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A B S T R A C T   

Large-scale crop yield estimation is important for understanding the response of agriculture production to 
environmental forces and management practices, and plays a critical role in insurance designing, trade decision 
making, and economic planning. The empirical models (e.g., deep learning models) have been increasingly 
utilized for estimating crop yields with the ability to take into account a range of yield predictors and complex 
modeling relationships. Yet empirical estimation of crop yields still faces important challenges, particularly in 
accommodating spatio-temporal crop phenological development patterns as well as tackling the heterogeneity of 
a diversity of yield predictors. The different types of uncertainties associated with empirical yield estimations 
have seldom been explored. The objective of this study is to develop a Phenology-guided Bayesian-Convolutional 
Neural Network (PB-CNN) framework for county-level crop yield estimation and uncertainty quantification, with 
soybean in the US Corn Belt as a case study. The PB-CNN framework comprises three key components: Phenology 
Imagery construction, multi-stream Bayesian-CNN modeling, as well as feature importance (i.e., yield predictor 
and phenological stage) and predictive uncertainty analysis (i.e., aleatoric and epistemic uncertainty). With the 
innovative integration of critical crop phenological stages in modeling the crop yield response to a heterogeneous 
set of yield predictors (i.e., satellite-based, heat-related, water-related, and soil predictors) as well as the asso
ciated uncertainties, the developed PB-CNN framework outperforms three advanced benchmark models, 
achieving an average RMSE of 4.622 bu/ac, an average R2 of 0.709, and an average bias of −2.057 bu/ac in 
estimating the county-level soybean yield of the US Corn Belt in testing years 2014–2018. Among the yield 
predictor groups, the satellite-based predictor group is the most critical in soybean yield estimation, followed by 
the water- and heat-related predictor groups. Throughout the growing season, the soybean blooming to dropping 
leaves phenological stages play a more crucial role in modeling the soybean yield. The soil predictor group as 
well as the early growing stages can improve the model estimation accuracy yet potentially brings more un
certainties into the yield estimation. The further uncertainty disentanglement indicates that the dominant un
certainty in yield estimation is the aleatoric uncertainty, mainly stemming from the fluctuations and variations 
inherent in the modeling input observations. The PB-CNN framework largely enhances our understanding of the 
complex soybean yield response to varying environmental conditions across crop phenological stages as well as 
associated uncertainties for more sustainable agricultural development.   

1. Introduction 

With the projected increase of the global population being about 2 
billion in the next 30 years, agricultural demands are expected to 
drastically boost throughout the world, resulting in severe challenges to 
food security (Weiss et al., 2020). To meet the rising food demand, a 
sustainable increase in food production is required, which needs to be 
accompanied by more intelligent agricultural management with a 
comprehensive understanding of the forces constraining crop 

productivity (Crane-Droesch, 2018; S. Feng et al., 2021; Wei et al., 
2014). Large-scale crop yield monitoring under various environmental 
forces allows better assessments of gaps between actual and potential 
yields to facilitate the optimization of farm management practices (Guan 
et al., 2017). Such crop yield information is also critical for the price 
forecasts of agricultural commodities, aiding in crop insurance 
designing, trade decision making, and national economic planning 
(Carletto et al., 2015; Sherrick et al., 2014). 

Current mainstream crop yield estimation models include process- 
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based crop models and empirical models. Process-based crop models 
estimate yield through simulating soil-crop-atmospheric interactive 
processes (e.g., crop growth, water and energy balance, and nutrient 
cycling) driven by a combination of environmental and crop manage
ment factors (Basso & Liu, 2019; Bassu et al., 2014; Sheng et al., 2019; H. 
S. Yang et al., 2004). To simulate those complex processes, crop models 
usually require expert knowledge and a large amount of field observa
tions regarding soil characteristics, weather conditions, and manage
ment practices to calibrate the models. The collection of such diverse 
and comprehensive field observations of adequate quality can be diffi
cult at large scales, which may hamper the crop model calibration and 
induce the misspecified crop growth trajectory with yield estimation 
accuracy compromised (Guo et al., 2021; Huang et al., 2015; Jiang et al. 
(2020a)). By comparison, empirical models may overcome field data 
barriers and model calibration issues by building the empirical rela
tionship between the crop yield and a variety of environmental and 
satellite-based predictors (Becker-Reshef et al. 2010; Jiang et al. 2020; 
Kaylen and Koroma 1991; Shahhosseini et al. 2020). To characterize 
complex yield-predictor relationships (e.g., both linear and non-linear 
relationships), machine learning models, particularly deep learning 
models, have been increasingly utilized in empirical crop yield estima
tion (Chlingaryan et al., 2018; Kang et al., 2020; Koirala et al., 2019). 
For example, the Convolutional Neural Network (CNN)-based models 
leverage convolutional network structures to characterize multi-level 
spatial texture information of yield predictors (e.g., satellite imagery 
and soil maps) (Barbosa et al., 2020; Kattenborn et al., 2021; Mur
uganantham et al., 2022; Russello, 2018; Terliksiz & Altylar, 2019). The 
Long Short-Term Memory (LSTM)-based models employ recurrent 
network structures to model the temporal dependent patterns of the 
sequential time series of yield predictors (e.g., time series of satellite and 
meteorological predictors) over the growing season (Jiang et al. 
(2020b); Tian et al., 2021; You et al., 2017). With uniquely designed 
modeling structures, deep learning-based yield estimation models have 
been found to outperform other empirical models (e.g., random forest) 
for a range of crop species (e.g., soybean, corn, wheat, and rice) in 
various applications (Fernandez-Beltran et al., 2021; Ma et al., 2021; 
Muruganantham et al., 2022; Sun et al., 2019; Tian et al., 2021). 

Despite the promising estimation accuracy achieved by the deep 
learning-based models, empirical estimation of crop yields has its own 
challenges. One challenge arises from the increasing heterogeneity of 
yield predictors of various characteristics and resolutions. To account 
for the complex soil–plant-atmospheric continuum affecting crop 
growth and yield formation, empirical models need to accommodate 
various types of predictors that can reflect both crop growth status (e.g., 
satellite-based vegetation indices) and associated meteorological (e.g., 
heat and water stress) and soil (e.g., bulk density and organic carbon 
content) conditions. All these types of predictors are important in 
empirical yield estimation, yet they are heterogeneous in nature, with 
different characteristic associations with yields (Kang et al., 2020; 
Maimaitijiang et al., 2020; van Klompenburg et al., 2020; Muruganan
tham et al., 2022). For instance, satellite-based vegetation indices can 
characterize crop canopy greenness and photosynthetic capacity that 
directly denote crop growth status, while the meteorological heat and 
water stresses represent critical environmental stress conditions that 
negatively affect plant cell functions, leaf development, and photosyn
thesis. These predictors may also exhibit diverse resolutions (e.g., one- 
off soil maps versus daily satellite imagery) of various qualities. 
Despite the increasing accommodation of different types of predictors, 
most deep learning-based yield studies tend to characterize these pre
dictors with a single shared deep learning structure, the capability of 
which in tackling the heterogeneity of yield predictors is limited. 

Besides the increasingly diverse yield predictors, another challenge 
of empirical crop yield estimation stems from the difficulty in accom
modating season-long crop phenological dynamics. At different pheno
logical stages, the crop physiological responses (e.g., light use efficiency, 
photosynthesis, and evapotranspiration) to changes in meteorological 

conditions may vary largely, resulting in varying impacts on the change 
of subsequent crop yields (Cohen et al., 2021; Guo et al., 2021; Jumrani 
& Bhatia, 2019). For example, the same level of water stress at the 
reproductive stage (e.g., initiation of seed filling stage) of soybean can 
cause more reduction in yield than that at the vegetative stage (Jumrani 
& Bhatia, 2018). Many empirical yield estimation studies analyze the 
yield predictors through temporally aggregating them into calendar- 
based intervals (e.g., the monthly interval), of which different pheno
logical stages of a crop may be mixed, particularly when the durations of 
phenological stages are short. The lack of explicit representation of 
phenology in empirical models remains an obstacle to unveiling the 
roles of various environmental and satellite-based predictors in esti
mating crop yield. In recent years, several efforts have been made to 
incorporate crop phenology in empirical models, including adding the 
timing of crop phenological events as the predictor (Butts-Wilmsmeyer 
et al., 2019; Guo et al., 2021; Shahhosseini et al., 2021) and normalizing 
the yield predictors in terms of certain phenological events (Bolton & 
Friedl, 2013). Despite these efforts, the phenological representation of 
predictors (e.g., predictors via phenological timing or limited pheno
logical stages) in most empirical yield estimation studies is relatively 
simplified. Crops go through multiple phenological stages throughout 
the growing season, with diverse yield responses to environmental stress 
(Diao, 2019, 2020). Given the distinct yield response characteristics 
across phenological stages, the incorporation of phenological stage- 
specific yield predictors (e.g., satellite, meteorological, and soil pre
dictors) along the season-long crop growth trajectory is essentially 
needed yet remains underexplored. 

The evaluation of empirical yield estimations has been mostly 
focused on estimation accuracy via the comparison between estimated 
and reference yields. Several accuracy metrics, such as Root Mean 
Square Error (RMSE), coefficient of determination, and bias, have been 
developed for such evaluation. Yet the quantitative analysis of yield 
estimation uncertainties via the construction of confidence intervals of 
the estimated yields has been largely overlooked, despite its importance 
in inferring the reliability of yield estimations (Lobell et al., 2009; Ma 
et al., 2021; X. Wang et al., 2020). The lack of estimation uncertainties 
may compromise subsequent yield-relevant risk management and 
negatively affect the yield-based decision-making processes of agricul
tural, environmental, and economic significance, including agricultural 
market planning and government agricultural policy-making (Lencucha 
et al., 2020; Müller et al., 2021). The empirical yield estimation un
certainties may stem from both input data and modeling structures, and 
can be categorized into two types: aleatoric uncertainty and epistemic 
uncertainty (Depeweg et al., 2017; Hüllermeier & Waegeman, 2021; 
Kiureghian & Ditlevsen, 2009; Mobiny et al., 2021). Aleatoric uncer
tainty is a measure of the variation of data, and denotes the uncertainty 
caused by the noise or randomness inherent in the yield-relevant inputs, 
such as the errors in the crop type maps for identifying the target crop 
species, the fluctuations of meteorological predictors induced by 
extreme heat and water stress, and the potential heteroscedastic noise to 
the yield labels introduced by the overall yield detrending (Ma et al., 
2021; X. Wang et al., 2020). By contrast, epistemic uncertainty typically 
refers to the uncertainty of the model (e.g., model structures and pa
rameters), arising from incomplete knowledge of appropriate modeling 
systems underlying the empirical yield estimation possibly due to the 
lack of training data (Abdar et al., 2021; Hüllermeier & Waegeman, 
2021; Kiureghian & Ditlevsen, 2009; X. Wang et al., 2020). Higher 
epistemic uncertainty may indicate that the training datasets are not 
sufficiently representative, particularly when historical yield records are 
limited or when environmental settings in testing datasets are signifi
cantly different from those in training datasets (Kendall & Gal, 2017; X. 
Wang et al., 2020). With the different characteristics of the two un
certainties, disentangling these two uncertainties could be critical for 
assessing the likelihood of yield estimates and evaluating the sources 
that cause the estimate fluctuations for subsequent yield-relevant risk 
management (Hüllermeier & Waegeman, 2021; Kukal & Irmak, 2018; Y. 
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Zhang et al., 2019). Despite the importance, there is a dearth of studies 
quantifying and distinguishing the uncertainties associated with the 
predictions of crop yields (Ma et al., 2021; X. Wang et al., 2020). 

