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ARTICLE INFO ABSTRACT

Keywords: Large-scale crop yield estimation is important for understanding the response of agriculture production to
Crop yifld environmental forces and management practices, and plays a critical role in insurance designing, trade decision
Uncertainty making, and economic planning. The empirical models (e.g., deep learning models) have been increasingly
il;:;ll:ii’e utilized for estimating crop yields with the ability to take into account a range of yield predictors and complex

modeling relationships. Yet empirical estimation of crop yields still faces important challenges, particularly in
accommodating spatio-temporal crop phenological development patterns as well as tackling the heterogeneity of
a diversity of yield predictors. The different types of uncertainties associated with empirical yield estimations
have seldom been explored. The objective of this study is to develop a Phenology-guided Bayesian-Convolutional
Neural Network (PB-CNN) framework for county-level crop yield estimation and uncertainty quantification, with
soybean in the US Corn Belt as a case study. The PB-CNN framework comprises three key components: Phenology
Imagery construction, multi-stream Bayesian-CNN modeling, as well as feature importance (i.e., yield predictor
and phenological stage) and predictive uncertainty analysis (i.e., aleatoric and epistemic uncertainty). With the
innovative integration of critical crop phenological stages in modeling the crop yield response to a heterogeneous
set of yield predictors (i.e., satellite-based, heat-related, water-related, and soil predictors) as well as the asso-
ciated uncertainties, the developed PB-CNN framework outperforms three advanced benchmark models,
achieving an average RMSE of 4.622 bu/ac, an average R? of 0.709, and an average bias of —2.057 bu/ac in
estimating the county-level soybean yield of the US Corn Belt in testing years 2014-2018. Among the yield
predictor groups, the satellite-based predictor group is the most critical in soybean yield estimation, followed by
the water- and heat-related predictor groups. Throughout the growing season, the soybean blooming to dropping
leaves phenological stages play a more crucial role in modeling the soybean yield. The soil predictor group as
well as the early growing stages can improve the model estimation accuracy yet potentially brings more un-
certainties into the yield estimation. The further uncertainty disentanglement indicates that the dominant un-
certainty in yield estimation is the aleatoric uncertainty, mainly stemming from the fluctuations and variations
inherent in the modeling input observations. The PB-CNN framework largely enhances our understanding of the
complex soybean yield response to varying environmental conditions across crop phenological stages as well as
associated uncertainties for more sustainable agricultural development.

Deep learning

1. Introduction

With the projected increase of the global population being about 2
billion in the next 30 years, agricultural demands are expected to
drastically boost throughout the world, resulting in severe challenges to
food security (Weiss et al., 2020). To meet the rising food demand, a
sustainable increase in food production is required, which needs to be
accompanied by more intelligent agricultural management with a
comprehensive understanding of the forces constraining crop
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productivity (Crane-Droesch, 2018; S. Feng et al., 2021; Wei et al.,
2014). Large-scale crop yield monitoring under various environmental
forces allows better assessments of gaps between actual and potential
yields to facilitate the optimization of farm management practices (Guan
et al., 2017). Such crop yield information is also critical for the price
forecasts of agricultural commodities, aiding in crop insurance
designing, trade decision making, and national economic planning
(Carletto et al., 2015; Sherrick et al., 2014).

Current mainstream crop yield estimation models include process-
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based crop models and empirical models. Process-based crop models
estimate yield through simulating soil-crop-atmospheric interactive
processes (e.g., crop growth, water and energy balance, and nutrient
cycling) driven by a combination of environmental and crop manage-
ment factors (Basso & Liu, 2019; Bassu et al., 2014; Sheng et al., 2019; H.
S. Yang et al., 2004). To simulate those complex processes, crop models
usually require expert knowledge and a large amount of field observa-
tions regarding soil characteristics, weather conditions, and manage-
ment practices to calibrate the models. The collection of such diverse
and comprehensive field observations of adequate quality can be diffi-
cult at large scales, which may hamper the crop model calibration and
induce the misspecified crop growth trajectory with yield estimation
accuracy compromised (Guo et al., 2021; Huang et al., 2015; Jiang et al.
(2020a)). By comparison, empirical models may overcome field data
barriers and model calibration issues by building the empirical rela-
tionship between the crop yield and a variety of environmental and
satellite-based predictors (Becker-Reshef et al. 2010; Jiang et al. 2020;
Kaylen and Koroma 1991; Shahhosseini et al. 2020). To characterize
complex yield-predictor relationships (e.g., both linear and non-linear
relationships), machine learning models, particularly deep learning
models, have been increasingly utilized in empirical crop yield estima-
tion (Chlingaryan et al., 2018; Kang et al., 2020; Koirala et al., 2019).
For example, the Convolutional Neural Network (CNN)-based models
leverage convolutional network structures to characterize multi-level
spatial texture information of yield predictors (e.g., satellite imagery
and soil maps) (Barbosa et al., 2020; Kattenborn et al., 2021; Mur-
uganantham et al., 2022; Russello, 2018; Terliksiz & Altylar, 2019). The
Long Short-Term Memory (LSTM)-based models employ recurrent
network structures to model the temporal dependent patterns of the
sequential time series of yield predictors (e.g., time series of satellite and
meteorological predictors) over the growing season (Jiang et al.
(2020b); Tian et al., 2021; You et al., 2017). With uniquely designed
modeling structures, deep learning-based yield estimation models have
been found to outperform other empirical models (e.g., random forest)
for a range of crop species (e.g., soybean, corn, wheat, and rice) in
various applications (Fernandez-Beltran et al., 2021; Ma et al., 2021;
Muruganantham et al., 2022; Sun et al., 2019; Tian et al., 2021).
Despite the promising estimation accuracy achieved by the deep
learning-based models, empirical estimation of crop yields has its own
challenges. One challenge arises from the increasing heterogeneity of
yield predictors of various characteristics and resolutions. To account
for the complex soil-plant-atmospheric continuum affecting crop
growth and yield formation, empirical models need to accommodate
various types of predictors that can reflect both crop growth status (e.g.,
satellite-based vegetation indices) and associated meteorological (e.g.,
heat and water stress) and soil (e.g., bulk density and organic carbon
content) conditions. All these types of predictors are important in
empirical yield estimation, yet they are heterogeneous in nature, with
different characteristic associations with yields (Kang et al., 2020;
Maimaitijiang et al., 2020; van Klompenburg et al., 2020; Muruganan-
tham et al., 2022). For instance, satellite-based vegetation indices can
characterize crop canopy greenness and photosynthetic capacity that
directly denote crop growth status, while the meteorological heat and
water stresses represent critical environmental stress conditions that
negatively affect plant cell functions, leaf development, and photosyn-
thesis. These predictors may also exhibit diverse resolutions (e.g., one-
off soil maps versus daily satellite imagery) of various qualities.
Despite the increasing accommodation of different types of predictors,
most deep learning-based yield studies tend to characterize these pre-
dictors with a single shared deep learning structure, the capability of
which in tackling the heterogeneity of yield predictors is limited.
Besides the increasingly diverse yield predictors, another challenge
of empirical crop yield estimation stems from the difficulty in accom-
modating season-long crop phenological dynamics. At different pheno-
logical stages, the crop physiological responses (e.g., light use efficiency,
photosynthesis, and evapotranspiration) to changes in meteorological
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conditions may vary largely, resulting in varying impacts on the change
of subsequent crop yields (Cohen et al., 2021; Guo et al., 2021; Jumrani
& Bhatia, 2019). For example, the same level of water stress at the
reproductive stage (e.g., initiation of seed filling stage) of soybean can
cause more reduction in yield than that at the vegetative stage (Jumrani
& Bhatia, 2018). Many empirical yield estimation studies analyze the
yield predictors through temporally aggregating them into calendar-
based intervals (e.g., the monthly interval), of which different pheno-
logical stages of a crop may be mixed, particularly when the durations of
phenological stages are short. The lack of explicit representation of
phenology in empirical models remains an obstacle to unveiling the
roles of various environmental and satellite-based predictors in esti-
mating crop yield. In recent years, several efforts have been made to
incorporate crop phenology in empirical models, including adding the
timing of crop phenological events as the predictor (Butts-Wilmsmeyer
etal., 2019; Guo et al., 2021; Shahhosseini et al., 2021) and normalizing
the yield predictors in terms of certain phenological events (Bolton &
Friedl, 2013). Despite these efforts, the phenological representation of
predictors (e.g., predictors via phenological timing or limited pheno-
logical stages) in most empirical yield estimation studies is relatively
simplified. Crops go through multiple phenological stages throughout
the growing season, with diverse yield responses to environmental stress
(Diao, 2019, 2020). Given the distinct yield response characteristics
across phenological stages, the incorporation of phenological stage-
specific yield predictors (e.g., satellite, meteorological, and soil pre-
dictors) along the season-long crop growth trajectory is essentially
needed yet remains underexplored.

The evaluation of empirical yield estimations has been mostly
focused on estimation accuracy via the comparison between estimated
and reference yields. Several accuracy metrics, such as Root Mean
Square Error (RMSE), coefficient of determination, and bias, have been
developed for such evaluation. Yet the quantitative analysis of yield
estimation uncertainties via the construction of confidence intervals of
the estimated yields has been largely overlooked, despite its importance
in inferring the reliability of yield estimations (Lobell et al., 2009; Ma
et al., 2021; X. Wang et al., 2020). The lack of estimation uncertainties
may compromise subsequent yield-relevant risk management and
negatively affect the yield-based decision-making processes of agricul-
tural, environmental, and economic significance, including agricultural
market planning and government agricultural policy-making (Lencucha
et al., 2020; Miiller et al., 2021). The empirical yield estimation un-
certainties may stem from both input data and modeling structures, and
can be categorized into two types: aleatoric uncertainty and epistemic
uncertainty (Depeweg et al., 2017; Hiillermeier & Waegeman, 2021;
Kiureghian & Ditlevsen, 2009; Mobiny et al., 2021). Aleatoric uncer-
tainty is a measure of the variation of data, and denotes the uncertainty
caused by the noise or randomness inherent in the yield-relevant inputs,
such as the errors in the crop type maps for identifying the target crop
species, the fluctuations of meteorological predictors induced by
extreme heat and water stress, and the potential heteroscedastic noise to
the yield labels introduced by the overall yield detrending (Ma et al.,
2021; X. Wang et al., 2020). By contrast, epistemic uncertainty typically
refers to the uncertainty of the model (e.g., model structures and pa-
rameters), arising from incomplete knowledge of appropriate modeling
systems underlying the empirical yield estimation possibly due to the
lack of training data (Abdar et al., 2021; Hiillermeier & Waegeman,
2021; Kiureghian & Ditlevsen, 2009; X. Wang et al., 2020). Higher
epistemic uncertainty may indicate that the training datasets are not
sufficiently representative, particularly when historical yield records are
limited or when environmental settings in testing datasets are signifi-
cantly different from those in training datasets (Kendall & Gal, 2017; X.
Wang et al., 2020). With the different characteristics of the two un-
certainties, disentangling these two uncertainties could be critical for
assessing the likelihood of yield estimates and evaluating the sources
that cause the estimate fluctuations for subsequent yield-relevant risk
management (Hiillermeier & Waegeman, 2021; Kukal & Irmak, 2018; Y.
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Zhang et al., 2019). Despite the importance, there is a dearth of studies
quantifying and distinguishing the uncertainties associated with the
predictions of crop yields (Ma et al., 2021; X. Wang et al., 2020).

