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1. Introduction

In this paper, we develop sample-path large deviation principles (LDPs) for additive functionals of a Markov chain,
which is important in operations research (OR), namely, Lindley’s recursion. This Markov chain describes the wait-
ing time sequence in a single-server queue under a first in, first out discipline and under independent and identi-
cally distributed (i.i.d.) interarrival times and service times. We focus on the case in which the input is light-tailed;
that is the service times and interarrival times have a finite moment-generating function in a neighborhood of the
origin.

Whereas the model that we consider is vital to many OR applications and, therefore, important in its own right,
our main contributions are also fundamental from a methodological standpoint. We contribute, as we explain, to
the development of key tools in the study of sample-path large deviations for additive functionals of light-tailed
and geometrically ergodic Markov chains.

A rich body of theory, pioneered by Donsker and Varadhan in classic work that goes back more than 40 years
(see, for example, Donsker and Varadhan [9]), provides powerful tools designed to study large deviations for addi-
tive functionals of light-tailed and geometrically ergodic Markov chains. Roughly speaking, these are chains that
converge exponentially fast to stationarity and whose stationary distribution is light-tailed.

Unfortunately, despite remarkable developments in the area, including the more recent contributions in Kon-
toyiannis and Meyn [13], the prevailing assumptions in the literature are often not applicable to natural functionals
of well-behaved geometrically ergodic models, such as Lindley’s recursion with light-tailed input.

In particular, every existing general result describing sample-path large deviations of functionals of a process
such as Lindley’s recursion must assume the function of interest to be bounded. Hence, the current state of the art
rules out very important cases, such as the sample-path behavior of the empirical average of the waiting time
sequence in a single-server queue over large time scales. Our development allows one to study sample-path large
deviations for the cumulative waiting time sequence of a single-server queue. In particular, we provide methodo-
logical ideas that, we believe, will be useful in further development of the general theory of sample-path large
deviations for additive functionals of geometrically ergodic Markov processes. More precisely, our contributions
are summarized as follows:
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A. Let {Xi, k =0} follow Lindley’s recursion. Assume that the associated increments have a finite moment-
generating function in a neighborhood of the origin and the traffic intensity is less than one, and let f(x) = x” for
any p>0. We establish a sample-path large deviation principle for Y, (-) = Z,L:;{ f(Xx)/n as n — co with respect to
(w.r.t.) the M} topology on D[0, T] with a good rate function and a sublinear speed function, all of which are fully
characterized in Theorem 2.1. Though our result only pertains to a specific Markov chain, it can be extended to
more general stochastic recursions and diffusions; this will be pursued in future work. Related work, covering the
case of one-dimensional Langevin diffusions can be seen in Bazhba et al. [1].

B. We believe that our overall strategy for establishing Theorem 2.1 can be applied generally to the sample-path
large deviation analysis of additive functionals of geometrically ergodic Markov chains. Our strategy involves split-
ting the sample path into cycles, roughly corresponding to returns to a compact set (in the case of the Lindley recur-
sion, the origin). Then, we show that the additive functional in a cycle has a Weibullian tail. Finally, we use ideas
similar to those developed in Bazhba et al. [3], involving sample-path large deviations for random walks with Wei-
bullian increments for the analysis. The result in Bazhba et al. [3], however, cannot be applied directly to our setting
here because of two reasons. First, the cycle in progress at the end of the time interval is different from the rest. Sec-
ond, the number of cycles (and, thus, the number of terms in the decomposition) is random.

The sublinear speed of convergence highlighted in (A) underscores the main qualitative difference between our
result and those traditionally obtained in the Donsker—Varadhan setting. In our setting, as hinted in (B), the large
deviations behavior of Y, is characterized by heavy-tailed phenomena (in the form of Weibullian tails), which arise
when studying the tails of the additive functional over a given busy period. Our choice of f(-) underscores the frailty
of the boundedness assumptions required to apply the Donsker-Varadhan type theory. Note that, although f(-)
grows slowly when p = 0, just a small amount of growth derails the application of the standard theory.

The choice of topology is an important aspect of our result. In Bazhba et al. [3], it is argued that M is a natural
topology to consider for developing a full sample-path large deviation principle for random walks with Wei-
bullian increments. It is explained that such a result is impossible in the context of the [, topology in D[0, T].
Actually, to be precise, the topology that we consider is a stronger variation of the one considered by Puhalskii
and Whitt [17, 18], who introduced the M} topology in D[0, o) but in such a way that its direct projection onto
D[0, T] loses important continuous functions (such as the maximum of the path in the interval). The key aspect
in our variation is the evaluation of the metric at the right endpoint. The version that we consider merges the
jumps in the same way in which it is done at the left endpoint in the standard M) description. This variation
results in a stronger topology when restricted to functions on compact intervals, and it includes the maximum
as a continuous function. An important reason for using the M} topology is that it allows merging jumps. This
seems to be particularly relevant given that, in our setting, the large deviations behavior eventually merges the
increments within the busy periods.

In addition to the two elements mentioned in (B), which make the result in Bazhba et al. [3] not directly applica-
ble, our choice of a strong topology also makes the approach in Bazhba et al. [3] difficult to use. In fact, in contrast to
Bazhba et al. [3], in this paper, we use a projective limit strategy to obtain our large deviation principle. A direct
approach we explored, using the result in Bazhba et al. [3], consisted of replacing the random number of busy peri-
ods by its fluid limits (for which there is a large deviations companion with a linear speed rate). Then, we tried to
verify that this replacement results in an exponentially good approximation. This would have been a successful
strategy if we had used the version of the M} topology considered by Puhalskii and Whitt [17], but unfortunately,
such exponential approximation does not hold in the presence of our stronger topology.