To address these aforementioned issues, the overarching goal of this 
study is to develop a Phenology-guided Bayesian-Convolutional Neural 
Network (PB-CNN) framework for the crop yield estimation and un
certainty quantification of the counties in the US Corn Belt. Using soy
bean in the Corn Belt as a case study, the specific objectives are to 1) 
innovatively construct the Phenology Imagery to incorporate the 
phenological stage-specific soybean yield predictors (e.g., satellite, 
meteorological, and soil predictors) into empirical yield estimation, 2) 
devise the multi-stream Bayesian-CNN architectures to integrate a di
versity of yield predictors of heterogeneous nature for soybean yield and 
uncertainty quantification, and 3) evaluate both the aleatoric and 
epistemic uncertainties of PB-CNN, as well as the importance of varying 
phenological stages and yield predictors in soybean yield and uncer
tainty estimation. 

2. Study area and data 

2.1. Study area 

The US Corn Belt is selected as the study area, which covers 12 states 
of the Midwestern US, including Illinois (IL), Indiana (IN), Iowa (IA), 
Kansas (KS), Michigan (MI), Minnesota (MN), Missouri (MO), Nebraska 
(NE), North Dakota (ND), Ohio (OH), South Dakota (SD), and Wisconsin 
(WI) (Fig. 1). It is characterized by relatively flat land with deep fertile 
soil. As the primary agricultural area, these states produced more than 
81 % of US soybean and corn in 2020 (Naeve & Miller-Garvin, 2019). 
There are about 135 million acres of land planted with soybean in the 
study region. The areas planted with soybean range from 2 to 10 million 
acres across states, with the average planted soybean area of the states 
being 6 million acres (USDA, 2022). The average field size across states 
ranges from 175 to 1512 acres, with the average size of fields of the 
study region being 585 acres (USDA NASS, 2022). In most states (e.g., 
central and eastern states), soybean and corn are the dominant crops, 
and the average of historical soybean yields is usually higher than 40 
bu/ac (shown in Fig. 1). By comparison, the western states, which are 

close to the arid Great Plains, have more diverse crop types (e.g., wheat 
and barley) with relatively lower average historical soybean yield. In 
this study, we select the years from 2008 to 2018 as the years of interest 
in consideration of the availability of various data products (e.g., soy
bean location maps and phenology products) for identifying soybean 
fields and generating diverse types of yield predictors. 

2.2. Data 

The records of county-level soybean yields are retrieved from the 
United States Department of Agriculture (USDA) National Agricultural 
Statistics Service (NASS) Database (https://quickstats.nass.usda.gov/). 
The soybean yield records of a total of 958 counties in the US Corn Belt 
for the years of interest (2008–2018) are collected. Yield measurements 
for soybean in the US are conventionally recorded in bu/ac, and 1bu/ac 
is equivalent to 67.25 kg/ha. Each year the Cropland Data Layer (CDL) 
from the USDA (https://nassgeodata.gmu.edu/CropScape/) is utilized 
to identify soybean field locations in the counties for retrieving soybean 
field-specific crop growth and environmental predictors for subsequent 
yield analysis (NASS, 2016). The CDL is a 30-m resolution, crop-specific 
land-cover data layer, which has been created annually using satellite 
imagery and extensive ground measurements for all the states of the 
continental US since 2008. The mapping accuracies of soybean in the 
CDLs exceed 90 % in the Corn Belt region for the study period (Boryan 
et al., 2011; NASS, 2016). 

In this study, we collect satellite products, water and heat-related 
meteorological data, as well as soil data to generate the yield pre
dictors that could take into account both crop growth status and asso
ciated environmental conditions (e.g., meteorological and soil 
conditions) (Table 1). For the predictor reflecting soybean growth sta
tus, we mainly consider the 2-band Enhanced Vegetation Index (EVI2), 
which is a widely used remotely sensed vegetation index for quantifying 
crop growth vigor and greenness. As an enhanced vegetation index, 
EVI2 reduces the influence of canopy background and atmospheric 
interference and is less susceptible to saturation at high biomass regions 
(Son et al., 2014). The EVI2 predictor in this study is generated from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 
Nadir Bidirectional Reflectance Distribution Function (BRDF) Adjusted 

Fig. 1. Map of the study area and the average county-level soybean yield (bu/ac) over 2008–2018 in this area. Areas in light gray indicate no data available.  

C. Zhang and C. Diao                                                                                                                                                                                                                          

https://quickstats.nass.usda.gov/
https://nassgeodata.gmu.edu/CropScape/


ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 50–73

53

Reflectance product, which provides the nadir land surface reflectance 
data of 500 m spatial resolution and daily temporal resolution with view 
angle effects removed using the BRDF algorithm (Schaaf & Wang, 2015). 
The equation for calculating EVI2 is as follows: 

EVI2 = 2.5 ×
NIR − Red

NIR + 2.4 × Red + 1
(1)  

where Red and NIR represent the reflectance in red and near-infrared 
bands, respectively. We further pre-process the EVI2 time series to 
eliminate the influence of abnormal observations (see details in Ap
pendix A-1). The pre-processed EVI2 time series is then composited by 
the average EVI2 value on 3-day intervals, which can preserve the 
phenological dynamic patterns, reduce the subtle fluctuations, as well as 
decreasing the data volume. 

As for the predictors reflecting critical environmental conditions, we 
take into account the water and heat-related meteorological predictors, 
as well as the soil predictors (Table 1). The meteorological predictors 
consist of four heat-related predictors and six water-related predictors. 
The heat-related predictors include daily maximum 2-meter air tem
perature (Tmax), daily minimum 2-meter air temperature (Tmin), daily 
daytime land surface temperature (LST_Day), and daily nighttime land 
surface temperature (LST_Night). Tmax and Tmin are acquired from the 
daily 1 km Daymet dataset, and LST_Day and LST_Night are extracted 
from the daily 1 km MODIS MYD11A1 product. The water-related pre
dictors include daily total precipitation (Precipitation), daily minimum 
vapor pressure deficit (VPDmin), daily maximum vapor pressure deficit 
(VPDmax), evapotranspiration (ET), potential ET (PET), and soil mois
ture at four depths (10, 40, 100, and 200 cm) (Rodell et al., 2004). 
Precipitation, VPDmin, and VPDmax are acquired from the daily 5 km 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
dataset. ET, potential ET, and soil moisture of four depths are obtained 

from the 3-hour 0.25 degree Global Land Data Assimilation System 
(GLDAS) dataset. These heat- and water-related predictors have been 
employed to describe the temperature and water conditions for crop 
growth and analyze the influence of heat and water stress on crop pro
duction (Anderson et al., 2016; Guan et al., 2017; Ray et al., 2015). For 
example, VPD affects the amount of water required for crop develop
ment and carbon fixation, and a high VPD caused by water stress may 
lead to a subsequent reduction in crop yields (Guan et al., 2017; Kang 
et al., 2020). 

Besides satellite and meteorological predictors, several soil-based 
predictors characteristic of soil conditions are also taken into account 
to evaluate the soil’s capacity to supply water, air, and nutrients to crops 
(Table 1) (Pourmohammadali et al., 2019; Shirani et al., 2015). These 
soil predictors include clay content mass fraction, sand content mass 
fraction, pH in H2O, bulk density, and organic carbon content of six 
depths (0, 10, 30, 60, 100, and 200 cm). These soil-based predictors are 
collected from OpenLandMap, which is a one-off soil product with a 
spatial resolution of 250 m (Hengl, 2018; Jaafar & Mourad, 2021). 
Among the predictors, bulk density, sand content, and clay content 
affect water holding capacity and air capacity for the water and oxygen 
supply. Soil pH and organic carbon content have a substantial effect on 
soil nutrient availability, and the latter could also affect the extent of soil 
water retention (Pourmohammadali et al., 2019; Shirani et al., 2015). 

As the soybean yield response to the satellite- and environmental- 
based predictors may vary across its phenological stages, we further 
leverage the MODIS MCD12Q2 Land Cover Dynamics product to divide 
the growing season into different phenological stages and to analyze the 
sub-seasonal changes of all the yield predictors via these soybean stages. 
The MCD12Q2 product provides annual 500 m pixel-level estimations of 
key phenology phase transition dates (Ganguly et al., 2010). These 
transition dates are generally associated with the critical change of 
soybean greenness and vigor, and have been found to be closely linked 
with the transition of several soybean vegetative and reproductive 
stages. The ground-based Crop Progress Reports (CPRs) released by 
USDA are collected as the reference data to evaluate these satellite-based 
phenological transition dates (Diao et al., 2021; NASS, 2018). The CPRs 
document the proportion of soybean reaching several phenological 
stages on a weekly basis throughout the growing season at the state 
level. 

3. Methodology 

In this study, we propose a Phenology-guided Bayesian-Convolu
tional Neural Network (PB-CNN) framework that can integrate a di
versity of crop growth and environmental predictors along soybean 
phenological development trajectory to estimate the yields as well as 
associated uncertainties. The PB-CNN framework is mainly composed of 
three components: Phenology Imagery construction, multi-stream 
Bayesian-CNN modeling, as well as the feature (i.e., yield predictor 
and phenological stage) and uncertainty (i.e., aleatoric and epistemic 
uncertainty) analysis (Fig. 2). Several methods in these components are 
designed particularly for the study objectives, including the construction 
of Phenology Imagery for incorporating season-long crop phenological 
dynamics, the multi-stream modeling architecture to integrate a di
versity of yield predictors, and the Bayesian-CNN for crop yield and 
uncertainty quantification analysis. This framework is designed not only 
to estimate crop yields, but also to evaluate the estimation uncertainties 
as well as contributions of varying phenological stages and yield pre
dictors to the empirical model predictions. The data processing based on 
Google Earth Engine and the Python implementation of our model are 
publicly available at https://github.com/rssiuiuc/PBCNN. 

3.1. Phenology Imagery construction 

Throughout the soybean growth trajectory, the environmental and 
satellite-based predictors may exhibit diverse roles across phenological 

Table 1 
Description of all input data.  