To address these aforementioned issues, the overarching goal of this
study is to develop a Phenology-guided Bayesian-Convolutional Neural
Network (PB-CNN) framework for the crop yield estimation and un-
certainty quantification of the counties in the US Corn Belt. Using soy-
bean in the Corn Belt as a case study, the specific objectives are to 1)
innovatively construct the Phenology Imagery to incorporate the
phenological stage-specific soybean yield predictors (e.g., satellite,
meteorological, and soil predictors) into empirical yield estimation, 2)
devise the multi-stream Bayesian-CNN architectures to integrate a di-
versity of yield predictors of heterogeneous nature for soybean yield and
uncertainty quantification, and 3) evaluate both the aleatoric and
epistemic uncertainties of PB-CNN, as well as the importance of varying
phenological stages and yield predictors in soybean yield and uncer-
tainty estimation.

2. Study area and data
2.1. Study area

The US Corn Belt is selected as the study area, which covers 12 states
of the Midwestern US, including Illinois (IL), Indiana (IN), Iowa (IA),
Kansas (KS), Michigan (MI), Minnesota (MN), Missouri (MO), Nebraska
(NE), North Dakota (ND), Ohio (OH), South Dakota (SD), and Wisconsin
(WI) (Fig. 1). It is characterized by relatively flat land with deep fertile
soil. As the primary agricultural area, these states produced more than
81 % of US soybean and corn in 2020 (Naeve & Miller-Garvin, 2019).
There are about 135 million acres of land planted with soybean in the
study region. The areas planted with soybean range from 2 to 10 million
acres across states, with the average planted soybean area of the states
being 6 million acres (USDA, 2022). The average field size across states
ranges from 175 to 1512 acres, with the average size of fields of the
study region being 585 acres (USDA NASS, 2022). In most states (e.g.,
central and eastern states), soybean and corn are the dominant crops,
and the average of historical soybean yields is usually higher than 40
bu/ac (shown in Fig. 1). By comparison, the western states, which are
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close to the arid Great Plains, have more diverse crop types (e.g., wheat
and barley) with relatively lower average historical soybean yield. In
this study, we select the years from 2008 to 2018 as the years of interest
in consideration of the availability of various data products (e.g., soy-
bean location maps and phenology products) for identifying soybean
fields and generating diverse types of yield predictors.

2.2. Data

The records of county-level soybean yields are retrieved from the
United States Department of Agriculture (USDA) National Agricultural
Statistics Service (NASS) Database (https://quickstats.nass.usda.gov/).
The soybean yield records of a total of 958 counties in the US Corn Belt
for the years of interest (2008-2018) are collected. Yield measurements
for soybean in the US are conventionally recorded in bu/ac, and 1bu/ac
is equivalent to 67.25 kg/ha. Each year the Cropland Data Layer (CDL)
from the USDA (https://nassgeodata.gmu.edu/CropScape/) is utilized
to identify soybean field locations in the counties for retrieving soybean
field-specific crop growth and environmental predictors for subsequent
yield analysis (NASS, 2016). The CDL is a 30-m resolution, crop-specific
land-cover data layer, which has been created annually using satellite
imagery and extensive ground measurements for all the states of the
continental US since 2008. The mapping accuracies of soybean in the
CDLs exceed 90 % in the Corn Belt region for the study period (Boryan
et al., 2011; NASS, 2016).

In this study, we collect satellite products, water and heat-related
meteorological data, as well as soil data to generate the yield pre-
dictors that could take into account both crop growth status and asso-
ciated environmental conditions (e.g., meteorological and soil
conditions) (Table 1). For the predictor reflecting soybean growth sta-
tus, we mainly consider the 2-band Enhanced Vegetation Index (EVI2),
which is a widely used remotely sensed vegetation index for quantifying
crop growth vigor and greenness. As an enhanced vegetation index,
EVI2 reduces the influence of canopy background and atmospheric
interference and is less susceptible to saturation at high biomass regions
(Son et al., 2014). The EVI2 predictor in this study is generated from the
Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4
Nadir Bidirectional Reflectance Distribution Function (BRDF) Adjusted

100°W 90°W 8O:W
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_ - w1 km
T | 1
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Fig. 1. Map of the study area and the average county-level soybean yield (bu/ac) over 2008-2018 in this area. Areas in light gray indicate no data available.
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Table 1
Description of all input data.
Category Variable Spatial Temporal Source
Resolution  Resolution
Crop Yield Record (bu/ County- Annual USDA Quick
ac) level Statistic
Database
Cropland Map 30m Annual NASS CDL
Program
Phenology Satellite Phenology 500 m Annual MODIS
MCD12Q2
Ground Crop State-level Annual NASS CPR
Phenology
Vegetation EVI2 500 m Daily MODIS
Index MCD43A4
Heat- LST_Day (Kelvin) 1 km Daily MODIS
related MOD11A1
LST_Night (Kelvin)
Maximum air 1 km Daily Daymet V4
temperature(°C)
Minimum air
temperature(°C)
Water- Precipitation (mm) 1 km Daily Daymet V4
related
VPDmax (hPa) 5 km Daily PRISM
VPDmin (hPa)
Evapotranspiration 0.25° 3-Hour GLDAS
(kg/m%/s)
Potential ET (W/
m?)
Soil Moisture (kg/
m?)
Soil Clay Content (%) 250 m Static OpenLandMap

Sand Content (%)
pH in H,O

Bulk Density (kg/
m®)

Organic Carbon
Content (g/kg)

Reflectance product, which provides the nadir land surface reflectance
data of 500 m spatial resolution and daily temporal resolution with view
angle effects removed using the BRDF algorithm (Schaaf & Wang, 2015).
The equation for calculating EVI2 is as follows:

NIR — Red

EVI2 =25x — - Red
" NIR + 2.4 x Red + 1

(€Y
where Red and NIR represent the reflectance in red and near-infrared
bands, respectively. We further pre-process the EVI2 time series to
eliminate the influence of abnormal observations (see details in Ap-
pendix A-1). The pre-processed EVI2 time series is then composited by
the average EVI2 value on 3-day intervals, which can preserve the
phenological dynamic patterns, reduce the subtle fluctuations, as well as
decreasing the data volume.

As for the predictors reflecting critical environmental conditions, we
take into account the water and heat-related meteorological predictors,
as well as the soil predictors (Table 1). The meteorological predictors
consist of four heat-related predictors and six water-related predictors.
The heat-related predictors include daily maximum 2-meter air tem-
perature (Tmax), daily minimum 2-meter air temperature (Tmin), daily
daytime land surface temperature (LST_Day), and daily nighttime land
surface temperature (LST_Night). Tmax and Tmin are acquired from the
daily 1 km Daymet dataset, and LST Day and LST Night are extracted
from the daily 1 km MODIS MYD11A1 product. The water-related pre-
dictors include daily total precipitation (Precipitation), daily minimum
vapor pressure deficit (VPDmin), daily maximum vapor pressure deficit
(VPDmax), evapotranspiration (ET), potential ET (PET), and soil mois-
ture at four depths (10, 40, 100, and 200 cm) (Rodell et al., 2004).
Precipitation, VPDmin, and VPDmax are acquired from the daily 5 km
Parameter-elevation Regressions on Independent Slopes Model (PRISM)
dataset. ET, potential ET, and soil moisture of four depths are obtained
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from the 3-hour 0.25 degree Global Land Data Assimilation System
(GLDAS) dataset. These heat- and water-related predictors have been
employed to describe the temperature and water conditions for crop
growth and analyze the influence of heat and water stress on crop pro-
duction (Anderson et al., 2016; Guan et al., 2017; Ray et al., 2015). For
example, VPD affects the amount of water required for crop develop-
ment and carbon fixation, and a high VPD caused by water stress may
lead to a subsequent reduction in crop yields (Guan et al., 2017; Kang
et al., 2020).

Besides satellite and meteorological predictors, several soil-based
predictors characteristic of soil conditions are also taken into account
to evaluate the soil’s capacity to supply water, air, and nutrients to crops
(Table 1) (Pourmohammadali et al., 2019; Shirani et al., 2015). These
soil predictors include clay content mass fraction, sand content mass
fraction, pH in H30, bulk density, and organic carbon content of six
depths (0, 10, 30, 60, 100, and 200 cm). These soil-based predictors are
collected from OpenLandMap, which is a one-off soil product with a
spatial resolution of 250 m (Hengl, 2018; Jaafar & Mourad, 2021).
Among the predictors, bulk density, sand content, and clay content
affect water holding capacity and air capacity for the water and oxygen
supply. Soil pH and organic carbon content have a substantial effect on
soil nutrient availability, and the latter could also affect the extent of soil
water retention (Pourmohammadali et al., 2019; Shirani et al., 2015).

As the soybean yield response to the satellite- and environmental-
based predictors may vary across its phenological stages, we further
leverage the MODIS MCD12Q2 Land Cover Dynamics product to divide
the growing season into different phenological stages and to analyze the
sub-seasonal changes of all the yield predictors via these soybean stages.
The MCD12Q2 product provides annual 500 m pixel-level estimations of
key phenology phase transition dates (Ganguly et al., 2010). These
transition dates are generally associated with the critical change of
soybean greenness and vigor, and have been found to be closely linked
with the transition of several soybean vegetative and reproductive
stages. The ground-based Crop Progress Reports (CPRs) released by
USDA are collected as the reference data to evaluate these satellite-based
phenological transition dates (Diao et al., 2021; NASS, 2018). The CPRs
document the proportion of soybean reaching several phenological
stages on a weekly basis throughout the growing season at the state
level.