The development of Theorem 2.1 highlights interesting and somewhat surprising qualitative insights. For exam-
ple, consider the case f(x) = x, corresponding to the area drawn under the waiting time as a curve. As we show,
deviations of order O(1) upward from the typical behavior of the process Y, (-) occur because of extreme behavior
in a single busy period of duration O(1'/?). A somewhat surprising insight involves the busy period in process at
time 7, which is split into two parts of size O(n'/?) involving the age and forward lifetime of the cycle (the former
contributes to the area calculations, whereas the latter does not). This asymmetry, relative to the other busy periods
during the time horizon [0, 1], which are completely accounted for inside the area calculation, raises the question of
whether a correction in the LDP is needed, because of this effect, at the end of the time horizon. The answer is no;
the contribution to the current busy period and the ones inside the time horizon are symmetric. This result is
highlighted in Theorems 2.2 and 2.3, which characterize the variational problem governing extreme busy periods.

There are several related works that deal with large deviations for the area under the waiting time sequence in a
busy period. But they focus on queue length as in Blanchet et al. [4] or assume that the moment-generating function
of the increment is finite everywhere as in Duffy and Meyn [10]. None of these works obtains sample-path results.
Instead, we do not assume that the moment-generating function of the service times or interarrival times is finite
everywhere. To handle this level of generality, we employ recently developed sample-path LDPs (Borovkov and
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Mogulskii [5, 6], Vysotsky [21]). This level of generality requires us to put in a substantial amount of work to rule
out discontinuous solutions of the functional optimization problems that appear in the large deviations analysis.

Another hurdle in developing tail asymptotics for the additive functional in a busy period (reported in Theorems
2.2 and 2.3) is the fact that the functional describing the area under the busy period is not continuous. To deal with
this, we exploit path properties of the most probable—in an asymptotic sense—trajectories of the busy period along
with the continuity of the area functional over a fixed time horizon. In particular, we rigorously show how to
approximate the area over the busy period (which has a random endpoint) with the area over a large, fixed horizon.
This is counterintuitive at first because the former approach allows one to remove the reflection operator. However,
the latter approach does not have a first passage time (which is a discontinuous function) as a horizon, and this
turns out to carry more weight. The proof of our sample-path LDP is provided in Section 3. Section 4 focuses on the
technical details behind deriving the tail asymptotics for the area under a busy period. The paper is closed with
three appendices covering auxiliary duality results for Markov chains (Appendix A), large deviations results
(Appendix B), and smoothness properties of our variational problem (Appendix C).

2. Model Description and Main Results

2.1. Preliminaries

We consider the time—homogeneous Markov chain {X,,n >0} that is induced by the Lindley recursion, that is,
Xp1 2 [X, + Uy1]t, n>0, and Xj = 0. Note that the random variables {U;,i > 1} are i.i.d. copies of a random vari-

able U such that u £ E(U) < 0. The state space of the Markov chain {X,,,n > 0} is the half-line of nonnegative real

numbers. We make the following technical but necessary assumptions.

Assumption 2.1. Let 0, and O_ be the supremum and infimum of the set {6 : E(e®Y) < oo}, respectively. We assume that
—00<0_<0<60; <oo.

Assumption 2.2. For 6+ and O_ in Assumption 21,
> — >
1 IOg P(U I’Z) ) li IOg P( u 71)

n—oo n n—oo n

Assumption 2.3. We assume that P(U > 0) > 0.
The purpose of this paper is to prove a sample-path LDP for Y, = {Y,,(t), ¢ € [0, T]}, where

1 Lt
Y, () & Zx te[0,1],

and p>0 is a fixed constant. We introduce basic notions that are used in the statement of one of our main results
(Theorem 2.1). First, we set a 2 1/(1 + p). Let D[0, T] denote the Skorokhod space: the space of cadlag paths from
[0, T] to R. We sometimes also consider the space D[0, o) of cadlag paths from [0, c0) to R.

Let 7y, denote the Mj Skorokhod topology, whose precise definition is provided subsequently. Unless specified
otherwise, we assume that D[0, T] is equipped with 7, throughout the rest of this paper.

Definition 2.1. For & € D[0, T], define the extended completed graph I'"(£) of & as
I'(&) £ {(w, ) eRX [0, T]:u e [£(t—) A &(1), E(t—) v EOD]},

where £(0—) £ 0. Define an order on the graph I"(&) by setting (u1,t1) < (up,t2) if either t; < t or tj=t, and
|E(t1—) —ua| < |&(f2—) — uz|. We call a continuous nondecreasing function (u, ) = ((u(s), t(s)), s € [0, T]) from [0, T
to I'"(&) a parameterization of I'"(&) if I (&) = {(u(s), (s)) : s € [0, T]}. We also call such (u, t) a parameterization of &,
and we denote the set of all parameterizations of & with IT'(&).