Category Variable Spatial 
Resolution 

Temporal 
Resolution 

Source 

Crop Yield Record (bu/ 
ac) 

County- 
level 

Annual USDA Quick 
Statistic 
Database  

Cropland Map 30 m Annual NASS CDL 
Program 

Phenology Satellite Phenology 500 m Annual MODIS 
MCD12Q2  

Ground Crop 
Phenology 

State-level Annual NASS CPR 

Vegetation 
Index 

EVI2 500 m Daily MODIS 
MCD43A4 

Heat- 
related 

LST_Day (Kelvin) 1 km Daily MODIS 
MOD11A1  

LST_Night (Kelvin)  
Maximum air 
temperature(◦C) 

1 km Daily Daymet V4  

Minimum air 
temperature(◦C)    

Water- 
related 

Precipitation (mm) 1 km Daily Daymet V4  

VPDmax (hPa) 5 km Daily PRISM  
VPDmin (hPa)     
Evapotranspiration 
(kg/m2/s) 

0.25◦ 3-Hour GLDAS  

Potential ET (W/ 
m2)     
Soil Moisture (kg/ 
m2)    

Soil Clay Content (%) 250 m Static OpenLandMap  
Sand Content (%)     
pH in H2O     
Bulk Density (kg/ 
m3)     
Organic Carbon 
Content (g/kg)     

C. Zhang and C. Diao                                                                                                                                                                                                                          

https://github.com/rssiuiuc/PBCNN


ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 50–73

54

stages in estimating the yields, which makes it important to construct 
phenological stage-specific yield predictors. In this study, the soybean 
growing season is divided into different phenological stages according to 

the satellite-based vegetation phenology product (i.e., the MODIS 
MCD12Q2 product). The MCD12Q2 provides pixel-level estimations of 
phenology stage transition dates using the threshold-based method for 

Fig. 3. Four types of temporal aggregations of the EVI2 predictor in each phenological stage, with the stage from greenup to greenup midpoint (midgreenup) as 
an example. 

Fig. 2. Flowchart of the PB-CNN framework.  

C. Zhang and C. Diao                                                                                                                                                                                                                          



ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 50–73

55

characterizing the timing of plant greenness and vigor change 
throughout its phenological cycle. These phenology transition dates 
include the onset of greenness (geenup), greenup midpoint (midg
reenup), maturity, peak greenness (peak), senescence, greendown 
midpoint (midgreendown), and dormancy transition dates, and these 
transition dates can be connected with the transitioning of several soy
bean vegetative and reproductive stages (Diao, 2020; Diao & Li, 2022). 
For instance, the greenup and midgreenup dates can be associated with 
the timing of soybean emergence and subsequent change in leaf 
numbers during its vegetative stages. The rest of the transition dates (e. 
g., maturity, peak greenness, and midgreendown) can be linked with the 
timing of soybean blooming, setting pods, and dropping leaves during its 
reproductive stages. The connections between satellite phenology 
measures and field soybean growth stages are discussed in detail in 
Appendix A-5. 

With the aforementioned seven phenology transition dates, the 
soybean growing season is divided into six phenological stages, namely 
the stage from greenup to greenup midpoint (denoted as S1), greenup 
midpoint to maturity (S2), maturity to peak greenness (S3), peak 
greenness to senescence (S4), senescence to greendown midpoint (S5), 
and greendown midpoint to dormancy (S6), at the pixel level. Based on 
the division of the phenological stages, the Phenology Imagery of each 
yield predictor is constructed via a combination of temporal (Step I) and 
spatial (Step II) aggregation. 

Step I Temporal aggregation: To construct pixel-level phenological 
stage-specific yield predictors, all the environmental and satellite-based 

predictors for each pixel are temporally aggregated into the six soybean 
phenological stages based on the corresponding start and end dates. For 
each environmental predictor, the type of temporal aggregation (e.g., 
maximum, minimum, mean, or cumulative aggregation) is determined 
in terms of the predictor characteristics and its yield implications. Spe
cifically, for the predictor of precipitation, cumulative aggregation is 
implemented for each phenological stage to reflect the accumulation 
effect of precipitation on soybean growth and productivity in each stage 
(Meng et al., 2017). For all the other environmental predictors, the mean 
aggregation is applied for each phenological stage to represent the 
average conditions of the predictors within each stage. As EVI2 is closely 
related to soybean productivity, four types of aggregations (i.e., 
maximum, minimum, mean, and cumulative aggregations) are 
employed for the EVI2 predictor within each phenological stage to 
comprehensively characterize soybean canopy greenness and growth 
status (shown in Fig. 3). Specifically, maximum and minimum aggre
gations of EVI2 can denote the change extent of canopy greenness within 
each phenological stage. The mean and cumulative aggregations of EVI2 
can be indicative of soybean average greenness and aboveground 
biomass, respectively, and they together can further indicate the 
greenness variation and duration of each phenological stage (Benedetti 
& Rossini, 1993; Rasmussen, 1992). With the temporal aggregations, all 
the yield predictors of different temporal resolutions are aggregated 
accordingly into six soybean phenological stages per pixel and year 
(Fig. 3). The temporally aggregated predictor images of six phenological 
stages can thus be formed for each county and year for subsequent 

Fig. 4. The temporal and spatial aggregations for constructing the Phenology Imagery of the EVI2 predictor group.  
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county-level soybean yield estimations. 
Step II Spatial aggregation: Due to the irregular boundary of each 

county, the temporally aggregated predictor images should be further 
spatially aggregated for each county. Most of the previous studies use 
the simple average spatial aggregation to gather county-level informa
tion of yield predictors. Yet this average county-level spatial aggregation 
fails to accommodate the variations in the values of the yield predictors 
and may not reflect spatial heterogeneity or changes in crop growth 
status or environmental conditions within a county. In this study, a 
histogram-based transformation is therefore employed as the spatial 
aggregator to characterize the distributions of yield predictor values per 
county and year, with both average and spatial variation information of 
the predictors preserved. As a spatial dimension reduction method, 
histogram-based transformation can also reduce the complexity of deep 
learning models, improve the efficiency of model training, and reduce 
the risk of overfitting. Assuming the whole range of pixel values in a 
temporally aggregated predictor image could be divided into N specific 
sub-ranges (i.e., the bin numbers in histograms), the predictor image at 
the t-th phenological stage will be transformed as a vector H(t) with N ×

1 dimensions (N is set to 11 after a set of experiments). By concatenating 
the H(t) of all six phenological stages (t ∈ [1, T]) along the soybean 
growth trajectory (i.e., along columns) for each yield predictor, we will 
construct the Phenology Imagery P ∈ RN×T×1, where N is the bin 
numbers of the histogram (N = 11) and T is the number of phenological 
stages (T = 6). For each county and year combination, the Phenology 
Imagery of a predictor characterizes the corresponding distribution 
changes of predictor values across soybean phenological stages, and thus 
this image-based yield predictor is phenology stage-specific. 

In this study, we consider four groups of temporally and spatially 
aggregated yield predictors, namely satellite-based, heat-related, water- 
related, and soil predictor groups (Table 1). As the predictors within a 
group may possess shared characteristics in understanding the crop- 
environment interactive system, we further concatenate the Phenology 
Images of all individual predictors of a group along the third dimension 
to form a multi-band Phenology Imagery for each predictor group. Thus 

we will construct four Phenology Imageries (with dimensions of N*T*G) 
per county and year, including the Phenology Imagery of the EVI2 
predictor group (N*T*GEVI; shown in Fig. 4), the heat-related predictor 
group (N*T*GHeat), the water-related predictor group (N*T*GWater), and 
the soil predictor group (N*T*GSoil). The first dimension N of Phenology 
Imagery represents the number of histogram bins (N = 11). The second 
dimension T is the number of phenological stages (T = 6). The third 
dimension G denotes the number of predictors in each predictor group. 
For the EVI2 group, the number of predictors is four (i.e., GEVI = 4), 
which represents four different temporal aggerated EVI2 predictors. The 
heat-related group has four predictors (i.e., GHeat = 4), including two 
daily air temperature predictors (maximum and minimum), as well as 
two daily land surface temperature predictors (daytime and nighttime). 
The water-related group includes nine predictors (i.e., GWater = 9), 
namely precipitation, VPDmin, VPDmax, ET, PET, and four soil moisture 
predictors of different depths. As for the soil group, given that all five 
soil predictors are collected at six different depths, the total number of 
predictors is 30 (i.e., GSoil = 30). Since soil predictors are static across 
phenological stages, they are spatially aggregated and repeated at each 
phenological stage to ensure consistency with other predictor groups. 
The constructed Phenology Imageries of four predictor groups per 
county and year will be the input of the subsequent deep learning model 
for county-level yield estimations. 

3.2. Multi-stream Phenology-guided Bayesian-CNN model 

To tackle the heterogeneity of multi-source yield predictors and 
model the estimation uncertainty, a two-part PB-CNN model architec
ture is designed in this study (Fig. 5). Part I includes a multi-stream 
architecture to extract and fuse the features from the constructed 
Phenology Imageries with each stream’s sub-network optimized for the 
imagery of each predictor group. Part II is designed to model the crop 
yield as well as the predictive uncertainty based on the features 
extracted and fused from part I. 

1) Part I for multi-stream feature fusion: The first part of our model 
encompasses a multi-stream architecture, which is employed to extract 

Fig. 5. The architecture of the multi-stream PB-CNN.  
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and learn the intricate features from the Phenology Imageries of yield 
predictor groups. Considering the heterogeneity of yield predictor 
groups, this part of PB-CNN is composed of a four-parallel-stream ar
chitecture, with the sub-network in a stream independently designed for 
a yield predictor group (i.e., satellite-based, heat-related, water-related, 
or soil predictor group) (Fig. 5). The Phenology Imagery of a predictor 
group (generated in Section 3.1) will be the input for the sub-network of 
the corresponding stream of PB-CNN. 

Each stream’s sub-network contains one independent convolutional 
block, which consists of one convolutional layer, one batch normaliza
tion layer, and one dropout layer. The latter two layers are employed to 
reduce overfitting and speed up the learning process. All convolutional 
layers within part I adopt the 1 × 1 convolutional kernels suggested by 
Lin et al. (2013) and Yu et al. (2017), which can be viewed as cross- 
channel pooling processes to learn salient and distinct feature repre
sentations across channels of a predictor group. For example, the cross- 
channel pooling for the satellite-based predictor group can integrate the 
four types of aggregated EVI2 predictors to extract discriminative fea
tures for comprehensively representing the crop growth status. After the 
independent convolutional operation of each stream, the extracted 
features of the four parallel streams are then fused together by a 
concatenation layer. 