3. Methodology

In this study, we propose a Phenology-guided Bayesian-Convolu-
tional Neural Network (PB-CNN) framework that can integrate a di-
versity of crop growth and environmental predictors along soybean
phenological development trajectory to estimate the yields as well as
associated uncertainties. The PB-CNN framework is mainly composed of
three components: Phenology Imagery construction, multi-stream
Bayesian-CNN modeling, as well as the feature (i.e., yield predictor
and phenological stage) and uncertainty (i.e., aleatoric and epistemic
uncertainty) analysis (Fig. 2). Several methods in these components are
designed particularly for the study objectives, including the construction
of Phenology Imagery for incorporating season-long crop phenological
dynamics, the multi-stream modeling architecture to integrate a di-
versity of yield predictors, and the Bayesian-CNN for crop yield and
uncertainty quantification analysis. This framework is designed not only
to estimate crop yields, but also to evaluate the estimation uncertainties
as well as contributions of varying phenological stages and yield pre-
dictors to the empirical model predictions. The data processing based on
Google Earth Engine and the Python implementation of our model are
publicly available at https://github.com/rssiuiuc/PBCNN.

3.1. Phenology Imagery construction

Throughout the soybean growth trajectory, the environmental and
satellite-based predictors may exhibit diverse roles across phenological
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stages in estimating the yields, which makes it important to construct the satellite-based vegetation phenology product (i.e., the MODIS
phenological stage-specific yield predictors. In this study, the soybean MCD12Q2 product). The MCD12Q2 provides pixel-level estimations of
growing season is divided into different phenological stages according to phenology stage transition dates using the threshold-based method for

Phenology Imagery Construction

Remote Meteorological .
. Soil
sensing data

Phenology Temporgl | Spatial aggregation Phenology
date aggregation Imagery

I Multi-stream Bayesian-CNN

-

Bayesian
distribution

Multi-stream
PB-CNN

Parallel stream

SN NN

Feature and Uncertainty Anal

v
vs -

Yield
estimation

Yield
uncertainty

Feature
importance

Predictor Phenology Aleatoric Epistemic
importance importance uncertainty uncertainty

Fig. 2. Flowchart of the PB-CNN framework.
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Fig. 3. Four types of temporal aggregations of the EVI2 predictor in each phenological stage, with the stage from greenup to greenup midpoint (midgreenup) as
an example.

54



C. Zhang and C. Diao

characterizing the timing of plant greenness and vigor change
throughout its phenological cycle. These phenology transition dates
include the onset of greenness (geenup), greenup midpoint (midg-
reenup), maturity, peak greenness (peak), senescence, greendown
midpoint (midgreendown), and dormancy transition dates, and these
transition dates can be connected with the transitioning of several soy-
bean vegetative and reproductive stages (Diao, 2020; Diao & Li, 2022).
For instance, the greenup and midgreenup dates can be associated with
the timing of soybean emergence and subsequent change in leaf
numbers during its vegetative stages. The rest of the transition dates (e.
g., maturity, peak greenness, and midgreendown) can be linked with the
timing of soybean blooming, setting pods, and dropping leaves during its
reproductive stages. The connections between satellite phenology
measures and field soybean growth stages are discussed in detail in
Appendix A-5.

With the aforementioned seven phenology transition dates, the
soybean growing season is divided into six phenological stages, namely
the stage from greenup to greenup midpoint (denoted as S1), greenup
midpoint to maturity (S2), maturity to peak greenness (S3), peak
greenness to senescence (S4), senescence to greendown midpoint (S5),
and greendown midpoint to dormancy (S6), at the pixel level. Based on
the division of the phenological stages, the Phenology Imagery of each
yield predictor is constructed via a combination of temporal (Step I) and
spatial (Step II) aggregation.

Step I Temporal aggregation: To construct pixel-level phenological
stage-specific yield predictors, all the environmental and satellite-based
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predictors for each pixel are temporally aggregated into the six soybean
phenological stages based on the corresponding start and end dates. For
each environmental predictor, the type of temporal aggregation (e.g.,
maximum, minimum, mean, or cumulative aggregation) is determined
in terms of the predictor characteristics and its yield implications. Spe-
cifically, for the predictor of precipitation, cumulative aggregation is
implemented for each phenological stage to reflect the accumulation
effect of precipitation on soybean growth and productivity in each stage
(Meng et al., 2017). For all the other environmental predictors, the mean
aggregation is applied for each phenological stage to represent the
average conditions of the predictors within each stage. As EVI2 is closely
related to soybean productivity, four types of aggregations (i.e.,
maximum, minimum, mean, and cumulative aggregations) are
employed for the EVI2 predictor within each phenological stage to
comprehensively characterize soybean canopy greenness and growth
status (shown in Fig. 3). Specifically, maximum and minimum aggre-
gations of EVI2 can denote the change extent of canopy greenness within
each phenological stage. The mean and cumulative aggregations of EVI2
can be indicative of soybean average greenness and aboveground
biomass, respectively, and they together can further indicate the
greenness variation and duration of each phenological stage (Benedetti
& Rossini, 1993; Rasmussen, 1992). With the temporal aggregations, all
the yield predictors of different temporal resolutions are aggregated
accordingly into six soybean phenological stages per pixel and year
(Fig. 3). The temporally aggregated predictor images of six phenological
stages can thus be formed for each county and year for subsequent

EVI2 Time Series
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Fig. 4. The temporal and spatial aggregations for constructing the Phenology Imagery of the EVI2 predictor group.
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county-level soybean yield estimations.

Step II Spatial aggregation: Due to the irregular boundary of each
county, the temporally aggregated predictor images should be further
spatially aggregated for each county. Most of the previous studies use
the simple average spatial aggregation to gather county-level informa-
tion of yield predictors. Yet this average county-level spatial aggregation
fails to accommodate the variations in the values of the yield predictors
and may not reflect spatial heterogeneity or changes in crop growth
status or environmental conditions within a county. In this study, a
histogram-based transformation is therefore employed as the spatial
aggregator to characterize the distributions of yield predictor values per
county and year, with both average and spatial variation information of
the predictors preserved. As a spatial dimension reduction method,
histogram-based transformation can also reduce the complexity of deep
learning models, improve the efficiency of model training, and reduce
the risk of overfitting. Assuming the whole range of pixel values in a
temporally aggregated predictor image could be divided into N specific
sub-ranges (i.e., the bin numbers in histograms), the predictor image at
the t-th phenological stage will be transformed as a vector H(t) with N x
1 dimensions (N is set to 11 after a set of experiments). By concatenating
the H(t) of all six phenological stages (t € [1, T]) along the soybean
growth trajectory (i.e., along columns) for each yield predictor, we will
construct the Phenology Imagery P € R¥Y*™1  where N is the bin
numbers of the histogram (N = 11) and T is the number of phenological
stages (T = 6). For each county and year combination, the Phenology
Imagery of a predictor characterizes the corresponding distribution
changes of predictor values across soybean phenological stages, and thus
this image-based yield predictor is phenology stage-specific.

In this study, we consider four groups of temporally and spatially
aggregated yield predictors, namely satellite-based, heat-related, water-
related, and soil predictor groups (Table 1). As the predictors within a
group may possess shared characteristics in understanding the crop-
environment interactive system, we further concatenate the Phenology
Images of all individual predictors of a group along the third dimension
to form a multi-band Phenology Imagery for each predictor group. Thus

Part1

EVI2 11*6*4

B

Heat-related 11*6*4

-

Water-related 11*6*9

CONY Block

CONY Block 2

CONY Block 4

Soil 11*6*30

Concatenation layer
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we will construct four Phenology Imageries (with dimensions of N*T*G)
per county and year, including the Phenology Imagery of the EVI2
predictor group (N*T*Ggyy; shown in Fig. 4), the heat-related predictor
group (N*T*Gyeqr), the water-related predictor group (N*T*Gwyqeer), and
the soil predictor group (N*T*Gg,y). The first dimension N of Phenology
Imagery represents the number of histogram bins (N = 11). The second
dimension T is the number of phenological stages (T = 6). The third
dimension G denotes the number of predictors in each predictor group.
For the EVI2 group, the number of predictors is four (i.e., Ggyr = 4),
which represents four different temporal aggerated EVI2 predictors. The
heat-related group has four predictors (i.e., Guear = 4), including two
daily air temperature predictors (maximum and minimum), as well as
two daily land surface temperature predictors (daytime and nighttime).
The water-related group includes nine predictors (i.e., Gwger = 9),
namely precipitation, VPDmin, VPDmax, ET, PET, and four soil moisture
predictors of different depths. As for the soil group, given that all five
soil predictors are collected at six different depths, the total number of
predictors is 30 (i.e., Gs,y = 30). Since soil predictors are static across
phenological stages, they are spatially aggregated and repeated at each
phenological stage to ensure consistency with other predictor groups.
The constructed Phenology Imageries of four predictor groups per
county and year will be the input of the subsequent deep learning model
for county-level yield estimations.

3.2. Multi-stream Phenology-guided Bayesian-CNN model

To tackle the heterogeneity of multi-source yield predictors and
model the estimation uncertainty, a two-part PB-CNN model architec-
ture is designed in this study (Fig. 5). Part I includes a multi-stream
architecture to extract and fuse the features from the constructed
Phenology Imageries with each stream’s sub-network optimized for the
imagery of each predictor group. Part II is designed to model the crop
yield as well as the predictive uncertainty based on the features
extracted and fused from part L.

1) Part I for multi-stream feature fusion: The first part of our model
encompasses a multi-stream architecture, which is employed to extract

Part 11

Block 5

FC layer

Fig. 5. The architecture of the multi-stream PB-CNN.
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Fig. 6. Comparison between conventional and Bayesian CNNs. Left: conventional CNN kernels with point estimates. Right: Bayesian CNN kernels with probability

distributions.3.

and learn the intricate features from the Phenology Imageries of yield
predictor groups. Considering the heterogeneity of yield predictor
groups, this part of PB-CNN is composed of a four-parallel-stream ar-
chitecture, with the sub-network in a stream independently designed for
a yield predictor group (i.e., satellite-based, heat-related, water-related,
or soil predictor group) (Fig. 5). The Phenology Imagery of a predictor
group (generated in Section 3.1) will be the input for the sub-network of
the corresponding stream of PB-CNN.

Each stream’s sub-network contains one independent convolutional
block, which consists of one convolutional layer, one batch normaliza-
tion layer, and one dropout layer. The latter two layers are employed to
reduce overfitting and speed up the learning process. All convolutional
layers within part I adopt the 1 x 1 convolutional kernels suggested by
Lin et al. (2013) and Yu et al. (2017), which can be viewed as cross-
channel pooling processes to learn salient and distinct feature repre-
sentations across channels of a predictor group. For example, the cross-
channel pooling for the satellite-based predictor group can integrate the
four types of aggregated EVI2 predictors to extract discriminative fea-
tures for comprehensively representing the crop growth status. After the
independent convolutional operation of each stream, the extracted
features of the four parallel streams are then fused together by a
concatenation layer.