Definition 2.2. Define the M] metric dy;; on D as follows

dw(£,0) & inf (o Ul = lloo 11 = rllo -
(v, r;EH (Z

We say that £€D[0,T] is a ?ure jump path if &= 37", x;1, 1} such that x; € R and u; € [0, T] for each i >1 and

the u,’s are all distinct. Let D¢ [0, T] be the subspace of D[0, T] consisting of nondecreasing pure jump paths that

assume nonnegative values at the origin. Let BV[0, T] be the subspace of D[0, T] consisting of paths with finite

variation. Every & e€BV[0,T] has a Lebesgue decomposition with respect to the Lebesgue measure. That is,
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E=EW 1+ &9 where £@ denotes the absolutely continuous part of &, and &9 denotes the singular part of &. Sub-
sequently, using Hahn’s decomposition theorem, we can decompose & into its nondecreasing singular part &*
and nonincreasing singular part £&@ so that £ = £ 1 £@_ Without loss of generality (w.l.0.g.), we assume that
E9D(0) = £(0) = £9(0) = 0. We sometimes also consider BV[0,): the subspace of D[0,c0) consisting of paths
that are of bounded variation on any compact interval.

2.2. Sample-Path Large Deviations B

In this section, we present the sample-path large deviation principle for Y, and the main ideas of its proof. We
start with a few definitions. Let W be the reflection map defined by W(&)(t) & &(t) — infsefo, 1{&(s) A 0}, VE>0.
Define 7(£) £ inf{t > 0: W(£)(t) = 0}, B, 2 {£ € BV[0,00): £(0) =y, [l “'W(&)(s)'ds = 1}, and A*(y) 2 supyep {6y —
log E(e?Y)}. Set

0

T(&) .
() & { NG ($)ds +0,£(T(©) +0_EV(T() if £0) =y and & € BV[0,e0),
) otherwise,

and denote with B the optimal value of the variational problem

B, 4 ?‘é I,(&). (B,)

Similarly, denote with B, the optimal value of the variational problem

. A .
B = ye[o,i?)fzezs/{ﬁ y+ 4L (Br)

where B £ sup{0 > 0: E(¢?Y) < 1} is the decay rate of the steady-state distribution 7 of the reflected random walk
(see Result B.2). Note that § < 0., and f is strictly positive in view of Assumption 2.1 and the assumption that
p < 0. Note also that B;, = inf,c[o,c0){fy + B;}.

Let To 2 0 and T; £ inf{k > T;_1 : X; = 0} for i > 1, and subsequently, define A £ E(ZI»T;1 X")/E(T1). Define DY
[0,T] £ {£€D[0,T]:&(t) = At+C(t), Vte[0,T], Ce DT@O [0, T]}, that is, the subspace of increasing paths with slope
A and countable upward jumps. Recall that o =1/(1 + p).

Theorem 2.1. The stochastic process Y, satisfies a large deviation principle in (D[0,T], 7T, m;) with the speed n® and the
rate function Iy : D[0, T] — R, defined as

By Y (@n-ct-)* if CeDW[0,T],
K(Q) & EC(D#L(t-) (2.1)
00 otherwise.

That is, for any measurable set A,

log P(Y, € A) < lim sup log P(Y, € A)
nll/ -

_ 1£10f1y(5) < hglrl)glf n st "

< —inf Iy(&). (2.2)
A

The full proof of Theorem 2.1 is deferred to Section 3. The strategy relies on a suitable representation for Y, using
renewal theory, which is presented next. The sequence {T},j > 1} induces a renewal process {N(t),t > 0} defined by
N(t) £ max{k >0: Ty < t}, t > 0. We decompose the process Y, as follows. For fixed t > 0,

i 1 N(nt) T; ) 1 [nt] .
Yo(t)=- Z ‘_Z X[+ i > X, (2.3)
j=1 i=Tj_1+1 =T +1

with the convention that ZILZ%M X" is zero in case the superscript |nt] is strictly smaller than the subscript T
We introduce some notation for the analysis of Y,,. Define

o 7; 2 T; —Tj_1,j > 1, the interarrival times of the renewal process N.
o W; 2 ETj X%,j =1, the area under X? during the jth busy period of X,,.

i=Tf,] +1
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o Z,(H2l ZN('") Wj, t €[0,1], the aggregate process (excluding the last regeneration cycle).
e R ()&l ZIL”%I(”) " Xf ,t €[0,1], the process that equals Y, during the last regeneration cycle.
o 1_/,, é ZZ Taon+1 X?, the area under X! during the last regeneration cycle.
e S, ()2 V 11)(t), the process with one jump, which aggregates the area under Xp during the last regenera-
tion cycle.

We often refer to the functions associated with these quantities by dropping the argument; for example, by writ-
ing R,,, we refer to {R,(t),t € [0, T]}. The strategy to prove our main result, Theorem 2.1, builds on tail estimates for
W; and V,,, which are presented in Theorems 2.2 and 2.3. Using Theorem 2.3, we derive an LDP for S, in Lemma
3.1. For the LDP of Z, in D[0, T], we start by obtaining an LDP for the finite projections of Z,, in Lemmas 3.2-3.4.
Then, the finite-dimensional LDP is lifted in the standard projective limit to the pointwise convergence topology in
Lemma 3.6 and, finally, extended to the M topology using the continuity of the identity map in the subspace of
increasing cadlag paths in Lemma 3.7. In the last step, we infer an LDP for Z,, + S,, through the use of a continuous
mapping approach, and hence, we obtain the LDP for Y.