2) Part II for yield and uncertainty modeling: Part II of PB-CNN is 
composed of several convolutional blocks as well as one specially 
designed fully connected layer with two outputs. Each convolutional 
block consists of one convolutional layer with a kernel size of 3 × 3 and a 
stride of 1, one batch normalization layer, and one dropout layer. 
Through the convolutional blocks, the fused features from part I are 
further integrated with distinct features important for yield and uncer
tainty estimations being learned. The fully connected layer includes two 
outputs [y, σ], namely the mean y and the standard deviation σ of yield 
estimate (Fig. 5). The yield estimate typically follows the Gaussian dis
tribution to account for the observation noise or randomness stemming 
from different yield predictor inputs, with the mean y denoting the 
average yield estimate and the standard deviation σ characterizing the 
uncertainty/noise in the input observations (Kendall & Gal, 2017; 
Mobiny et al., 2021; X. Wang et al., 2020). To model the predictive 
uncertainty of model parameters, the Bayesian theory is employed in the 
PB-CNN. Unlike the CNN models, all the weights W in the PB-CNN 
model are represented by probability distributions (shown in Fig. 6), 
which can be used to characterize the variance of the model weights. 
According to the Bayesian theory, given the input x and the training data 
D={X, Y}={xi, yi}

N
i=1, the outputs [y, σ] of PB-CNN will be each repre

sented as predictive distributions (i.e., p(y|x, X, Y) and p(σ|x, X, Y)) by 
integrating the model likelihoods (i.e., p(y| x, W) and p(σ|x, W)) over the 
posterior distribution of the model weights W (i.e., p(W|X,Y)) (Eqs. (2) 
and (3): 

p(y|x, X, Y) =

∫

p(y|x, W)p(W|X, Y)dW (2)  

p(σ|x, X, Y) =

∫

p(σ|x, W)p(W|X, Y)dW (3) 

With the predictive distributions of mean y and standard deviation σ 
of yield estimates, the total predictive uncertainty can then be calcu
lated. This total uncertainty comprises both the aleatoric uncertainty 
and the epistemic uncertainty. The aleatoric uncertainty measures the 
uncertainty of data (e.g., the output standard deviation σ in the study), 
usually stemming from the noise or randomness in the input observa
tions. By contrast, the epistemic uncertainty corresponds to the uncer
tainty in the model structures and parameters (e.g., the variation of W in 
the study), caused by a lack of knowledge about the best model under
lying the yield estimations given the collected data. With the PB-CNN 
modeling design and Bayesian inference, the aleatoric uncertainty can 
be calculated as the mean of p(σ|x, X, Y) (i.e., E[σ]), and the epistemic 
uncertainty can be calculated as the standard deviation of p(y|x, X, Y) (i. 
e., σ(y)) (Abdar et al., 2021; Depeweg et al., 2017; Gal & Ghahramani, 
2016; Hüllermeier & Waegeman, 2021; Kendall & Gal, 2017). The total 
uncertainty can thus be calculated using the aleatoric and epistemic 
uncertainty (Eq. (4)) 

σtotal =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σp(W|X,Y)(y)

)2
+

(
Ep(W|X,Y)[σ]

)2
√

(4)  

where σtotal is the total predictive uncertainty of the estimated yield; y 
and σ are the estimated mean and standard deviation outputs of the fully 
connected layer of PB-CNN, respectively. Given W p(W|X, Y), 
σp(W|X,Y)(y) is the epistemic uncertainty, measured as the standard de
viation of the estimated mean value y; Ep(W|X,Y)[σ] is the aleatoric un
certainty, calculated as the mean value of the estimated standard 
deviation σ. 

However, due to a large number of parameters of Bayesian-CNN 
models, the posterior distribution p(W|X, Y) cannot be evaluated 
analytically, and the estimations of p(y|x, X, Y) and p(σ|x, X, Y) are 
typically approximated using the Monte Carlo (MC) sampling approach. 
MC sampling can approximately estimate p(y|x, X, Y) and p(σ|x, X, Y) by 
generating T sets of [y, σ] pairs {[y1, σ1], ⋯[yT , σT]} based on T sets of 
network weights {W1, ⋯, WT} whose empirical distribution (i.e., q*

θ(W), 
parameterized by θ) approaches p(W|X, Y). In practice, the sets of 
network weights {W1, ⋯, WT} can be generated by dropout inference, 
which is conducted via the random dropout of neurons during both the 
training and the testing stages, resulting in different weight configura
tions (Gal & Ghahramani, 2015, 2016; Shridhar et al., 2019). Thus, the 
final predictive distributions can be approximated by the integration of 
the sets of MC simulations, and Eq. (4) can be rewritten as Eq. (5) 
(Depeweg et al., 2017; Kendall & Gal, 2017): 

Fig. 6. Comparison between conventional and Bayesian CNNs. Left: conventional CNN kernels with point estimates. Right: Bayesian CNN kernels with probability 
distributions.3. 
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σtotal =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

σq*
θ (W)(y)

)2
+

(
Eq*

θ (W)[σ]
)2

√

(5)  

σq*
θ (W)(y) ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T

∑T

t=1

(

ŷt −
1
T

∑T

t=1
ŷt

)2
√
√
√
√ (6)  

Eq*
θ (W)[σ] ≈

1
T

∑T

t=1
σ̂ t (7)  

where T represents the number of MC samplings; ŷt and σ̂ t are the 
estimated mean and standard deviation outputs of the fully connected 
layer of PB-CNN at the t-th simulation when W = Wt. As PB-CNN in
cludes two outputs, the weights of PB-CNN are optimized by using a 
simplified negative log-likelihood loss function (Eq. (8)) (Kendall & Gal, 
2017): 

L(W) =
∑N

i=1

(
1

2σ̂ i
2‖ŷi − yi‖

2
+

1
2

logσ̂2
i

)

(8)  

where ŷi and yi denote the estimated mean yield and observed yield for 
sample i, respectively. N is the number of samples in the training data. σ̂ i 
denotes the estimated standard deviation for sample i. 

3.3. Feature and uncertainty analysis 

3.3.1. Feature importance 
In this study, we investigate the importance of each yield predictor 

group as well as each phenological stage in estimating the soybean yield 
using the permutation importance feature selection method (Breiman, 
2001; Shahhosseini et al., 2020; X. Wang et al., 2020). As a non-linear 
model inspection method, the permutation feature selection method 
evaluates the relative feature importance through measuring the change 
in model performance caused by the random shuffling of a feature (see 
details in Appendix A-2). Given the similar characteristics of the pre
dictors within a group associated with the yield, we assess the relative 
importance of each predictor group in soybean yield estimation, instead 
of each individual yield predictor. Besides, we also investigate the 
contributions of each predictor group in each phenological stage with 
the permutation feature importance method to comprehensively unravel 
the roles of diverse types of predictors throughout the soybean growing 
cycle in yield estimations. 

3.3.2. Uncertainty analysis 
As introduced in Section 3.2, the total predictive uncertainty com

prises both aleatoric uncertainty and epistemic uncertainty, and these 
two types of uncertainties of PB-CNN are modeled in this study. We first 
evaluate the spatial distributions of county-level yield estimation un
certainties of PB-CNN, including total predictive uncertainty, aleatoric 
uncertainty, and epistemic uncertainty, and compare the spatial pat
terns of these three uncertainty measures. We also summarize these 
uncertainty measures at the state level to identify the regions with 
relatively high aleatoric or epistemic uncertainty, which is further 
analyzed under the associated environmental conditions characterized 
by several representative yield predictors. Moreover, as aleatoric un
certainty comes from the input observations, we explore the contribu
tion of the inputs of each yield predictor group as well as each 
phenological stage to the aleatoric uncertainty using the permutation 
importance method. Similar to the feature importance analysis in Sec
tion 3.3.1, we analyze the importance of each yield predictor group, 
each phenological stage, as well as their combination (per yield pre
dictor group and phenological stage), by measuring the aleatoric un
certainty change caused by the corresponding random permutation. 

3.4. Model training and evaluation 

To evaluate the devised model, we compare the performance of PB- 
CNN with that of three advanced benchmark models for conducting 
county-level soybean yield estimations. The hyperparameter settings of 
PB-CNN and model training processes are introduced in Appendix A-3. 
The benchmark models include Support Vector Regression (SVR), 
Random Forest (RF), and LSTM (see the detailed model settings in Ap
pendix A-4). To ensure a relatively comprehensive comparison with 
consideration of the size of training samples, we assess the performance 
of all these models for five testing years (2014–2018). For each testing 
year, all the county-level data of corresponding historical years are 
utilized for training the models. Given that the testing year 2018 takes 
into account more historical years (2008–2017) for training the models, 
we subsequently leverage this testing year to carry out a more 
comprehensive evaluation of PB-CNN in terms of both model accuracy 
and uncertainty, as well as conducting feature importance and uncer
tainty analysis. In total, there are 8,202 training data samples from 2008 
to 2017 and 728 testing data samples in 2018 for the study site. 

The RMSE, coefficient of determination (R2), and bias are selected as 
the metrics to evaluate the model performance. The three metrics are 
calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (9)  

R2 = 1 −

∑N
i=1(ŷi − yi)

2

∑N
i=1(y − yi)

2 (10)  

Bias =
∑N

i=1

(yi − ŷi)

N
(11)  

where N denotes the number of samples; yi is the observed yield and ̂yi is 
the estimated yield of the sample i; y denotes the mean value of all 
observed yields. Besides yield estimations, the developed framework 
also focuses on evaluating estimation uncertainties of crop yields. As 
described in Section 3.2, the results of 1000 MC simulations are used to 
calculate the predictive uncertainties (Eqs. 5–7) (Gal & Ghahramani, 
2016). We also calculate the P-factor to assess the goodness of the total 
predictive uncertainty of the model (Liu et al., 2017; Sheng et al., 2019; 
J. Yang et al., 2008). The P-factor is defined as the percentage of 
observed yield enveloped within the 95 % confidence interval bounded 
by the predictive uncertainty and is calculated using Eq. (12): 

P − factor =
NQin

n
× 100 (12)  

where NQin is the number of observations enveloped by the 95 % con
fidence interval, and n is the number of observations. 

4. Framework evaluation 

With the construction of Phenology Imagery in the PB-CNN frame
work, we first evaluate the ability of the satellite-based vegetation 
phenology product in characterizing the soybean growing stages using 
the ground-based CPRs. Specifically, we compare the medians of 
satellite-derived phenology stage transition dates with the CPR- 
documented median dates of soybean growing stages (i.e., emerged, 
blooming, setting pods, dropping leaves, and harvest stages) from 2008 
to 2018 at the state-level for our study site. 

We also evaluate the effectiveness of multi-stream architecture as 
well as the influence of different predictor groups by designing three 
combinations of input predictors (i.e., PB-CNN_EVI2, PB-CNN_E
VI2&MET, and PB-CNN_ALL): I) PB-CNN_EVI2: only the satellite-based 
predictor group (i.e., four EVI2 predictors) is employed in the PB-CNN 
model to estimate the soybean yield. The streams of other predictor 
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groups are removed from PB-CNN accordingly. II) PB-CNN_EVI2&MET: 
In this model setting, satellite-based and meteorological water- and 
heat-related predictor groups are utilized as the modeling input. The 
stream of the soil predictor group is removed from PB-CNN. III) PB- 
CNN_ALL: All four yield predictor groups are employed as the input 
under this modeling setting (Fig. 5). For PB-CNN_EVI2 and PB-CNN_E
VI2&MET, only sub-networks of corresponding predictor groups are 
kept in the model architectures. For each of these three combinations of 
input predictors, we further compare the performance of the multi- 
stream architecture and that of the corresponding single-stream archi
tecture. The single-stream architecture is formed with all sub-networks 
of yield predictor groups merged together as one stream, and main
tains the same number of convolutional filters as the multi-stream 
counterpart. It’s worth noting that multi-stream and single-stream PB- 
CNN_EVI2 share the same architecture because only one predictor group 
is utilized as the input. 