2) Part II for yield and uncertainty modeling: Part II of PB-CNN is
composed of several convolutional blocks as well as one specially
designed fully connected layer with two outputs. Each convolutional
block consists of one convolutional layer with a kernel size of 3 x 3 and a
stride of 1, one batch normalization layer, and one dropout layer.
Through the convolutional blocks, the fused features from part I are
further integrated with distinct features important for yield and uncer-
tainty estimations being learned. The fully connected layer includes two
outputs [y, o], namely the mean y and the standard deviation ¢ of yield
estimate (Fig. 5). The yield estimate typically follows the Gaussian dis-
tribution to account for the observation noise or randomness stemming
from different yield predictor inputs, with the mean y denoting the
average yield estimate and the standard deviation ¢ characterizing the
uncertainty/noise in the input observations (Kendall & Gal, 2017;
Mobiny et al., 2021; X. Wang et al., 2020). To model the predictive
uncertainty of model parameters, the Bayesian theory is employed in the
PB-CNN. Unlike the CNN models, all the weights W in the PB-CNN
model are represented by probability distributions (shown in Fig. 6),
which can be used to characterize the variance of the model weights.
According to the Bayesian theory, given the input x and the training data
D={X, Y}={x;,y:}\,, the outputs [y,s] of PB-CNN will be each repre-
sented as predictive distributions (i.e., p(y|x,X,Y) and p(o|x,X,Y)) by
integrating the model likelihoods (i.e., p(y| x, W) and p(c|x, W)) over the
posterior distribution of the model weights W (i.e., p(W|X, Y)) (Egs. (2)
and (3):
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With the predictive distributions of mean y and standard deviation ¢
of yield estimates, the total predictive uncertainty can then be calcu-
lated. This total uncertainty comprises both the aleatoric uncertainty
and the epistemic uncertainty. The aleatoric uncertainty measures the
uncertainty of data (e.g., the output standard deviation ¢ in the study),
usually stemming from the noise or randomness in the input observa-
tions. By contrast, the epistemic uncertainty corresponds to the uncer-
tainty in the model structures and parameters (e.g., the variation of W in
the study), caused by a lack of knowledge about the best model under-
lying the yield estimations given the collected data. With the PB-CNN
modeling design and Bayesian inference, the aleatoric uncertainty can
be calculated as the mean of p(o|x,X,Y) (i.e., E[o]), and the epistemic
uncertainty can be calculated as the standard deviation of p(y|x, X, Y) (i.
e., 6(¥)) (Abdar et al., 2021; Depeweg et al., 2017; Gal & Ghahramani,
2016; Hiillermeier & Waegeman, 2021; Kendall & Gal, 2017). The total
uncertainty can thus be calculated using the aleatoric and epistemic
uncertainty (Eq. (4))

Croral = \/(Up(w\x.y) (y))2 + (Epwier) [6])2 @
where 64, is the total predictive uncertainty of the estimated yield; y
and o are the estimated mean and standard deviation outputs of the fully
connected layer of PB-CNN, respectively. Given W p(W|X,Y),
opwix.y)(y) is the epistemic uncertainty, measured as the standard de-
viation of the estimated mean value y; E,wxy)[o] is the aleatoric un-
certainty, calculated as the mean value of the estimated standard
deviation o.

However, due to a large number of parameters of Bayesian-CNN
models, the posterior distribution p(W|X, Y) cannot be evaluated
analytically, and the estimations of p(y|x,X,Y) and p(s|x,X,Y) are
typically approximated using the Monte Carlo (MC) sampling approach.
MC sampling can approximately estimate p(y|x, X, Y) and p(o|x, X, Y) by
generating T sets of [y, o] pairs {[y1,01],-[yr,or]} based on T sets of
network weights {W, ---, Wy} whose empirical distribution (i.e., q; (W),
parameterized by 6) approaches p(W|X, Y). In practice, the sets of
network weights {Wy,---, W} can be generated by dropout inference,
which is conducted via the random dropout of neurons during both the
training and the testing stages, resulting in different weight configura-
tions (Gal & Ghahramani, 2015, 2016; Shridhar et al., 2019). Thus, the
final predictive distributions can be approximated by the integration of
the sets of MC simulations, and Eq. (4) can be rewritten as Eq. (5)
(Depeweg et al., 2017; Kendall & Gal, 2017):
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where T represents the number of MC samplings; ¥, and &, are the
estimated mean and standard deviation outputs of the fully connected
layer of PB-CNN at the t-th simulation when W = W,. As PB-CNN in-
cludes two outputs, the weights of PB-CNN are optimized by using a
simplified negative log-likelihood loss function (Eq. (8)) (Kendall & Gal,
2017):
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where y; and y; denote the estimated mean yield and observed yield for
sample i, respectively. N is the number of samples in the training data. 5;
denotes the estimated standard deviation for sample i.

3.3. Feature and uncertainty analysis

3.3.1. Feature importance

In this study, we investigate the importance of each yield predictor
group as well as each phenological stage in estimating the soybean yield
using the permutation importance feature selection method (Breiman,
2001; Shahhosseini et al., 2020; X. Wang et al., 2020). As a non-linear
model inspection method, the permutation feature selection method
evaluates the relative feature importance through measuring the change
in model performance caused by the random shuffling of a feature (see
details in Appendix A-2). Given the similar characteristics of the pre-
dictors within a group associated with the yield, we assess the relative
importance of each predictor group in soybean yield estimation, instead
of each individual yield predictor. Besides, we also investigate the
contributions of each predictor group in each phenological stage with
the permutation feature importance method to comprehensively unravel
the roles of diverse types of predictors throughout the soybean growing
cycle in yield estimations.

3.3.2. Uncertainty analysis

As introduced in Section 3.2, the total predictive uncertainty com-
prises both aleatoric uncertainty and epistemic uncertainty, and these
two types of uncertainties of PB-CNN are modeled in this study. We first
evaluate the spatial distributions of county-level yield estimation un-
certainties of PB-CNN, including total predictive uncertainty, aleatoric
uncertainty, and epistemic uncertainty, and compare the spatial pat-
terns of these three uncertainty measures. We also summarize these
uncertainty measures at the state level to identify the regions with
relatively high aleatoric or epistemic uncertainty, which is further
analyzed under the associated environmental conditions characterized
by several representative yield predictors. Moreover, as aleatoric un-
certainty comes from the input observations, we explore the contribu-
tion of the inputs of each yield predictor group as well as each
phenological stage to the aleatoric uncertainty using the permutation
importance method. Similar to the feature importance analysis in Sec-
tion 3.3.1, we analyze the importance of each yield predictor group,
each phenological stage, as well as their combination (per yield pre-
dictor group and phenological stage), by measuring the aleatoric un-
certainty change caused by the corresponding random permutation.
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3.4. Model training and evaluation

To evaluate the devised model, we compare the performance of PB-
CNN with that of three advanced benchmark models for conducting
county-level soybean yield estimations. The hyperparameter settings of
PB-CNN and model training processes are introduced in Appendix A-3.
The benchmark models include Support Vector Regression (SVR),
Random Forest (RF), and LSTM (see the detailed model settings in Ap-
pendix A-4). To ensure a relatively comprehensive comparison with
consideration of the size of training samples, we assess the performance
of all these models for five testing years (2014-2018). For each testing
year, all the county-level data of corresponding historical years are
utilized for training the models. Given that the testing year 2018 takes
into account more historical years (2008-2017) for training the models,
we subsequently leverage this testing year to carry out a more
comprehensive evaluation of PB-CNN in terms of both model accuracy
and uncertainty, as well as conducting feature importance and uncer-
tainty analysis. In total, there are 8,202 training data samples from 2008
to 2017 and 728 testing data samples in 2018 for the study site.

The RMSE, coefficient of determination (RZ), and bias are selected as
the metrics to evaluate the model performance. The three metrics are
calculated as follows:

(C)]
N
Rz_lizle()r*)’z) (10)
PGESON
(3 —9)
Bias = Z N an

where N denotes the number of samples; y; is the observed yield and y; is
the estimated yield of the sample i; ¥ denotes the mean value of all
observed yields. Besides yield estimations, the developed framework
also focuses on evaluating estimation uncertainties of crop yields. As
described in Section 3.2, the results of 1000 MC simulations are used to
calculate the predictive uncertainties (Eqs. 5-7) (Gal & Ghahramani,
2016). We also calculate the P-factor to assess the goodness of the total
predictive uncertainty of the model (Liu et al., 2017; Sheng et al., 2019;
J. Yang et al., 2008). The P-factor is defined as the percentage of
observed yield enveloped within the 95 % confidence interval bounded
by the predictive uncertainty and is calculated using Eq. (12):

NQ,,

P — factor = —% x 100 12)
n

where NQ;, is the number of observations enveloped by the 95 % con-
fidence interval, and n is the number of observations.

4., Framework evaluation

With the construction of Phenology Imagery in the PB-CNN frame-
work, we first evaluate the ability of the satellite-based vegetation
phenology product in characterizing the soybean growing stages using
the ground-based CPRs. Specifically, we compare the medians of
satellite-derived phenology stage transition dates with the CPR-
documented median dates of soybean growing stages (i.e., emerged,
blooming, setting pods, dropping leaves, and harvest stages) from 2008
to 2018 at the state-level for our study site.

We also evaluate the effectiveness of multi-stream architecture as
well as the influence of different predictor groups by designing three
combinations of input predictors (i.e., PB-CNN_EVI2, PB-CNN_E-
VI2&MET, and PB-CNN_ALL): I) PB-CNN_EVI2: only the satellite-based
predictor group (i.e., four EVI2 predictors) is employed in the PB-CNN
model to estimate the soybean yield. The streams of other predictor
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groups are removed from PB-CNN accordingly. II) PB-CNN_EVI2&MET:
In this model setting, satellite-based and meteorological water- and
heat-related predictor groups are utilized as the modeling input. The
stream of the soil predictor group is removed from PB-CNN. III) PB-
CNN_ALL: All four yield predictor groups are employed as the input
under this modeling setting (Fig. 5). For PB-CNN_EVI2 and PB-CNN_E-
VI2&MET, only sub-networks of corresponding predictor groups are
kept in the model architectures. For each of these three combinations of
input predictors, we further compare the performance of the multi-
stream architecture and that of the corresponding single-stream archi-
tecture. The single-stream architecture is formed with all sub-networks
of yield predictor groups merged together as one stream, and main-
tains the same number of convolutional filters as the multi-stream
counterpart. It’s worth noting that multi-stream and single-stream PB-
CNN_EVI2 share the same architecture because only one predictor group
is utilized as the input.