For the sample-path LDP of Y, we prove the exponential equivalence of Y, and Z,, + S,, in Lemma 3.8 by con-
sidering the M distance of Y, with the aggregate process Z, and the last regeneration cycle R, pushed to
the end of the time horizon. Consequently, the LDP of Y, is deduced because of the LDPs of S, and Z,, in
(D0, T1, Tny)-

Before embarkmg on the execution of this technical program, it is worth commenting on the role of R, because
this element allows us to expose the importance of a careful analysis involving the area during a busy period. As
mentioned in the introduction, one may wonder if the contribution of R, may end up counting differently in the
form of the LDP. The typical path for Y, is a straight line with drift equal to the steady-state workload. Our develop-
ments indicate that most likely large deviations behavior away from the most likely path occur because of isolated
busy periods that exhibit extreme behavior. For example, in the case p =1, substantially extreme busy periods (lead-
ing to large deviations of order O(1)) have a duration of O(n'/?) and exhibit excursions of order O(1!/?), therefore
accumulating an area of order O(n).

Each busy period, including the one in progress at the end of the time horizon, contributes the same way in the
rate function. This follows from Theorems 2.2 and 2.3, but may be somewhat remarkable. The reason is that, when
the cycle in progress at the end of the time horizon is extreme, its duration is of order O(n'/?). This suggests that the
remainder of the cycle is also of order O(1'/2). It turns out that this long time duration has no significant contribu-
tion to the total area: whereas the remainder of the cycle in progress may be large, the position of the chain is actu-
ally of order o(n/2) from the end of the time horizon, so the total contribution to the area of the remaining portion
of the cycle is negligible. This calculation is exposed in Proposition 4.3, and a time-reversal argument is given in
Appendix A.

2.3. Busy Period Asymptotics

It is clear that a large deviations analysis of the area under a busy period is indispensable for deriving the
sample-path LDP of Y, in Theorem 2.1. Our next two theorems provide the asymptotic estimation for the tails
of Wy and V,,, showing that they exhibit Weibull behavior. We discuss their statements and defer their proofs to
Section 4.

Theorem 2.2. Recall that Wy = ,{;1 Xf and o =1/(1 + p). It holds that

tlimtlalog P(W, > ) = — B, (2.4)

For V,, our analysis points to Weibull-like asymptotic behavior similar to W, except that the prefactor associated
with V), is BB, (instead of 3;). It turns out that (see Proposition 4.3) the prefactor 5;, is equal to ;. This leads to the
conclusion that every busy period, including the one in progress at the end of the time horizon, has the same tail
asymptotics.

Theorem 2.3. For the area of the last busy period, we have the following tail asymptotics: for any b > 0,

lim ;—alog P(V, >nb)=—-B;-b". (2.5)
n—oo

The tail asymptotics for Wy and V,, are derived using a recently developed LDP for random walks with light-tailed
increments from Borovkov and Mogulskii [5, 6] and Vysotsky [21]; compare this with Result B.3. Specifically, the
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tail proboability of W; can be written as the tail probability of the image CI)(K:) of the unrestricted scaled random
walk {K,.(t),t € [0, T]}, where K%(t) £ y + 1K, K, 2 32", Uj, and the functional ® is defined as (&) £ [7(w
(&)(s))’ds. Note that @ : D[0,00) — R, is not continuous, and hence, the proof for the tail asymptotics of W gets
more involved than simply applying the contraction principle. We derive large deviations upper and lower bounds
and show that they coincide.

For the upper bound, we replace the hitting time T; with a sufficiently large value T. This enables us to study the
area of X,, over the finite time horizon [0, T]. For T large enough, we show that the area of the reflected random
walk over the whole time horizon [0, T] serves as an asymptotic upper bound for W; (see the proof of Proposition
4.2), and it is expressed as a functional of K, (see Lemma 4.6). This functional is shown to be uniformly continuous
in the M topology on level sets of the rate function associated with the LDP for K, (cf. Lemma 5.2). Invoking Result
B.3, recently established in Vysotsky [21], we get a large deviation upper bound.

For the lower bound, we confine the functional of the area under the busy period over a fixed time horizon by
imposing an extra condition; see the proof of Proposition 4.2. Subsequently, we exploit some regularity properties
of a variational problem associated with the lower bound to show that 5y has the same optimal value as the varia-
tional problem associated with the large deviation upper and lower bounds. We have organized the presentation in
such a way that analytic details associated to variational problems are gathered in Section 5.

For V,,, we follow the same approach with some slight modifications. In order to carry out our analysis for V,,, we
associate the tail of V,, with the tail of W; through Lemmas A.1 and A.2. In particular, we prove that

lim log Po(V,, > nx) - lim log P.(W; > nx).

n—00 ne n—00 ne

To show this, we also rely on Nuyens and Zwart [16, result B.2], describing the asymptotic behavior of the invariant
measure 7. Finally, we repeat similar steps as in the analysis of W;.

The constant B3, appears in all our theorems and is the solution of a variational problem. We show in Proposition
4.1 that B;, € (0, c0). This property is all that is needed for our main sample-path large deviations results. Neverthe-
less, it is of interest to compute B;,. This can be done by solving a suitable variational problem, which, in turn, is typ-
ically done using the associated Euler-Lagrange equations. However, for the Euler-Lagrange equations to
characterize the solution, it must be shown that an optimizing path &* exists that is sufficiently smooth, that is, not
just absolutely continuous, but differentiable with continuous derivative. In general, showing a priori sufficient
smoothness of an optimizer is a nontrivial task, but we explain how to execute this for the case p=1, using a frame-
work presented in Cesari [7]. The details can be found in Appendix C.