The contribution of phenophase-guided structure is investigated by 
comparing the performance of PB-CNN model with that of two model 
variants, which are based on the same predictors yet with calendar- 
based intervals (i.e., 8-day and monthly intervals). The temporal ag
gregation steps of the phenophase, 8-day, and monthly composites are 6, 
30, and 8, respectively. Except for temporal aggregation steps, the two 
model variants share the same modeling architectures and settings as 
our PB-CNN model. For fair comparisons, all the hyper-parameters of the 
three models are optimized separately. To further assess the contribu
tion of each crop phenological stage, we also evaluate the change of 
yield estimation performance of PB-CNN with the phenological stage 
progressing from S1 to S6. This evaluation can further shed light on the 
phenology-guided within-season soybean yield estimation. 

In addition, the impact of training sample size on the PB-CNN per
formance is investigated by the designed varying historical yield sce
narios, in which the amount of training samples is reduced degressively 
to evaluate the change of PB-CNN modeling accuracies and un
certainties. In this experiment, we degressively reduce the existing 10- 
year to 2-year historical data to train our PB-CNN model, simulating 
the cases of lacking historical yield records in practice. 

5. Results 

5.1. Model performance of PB-CNN 

The state-level median dates of satellite-based phenological metrics 
as well as CPR-based soybean phenological measures throughout the 
study area are both shown in Fig. 7. Overall, the satellite- and corre
sponding CPR-based median phenological transition dates exhibit 
comparable variation patterns across years and states. The CPR- 
documented soybean growing stages can be approximated by satellite- 
based phenological measures (shown in Table 2, and see detailed dis
cussions in Appendix A-5). Specifically, the satellite-based greenup/ 
mid-greenup metrics can be connected to soybean’s emerged stage. The 
satellite-based maturity metric has implications for the blooming stage 
of soybean. The timing of peak greenness metric aligns with the soybean 
setting pods stage. The mid-greendown metric can be connected to the 
dropping leaves stage of soybean. The soybean harvest stage can be 
approximated by the satellite-based dormancy metric. Except for the 
soybean emerged stage, the median transition dates of all the other 
phenology stages can be aligned by the corresponding satellite-derived 
metrics, with the mean difference less than 5 days and standard devia
tion less than 10 days. It indicates that the satellite-based phenology 
product metrics used in this study could adequately rebuild the soybean 
phenological development trajectory. In the constructed Phenology 
Imagery, the S1-S2 phenological stages correspond to soybean vegeta
tive stages, and the S3-S6 stages connect with the soybean reproductive 
stages. 

After we evaluate the ability of the satellite phenology product in 
characterizing the soybean growing stages, the model performances of 

PB-CNN and three advanced benchmark models (i.e., SVR, RF, and 
LSTM) are compared in Table 3. The results show that the models differ 
in predicting the soybean yields from 2014 to 2018, with the average 
RMSE ranging from 4.622 to 5.554 bu/ac, the average R2 from 0.579 to 
0.709, and the average bias from −2.999 to −2.057 bu/ac. In general, 
the developed PB-CNN model outperforms all the other models, with the 
lowest average RMSE (4.622 bu/ac), the highest average R2 (0.709), and 
the lowest average bias (-2.057 bu/ac). It’s noted that the performance 
of all the models declines in 2016, potentially due to abnormal climate 
conditions (e.g., warm winter/early spring, drought, and flooding trig
gered by El Niño) especially in the western and central regions of the 
Corn Belt (Kogan & Guo, 2016; Ortez et al., 2022). With the testing year 
2018 taking into account more historical years (2008–2017) for training 
the models, we further compare the scatter plots of observed and pre
dicted yields of all the models for this testing year (Fig. 8). The PB-CNN 
model shows better agreement between observed and predicted yields in 
the scatter plots. Compared to other models, fewer large-error pre
dictions out of the two dashed lines (absolute estimation errors larger 
than 5.0 bu/ac) are in the PB-CNN scatter plot. The LSTM model ach
ieves the lowest bias (-0.535 bu/ac) among all the models, but the 
overestimation of LSTM in some low-yield regions results in a higher 
RMSE and a lower R2 for the model. We also find that all the models tend 
to underestimate the soybean yield in high-yield counties, which is in 
agreement with the previous studies (Maimaitijiang et al., 2020; Y. 
Wang et al., 2020). This underestimation may partly be caused by the 
saturation issue of optical remote sensing (Maimaitijiang et al., 2020; Y. 
Wang et al., 2020) and imbalanced training dataset (Fig. 9), in which 
there are relatively fewer high-yield training samples, leading to chal
lenges in modeling their variations. For instance, the training dataset 
does not have yield records higher than 72 bu/ac (the dashed line in 
Fig. 9), making those high yield records in the testing dataset more 
difficult to estimate. 

To further evaluate the performance of PB-CNN, we also map the 
spatial distributions of the modeling yield predictions and associated 
errors across counties of the study site in 2018 (Fig. 10). In general, the 
spatial distributions of predicted yields exhibit comparable patterns as 
those of observed yields, with RMSE (i.e., absolute error) for most of the 
counties lower than 4.0 bu/ac. The low-yield counties are mainly 
distributed in the northern and southern parts (e.g., North Dakota, South 
Dakota, Kansas, and Missouri) of the study site, while the soybean yields 
in the central part (e.g., Iowa, Illinois, and Indiana) are relatively high. 
The counties with larger RMSEs of yield predictions are mainly located 
in Kansas, Illinois, and North Dakota. Especially, higher errors are 
observed in the very high-yield counties in Illinois, partly due to the 
imbalanced training samples, as shown in Fig. 9. As PB-CNN achieves 
improved yield prediction accuracy upon comparison with the three 
benchmark models, we further evaluate the PB-CNN in terms of the 
impact of its modeling architecture, phenology design, and yield pre
dictors using the testing year 2018 in Sections 5.2–5.4. We will then 
analyze the predictive uncertainty of PB-CNN for this testing year in 
Section 5.5. 

5.2. Assessment of model architecture 

We assess the model architecture of PB-CNN by comparing the yield 
prediction accuracies of multi-stream and single-stream architectures 
under various combinations of input predictors in 2018 (Table 4). When 
comparing the different input combinations, we find that the incorpo
ration of meteorological and soil predictor groups tends to improve the 
performance of both multi-stream and single-stream models. Compared 
to the model with only satellite-based predictor group, the model with 
all predictor groups decreases the RMSE by 1.435 bu/ac, increases the 
R2 by 0.157, and reduces the bias by 2.196 bu/ac for the multi-stream 
architecture. As for the single-stream architecture, the model with all 
predictor groups also tends to reduce the prediction error (RMSE 
decreased by 0.419 bu/ac and bias decreased by 0.767 bu/ac), yet with a 
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Fig. 7. Inter-annual median transition date comparisons between the satellite- and CPR-based soybean phenological measures across the states in the Corn Belt.  
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decreased R2 value. The incorporation of the soil predictor group into 
the models with satellite and meteorological predictor groups can 
further improve the model performance for the multi-stream architec
ture, yet not much for the single-stream architecture. When more than 
two yield predictor groups are considered, the models with multi-stream 
architectures consistently outperform those of single-stream ones. 
Especially when all the predictor groups are considered as the input, the 
multi-stream model significantly improves the yield prediction accuracy 
with RMSE decreased by 1.02 bu/ac, R2 increased by 0.19, and bias 
decreased by 1.43 bu/ac. Unlike the shared network structures for all the 
predictor groups in the single-stream models, the sub-networks are 
employed and optimized for different predictor groups in the multi- 
stream models. The PB-CNN with the multi-stream architecture thus 
takes into account the heterogeneous characteristics of different pre
dictor groups, achieving an RMSE of 4.350 bu/ac, an R2 of 0.743, and a 
bias of −0.928 bu/ac when all the predictor groups are considered. 

5.3. Evaluation of Phenology design 

The performances of the PB-CNN models under three temporal ag
gregations (i.e., phenophase, 8-day, and monthly aggregations) are 
shown in Table 5. Among the temporal aggregations, the PB-CNN with 
the phenophase design achieves the highest prediction accuracy, with 
the RMSE being 4.350 bu/ac, R2 being 0.743, and bias being −0.928 bu/ 
ac, while the model with the 8-day calendar interval suffers performance 
degradation (RMSE is 5.535 bu/ac, R2 is 0.522, and bias is −2.540 bu/ 
ac). Compared to the 8-day temporal aggregation, the model with the 
monthly calendar interval achieves slightly higher accuracy, with RMSE 
decreased by 0.569 bu/ac, R2 increased by 0.067, and bias decreased by 
0.66 bu/ac. Despite the more subtle temporal information provided by 
the 8-day interval setting, the temporal aggregations of smaller calendar 

intervals may not yield better performance, partly due to the increasing 
inconsistency in crop phenology representation over space and time 
with smaller intervals. With crop phenological dynamics explicitly 
considered in the phenophase aggregation design, the proposed PB-CNN 
model accounts for phenological stage-specific crop growth and envi
ronmental conditions and outperforms the other two calendar-interval 
based models in yield predictions. Though the PB-CNN model of phe
nophase design maintains similar temporal aggregation steps as the 
model of monthly design, it achieves higher yield estimation accuracy 
with RMSE reduced from 4.966 to 4.350 bu/ac, R2 increased from 0.589 
to 0.743, and bias decreased from −1.880 to −0.928 bu/ac. The com
parisons indicate that the PB-CNN of phenophase design could facilitate 
the modeling of the distinct yield response characteristics across 
phenological stages to improve the estimation accuracy. 

As the soybean yield response to crop growth and environmental 
conditions varies across phenological stages, we further evaluate yield 
estimation performance across soybean phenological stages throughout 
the season in 2018 (Fig. 11). Overall, the PB-CNN model shows 
improved performance (i.e., RMSE, R2, and bias) with more phenolog
ical stages incorporated, resulting in the highest accuracy achieved with 
the consideration of all phenological stages. Yet the modeling perfor
mance improvements vary across the stages, with a relatively large ac
curacy increase in S3 and S4, when soybean experiences the critical 
transition from vegetative to reproductive stages (Table 2). Specifically, 
the incorporation of the S3 phenological stage decreases the RMSE by 
0.73 bu/ac, increases the R2 by 0.15, and reduces the bias by 1.01 bu/ac. 
On the other hand, the change of modeling accuracy with the incorpo
ration of S5 and S6 becomes smaller, as those stages are related to the 
soybean dropping leaves and harvest stages (Table 2). 

5.4. Feature importance 

We further utilize the permutation importance method to analyze the 
importance of each yield predictor group per phenological stage in 
estimating the soybean yield (Fig. 12). Overall, the satellite-based EVI2 
predictor group has high contributions to the soybean yield estimation. 
The EVI2 predictors during S2 to S5 are among the most important 
predictors due to the embedded critical crop growth information that is 
directly indicative of soybean yield. For the meteorological predictors, 
the water- and heat-related predictor groups show relatively comparable 
patterns in predictor importance across phenological stages. Both water- 
and heat-related predictors within phenological stages 3 to 5 are more 
important for yield prediction, possibly due to the more significant 
impacts of environmental stress on soybean growth and yield formation 
during those stages (Jumrani & Bhatia, 2018). The soil predictor group 
is less important, with its values being unchanged across phenological 
stages and years. Among the phenological stages, the S3-S5 stages are 
the most crucial ones, corresponding to soybean blooming, setting pods, 
and turning yellow stages (Table 2). The S1 and S6 stages, representing 
the soybean emergence and harvest stages, are less critical in predicting 
the soybean yield. 