The contribution of phenophase-guided structure is investigated by
comparing the performance of PB-CNN model with that of two model
variants, which are based on the same predictors yet with calendar-
based intervals (i.e., 8-day and monthly intervals). The temporal ag-
gregation steps of the phenophase, 8-day, and monthly composites are 6,
30, and 8, respectively. Except for temporal aggregation steps, the two
model variants share the same modeling architectures and settings as
our PB-CNN model. For fair comparisons, all the hyper-parameters of the
three models are optimized separately. To further assess the contribu-
tion of each crop phenological stage, we also evaluate the change of
yield estimation performance of PB-CNN with the phenological stage
progressing from S1 to S6. This evaluation can further shed light on the
phenology-guided within-season soybean yield estimation.

In addition, the impact of training sample size on the PB-CNN per-
formance is investigated by the designed varying historical yield sce-
narios, in which the amount of training samples is reduced degressively
to evaluate the change of PB-CNN modeling accuracies and un-
certainties. In this experiment, we degressively reduce the existing 10-
year to 2-year historical data to train our PB-CNN model, simulating
the cases of lacking historical yield records in practice.

5. Results
5.1. Model performance of PB-CNN

The state-level median dates of satellite-based phenological metrics
as well as CPR-based soybean phenological measures throughout the
study area are both shown in Fig. 7. Overall, the satellite- and corre-
sponding CPR-based median phenological transition dates exhibit
comparable variation patterns across years and states. The CPR-
documented soybean growing stages can be approximated by satellite-
based phenological measures (shown in Table 2, and see detailed dis-
cussions in Appendix A-5). Specifically, the satellite-based greenup/
mid-greenup metrics can be connected to soybean’s emerged stage. The
satellite-based maturity metric has implications for the blooming stage
of soybean. The timing of peak greenness metric aligns with the soybean
setting pods stage. The mid-greendown metric can be connected to the
dropping leaves stage of soybean. The soybean harvest stage can be
approximated by the satellite-based dormancy metric. Except for the
soybean emerged stage, the median transition dates of all the other
phenology stages can be aligned by the corresponding satellite-derived
metrics, with the mean difference less than 5 days and standard devia-
tion less than 10 days. It indicates that the satellite-based phenology
product metrics used in this study could adequately rebuild the soybean
phenological development trajectory. In the constructed Phenology
Imagery, the S1-S2 phenological stages correspond to soybean vegeta-
tive stages, and the S3-S6 stages connect with the soybean reproductive
stages.

After we evaluate the ability of the satellite phenology product in
characterizing the soybean growing stages, the model performances of
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PB-CNN and three advanced benchmark models (i.e., SVR, RF, and
LSTM) are compared in Table 3. The results show that the models differ
in predicting the soybean yields from 2014 to 2018, with the average
RMSE ranging from 4.622 to 5.554 bu/ac, the average R? from 0.579 to
0.709, and the average bias from —2.999 to —2.057 bu/ac. In general,
the developed PB-CNN model outperforms all the other models, with the
lowest average RMSE (4.622 bu/ac), the highest average R? (0.709), and
the lowest average bias (-2.057 bu/ac). It’s noted that the performance
of all the models declines in 2016, potentially due to abnormal climate
conditions (e.g., warm winter/early spring, drought, and flooding trig-
gered by El Nino) especially in the western and central regions of the
Corn Belt (Kogan & Guo, 2016; Ortez et al., 2022). With the testing year
2018 taking into account more historical years (2008-2017) for training
the models, we further compare the scatter plots of observed and pre-
dicted yields of all the models for this testing year (Fig. 8). The PB-CNN
model shows better agreement between observed and predicted yields in
the scatter plots. Compared to other models, fewer large-error pre-
dictions out of the two dashed lines (absolute estimation errors larger
than 5.0 bu/ac) are in the PB-CNN scatter plot. The LSTM model ach-
ieves the lowest bias (-0.535 bu/ac) among all the models, but the
overestimation of LSTM in some low-yield regions results in a higher
RMSE and a lower R? for the model. We also find that all the models tend
to underestimate the soybean yield in high-yield counties, which is in
agreement with the previous studies (Maimaitijiang et al., 2020; Y.
Wang et al., 2020). This underestimation may partly be caused by the
saturation issue of optical remote sensing (Maimaitijiang et al., 2020; Y.
Wang et al., 2020) and imbalanced training dataset (Fig. 9), in which
there are relatively fewer high-yield training samples, leading to chal-
lenges in modeling their variations. For instance, the training dataset
does not have yield records higher than 72 bu/ac (the dashed line in
Fig. 9), making those high yield records in the testing dataset more
difficult to estimate.

To further evaluate the performance of PB-CNN, we also map the
spatial distributions of the modeling yield predictions and associated
errors across counties of the study site in 2018 (Fig. 10). In general, the
spatial distributions of predicted yields exhibit comparable patterns as
those of observed yields, with RMSE (i.e., absolute error) for most of the
counties lower than 4.0 bu/ac. The low-yield counties are mainly
distributed in the northern and southern parts (e.g., North Dakota, South
Dakota, Kansas, and Missouri) of the study site, while the soybean yields
in the central part (e.g., Iowa, Illinois, and Indiana) are relatively high.
The counties with larger RMSEs of yield predictions are mainly located
in Kansas, Illinois, and North Dakota. Especially, higher errors are
observed in the very high-yield counties in Illinois, partly due to the
imbalanced training samples, as shown in Fig. 9. As PB-CNN achieves
improved yield prediction accuracy upon comparison with the three
benchmark models, we further evaluate the PB-CNN in terms of the
impact of its modeling architecture, phenology design, and yield pre-
dictors using the testing year 2018 in Sections 5.2-5.4. We will then
analyze the predictive uncertainty of PB-CNN for this testing year in
Section 5.5.

5.2. Assessment of model architecture

We assess the model architecture of PB-CNN by comparing the yield
prediction accuracies of multi-stream and single-stream architectures
under various combinations of input predictors in 2018 (Table 4). When
comparing the different input combinations, we find that the incorpo-
ration of meteorological and soil predictor groups tends to improve the
performance of both multi-stream and single-stream models. Compared
to the model with only satellite-based predictor group, the model with
all predictor groups decreases the RMSE by 1.435 bu/ac, increases the
R2 by 0.157, and reduces the bias by 2.196 bu/ac for the multi-stream
architecture. As for the single-stream architecture, the model with all
predictor groups also tends to reduce the prediction error (RMSE
decreased by 0.419 bu/ac and bias decreased by 0.767 bu/ac), yet with a
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Fig. 7. Inter-annual median transition date comparisons between the satellite- and CPR-based soybean phenological measures across the states in the Corn Belt.
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Table 2
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The mean and standard deviation of the median dates of satellite- and CPR-based soybean phenological measures in the study area from 2008 to 2018.

CPR-based transition date Mean Standard deviation Satellite-based transition date Mean Standard deviation
Emerged 154 7 Mid-Greenup/Greenup 171/129 10/20
Blooming 198 6 Maturity 201 6
Setting pods 215 7 Peak 219 6
Dropping leaves 262 6 Mid-Greendown 262 5
Harvest 286 9 Dormancy 288 8
Table 3 intervals may not yield better performance, partly due to the increasing

The accuracy of PB-CNN, LSTM, SVR, and RF in estimating the soybean yields for
the testing years 2014-2018.

Accuracy Metric Year Model
LSTM SVR RF PB-CNN
RMSE 2014 5.027 4.379 4.499 3.981
(bu/ac) 2015 7.012 5.982 5.263 5.140
2016 5.455 6.127 5.929 5.076
2017 5.444 4.906 4.861 4.562
2018 4.831 4.721 4.777 4.35
Average 5.554 5.223 5.066 4.622
R? 2014 0.707 0.779 0.767 0.817
2015 0.396 0.552 0.653 0.669
2016 0.451 0.345 0.387 0.551
2017 0.693 0.727 0.732 0.763
2018 0.646 0.713 0.667 0.743
Average 0.579 0.623 0.641 0.709
Bias 2014 —2.438 —1.842 —1.837 —1.072
(bu/ac) 2015 —5.399 —4.293 —-3.310 —3.242
2016 —3.784 —5.007 —4.780 —3.767
2017 —2.292 —2.483 —2.198 —1.275
2018 —0.54 -1.372 —1.641 —0.928
Average —2.891 —2.999 —2.753 —2.057

decreased R? value. The incorporation of the soil predictor group into
the models with satellite and meteorological predictor groups can
further improve the model performance for the multi-stream architec-
ture, yet not much for the single-stream architecture. When more than
two yield predictor groups are considered, the models with multi-stream
architectures consistently outperform those of single-stream ones.
Especially when all the predictor groups are considered as the input, the
multi-stream model significantly improves the yield prediction accuracy
with RMSE decreased by 1.02 bu/ac, R? increased by 0.19, and bias
decreased by 1.43 bu/ac. Unlike the shared network structures for all the
predictor groups in the single-stream models, the sub-networks are
employed and optimized for different predictor groups in the multi-
stream models. The PB-CNN with the multi-stream architecture thus
takes into account the heterogeneous characteristics of different pre-
dictor groups, achieving an RMSE of 4.350 bu/ac, an R? of 0.743, and a
bias of —0.928 bu/ac when all the predictor groups are considered.

5.3. Evaluation of Phenology design

The performances of the PB-CNN models under three temporal ag-
gregations (i.e., phenophase, 8-day, and monthly aggregations) are
shown in Table 5. Among the temporal aggregations, the PB-CNN with
the phenophase design achieves the highest prediction accuracy, with
the RMSE being 4.350 bu/ac, R? being 0.743, and bias being —0.928 bu/
ac, while the model with the 8-day calendar interval suffers performance
degradation (RMSE is 5.535 bu/ac, R?is 0.522, and bias is —2.540 bu/
ac). Compared to the 8-day temporal aggregation, the model with the
monthly calendar interval achieves slightly higher accuracy, with RMSE
decreased by 0.569 bu/ac, R? increased by 0.067, and bias decreased by
0.66 bu/ac. Despite the more subtle temporal information provided by
the 8-day interval setting, the temporal aggregations of smaller calendar
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inconsistency in crop phenology representation over space and time
with smaller intervals. With crop phenological dynamics explicitly
considered in the phenophase aggregation design, the proposed PB-CNN
model accounts for phenological stage-specific crop growth and envi-
ronmental conditions and outperforms the other two calendar-interval
based models in yield predictions. Though the PB-CNN model of phe-
nophase design maintains similar temporal aggregation steps as the
model of monthly design, it achieves higher yield estimation accuracy
with RMSE reduced from 4.966 to 4.350 bu/ac, R? increased from 0.589
to 0.743, and bias decreased from —1.880 to —0.928 bu/ac. The com-
parisons indicate that the PB-CNN of phenophase design could facilitate
the modeling of the distinct yield response characteristics across
phenological stages to improve the estimation accuracy.