3. Proof of the Sample-Path LDP

In this section, we prove Theorem 2.1. For notational convenience, we take T =1 throughout this section. We begin
our analysis with a lemma that establishes the large deviations behavior of the area under the busy period active
at time n. To this end, define D[0,1]' £ {& e D[0,1]: & = x1yy for some x > 0}. Recall that S, =1V, 14y and V, =
Z:‘i—TN +1 X?

=T

Lemma 3.1. S, satisfies the LDP in (D[0, 1], 7, Mi) with the speed n® and the rate function Is : D[0, 1] — R, where

o+ a . <1
ey { ByC() - C0-)" fCeploa]®, -
o0 otherwise.

Proof. Define a function Y : R, — D[0,1]% as Y(x) £ x- Lgy. Then, S, =Y (1V,), and it is straightforward to see
that Y is a continuous function w.r.t. the M] topology. Therefore, the desired LDP follows from the contraction
principle if we prove that 1V, satisfies an LDP in R, with the sublinear speed n* and the good rate function
Iy : Ry — R, where Iy(x) £ B -x*. To prove the LDP for 1V,, note first that P(1V, €) is exponentially tight
(w.r.t. the speed n®) from Theorem 2.3. Therefore, it is enough to establish the weak1 LDP. For the weak LDlP, we
start with showing that, for any a,b €R, B £ (a,b) N R, satisfies lim supn_mw =1lim infnﬁmw
Because this holds trivially with value —co if 0 > b or a > b, we assume that 0 v a < b. Note that, from Theorem 2.3,

log P(%V,, € B) log P(%Vn >0v a)

lim sup < lim sup < -By-(0va)

[ o
n—oo n n—00 n
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For the lower bound, note that Theorem 2.3 implies that P(1V,, > b) /P(1V,, >0 va+e€) — 0 for any € > 0. There-
fore, we obtain

log P(1V, €B) log(P(1V,>0va+e) —P(1v,>b))

lim inf > lim inf
n—00 no Nn—00 na
1 _P(RVizb)
loge P(LV, >0va+e)(1- RV S0vd)
> lim inf
n—oo na
log P(lV,>0va+
= lim inf—2 G o va e)z—Ba.(Ova+e)a.

Taking € — 0, we see that the limit supremum and the limit infimum coincide. Because {(a,b) "R, :a,beR, a <
b} forms a base of the Euclidean topology on R, Dembo and Zeitouni [8, theorem 4.1.11] applies and, hence,
proves the desired weak LDP with the rate function Iy. This concludes the proof.

We next work toward a sample-path LDP for Z,,. We employ a well-known technique based on the projec-
tive limit theorem by Dawson and Gartner; see Dembo and Zeitouni [8, theorem 4.6.1]. The following three
lemmas lead to the first key step in this approach, which consists of obtaining the finite-dimensional LDP
for Z,,.

Lemma 3.2. Forany given 0=ty < t; <ty <-- <t let Aty 2 t;—t; 1 fori=1,...,k. Then,

1 N(nty) N(nty) k
lim sup—log P Z W;2nay,..., Z Wi2na, | < -8B (Z(ai — /\Ai,-)i) , (3.2)
=00 =1 j=N(nt_1)+1 i=1
N(nty) N(nt)
lim mf—logP S Wiznay,..., Y Wiz |z-B <Z(al AAL; )+> (3.3)
j=1 j=N(nti_1)+1

where (x), = x v 0.

Proof. Recall that 7; =T; — T;_1, where T, is the jth hitting time of zero. Fix an arbitrary € >0 and let El(")(e) =
n[l;,u;], where I; 2 t;/Et; — € and u; £ t;/E7; + €. We use this notation throughout the proof of this lemma. For
the upper bound in Equation (3.2), note that

N(ntl) N(”tk)

k
Z Wi >nay,..., Z W;>na | < ZP(N(nti) ¢ EE”)(E))
=1 i=1

]':N(I’ll’k,l)-%'l

=0

N(nt;) N(nty)
+P Z W;znay,..., Z W; > nay, N(nt;) € Eg”)(e)for i=1,...,k
j=1 j=N(nt_1)+1

=(11)

Note also that 7, is light-tailed because P(t; k) =P(3X)_, U;20,j=1,...,k) < P(LYF, U;>0), and P(1 3},
U; > 0) decays at a geometric rate as k — co because of our assumptions that EU; < 0 and 0, >0 along with
Cramér’s theorem. Moreover,

{N(nt;) ¢ E"} = {N(n(l; + €)Et1) < [nl;1} U {N(n(u; — €)Ety) > [nu;]}

S +e) Zr"”]’f, n(u; — €)
g{ T T Rl G I P i T 6
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Therefore, again, by Cramér’s theorem,

lim supM =-

nSup— (3.4)
Shifting our attention to (II),
N(nty) N(nty)
P Z Wi zna,..., Z W; > na, N(nt;) € El(.”)(e)for i=1,...,k
j=1 j=N(nt_1)+1

Lt /Eti+e)] Ln(te/Et1+€)]