5.5. Predictive uncertainty analysis 

Besides the predicted yields, we also analyze the predictive 

Table 2 
The mean and standard deviation of the median dates of satellite- and CPR-based soybean phenological measures in the study area from 2008 to 2018.  

CPR-based transition date Mean Standard deviation Satellite-based transition date Mean Standard deviation 

Emerged 154 7 Mid-Greenup/Greenup 171/129 10/20 
Blooming 198 6 Maturity 201 6 
Setting pods 215 7 Peak 219 6 
Dropping leaves 262 6 Mid-Greendown 262 5 
Harvest 286 9 Dormancy 288 8  

Table 3 
The accuracy of PB-CNN, LSTM, SVR, and RF in estimating the soybean yields for 
the testing years 2014–2018.  

Accuracy Metric Year Model 

LSTM SVR RF PB-CNN 

RMSE 2014  5.027  4.379  4.499  3.981 
(bu/ac) 2015  7.012  5.982  5.263  5.140  

2016  5.455  6.127  5.929  5.076  
2017  5.444  4.906  4.861  4.562  
2018  4.831  4.721  4.777  4.35  
Average  5.554  5.223  5.066  4.622       

R2 2014  0.707  0.779  0.767  0.817  
2015  0.396  0.552  0.653  0.669  
2016  0.451  0.345  0.387  0.551  
2017  0.693  0.727  0.732  0.763  
2018  0.646  0.713  0.667  0.743  
Average  0.579  0.623  0.641  0.709       

Bias 2014  −2.438  −1.842  −1.837  ¡1.072 
(bu/ac) 2015  −5.399  −4.293  −3.310  ¡3.242  

2016  −3.784  −5.007  −4.780  ¡3.767  
2017  −2.292  −2.483  −2.198  ¡1.275  
2018  ¡0.54  −1.372  −1.641  −0.928  
Average  −2.891  −2.999  −2.753  ¡2.057  
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Fig. 9. Scatter plots of observed versus predicted yields for the training (2008–2017) and testing (2018) datasets using PB-CNN. Two oblique dashed lines indicate 
the absolute estimation errors being 5.0 bu/ac. The vertical dashed line represents the observed yield being 72 bu/ac. 

Fig. 8. The accuracy of PB-CNN, along with three benchmark models (LSTM, SVR, and RF), in estimating the soybean yields in 2018. Two oblique dashed lines 
indicate the absolute estimation errors being 5.0 bu/ac. 
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uncertainty derived from the PB-CNN framework. In 2018, the P-factor 
of PB-CNN is 96.7 %, indicating that more than 96 % of the county-level 
observed yields are enveloped within the 95 % confidence interval given 
by our model. This close to 100 % P-factor value empirically demon
strates the good performance of PB-CNN in estimating the yield distri
bution and predictive uncertainty. Additionally, the total predictive 
uncertainty map over the study area is shown in Fig. 13. The spatial 
distribution of the predictive uncertainty exhibits a relatively homoge
nous pattern compared to that of RMSE (Fig. 10). The predicted yields in 
most counties have relatively small uncertainty (less than 5.0 bu/ac). 
Relatively larger yield uncertainty regions are mainly in the western (e. 

g., South Dakota and Kansas) and southern (e.g., Missouri) parts of the 
study area, where the climate and soil characteristics are significantly 
different from other regions in the Corn Belt (Challinor et al., 2014). 
Some low-yield regions, such as the northern part of Wisconsin, also 
have relatively larger total predictive uncertainty, which may be caused 
by the lack of similar samples in the training dataset. 

We further partition the total predictive uncertainty into aleatoric 
uncertainty and epistemic uncertainty (Fig. 14). Overall, the ranges of 
the two uncertainties show significant differences. For most counties, 
the epistemic uncertainty is typically smaller than 3.0 bu/ac. Yet the 
aleatoric uncertainty is larger than 3.5 bu/ac, indicating that the alea
toric uncertainty is the dominant uncertainty of PB-CNN. Meanwhile, 
similar spatial patterns between the aleatoric and epistemic un
certainties are observed in most of our study areas. For the counties in 

Fig. 10. Spatial distributions of (a) observed yield, (b) predicted yield, and (c) 
RMSE (i.e., absolute error) using PB-CNN across counties of the study site for 
the year 2018. Areas in light gray indicate no data available. 

Table 4 
Comparisons of PB-CNN modeling performance with multi-stream and single- 
stream architectures under various combinations of input predictors for soy
bean yield estimation in 2018.  

Predictors Single-Stream Multi-Stream  

RMSE 
(bu/ac) 

R2 Bias (bu/ 
ac) 

RMSE 
(bu/ 
ac) 

R2 Bias (bu/ 
ac) 

EVI2  5.785  0.586  −3.124  5.785  0.586  −3.124 
EVI2&MET  5.419  0.479  −1.728  5.056  0.548  −1.216 
ALL  5.366  0.554  −2.357  4.350  0.743  −0.928  

Table 5 
Comparisons of PB-CNN modeling performance under three temporal aggrega
tions for soybean yield estimation in 2018.  

Temporal aggregation Phenology 8-day Monthly 

RMSE (bu/ac)  4.350  5.535  4.966 
R2  0.743  0.522  0.589 
Bias (bu/ac)  −0.928  −2.540  −1.880  

Fig. 11. The performance of PB-CNN in soybean yield estimation across 
phenological stages throughout the season in 2018. A1 denotes only the first 
phenological stage being considered, while A6 denotes all the phenological 
stages being incorporated. 
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the southwestern part (e.g., Nebraska, Missouri, South Dakota, and 
Kansas), both uncertainties are larger than those in other regions. This 
could potentially be caused by the different environmental conditions in 
those states, which are mostly located in the Great Plains with more 
severe heat and water stress during the summer (Lobell et al., 2014; Ma 
et al., 2021; Wright & Wimberly, 2013). As for the central part of the 
study area, the distribution of the aleatoric uncertainty is relatively 
homogeneous, with the average being about 3.5 bu/ac. The epistemic 
uncertainty also shows similar spatial patterns in most areas but exhibits 
more local heterogeneities. For instance, some high epistemic uncer
tainty estimates of PB-CNN are in the central part of Illinois. Those 
samples in the testing dataset have way higher soybean yields and are 
likely different from those in the training dataset (Fig. 9), which could 
cause uncertainty for model parameters. 

To further analyze the spatial distributions of uncertainties, we 
summarize the uncertainties and some representative predictors at the 
state level in Fig. 15. The state-level results show that the yield estimates 
in some states (e.g., Nebraska, Missouri, South Dakota, Kansas, and 
Wisconsin) exhibit relatively higher aleatoric and epistemic un
certainties, consistent with previous spatial pattern analyses. Among 
these states, the yield estimates in Kansas and Missouri also exhibit 
relatively large RMSE and relative RMSE (i.e., RMSE% = RMSE/ 
observed yield) due to different climate and soil conditions in the region. 
The P-factors are higher than 95 % in all the states except Illinois, which 
is partly due to the imbalanced training samples. According to the 
summarized mean and standard deviation of representative yield pre
dictors (i.e., maximum temperature, PET, and soil organic carbon con
tent), the states with smaller uncertainties are mostly distributed in 
temperate regions with relatively benign environmental conditions, 
while the states with higher uncertainties are mainly located in areas 
more subject to environmental stress (Lobell et al., 2014), such as 
Nebraska, South Dakota, and Kansas. Heat stress (i.e., high maximum 
temperature) and water stress (i.e., high PET) are more likely to occur in 
those states with high aleatoric uncertainties (Goparaju & Ahmad, 2019; 
Lobell et al., 2014). The soil organic carbon content of those states also 
tends to be relatively low with high variations. 

As aleatoric uncertainty is the main source of uncertainty and it 
stems from input observations, we further explore the contribution of 
the inputs of each yield predictor group as well as each phenological 
stage to the aleatoric uncertainty change using the permutation impor
tance method (Fig. 16). Regarding the phenological stages, the aleatoric 
uncertainty of PB-CNN is mainly from the first two stages, corresponding 
to the emerged and vegetative growth stages of soybean. Because the 
EVI2 and other environmental predictors in the early growth stages are 
less associated with the final soybean yield, the predictors in those stages 
may bring more uncertainty into the yield estimation. As for the yield 
predictor groups, the inputs of the soil predictor group are the main 
source of the aleatoric uncertainty. Since the predictors in the soil group 

Fig. 12. The permutation importance of yield predictor groups across pheno
logical stages on estimating the soybean yield. The heatmap shows the 
importance of each predictor group within each phenological stage. The 
importance of each predictor group and each phenological stage is shown above 
and to the right of the heatmap, respectively. S1-S6 represent the phenological 
stages 1–6. 

Fig. 13. The spatial distribution of the total predictive uncertainty across 
counties of the study site in 2018. Areas in light gray indicate no data available. 

Fig. 14. The spatial distributions of aleatoric uncertainty and epistemic uncertainty across counties of the study site in 2018. The circled area represents the counties 
with high epistemic uncertainty in the central part of Illinois. Areas in light gray indicate no data available. 
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Fig. 15. Distributions of predictive yield, uncertainties and environmental predictors across the states of the study site in 2018. a) The mean observed yield, 
predicted yield, associated uncertainties, and RMSE% for each state; b) The mean RMSE, uncertainties, and P-factor for each state; c) The mean values of PET, 
maximum temperature, and soil organic carbon content for each state. The error bars represent the standard deviation. 

C. Zhang and C. Diao                                                                                                                                                                                                                          



ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 50–73

66

remain unchanged across phenological stages as well as from year to 
year for each county, the one-off soil data with coarse temporal reso
lution may bring more uncertainty into the yield estimation. The inputs 
of the water-related predictor group also exert a relatively large influ
ence on the aleatoric uncertainty change, partly due to the high varia
tions and fluctuations of precipitation across counties of the study site, 
especially in S2 and S5 phenological stages. 

5.6. Evaluation of PB-CNN under varying historical yield scenarios 

To investigate the model robustness under various training sample 
sizes, we further degressively reduce the training samples of historical 
yield records from 10-year to 2-year and assess the model performance 
in the testing year 2018. The model performance and estimation un
certainties for varying historical yield scenarios are shown in Table 6 
and Fig. 17. Generally, aleatoric uncertainty is still the main source of 
uncertainty, and larger model errors and uncertainties are observed as 
the training sample size decreases. The RMSE gradually increases from 
the lowest 4.350 bu/ac with 10-year training data to the highest 5.731 
bu/ac with 2-year training data (Table 6). Despite the increase of RMSE, 
the P-factor is still consistently higher than 92 % for all the training 
sample scenarios (i.e., training sample size from 8202 to 1591), indi
cating that more than 92 % of the observed yields are always within the 
95 % confidence interval estimated by PB-CNN. This robust performance 
benefits from the model’s accurate prediction of the estimation un
certainties. As the training sample size decreases, the uncertainties 

Fig. 16. The permutation importance of yield predictor groups across pheno
logical stages to the change of aleatoric uncertainty. Heatmap shows the 
importance of each predictor group within each phenological stage. The 
importance of each predictor group and each phenological stage is shown above 
and to the right of the heatmap, respectively. 