As the soybean yield response to crop growth and environmental
conditions varies across phenological stages, we further evaluate yield
estimation performance across soybean phenological stages throughout
the season in 2018 (Fig. 11). Overall, the PB-CNN model shows
improved performance (i.e., RMSE, R?, and bias) with more phenolog-
ical stages incorporated, resulting in the highest accuracy achieved with
the consideration of all phenological stages. Yet the modeling perfor-
mance improvements vary across the stages, with a relatively large ac-
curacy increase in S3 and S4, when soybean experiences the critical
transition from vegetative to reproductive stages (Table 2). Specifically,
the incorporation of the S3 phenological stage decreases the RMSE by
0.73 bu/ac, increases the R% by 0.15, and reduces the bias by 1.01 bu/ac.
On the other hand, the change of modeling accuracy with the incorpo-
ration of S5 and S6 becomes smaller, as those stages are related to the
soybean dropping leaves and harvest stages (Table 2).

5.4. Feature importance

We further utilize the permutation importance method to analyze the
importance of each yield predictor group per phenological stage in
estimating the soybean yield (Fig. 12). Overall, the satellite-based EVI2
predictor group has high contributions to the soybean yield estimation.
The EVI2 predictors during S2 to S5 are among the most important
predictors due to the embedded critical crop growth information that is
directly indicative of soybean yield. For the meteorological predictors,
the water- and heat-related predictor groups show relatively comparable
patterns in predictor importance across phenological stages. Both water-
and heat-related predictors within phenological stages 3 to 5 are more
important for yield prediction, possibly due to the more significant
impacts of environmental stress on soybean growth and yield formation
during those stages (Jumrani & Bhatia, 2018). The soil predictor group
is less important, with its values being unchanged across phenological
stages and years. Among the phenological stages, the S3-S5 stages are
the most crucial ones, corresponding to soybean blooming, setting pods,
and turning yellow stages (Table 2). The S1 and S6 stages, representing
the soybean emergence and harvest stages, are less critical in predicting
the soybean yield.

5.5. Predictive uncertainty analysis

Besides the predicted yields, we also analyze the predictive
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indicate the absolute estimation errors being 5.0 bu/ac.
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Fig. 10. Spatial distributions of (a) observed yield, (b) predicted yield, and (c)
RMSE (i.e., absolute error) using PB-CNN across counties of the study site for
the year 2018. Areas in light gray indicate no data available.

uncertainty derived from the PB-CNN framework. In 2018, the P-factor
of PB-CNN is 96.7 %, indicating that more than 96 % of the county-level
observed yields are enveloped within the 95 % confidence interval given
by our model. This close to 100 % P-factor value empirically demon-
strates the good performance of PB-CNN in estimating the yield distri-
bution and predictive uncertainty. Additionally, the total predictive
uncertainty map over the study area is shown in Fig. 13. The spatial
distribution of the predictive uncertainty exhibits a relatively homoge-
nous pattern compared to that of RMSE (Fig. 10). The predicted yields in
most counties have relatively small uncertainty (less than 5.0 bu/ac).
Relatively larger yield uncertainty regions are mainly in the western (e.
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Table 4

Comparisons of PB-CNN modeling performance with multi-stream and single-
stream architectures under various combinations of input predictors for soy-
bean yield estimation in 2018.

Predictors Single-Stream Multi-Stream

RMSE R? Bias (bu/ RMSE  R? Bias (bu/

(bu/ac) ac) (bu/ ac)

ac)
EVI2 5.785 0.586 -3.124 5.785 0.586 —-3.124
EVI2&MET  5.419 0.479 -1.728 5.056 0.548 -1.216
ALL 5.366 0.554 —2.357 4.350 0.743 —0.928
Table 5

Comparisons of PB-CNN modeling performance under three temporal aggrega-
tions for soybean yield estimation in 2018.

Temporal aggregation Phenology 8-day Monthly
RMSE (bu/ac) 4.350 5.535 4.966
R? 0.743 0.522 0.589
Bias (bu/ac) —0.928 —2.540 —1.880
RMSE (bu/ac)
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Fig. 11. The performance of PB-CNN in soybean yield estimation across
phenological stages throughout the season in 2018. Al denotes only the first
phenological stage being considered, while A6 denotes all the phenological
stages being incorporated.

g., South Dakota and Kansas) and southern (e.g., Missouri) parts of the
study area, where the climate and soil characteristics are significantly
different from other regions in the Corn Belt (Challinor et al., 2014).
Some low-yield regions, such as the northern part of Wisconsin, also
have relatively larger total predictive uncertainty, which may be caused
by the lack of similar samples in the training dataset.

We further partition the total predictive uncertainty into aleatoric
uncertainty and epistemic uncertainty (Fig. 14). Overall, the ranges of
the two uncertainties show significant differences. For most counties,
the epistemic uncertainty is typically smaller than 3.0 bu/ac. Yet the
aleatoric uncertainty is larger than 3.5 bu/ac, indicating that the alea-
toric uncertainty is the dominant uncertainty of PB-CNN. Meanwhile,
similar spatial patterns between the aleatoric and epistemic un-
certainties are observed in most of our study areas. For the counties in
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Fig. 12. The permutation importance of yield predictor groups across pheno-
logical stages on estimating the soybean yield. The heatmap shows the
importance of each predictor group within each phenological stage. The
importance of each predictor group and each phenological stage is shown above
and to the right of the heatmap, respectively. S1-S6 represent the phenological
stages 1-6.
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Fig. 13. The spatial distribution of the total predictive uncertainty across
counties of the study site in 2018. Areas in light gray indicate no data available.
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the southwestern part (e.g., Nebraska, Missouri, South Dakota, and
Kansas), both uncertainties are larger than those in other regions. This
could potentially be caused by the different environmental conditions in
those states, which are mostly located in the Great Plains with more
severe heat and water stress during the summer (Lobell et al., 2014; Ma
et al., 2021; Wright & Wimberly, 2013). As for the central part of the
study area, the distribution of the aleatoric uncertainty is relatively
homogeneous, with the average being about 3.5 bu/ac. The epistemic
uncertainty also shows similar spatial patterns in most areas but exhibits
more local heterogeneities. For instance, some high epistemic uncer-
tainty estimates of PB-CNN are in the central part of Illinois. Those
samples in the testing dataset have way higher soybean yields and are
likely different from those in the training dataset (Fig. 9), which could
cause uncertainty for model parameters.

To further analyze the spatial distributions of uncertainties, we
summarize the uncertainties and some representative predictors at the
state level in Fig. 15. The state-level results show that the yield estimates
in some states (e.g., Nebraska, Missouri, South Dakota, Kansas, and
Wisconsin) exhibit relatively higher aleatoric and epistemic un-
certainties, consistent with previous spatial pattern analyses. Among
these states, the yield estimates in Kansas and Missouri also exhibit
relatively large RMSE and relative RMSE (i.e., RMSE% = RMSE/
observed yield) due to different climate and soil conditions in the region.
The P-factors are higher than 95 % in all the states except Illinois, which
is partly due to the imbalanced training samples. According to the
summarized mean and standard deviation of representative yield pre-
dictors (i.e., maximum temperature, PET, and soil organic carbon con-
tent), the states with smaller uncertainties are mostly distributed in
temperate regions with relatively benign environmental conditions,
while the states with higher uncertainties are mainly located in areas
more subject to environmental stress (Lobell et al., 2014), such as
Nebraska, South Dakota, and Kansas. Heat stress (i.e., high maximum
temperature) and water stress (i.e., high PET) are more likely to occur in
those states with high aleatoric uncertainties (Goparaju & Ahmad, 2019;
Lobell et al., 2014). The soil organic carbon content of those states also
tends to be relatively low with high variations.

As aleatoric uncertainty is the main source of uncertainty and it
stems from input observations, we further explore the contribution of
the inputs of each yield predictor group as well as each phenological
stage to the aleatoric uncertainty change using the permutation impor-
tance method (Fig. 16). Regarding the phenological stages, the aleatoric
uncertainty of PB-CNN is mainly from the first two stages, corresponding
to the emerged and vegetative growth stages of soybean. Because the
EVI2 and other environmental predictors in the early growth stages are
less associated with the final soybean yield, the predictors in those stages
may bring more uncertainty into the yield estimation. As for the yield
predictor groups, the inputs of the soil predictor group are the main
source of the aleatoric uncertainty. Since the predictors in the soil group

Epistemic uncertainty (bu/ac) in 2018

Fig. 14. The spatial distributions of aleatoric uncertainty and epistemic uncertainty across counties of the study site in 2018. The circled area represents the counties
with high epistemic uncertainty in the central part of Illinois. Areas in light gray indicate no data available.
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Fig. 16. The permutation importance of yield predictor groups across pheno-
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importance of each predictor group within each phenological stage. The
importance of each predictor group and each phenological stage is shown above
and to the right of the heatmap, respectively.
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remain unchanged across phenological stages as well as from year to
year for each county, the one-off soil data with coarse temporal reso-
lution may bring more uncertainty into the yield estimation. The inputs
of the water-related predictor group also exert a relatively large influ-
ence on the aleatoric uncertainty change, partly due to the high varia-
tions and fluctuations of precipitation across counties of the study site,
especially in S2 and S5 phenological stages.