IN

P
ir=[n(t; /Et1—€)] ix=[n(ty/Et1—€)]

ik
Wi2nay, ..., Y W;=na, Nint)=iforl=1,..k
j=1 j=ixa+1

|n(t1 /ET1+€)] |n(ty/Eti+€)] i
Wi zna, ..., Z W; > nag |1(iy < - < iy)
j=1 Jj=ik1+1

IA

P
i=[n(t1/Eti—€)]  i=[n(ty/Et1—€)]
[n(t1/Eti+e)] [n(tx/Eti+e)] i i
Wj>nay | - P Z W; 2 nay
j=1 j=i1+l

Il
=

i1=[n(t; /Et1—€)] ix=[n(ty/Et1—€)]

|n(t1 /Et1+€)] |n(ty/Eti+€)]
(2en)* P Z Wiznay | - P Z W; 2 nay
j=1 j=In(t1/Et1—€)]

IA

Now, we have that, from Result B.1 and Theorem 2.2,

1 k 1 Ln(ti/Ety+€)]
lim supﬁlog(ll) Zlim supﬁlog P Z W; = na; | +lim sup

log(2€n)k
oo P n—00 j=[n(ti-1/Et1—€)] e "

IA

k
—BBZ(QI' — /\(Ai’i + 2€E’C1))i.

i=1

IA

Taking € — 0, we arrive at
1 k
lir?_)?pn—alog(ll) < —86;(11,- — AAR)S. (3.5)
In view of (3.4) and (3.5),
N(Vll‘l)fl N(l’lti)fl N(‘rltk)fl

) 1
lim supn—alogP g Wi zna,..., E Wi = nay, ..., E W; = nay
n—0c0 =1 j=N(nt;_1) j=N(nt_1)

k
< max{lim sup log(I), lim sup loiﬁ} < —862(111» — AAR)S.
i=1

a
n—o0 n n—-oo
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For the lower bound in Equation (3.3), notice that

N(nt;)—1 N(nt;)—1
P W; > nay, ..., Z Wi > nay
j=1 j=N(nt;_1)

N(Tlﬁ)*l N(Tlfk)fl
Wi > nay, ..., Z W; > na, N(nt;) € Ez(")(e)for i=1,...,k
j=1 j=N(nty_1)

[n(t1/Et1—€)|-1 [n(t/ET1—€)]-1
Wi >nay,..., Z W; > nag, N(nt;) € Ef")(e) fori=1,...,k
j=1 j=[n(t—1/Et1+€)]

>P (
[n(t JET1—€)]—1 [n(ty/Eti—e)]-1
P W;>nay, ..., Z W; > na; | —(I)
j=1 j=In(t—1/Et1+€)]

[n(t1/Et1—€)]-1 [n(t;/ET1—€)]-1

k
> na HP Z W; > na; | —(I)

W;
j=1 i=2 j=[n(ti_1/Et1+€)]
|n(t;/Et1—€)]—1 k |n(ti/Eti—e€)]—[n(ti-1 /ET1+€)]
=P W; > nay | [P > W; > na; | —(I). (3.6)
=1 i=2 =1

=(IIT)

From Theorem 2.2, Result B.1, and (3.4), we get (IH) — 0 as n — oo. Therefore, (3.6) leads to

1 N(nt;)—1 N(nty)—1
liﬂglfﬁlogP W;>nay,..., Z W > nax
=1 j=NGntx 1)

N @ |
> - )= il
> hi& g\f T log{ (1II) (1 (III)) } lll’lll g1f po log(11I)

k
=_ B(*)Z(ai — A(At; — 2€E1y)).
i=1

Taking € — 0, we arrive at (3.3) concluding the proof.
. N(nt) N(nt)
Our next lemma establishes the LDP for (;; 35" W, . =Nt 11 Wi i)
Lemma 3.3. For any given t = (ty,...,t) such that 0=ty < t < - < tx < 1, the probability measures 1, of (1 Z}i(l" 1)

Wi,..., 1 ]N%Zq)tk D4 W;) satisfy the LDP in RX w.r.t. Euclidean topology with the speed n* and the good rate function
k

I :RE SR,

k
. =AM if x> AAL, Yi=1,...
LG x) 2 BO;(xl AAE)Y if x; = AAE, Yi=1,...k, (37)

) otherwise.

Proof. Note that it is straightforward from (3.2) of Lemma 3.2 to see that (1 ZN("tl) W;, .. ]I\]%E’;l)tk ) W) is ex-
N(nt1)

ponentlally tight by considering compact sets ]_L 110, a;] for sufficiently large a;’s. Also we claim that (1 Z] 0

Wj,..., 5 ]I\](gikn)tk D+ W-) satisfies a weak LDP. Once this claim is established, Dembo and Zeitouni [8, lemma

1.2.18] applies, showing that the full LDP is satisfied.
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Now, to prove the claimed weak LDP, we start by showing that

lim suplogfll# = lim inflog;;# (3.8)
n—oo 1100
AT, £La

foreveryAe A & {Hle((a,', b)) NRy): a; < b;}. Let

k
—ByY (@i — AAL)S if bz AAtifori=1,...k,
i=1
—00 otherwise.