Table 6 
The PB-CNN model accuracy (bu/ac) and uncertainties (bu/ac) for different training samples.  

Training Years Number of training samples RMSE Total uncertainty Aleatoric uncertainty Epistemic uncertainty P-factor 

2008–2017 8202  4.350  4.749  3.869  2.715  0.95 
2009–2017 7383  4.587  4.318  3.646  2.28  0.94 
2010–2017 6552  4.764  4.291  3.615  2.264  0.92 
2011–2017 5665  4.981  5.104  4.165  2.918  0.96 
2012–2017 4806  4.539  4.867  3.865  2.937  0.96 
2013–2017 3952  4.671  5.474  4.366  3.28  0.97 
2014–2017 3155  4.869  5.504  4.451  3.222  0.97 
2015–2017 2341  5.747  5.971  4.869  3.427  0.96 
2016–2017 1591  5.731  6.119  5.036  3.443  0.96  

Fig. 17. The change of PB-CNN accuracy and uncertainties with the training sample start year changing from 2008 to 2016.  
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Fig. 18. The evolution of the spatial distribution of RMSE (bu/ac) for the testing year 2018 with the training sample start year changing from 2008 to 2016. Areas in 
light gray indicate no data available. 

C. Zhang and C. Diao                                                                                                                                                                                                                          



ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 50–73

68

estimated by PB-CNN become larger for potential risk warning: the total 
predictive uncertainty increases from 4.749 to 6.119 bu/ac; the aleatoric 
uncertainty increases from 3.869 to 5.036 bu/ac; the epistemic uncer
tainty increases from 2.715 to 3.443 bu/ac. The fluctuations in RMSE 
and total predictive uncertainty (e.g., increased RMSE and uncertainty 
with the start year 2011) may be due to changing variability in meteo
rological and management conditions when the start year changes. Also 
the evolutions of spatial distributions of RMSE and the total uncertainty 
of yield estimation with the change of training sample sizes are shown in 
Figs. 18 and 19, respectively. Similar to Fig. 17, as the size of historical 
yield records decreases, larger model errors and uncertainties are 
observed across the study area. Yet the spatial patterns of model errors 
and uncertainties remain relatively consistent with the change in the 
training sample size. The counties with relatively large yield estimation 
errors are usually located in Kansas, Illinois, and North Dakota. The 
counties with relatively large total uncertainty are mainly concentrated 
in the northern part of Michigan as well as the southwestern part (e.g., 
Nebraska, Missouri, South Dakota, and Kansas) of the study site. 

6. Discussion 

In this study, we develop an innovative PB-CNN framework for 
county-level soybean yield estimation and uncertainty quantification. 
The PB-CNN framework encompasses three key components, namely 
Phenology Imagery construction, multi-stream Bayesian-CNN modeling, 
as well as feature and uncertainty analysis. By integrating the pheno
logical, deep learning, and Bayesian modeling designs, the PB-CNN 
framework can largely advance the modeling of crop yield responses 
to crop growth and environmental conditions across critical soybean 
phenological growth stages. With the multi-stream network modeling 
architecture, it also facilitates the accommodation of heterogenous yield 

predictors of various characteristics and resolutions. The PB-CNN 
framework can further advance the analysis of the importance of vary
ing phenological stages and yield predictors in soybean yield estimation, 
as well as the modeling of associated uncertainties. 

Under the devised framework, we innovatively construct the 
Phenology Imagery for each yield predictor via spatial and temporal 
aggregations to characterize the predictor county-level variations across 
soybean growth stages. This novel construction of Phenology Imagery 
takes into account the spatial and temporal heterogeneity of crop growth 
progress at the pixel level, as well as enabling the modeling of diverse 
responses of crop yield to weather and environmental stress of varying 
phenological stages. The phenophase-based design thus considerably 
improves the model performance in estimating the soybean yield 
compared to two calendar-interval based designs (i.e., 8-day and 
monthly temporal aggregations). Across the phenological stages and 
yield predictor groups, the satellite-based EVI2 predictor group is the 
most important in soybean yield estimation for most phenological 
stages. The importance of EVI2 is due to its direct characterization of 
crop growth vigor and greenness status to infer the plant biomass as well 
as crop yield. The importance of vegetation index in crop yield estima
tion has also been suggested by previous studies (Dadsetan et al., 2020; 
Raun et al., 2002; Yao et al., 2012). At different phenological stages, the 
final crop yield responses to changes in meteorological conditions may 
vary largely. The phenological stages 3–5, corresponding to soybean 
blooming to dropping leaves phenological stages, exert the most critical 
roles in soybean yield estimation (Diao, 2020). It indicates that the final 
soybean yield may heavily be affected by the meteorological conditions 
(i.e., heat stress and water stress) during this period. The extreme 
weather events within these stages, particularly the water stress during 
the setting pod stage, would potentially cause significant soybean yield 
reduction. The construction of Phenology Imagery largely facilitates the 

Fig. 19. The evolution of the spatial distribution of total predictive uncertainty (bu/ac) for the testing year 2018 with the training sample start year changing from 
2008 to 2016. Areas in light gray indicate no data available. 
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phenology-based predictor importance analytics for crop yield 
estimation. 

To accommodate the heterogeneity of yield predictors, the multi- 
stream deep learning architecture is devised in PB-CNN. This multi- 
stream architecture enables the characterization of the soil–plant-at
mospheric continuum using a diverse set of yield predictors, with each 
sub-network optimized to account for the heterogeneous nature of those 
predictors. It facilitates the flexible design of customized sub-network 
structures to learn unique feature representations for each predictor 
group, and to comprehensively model the yield response to diverse crop 
growth and environmental conditions of varying characteristics. By 
comparison, the shared modeling architecture for all yield predictors in 
the single-stream CNN can hardly accommodate the predictor hetero
geneity. Therefore, PB-CNN consistently outperforms conventional 
single-stream CNN models, especially when predictors with distinct 
characteristics and resolutions (e.g., daily meteorological predictors vs 
one-off soil predictors) are employed as the inputs. Also, given the in
dependence of each stream, more highly customizable sub-network 
structures (e.g., other deep learning structures, including ANN and 
LSTM) can be integrated into the multi-stream architecture to enhance 
the modeling flexibility and can further be investigated in future studies. 

With Bayesian modeling and specially designed modeling outputs, 
our PB-CNN model can not only provide yield estimation but also 
quantify predictive uncertainties for assessing the estimation reliability. 
Taking the variations from both input observations and model param
eters into account, PB-CNN can simultaneously estimate the aleatoric 
and epistemic uncertainties. The aleatoric uncertainty stems from 
inherent randomness and variations in modeling inputs (e.g., sensor 
noise and fluctuations of meteorological predictors), while the epistemic 
uncertainty arises from incomplete knowledge of yield-predictor 
empirical relationships possibly caused by the lack of training data. In 
our study, aleatoric uncertainty is the dominant yield estimation un
certainty source, particularly in the southwest of the study site (e.g., 
Kansas and Missouri) (Wright & Wimberly, 2013). According to the 
novel uncertainty permutation analysis, soil predictors are the major 
contributors to aleatoric uncertainty among all the yield predictors. 
Although the incorporation of soil predictors improves the yield esti
mation accuracy, the unchanged nature of soil predictors across 
phenological stages and years per county may also bring more un
certainties into the modeling estimation. Among the phenological 
stages, the yield predictor inputs during the soybean early vegetative 
stage tend to bring more uncertainties into the yield estimation, partly 
due to the phenological characterization noise from the MODIS Land 
Cover Dynamics product, as well as the weaker association between the 
yield predictors in the early growth stage and the final soybean yield. 
The relatively large aleatoric uncertainties in the southwest of the study 
site (e.g., the Great Plain) may be caused by the fluctuations in envi
ronmental conditions of the region, such as low precipitation and hu
midity, sudden temperature changes, as well as varying irrigation 
applications (Grassini et al., 2015; Kukal & Irmak, 2018; Wright & 
Wimberly, 2013). These unique environmental settings also increase the 
epistemic uncertainty in the region of Great Plains as the samples in this 
region tend to be underrepresented in the training dataset. Relatively 
large epistemic uncertainty also appears in the high-yield counties of 
central Illinois, as the soybean yield of this area in the testing year 
(2018) tends to be higher than the historical yields of the study site in 
the training years (2008 to 2017). Our varying historical yield scenarios 
further indicate that both the aleatoric and epistemic uncertainties tend 
to increase with more limited historical yield records. The decrease in 
the number of samples in the training dataset makes it more difficult to 
learn appropriate modeling structures for estimating the soybean yield 
under the testing dataset conditions. The more limited historical data
sets may also make the model less robust to the noise and variations in 
the yield input observations, resulting in larger data uncertainties. The 
development of PB-CNN opens up unique opportunities to investigate 
the predictive uncertainty in crop yield estimation and to enhance our 

understanding of the complex mechanisms underlying crop growth and 
yield in response to varying environmental predictors. 

Owing to innovative Phenology Imagery design, multi-stream deep 
learning architecture, and Bayesian modeling, the proposed PB-CNN 
framework outperforms three advanced benchmark models (i.e., SVR, 
RF, and LSTM), which have been widely used in crop yield estimation 
studies (Ashapure et al., 2020; Jiang et al., 2020b; Kang et al., 2020). 
Compared to these benchmark models (an average RMSE of 5.281 bu/ 
ac), PB-CNN achieves superior performance in county-level soybean 
yield estimation of the US Corn Belt, with an average RMSE of 4.622 bu/ 
ac for the testing years 2014–2018. This improved performance is also 
evident in the context of relevant previous studies, which typically 
report an RMSE range of 5.0 to 7.0 bu/ac for county-level soybean yield 
estimation in US (Johnson, 2014; Russello, 2018; You et al., 2017). It is 
partly due to the strength of PB-CNN in accommodating spatio-temporal 
crop phenological patterns, tackling the heterogeneity of yield pre
dictors, and modeling complex yield-predictor relationships. The inte
gration of Bayesian modeling further enables the evaluation of both 
aleatoric and epistemic uncertainties, which have seldom been explored 
in previous soybean yield estimation studies. 

In future studies, the further addition of heterogenous yield pre
dictors using the multi-stream modeling architecture can be evaluated. 
For instance, the county-level average historical yield may potentially be 
added as another predictor group under the multi-stream structures to 
account for the spatial dependency in soybean yield, which may further 
improve the model accuracy and reduce the predictive uncertainty. 
Incorporating yield predictors characteristic of agricultural manage
ment advances as well as yield detrending methods may also help refine 
the model for more accurate crop yield estimations. Beyond the varying 
historical yield scenarios, the PB-CNN can further be evaluated over 
extended regions of varying environmental conditions as well as 
abnormal years when heat or water stress is more severe in the future. 
With the important role of crop phenology in constructing the 
Phenology Imagery and characterizing the phenological stage-specific 
yield responses, the retrieval of crop phenology, particularly the early 
vegetative stages, may further be explored in future studies using the 
phenology matching models (e.g., hybrid phenology matching model) 
(Diao, 2020; Diao et al., 2021). 

