1154:GSAOVP>2.0. 
CO;2. 

Nemergut, K.T., Thomison, P.R., Carter, P.R., Lindsey, A.J., 2021. Planting depth affects 
corn emergence, growth and development, and yield. Agron. J. 113 (4), 3351–3360. 
https://doi.org/10.1002/agj2.20701. 

Papale, D., Reichstein, M., Canfora, E., Aubinet, M., Bernhofer, C., Longdoz, B., 
Kutsch, W., et al., 2006. Towards a more harmonized processing of eddy covariance 
CO2 fluxes: algorithms and uncertainty estimation. Biogeosci. Discuss. Euro. Geosci. 
Union. https://doi.org/10.5194/bgd-3-961-2006. 

Peng, B., Guan, K., Chen, M., Lawrence, D.M., Pokhrel, Y.d., Suyker, A., Arkebauer, T., 
Yaqiong, L.u., 2018. Improving maize growth processes in the community land 
model: implementation and evaluation. Agric. For. Meteorol. 250–251 (March), 
64–89. https://doi.org/10.1016/j.agrformet.2017.11.012. 

Phan, H., Le Toan, T., Bouvet, A., Nguyen, L., Duy, T.P., Zribi, M., 2018. Mapping of rice 
varieties and sowing date using X-band SAR data. Sensors 18 (2), 316. https://doi. 
org/10.3390/s18010316. 

Plancade, S., Marchadier, E., Huet, S., Ressayre, A., Noûs, C., Dillmann, C., 2022. A new 
hypothesis-testing model for phyllochron based on a stochastic process - application 
to analysis of genetic and environment effects in maize. bioRxiv. https://doi.org/ 
10.1101/2021.01.11.426247. 

Sacks, W.J., Kucharik, C.J., 2011. Crop Management and phenology trends in the U.S. 
corn belt: impacts on yields, evapotranspiration and energy balance. Agric. For. 
Meteorol. 151 (7), 882–894. https://doi.org/10.1016/j.agrformet.2011.02.010. 

Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J.P., Zhang, Y., Rozenstein, O., Manivasagam, 
V.S., Chenu, K., 2021. Fusion of sentinel-2 and planetscope time-series data into 
daily 3 m surface reflectance and wheat LAI monitoring. Int. J. Appl. Earth Obs. 
Geoinf. 96, 102260. doi.org/10.1016/j.jag.2020.102260. 

Sakamoto, T., 2018. Refined shape model fitting methods for detecting various types of 
phenological information on major U.S. Crops. ISPRS J. Photogramm. Remote Sens. 
138 (April), 176–192. https://doi.org/10.1016/j.isprsjprs.2018.02.011. 

Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Verma, S.B., Suyker, A.E., Arkebauer, T.J., 
2010. A two-step filtering approach for detecting maize and soybean phenology with 
time-series MODIS data. Remote Sens. Environ. 114 (10), 2146–2159. https://doi. 
org/10.1016/j.rse.2010.04.019. 

Schnitkey, G., Swanson, K., Coppess, J., Paulson, N., 2020. 2020 planting decisions in the 
face of COVID-19. Farmdoc Daily 10 (49). https://farmdocdaily.illinois.edu/202 
0/03/2020-planting-decisions-in-the-face-of-covid-19.html. 

Schwartz, M.D., Reed, B.C., White, M.A., 2002. Assessing satellite-derived start-of-season 
measures in the conterminous USA. Int. J. Climatol. 22 (14), 1793–1805. https:// 
doi.org/10.1002/joc.819. 

Seo, B., Lee, J., Lee, K.-D., Hong, S., Kang, S., 2019. Improving remotely-sensed crop 
monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa 
and Illinois, USA. Field Crop Res 238 (May), 113–128. https://doi.org/10.1016/j. 
fcr.2019.03.015. 

Shew, A.M., Tack, J.B., Nalley, L.L., Chaminuka, P., 2020. Yield reduction under climate 
warming varies among wheat cultivars in south africa. Nat. Commun. 11 (1), 4408. 
https://doi.org/10.1038/s41467-020-18317-8. 

Sun, Z., Di, L., Fang, H., Burgess, A., 2020. Deep learning classification for crop types in 
North Dakota. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 2200–2213. 
https://doi.org/10.1109/JSTARS.2020.2990104. 

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., 
Cook, R. B. 2016. Daymet: Daily Surface Weather Data on a 1-Km Grid for North 
America, Version 3. ORNL DAAC, Oak Ridge, Tennessee, USA. 2017 Census of 
Agriculture, Summary and State Data, Geographic Area Series. 

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S-C., and Wilson, B.E. 2022. 
DaymetDaymet: Annual Climate Summaries on a 1-Km Grid for North America, 
Version 4 R1. NetCDF, GTiff, 0 MB. https://doi.org/10.3334/ORNLDAAC/2130. 

Vijaya Kumar, P., Bal, S.K., Dhakar, R., Sarath Chandran, M.A., Subba Rao, A.V.M., 
Sandeep, V.M., Pramod, V.P., Malleswari, S.N., Sudhakar, G., Solanki, N.S., 
Shivaramu, H.S., Lunagaria, M.M., Dakhore, K.K., Londhe, V.M., Singh, M., 
Kumari, P., Subbulakshmi, S., Manjunatha, M.H., Chaudhari, N.J., 2021. Algorithms 
for weather-based management decisions in major Rainfed crops of India: validation 
using data from multi-location field experiments. Agron. J. 113 (2), 1816–1830. 
https://doi.org/10.1002/agj2.20518. 

Vyas, S., Nigam, R., Patel, N.K., Panigrahy, S., 2013. Extracting regional pattern of wheat 
sowing dates using multispectral and high temporal observations from indian 
geostationary satellite. J. Indian Soc. Remote Sens. 41 (4), 855–864. https://doi.org/ 
10.1002/agj2.20518. 

Waha, K., van Bussel, L.G.J., Müller, C., Bondeau, A., 2012. Climate-driven simulation of 
global crop sowing dates: simulation of global sowing dates. Glob. Ecol. Biogeogr. 21 
(2), 247–259. https://doi.org/10.1111/j.1466-8238.2011.00678.x. 

Wang, S., Azzari, G., Lobell, D.B., 2019. Crop type mapping without field-level labels: 
random forest transfer and unsupervised clustering techniques. Remote Sens. 
Environ. 222 (March), 303–317. https://doi.org/10.1016/j.rse.2018.12.026. 
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