Lq2

We prove (3.8) by showing that £4 < L4 < L4. We consider two cases:
Case1:b; > AAt; fori=1,...,k.
Case 2: b; < AAt; forsomeie€{1,...,k}.
Let A £ Hle((ai,bi) NR;)and a;<b; fori=1,...,k We start with case 1. Because A C Hle [a;, b)),

B 1 Ni(nt;) N(nty) k
La < lim supﬁlog P Z W 2nay,..., Z Wjzna | < —BBZ (a; — AAL)Y = La, (3.9)
n—oo j=1 j=N(nt;_1)+1 i=1

where the second inequality is from (3.2). Because Hle [a; +¢€,b;) C A for small enough e >0,

N(nt1) N(nt)

L‘Azliﬂglf%bgP<< Zw, e > w>eH[a,+eb)>

j=N(nte_1)+1

N(nh) 1 N(nty)
>11nm_“1>£1fn—log ZW >a1+€,...,— Z Wi >ar+e

nj:N(ntk,1 )+1

k N(nt;) N(nt;)
—ZP( Z Wjzna; Vi#l, Z Wjanl>}
j

=1 \j=N(ntr_1)+1 j=N(nt_1)+1

N(ntl) 1 N(nty)
>hm1nf—logP ZW>a1+e o > Wisa+e

noeo j=N(ih1)+1

NGt o)
Sl P (RS e Wiz aike Vi L 1S, W2 h)

+lim mf—log 1-— — . (3.10)

—00 N NI
" ne P(azj:(lntl) Wi>ar+e,..., 0300 %ﬁjl)tk a Wi >ak+e)

Note that, because of the logarithmic asymptotics of Lemma 3.2, for every l € {1,...,k},

1N~N(nt;) ; 1<—N(nt)
RIS, o Wiz g +eforie{l, . kL 1N, Wi>h)

—0,
P(nZN("tl)W >a+e€, .. ]I\](;\/l]?;’l)tk Wi >ak+e)
and hence, the second term of (3.10) disappears. Therefore,
log P( ZNW”W >a+e€, .. ]N(ﬁi;)tk Wi >ak+e>

L4 > lim inf
- n—00 no

k
> —By) (ai+e—AAL)".
i=1

Taking € — 0, we arrive at L4 > L4, which, together with (3.9), proves (3.8) for case 1.
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For Case 2, note that, by Result B.1,

_ 1 N("tz)
La < lir:lillpn—alog P | Z Wi < nb; | = —oo,
j=N(nt;_1)+1
andhence, L4 = L4 = L4 = —c0.
Now, note also that
Ie(xq, ..., x) =sup{—La: A A (x1,...,x) € A}. (3.11)

Because A is a base of the Euclidean topology, the desired weak LDP follows from (3.8), (3.11), and Dembo and
Zeitouni [8, theorem 4.1.11]. O

The following is an immediate corollary of Lemma 3.3.

Lemma 3.4. For any given t = (t1,...,t) such that 0 =ty < t; < --- < t < 1, the probability measures (u,,) of (%Z;I\:I((;ltl)
wi,..., 1 ].Ii((?tk) W;) satisfy an LDP in RX with the speed n® and with the good rate function I : RX — R,

Iy

k
A BBZ(X, —Xi_1— AAti)a lf X; — Xi_1 = AAL;, fOT i=1,...,k
i=1

Li(xy, ..., x0) & (3.12)

00 otherwise.

Proof. The proof is an application of the contraction principle (Dembo and Zeitouni [8]). To this end, consider
the function f : R’fr — R’fr,f(xl,xz, o, Xk) 2 (x,x1 +x2,...,x1+ - +x;). Notice that

N(nt) N(nty) N(nt1) 1 N(nt)

1 1 1
;;w-,...,E;wj =f E;W»,...,; oW,

j=N(nte_1)+1

where fis a continuous function. That is, (%Z;\:’(g’tl) w,..., 1 ]ﬁ(g't") W;) satisfies a large deviation principle with the
rate function I¢(yy,...,yx) =inf{le(x1,...,x0) 1y =f(x1,...,x)}. However, because (yi,...,yx) =f(x1,...,xx), it is

immediate thaty; < y, < -+ < y;. Therefore,

k
. B i — i1 — AAE)Y ifyig —y; 2 AAt fori=1,...k,
It(ylz---ryk)= o;(yr Vi 1) Vi1 —VYi i

00 otherwise. O

Now, for a path £ e D[0, 1], let

By Y. () -&t-)” if EeDWo,1],
I(é) & EE(DFE(-) (3.13)
00 otherwise.

Because Z, satisfies a finite-dimensional LDP, we can show that the Dawson-Gartner projective limit theorem
implies that Z,, satisfies an LDP in D[0, 1] endowed with the pointwise convergence topology. The next lemma veri-
fies that the rate function associated with the LDP of Z,, is indeed I.

Lemma 3.5. Let T £ U {(t,. . k)10 <ty <ty <= <ty <1} be the collection of all ordered (in the increasing
order) finite subsets of [0, 1]. Then,

sup Ii(&(h), ..., &) = I2(E).

teT

Proof. The proof is essentially identical to the proof of Gantert [12, lemma 4] and, hence, omitted. O

We derive the sample-path LDP for the stochastic process Z, w.r.t. the pointwise convergence topology, which
we denote with W. Recall that DY[0, 1] denotes the subspace of increasing paths with slope A.