5.6. Evaluation of PB-CNN under varying historical yield scenarios

To investigate the model robustness under various training sample
sizes, we further degressively reduce the training samples of historical
yield records from 10-year to 2-year and assess the model performance
in the testing year 2018. The model performance and estimation un-
certainties for varying historical yield scenarios are shown in Table 6
and Fig. 17. Generally, aleatoric uncertainty is still the main source of
uncertainty, and larger model errors and uncertainties are observed as
the training sample size decreases. The RMSE gradually increases from
the lowest 4.350 bu/ac with 10-year training data to the highest 5.731
bu/ac with 2-year training data (Table 6). Despite the increase of RMSE,
the P-factor is still consistently higher than 92 % for all the training
sample scenarios (i.e., training sample size from 8202 to 1591), indi-
cating that more than 92 % of the observed yields are always within the
95 % confidence interval estimated by PB-CNN. This robust performance
benefits from the model’s accurate prediction of the estimation un-
certainties. As the training sample size decreases, the uncertainties

Table 6
The PB-CNN model accuracy (bu/ac) and uncertainties (bu/ac) for different training samples.
Training Years Number of training samples RMSE Total uncertainty Aleatoric uncertainty Epistemic uncertainty P-factor
2008-2017 8202 4.350 4.749 3.869 2.715 0.95
2009-2017 7383 4.587 4.318 3.646 2.28 0.94
2010-2017 6552 4.764 4.291 3.615 2.264 0.92
2011-2017 5665 4.981 5.104 4.165 2.918 0.96
2012-2017 4806 4.539 4.867 3.865 2.937 0.96
2013-2017 3952 4.671 5.474 4.366 3.28 0.97
2014-2017 3155 4.869 5.504 4.451 3.222 0.97
2015-2017 2341 5.747 5.971 4.869 3.427 0.96
2016-2017 1591 5.731 6.119 5.036 3.443 0.96
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Fig. 17. The change of PB-CNN accuracy and uncertainties with the training sample start year changing from 2008 to 2016.
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Fig. 18. The evolution of the spatial distribution of RMSE (bu/ac) for the testing year 2018 with the training sample start year changing from 2008 to 2016. Areas in
light gray indicate no data available.
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2010

Fig. 19. The evolution of the spatial distribution of total predictive uncertainty (bu/ac) for the testing year 2018 with the training sample start year changing from

2008 to 2016. Areas in light gray indicate no data available.

estimated by PB-CNN become larger for potential risk warning: the total
predictive uncertainty increases from 4.749 to 6.119 bu/ac; the aleatoric
uncertainty increases from 3.869 to 5.036 bu/ac; the epistemic uncer-
tainty increases from 2.715 to 3.443 bu/ac. The fluctuations in RMSE
and total predictive uncertainty (e.g., increased RMSE and uncertainty
with the start year 2011) may be due to changing variability in meteo-
rological and management conditions when the start year changes. Also
the evolutions of spatial distributions of RMSE and the total uncertainty
of yield estimation with the change of training sample sizes are shown in
Figs. 18 and 19, respectively. Similar to Fig. 17, as the size of historical
yield records decreases, larger model errors and uncertainties are
observed across the study area. Yet the spatial patterns of model errors
and uncertainties remain relatively consistent with the change in the
training sample size. The counties with relatively large yield estimation
errors are usually located in Kansas, Illinois, and North Dakota. The
counties with relatively large total uncertainty are mainly concentrated
in the northern part of Michigan as well as the southwestern part (e.g.,
Nebraska, Missouri, South Dakota, and Kansas) of the study site.

6. Discussion

In this study, we develop an innovative PB-CNN framework for
county-level soybean yield estimation and uncertainty quantification.
The PB-CNN framework encompasses three key components, namely
Phenology Imagery construction, multi-stream Bayesian-CNN modeling,
as well as feature and uncertainty analysis. By integrating the pheno-
logical, deep learning, and Bayesian modeling designs, the PB-CNN
framework can largely advance the modeling of crop yield responses
to crop growth and environmental conditions across critical soybean
phenological growth stages. With the multi-stream network modeling
architecture, it also facilitates the accommodation of heterogenous yield

68

predictors of various characteristics and resolutions. The PB-CNN
framework can further advance the analysis of the importance of vary-
ing phenological stages and yield predictors in soybean yield estimation,
as well as the modeling of associated uncertainties.

Under the devised framework, we innovatively construct the
Phenology Imagery for each yield predictor via spatial and temporal
aggregations to characterize the predictor county-level variations across
soybean growth stages. This novel construction of Phenology Imagery
takes into account the spatial and temporal heterogeneity of crop growth
progress at the pixel level, as well as enabling the modeling of diverse
responses of crop yield to weather and environmental stress of varying
phenological stages. The phenophase-based design thus considerably
improves the model performance in estimating the soybean yield
compared to two calendar-interval based designs (i.e., 8-day and
monthly temporal aggregations). Across the phenological stages and
yield predictor groups, the satellite-based EVI2 predictor group is the
most important in soybean yield estimation for most phenological
stages. The importance of EVI2 is due to its direct characterization of
crop growth vigor and greenness status to infer the plant biomass as well
as crop yield. The importance of vegetation index in crop yield estima-
tion has also been suggested by previous studies (Dadsetan et al., 2020;
Raun et al., 2002; Yao et al., 2012). At different phenological stages, the
final crop yield responses to changes in meteorological conditions may
vary largely. The phenological stages 3-5, corresponding to soybean
blooming to dropping leaves phenological stages, exert the most critical
roles in soybean yield estimation (Diao, 2020). It indicates that the final
soybean yield may heavily be affected by the meteorological conditions
(i.e., heat stress and water stress) during this period. The extreme
weather events within these stages, particularly the water stress during
the setting pod stage, would potentially cause significant soybean yield
reduction. The construction of Phenology Imagery largely facilitates the
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phenology-based predictor
estimation.

To accommodate the heterogeneity of yield predictors, the multi-
stream deep learning architecture is devised in PB-CNN. This multi-
stream architecture enables the characterization of the soil-plant-at-
mospheric continuum using a diverse set of yield predictors, with each
sub-network optimized to account for the heterogeneous nature of those
predictors. It facilitates the flexible design of customized sub-network
structures to learn unique feature representations for each predictor
group, and to comprehensively model the yield response to diverse crop
growth and environmental conditions of varying characteristics. By
comparison, the shared modeling architecture for all yield predictors in
the single-stream CNN can hardly accommodate the predictor hetero-
geneity. Therefore, PB-CNN consistently outperforms conventional
single-stream CNN models, especially when predictors with distinct
characteristics and resolutions (e.g., daily meteorological predictors vs
one-off soil predictors) are employed as the inputs. Also, given the in-
dependence of each stream, more highly customizable sub-network
structures (e.g., other deep learning structures, including ANN and
LSTM) can be integrated into the multi-stream architecture to enhance
the modeling flexibility and can further be investigated in future studies.

With Bayesian modeling and specially designed modeling outputs,
our PB-CNN model can not only provide yield estimation but also
quantify predictive uncertainties for assessing the estimation reliability.
Taking the variations from both input observations and model param-
eters into account, PB-CNN can simultaneously estimate the aleatoric
and epistemic uncertainties. The aleatoric uncertainty stems from
inherent randomness and variations in modeling inputs (e.g., sensor
noise and fluctuations of meteorological predictors), while the epistemic
uncertainty arises from incomplete knowledge of yield-predictor
empirical relationships possibly caused by the lack of training data. In
our study, aleatoric uncertainty is the dominant yield estimation un-
certainty source, particularly in the southwest of the study site (e.g.,
Kansas and Missouri) (Wright & Wimberly, 2013). According to the
novel uncertainty permutation analysis, soil predictors are the major
contributors to aleatoric uncertainty among all the yield predictors.
Although the incorporation of soil predictors improves the yield esti-
mation accuracy, the unchanged nature of soil predictors across
phenological stages and years per county may also bring more un-
certainties into the modeling estimation. Among the phenological
stages, the yield predictor inputs during the soybean early vegetative
stage tend to bring more uncertainties into the yield estimation, partly
due to the phenological characterization noise from the MODIS Land
Cover Dynamics product, as well as the weaker association between the
yield predictors in the early growth stage and the final soybean yield.
The relatively large aleatoric uncertainties in the southwest of the study
site (e.g., the Great Plain) may be caused by the fluctuations in envi-
ronmental conditions of the region, such as low precipitation and hu-
midity, sudden temperature changes, as well as varying irrigation
applications (Grassini et al., 2015; Kukal & Irmak, 2018; Wright &
Wimberly, 2013). These unique environmental settings also increase the
epistemic uncertainty in the region of Great Plains as the samples in this
region tend to be underrepresented in the training dataset. Relatively
large epistemic uncertainty also appears in the high-yield counties of
central Illinois, as the soybean yield of this area in the testing year
(2018) tends to be higher than the historical yields of the study site in
the training years (2008 to 2017). Our varying historical yield scenarios
further indicate that both the aleatoric and epistemic uncertainties tend
to increase with more limited historical yield records. The decrease in
the number of samples in the training dataset makes it more difficult to
learn appropriate modeling structures for estimating the soybean yield
under the testing dataset conditions. The more limited historical data-
sets may also make the model less robust to the noise and variations in
the yield input observations, resulting in larger data uncertainties. The
development of PB-CNN opens up unique opportunities to investigate
the predictive uncertainty in crop yield estimation and to enhance our

importance analytics for crop yield
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understanding of the complex mechanisms underlying crop growth and
yield in response to varying environmental predictors.

Owing to innovative Phenology Imagery design, multi-stream deep
learning architecture, and Bayesian modeling, the proposed PB-CNN
framework outperforms three advanced benchmark models (i.e., SVR,
RF, and LSTM), which have been widely used in crop yield estimation
studies (Ashapure et al., 2020; Jiang et al., 2020b; Kang et al., 2020).
Compared to these benchmark models (an average RMSE of 5.281 bu/
ac), PB-CNN achieves superior performance in county-level soybean
yield estimation of the US Corn Belt, with an average RMSE of 4.622 bu/
ac for the testing years 2014-2018. This improved performance is also
evident in the context of relevant previous studies, which typically
report an RMSE range of 5.0 to 7.0 bu/ac for county-level soybean yield
estimation in US (Johnson, 2014; Russello, 2018; You et al., 2017). It is
partly due to the strength of PB-CNN in accommodating spatio-temporal
crop phenological patterns, tackling the heterogeneity of yield pre-
dictors, and modeling complex yield-predictor relationships. The inte-
gration of Bayesian modeling further enables the evaluation of both
aleatoric and epistemic uncertainties, which have seldom been explored
in previous soybean yield estimation studies.

In future studies, the further addition of heterogenous yield pre-
dictors using the multi-stream modeling architecture can be evaluated.
For instance, the county-level average historical yield may potentially be
added as another predictor group under the multi-stream structures to
account for the spatial dependency in soybean yield, which may further
improve the model accuracy and reduce the predictive uncertainty.
Incorporating yield predictors characteristic of agricultural manage-
ment advances as well as yield detrending methods may also help refine
the model for more accurate crop yield estimations. Beyond the varying
historical yield scenarios, the PB-CNN can further be evaluated over
extended regions of varying environmental conditions as well as
abnormal years when heat or water stress is more severe in the future.
With the important role of crop phenology in constructing the
Phenology Imagery and characterizing the phenological stage-specific
yield responses, the retrieval of crop phenology, particularly the early
vegetative stages, may further be explored in future studies using the
phenology matching models (e.g., hybrid phenology matching model)
(Diao, 2020; Diao et al., 2021).