7. Conclusion 

The continuing increase in global population and living standards 
dramatically boosts the agricultural production demand, resulting in 
food security challenges. Accurate estimation of crop yield is essential 
for the optimization of farm management practices as well as the eval
uation of agricultural decision-making under future climate change. In 
this study, we develop a PB-CNN framework for county-level soybean 
yield estimation and uncertainty quantification. The PB-CNN framework 
mainly encompasses three components: Phenology Imagery construc
tion, multi-stream Bayesian-CNN modeling, as well as feature and un
certainty analysis. By modeling crop yield responses to a heterogenous 
set of yield predictors across crop phenological stages, PB-CNN out
performs three advanced machine learning models (i.e., SVR, RF, and 
LSTM) in estimating the county-level soybean yield of the US Corn Belt 
for the testing years 2014–2018. It achieves an average RMSE of 4.622 
bu/ac, an average R2 of 0.709, and an average bias of −2.057 bu/ac. 
With the comprehensive feature importance and predictive uncertainty 
analysis, we found that the EVI2 predictor group as well as the soybean 
blooming to dropping leaves phenological stages is more critical in 
estimating the soybean yield. The soil predictor group as well as the 
early growing stages can improve the model estimation accuracy, yet 
potentially brings more uncertainties into the yield estimation. The 
further uncertainty disentanglement facilitates the evaluation of both 
aleatoric and epistemic uncertainties as well as corresponding distri
butions over the study site. Overall, the PB-CNN framework enables the 
modeling of complex crop yield responses to varying phenological stage- 
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specific yield predictors and associated uncertainties, which further 
helps optimize farm management strategies to support the building of 
more sustainable agricultural systems. 
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Appendix 

A-1. Pre-processing of EVI2 time series 

Despite the rigorous protocols for generating the MCD43A4, this MODIS product may still be subject to snow-contamination and residual at
mospheric interference, resulting in abnormal and spurious surface reflectance values. To eliminate the influence of those abnormal observations, we 
leverage three vegetation indices (EVI2, Normalized Difference Vegetation Index [NDVI], and Normalized Difference Water Index [NDWI]) by 
following two criteria (Zhang et al., 2020). The first criterion is that EVI2 values that are smaller than the co-located corresponding NDWI values 
should be excluded. NDWI values are sensitive to contaminations from the residual cloud, land surface moisture, and snow cover. These contami
nations can be detected when NDWI values are larger than the corresponding EVI2 values. The second criterion is that abnormally high EVI2 values 
caused by inaccurate atmospheric correction and other factors should be excluded. As NDVI values are less sensitive to inaccurate atmospheric 
correction, we remove the spurious EVI2 values that are larger than 90 % of the corresponding NDVI values with reference to previous global 
comparison study of MODIS NDVI and EVI2 time series (Zhang et al., 2018). We further remove the abnormal EVI2 values that are larger than 110 % of 
the maximum EVI2 value during the corresponding previous and succeeding one-month periods. 

The pre-processed EVI2 time series is further interpolated, with the missing EVI2 on a specific day replaced by the mean EVI2 of its previous and 
following 15 days. The interpolated time series is then composited by the average EVI2 value on 3-day intervals, which can preserve the phenological 
dynamic patterns, reduce the subtle fluctuations, as well as decreasing the data volume (Zhang, 2015; Zhang et al., 2020). 

A-2. Permutation feature importance analysis 

The permutation feature importance is measured as the decrease of the model accuracy by the random permutation of the feature in the model. 
Specifically, we first construct the PB-CNN using the original training data {X,Y}. With the permutation importance feature selection method, we then 
calculate the model prediction error of PB-CNN using the permuted data {X(j′), Y}, where X(j′) represents the j-th input variable being randomly 
shuffled. The permutation feature importance is calculated as the difference between the model prediction error using the permuted data {X(j′), Y} and 
that using the original data {X, Y} to investigate the importance of the j-th input variable. Given the similar characteristics of the predictors within a 
group associated with the yield, we mainly assess the relative importance of each predictor group in soybean yield estimation, instead of each in
dividual yield predictor. For instance, we randomly shuffle all the predictors (i.e., four types of aggregated EVI2 predictors) in the satellite-based 
predictor group to assess the importance and role of this predictor group. 

Besides the importance of each predictor group, we also investigate the contributions of each phenological stage in our framework using the 
permutation-based feature selection method. Here we test the model performance of the PB-CNN using the permuted data {X(phenoj

′
), Y} where 

X(phenoj
′
) denotes that all the yield predictors in the j-th phenological stage are randomly shuffled. The contribution of the yield predictors of this 

phenological stage can be measured as the difference between the model prediction error using the permuted data {X(phenoj
′
), Y} and that using the 

original data {X,Y}. Comparably, we further evaluate the importance of each predictor group in each phenological stage with the permutation feature 
importance method to comprehensively unravel the roles of diverse types of predictors throughout the soybean growing cycle in the yield estimations. 

A-3. PB-CNN model setting and training 

Before training the PB-CNN, we first tune the hyper-parameters in the model, including the number of convolutional blocks, the number of 
convolutional filters, the convolutional kernel size, and the dropout rate. Through experimental analysis with reference to previous studies (Russello, 
2018; Sun et al., 2020; You et al., 2017), the ranges of the hyper-parameters are selected as follows: the number of convolutional blocks is within the 
values of [1, 2, 4, 6, 8]; the number of filters for the convolutional layers is within the values of [4, 8, 16, 32, 64, 128]; the kernel size of the con
volutional filters is set as 3; the dropout rate is set within the values of [0.25, 0.5]. The combination of those hyper-parameter values of selected ranges 
is then used to build the hyper-parameter dictionary, and the random search is performed on the hyper-parameter dictionary based on the tenfold 
cross-validation to find a tuple of hyper-parameters that yields an optimal model that minimizes the loss function. 

During the model training, the initial learning rate is set to 0.0001, and the Adam optimizer is applied to minimize the loss. The batch size is set as 
64, and the maximum number of iterations is set as 1500. Early stopping based on the validation loss is used in the learning process to prevent the 
network from overfitting when the validation loss stops decreasing. The data acquisition and pre-processing are conducted on the Google Earth Engine 
(GEE) platform (Gorelick et al., 2017), and the PB-CNN model is constructed and trained using the Keras 2.8 (the Python deep learning library with 
Python version 3.7) (Nguyen et al., 2019). 

A-4. Benchmark models 

In this study, we compare the performance of PB-CNN with that of three advanced benchmark models, including SVR, RF, and LSTM. As a widely 
used supervised learning model, SVR employs a kernel function to project the input data into a higher dimensional feature space and optimizes the 
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hyperplane in the new feature space to fit all the data points via a margin of tolerance. Because the kernels can accommodate non-linear relationships, 
SVR’s computational complexity does not depend on the dimensionality of the input space and has good generalization capability (Awad & Khanna, 
2015). RF is an ensemble learning method that constructs a multitude of decision trees to produce ensemble predictions. Because each decision tree is 
learned using random subsets of features and bootstrap samples, RF can reduce the overfitting of data and improve accuracy by integrating different 
trees. As a type of Recurrent Neural Network (RNN), LSTM can capture long-range temporal dependencies underlying sequential data and is also 
considered in this study. By utilizing a combination of forget, input, and output gates, LSTM can selectively update or remove the memory in the cell 
state to learn the temporally evolving features. This gating mechanism controls the propagation of temporally evolving information and enables the 
information to be stored in memory for a more extended period. LSTM thus can overcome the vanishing gradient problems in conventional RNNs. 

The SVR and RF models are implemented with the scikit-learn library (Python version 3.7) (Pedregosa et al., 2011), and the LSTM model is 
constructed using Keras 2.8 (Python version 3.7). The input predictors in PB-CNN are used in these benchmark models for a fair comparison. Four 
Phenology Imageries are stacked together and transformed into six vectors according to phenological stages as the input for LSTM, and one vector as 
the input for SVR and RF. All model hyper-parameters are tuned based on the ten-fold cross-validation. 

A-5. Evaluation of satellite-based Phenology product 

The satellite-based phenology product provides pixel-level estimations of phenology stage transition dates, which are estimated using the 
threshold-based method to characterize the timing of plant greenness and vigor change throughout its phenological cycle. Specifically, the greenup, 
midgreenup, and maturity transition dates correspond to the timing when 15 %, 50 %, and 90 % of the amplitude of EVI2 time series are reached in the 
upward direction, respectively. The peak greenness date is estimated via the timing of maximum EVI2 of the phenological cycle. The senescence, 
midgreendown, and dormancy dates correspond to the timing when 90 %, 50 %, and 15 % of the amplitude of EVI2 time series are reached in the 
downward direction, respectively. We evaluate the ability of the satellite-based vegetation phenology product in characterizing the soybean growing 
stages using the ground-based CPRs. The CPRs document the proportion of soybean reaching certain phenological growing stages on a weekly basis 
throughout the season at the state level. Specifically, we compare the medians of satellite-derived phenology stage transition dates (i.e., onset of 
greenup, greenup midpoint, maturity, peak greenness, senescence, greendown midpoint, and dormancy) with the CPR-documented median dates of 
soybean growing stages (i.e., emerged, blooming, setting pods, dropping leaves, and harvest stages) from 2008 to 2018 at the state-level for our study 
site. 

The state-level median dates of satellite-based phenological metrics and CPR-based soybean phenological measures throughout the study area are 
both shown in Fig. 7. All the satellite-based phenological metrics are represented by solid lines, and CPR-based crop phenological measures are 
represented by dashed lines in the figure. Overall, the satellite- and corresponding CPR-based median phenological transition dates exhibit compa
rable variation patterns across years and states. The median dates of those phenological measures vary from year to year, with relatively earlier dates 
in 2010 and 2012. The median dates also differ from state to state, with relatively earlier dates in Minnesota and South Dakota as well as later dates in 
North Dakota. Across years and locations, the variations in the timing of soybean entering the phenological stages may be caused by a diversity of 
weather conditions, soil conditions, and farming practices. 

The CPR-documented soybean growing stages can be approximated by satellite-based phenological measures (Table 2). Specifically, the satellite- 
based greenup/mid-greenup metrics can be connected to soybean’s emerged stage. The satellite-based maturity metric has implications for the 
blooming stage of soybean. The timing of peak greenness metric aligns with the soybean setting pods stage. The mid-greendown metric can be 
connected to the dropping leaves stage of soybean. The soybean harvest stage can be approximated by the satellite-based dormancy metric. For the 
whole study area, the mean and standard deviation of the median phenological dates for both satellite-based and CPR-based measures from 2008 to 
2018 are summarized in Table 2. Except for the soybean emerged stage, the median transition dates of all the other phenology stages can be aligned by 
the corresponding satellite-derived metrics, with the mean difference less than 5 days and standard deviation less than 10 days. 
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