7. Conclusion

The continuing increase in global population and living standards
dramatically boosts the agricultural production demand, resulting in
food security challenges. Accurate estimation of crop yield is essential
for the optimization of farm management practices as well as the eval-
uation of agricultural decision-making under future climate change. In
this study, we develop a PB-CNN framework for county-level soybean
yield estimation and uncertainty quantification. The PB-CNN framework
mainly encompasses three components: Phenology Imagery construc-
tion, multi-stream Bayesian-CNN modeling, as well as feature and un-
certainty analysis. By modeling crop yield responses to a heterogenous
set of yield predictors across crop phenological stages, PB-CNN out-
performs three advanced machine learning models (i.e., SVR, RF, and
LSTM) in estimating the county-level soybean yield of the US Corn Belt
for the testing years 2014-2018. It achieves an average RMSE of 4.622
bu/ac, an average R? of 0.709, and an average bias of —2.057 bu/ac.
With the comprehensive feature importance and predictive uncertainty
analysis, we found that the EVI2 predictor group as well as the soybean
blooming to dropping leaves phenological stages is more critical in
estimating the soybean yield. The soil predictor group as well as the
early growing stages can improve the model estimation accuracy, yet
potentially brings more uncertainties into the yield estimation. The
further uncertainty disentanglement facilitates the evaluation of both
aleatoric and epistemic uncertainties as well as corresponding distri-
butions over the study site. Overall, the PB-CNN framework enables the
modeling of complex crop yield responses to varying phenological stage-
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specific yield predictors and associated uncertainties, which further
helps optimize farm management strategies to support the building of
more sustainable agricultural systems.
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Appendix
A-1. Pre-processing of EVI2 time series

Despite the rigorous protocols for generating the MCD43A4, this MODIS product may still be subject to snow-contamination and residual at-
mospheric interference, resulting in abnormal and spurious surface reflectance values. To eliminate the influence of those abnormal observations, we
leverage three vegetation indices (EVI2, Normalized Difference Vegetation Index [NDVI], and Normalized Difference Water Index [NDWI]) by
following two criteria (Zhang et al., 2020). The first criterion is that EVI2 values that are smaller than the co-located corresponding NDWI values
should be excluded. NDWI values are sensitive to contaminations from the residual cloud, land surface moisture, and snow cover. These contami-
nations can be detected when NDWI values are larger than the corresponding EVI2 values. The second criterion is that abnormally high EVI2 values
caused by inaccurate atmospheric correction and other factors should be excluded. As NDVI values are less sensitive to inaccurate atmospheric
correction, we remove the spurious EVI2 values that are larger than 90 % of the corresponding NDVI values with reference to previous global
comparison study of MODIS NDVI and EVI2 time series (Zhang et al., 2018). We further remove the abnormal EVI2 values that are larger than 110 % of
the maximum EVI2 value during the corresponding previous and succeeding one-month periods.

The pre-processed EVI2 time series is further interpolated, with the missing EVI2 on a specific day replaced by the mean EVI2 of its previous and
following 15 days. The interpolated time series is then composited by the average EVI2 value on 3-day intervals, which can preserve the phenological
dynamic patterns, reduce the subtle fluctuations, as well as decreasing the data volume (Zhang, 2015; Zhang et al., 2020).

A-2. Permutation feature importance analysis

The permutation feature importance is measured as the decrease of the model accuracy by the random permutation of the feature in the model.
Specifically, we first construct the PB-CNN using the original training data {X,Y}. With the permutation importance feature selection method, we then
calculate the model prediction error of PB-CNN using the permuted data {X(j), Y}, where X(j) represents the j-th input variable being randomly
shuffled. The permutation feature importance is calculated as the difference between the model prediction error using the permuted data {X(j), Y} and
that using the original data {X, Y} to investigate the importance of the j-th input variable. Given the similar characteristics of the predictors within a
group associated with the yield, we mainly assess the relative importance of each predictor group in soybean yield estimation, instead of each in-
dividual yield predictor. For instance, we randomly shuffle all the predictors (i.e., four types of aggregated EVI2 predictors) in the satellite-based
predictor group to assess the importance and role of this predictor group.

Besides the importance of each predictor group, we also investigate the contributions of each phenological stage in our framework using the
permutation-based feature selection method. Here we test the model performance of the PB-CNN using the permuted data {X(phenoj')7 Y} where

X(phenoj’) denotes that all the yield predictors in the j-th phenological stage are randomly shuffled. The contribution of the yield predictors of this

phenological stage can be measured as the difference between the model prediction error using the permuted data {X (phenoj'), Y} and that using the
original data {X,Y}. Comparably, we further evaluate the importance of each predictor group in each phenological stage with the permutation feature
importance method to comprehensively unravel the roles of diverse types of predictors throughout the soybean growing cycle in the yield estimations.

A-3. PB-CNN model setting and training

Before training the PB-CNN, we first tune the hyper-parameters in the model, including the number of convolutional blocks, the number of
convolutional filters, the convolutional kernel size, and the dropout rate. Through experimental analysis with reference to previous studies (Russello,
2018; Sun et al., 2020; You et al., 2017), the ranges of the hyper-parameters are selected as follows: the number of convolutional blocks is within the
values of [1, 2, 4, 6, 8]; the number of filters for the convolutional layers is within the values of [4, 8, 16, 32, 64, 128]; the kernel size of the con-
volutional filters is set as 3; the dropout rate is set within the values of [0.25, 0.5]. The combination of those hyper-parameter values of selected ranges
is then used to build the hyper-parameter dictionary, and the random search is performed on the hyper-parameter dictionary based on the tenfold
cross-validation to find a tuple of hyper-parameters that yields an optimal model that minimizes the loss function.

During the model training, the initial learning rate is set to 0.0001, and the Adam optimizer is applied to minimize the loss. The batch size is set as
64, and the maximum number of iterations is set as 1500. Early stopping based on the validation loss is used in the learning process to prevent the
network from overfitting when the validation loss stops decreasing. The data acquisition and pre-processing are conducted on the Google Earth Engine
(GEE) platform (Gorelick et al., 2017), and the PB-CNN model is constructed and trained using the Keras 2.8 (the Python deep learning library with
Python version 3.7) (Nguyen et al., 2019).

A-4. Benchmark models

In this study, we compare the performance of PB-CNN with that of three advanced benchmark models, including SVR, RF, and LSTM. As a widely
used supervised learning model, SVR employs a kernel function to project the input data into a higher dimensional feature space and optimizes the
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hyperplane in the new feature space to fit all the data points via a margin of tolerance. Because the kernels can accommodate non-linear relationships,
SVR’s computational complexity does not depend on the dimensionality of the input space and has good generalization capability (Awad & Khanna,
2015). RF is an ensemble learning method that constructs a multitude of decision trees to produce ensemble predictions. Because each decision tree is
learned using random subsets of features and bootstrap samples, RF can reduce the overfitting of data and improve accuracy by integrating different
trees. As a type of Recurrent Neural Network (RNN), LSTM can capture long-range temporal dependencies underlying sequential data and is also
considered in this study. By utilizing a combination of forget, input, and output gates, LSTM can selectively update or remove the memory in the cell
state to learn the temporally evolving features. This gating mechanism controls the propagation of temporally evolving information and enables the
information to be stored in memory for a more extended period. LSTM thus can overcome the vanishing gradient problems in conventional RNNs.

The SVR and RF models are implemented with the scikit-learn library (Python version 3.7) (Pedregosa et al., 2011), and the LSTM model is
constructed using Keras 2.8 (Python version 3.7). The input predictors in PB-CNN are used in these benchmark models for a fair comparison. Four
Phenology Imageries are stacked together and transformed into six vectors according to phenological stages as the input for LSTM, and one vector as
the input for SVR and RF. All model hyper-parameters are tuned based on the ten-fold cross-validation.

A-5. Evaluation of satellite-based Phenology product

The satellite-based phenology product provides pixel-level estimations of phenology stage transition dates, which are estimated using the
threshold-based method to characterize the timing of plant greenness and vigor change throughout its phenological cycle. Specifically, the greenup,
midgreenup, and maturity transition dates correspond to the timing when 15 %, 50 %, and 90 % of the amplitude of EVI2 time series are reached in the
upward direction, respectively. The peak greenness date is estimated via the timing of maximum EVI2 of the phenological cycle. The senescence,
midgreendown, and dormancy dates correspond to the timing when 90 %, 50 %, and 15 % of the amplitude of EVI2 time series are reached in the
downward direction, respectively. We evaluate the ability of the satellite-based vegetation phenology product in characterizing the soybean growing
stages using the ground-based CPRs. The CPRs document the proportion of soybean reaching certain phenological growing stages on a weekly basis
throughout the season at the state level. Specifically, we compare the medians of satellite-derived phenology stage transition dates (i.e., onset of
greenup, greenup midpoint, maturity, peak greenness, senescence, greendown midpoint, and dormancy) with the CPR-documented median dates of
soybean growing stages (i.e., emerged, blooming, setting pods, dropping leaves, and harvest stages) from 2008 to 2018 at the state-level for our study
site.

The state-level median dates of satellite-based phenological metrics and CPR-based soybean phenological measures throughout the study area are
both shown in Fig. 7. All the satellite-based phenological metrics are represented by solid lines, and CPR-based crop phenological measures are
represented by dashed lines in the figure. Overall, the satellite- and corresponding CPR-based median phenological transition dates exhibit compa-
rable variation patterns across years and states. The median dates of those phenological measures vary from year to year, with relatively earlier dates
in 2010 and 2012. The median dates also differ from state to state, with relatively earlier dates in Minnesota and South Dakota as well as later dates in
North Dakota. Across years and locations, the variations in the timing of soybean entering the phenological stages may be caused by a diversity of
weather conditions, soil conditions, and farming practices.

The CPR-documented soybean growing stages can be approximated by satellite-based phenological measures (Table 2). Specifically, the satellite-
based greenup/mid-greenup metrics can be connected to soybean’s emerged stage. The satellite-based maturity metric has implications for the
blooming stage of soybean. The timing of peak greenness metric aligns with the soybean setting pods stage. The mid-greendown metric can be
connected to the dropping leaves stage of soybean. The soybean harvest stage can be approximated by the satellite-based dormancy metric. For the
whole study area, the mean and standard deviation of the median phenological dates for both satellite-based and CPR-based measures from 2008 to
2018 are summarized in Table 2. Except for the soybean emerged stage, the median transition dates of all the other phenology stages can be aligned by
the corresponding satellite-derived metrics, with the mean difference less than 5 days and standard deviation less than 10 days.
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