Lemma 3.6. The stochastic process Z, satisfies a large deviation principle in (D[0,1], W) with the speed n® and the good
rate function Iz.
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Proof. This is an immediate consequence of the Dawnson and Gartner projective limit theorem, (Dembo and Zei-
touni [8, theorem 4.6.1]) and Lemmas 3.4 and 3.5. O

Next, we establish the sample-path LDP for the stochastic process Z,, in (D[0, 1], Zy).

Lemma 3.7. The stochastic process Z, satisfies a large deviation principle in D[0,1] w.r.t. the M topology with the speed
n“ and the good rate function I.

Proof. For the upper bound, consider a set Ky; £ {& € D[0,1] : &is nondecreasing, £(0) >0, |||l < M}. Let F be a
closed set in (D[0, 1], 7; Mi)‘ Then,

lim sup—log P(Z,€F) < hm sup—log{P(Z €FNKy)+P(Z, €K}

n—oo

j=1

N(nt)
< lim sup—log{P(Z,Z EFOKM)+P(ZW >M> }

From Bazhba et al. [3, proposition A.2], one can check that pointwise convergence in K, implies the convergence
w.r.t. the M} topology, and Ky (and, hence, F N Ky as well) is closed w.r.t. 7yr,. Suppose that ¢ is in the closure
of F N Ky w.r.t. W. Then, because of the aforementioned properties of Ky, there exists a sequence of paths {&,,}
in F N Ky such that &, —» & w.r.t. 7; M, which, in turn, implies that & € F N Ky;. That is, F N Ky is closed in W as
well. Now, applying the sample-path LDP w.r.t. W we have proved in Lemma 3.6, and then picking M large
enough,

1 = . . .
lim supn—alog P(Z,€F) < max{—éE%rAg(M I7(&), —BOM} = —§€1F%JIF<M I7(&) < _Erelzf I7(&).

Moving on to the lower bound, let G be an open set in (D[0, 1], TM/) We assume that I(G) < oo because we have
nothing to show otherwise. Fix an arbltrary £eGNDW(0,1], and let k be such that an open ball of radius 14
around ¢ is inside of G. That is, By, (&) 2 {CeD[0,1]: dw (£,0) < L1 € G. Note that, because & € DW[0,1]

and Z, is nondecreasing, {|Z, (z/k) EG/R)| < 1/k, fori=0,...,k} € {Z, € By (£;54)}. Therefore, in view of
Lemma 3.4,

hm 1nf—log P(Z,€G)> hm mf—log P(Z € By (5, ! —;; A))
> lim inf%log P(|Z,(i/k)—&(@i/k)| < 1/k, fori=0,...,k)

= — . inf jt(yll cee /yk)
(1, ,yk)enizl(é(i/k)—l/k/ E(i/k)+1/k)

k
> By S (&0 — &G - 1)/0) — AR
i=1

—ByP T (E() = &) = —I().

EE()#E(E-)

Becaue & was an arbitrary element of G N ID)(’\)[O, 1], we arrive at the desired lower bound:

1 _
—inf I7(&) = — inf I7(&) < liminf—log P(Z,, € G). O
&eG 2(8) £eGnD™0,1] 2(¢) n—oo p& g P(Zn )

Our next lemma shows that Z,, + S, is exponentially equivalent to Y,.

Lemma 3.8. Y, and Z,, + S, are exponentially equivalent in (D[0,1],7; M;)-
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Proof. Because of the construction of Y,,, Z,,, and S,,, we have that, for any 6 > 0,
{dMi (7,,,7,, + gn) > 5} Cc {(1’1 — TN(,,))/i’l > 6} U {3] < N(Tl) LT > 7’[6} (314)

To bound the probability of the first set, define D, (e) £ {N(1n)/n > 1/Et; — €} for any € > 0 and notice that P((n —
TN(n))/Vl >0) = P(TN(n) <n(l1-9))= P(TN(H) < n(1-9),D,(€)) + P(TN(,,) <n(l-9), Dn(e)c), and hence,

lim sup—log P((n — Tnw)/n = 0)

n—o00

< lim sup—log{P(TN ) < n(1—0),Dy(e)) + P(Dnule))}

n—oo
= max{lim supnl—alog P(Tn@y < n(1—0),Dy(e)), lim supnl—alog P(Dn(e)c)}. (3.15)

Letting € < 0/(2Et;), we see that, from the same argument as the one preceding (3.4),

lim sup—log P(Tn@y < n(1—0),D,(e)) < lim sup—log P( [n(—) | <n(l- 6),Dn(e)>

n—o0 n—00 E7q

=lim sup%log P <N(n(1 —0)) = {n <];c — E)J , Dn(e)>
n—00 1

= —O090.

Using the definition of a renewal process and Cramérs theorem, we obtain

lim sup%log P(D,(e)) = —oo. (3.16)
Therefore,
lim sup—log P((n — Tnew)/n > 0) = —oo. (3.17)
n—00

Moving on to the bound for the probability of the second term in (3.14), for any € > 0,

P({3j < N(n):1;2n0}) =P(3j < N(n):7;2n6,N(n)/n < 1/Et1 +€) + P(N(n)/n>1/E1| +€)
< P(Fj < [n/E(t1) +nel: 1, 2 n0) + P(N(n)/n > 1/Etq +¢€)
< [n/E(t1) + nelP(t1 > nd) + P(N(n)/n > 1/E1; +€).

Because P(t; > n6) and P(N(n)/n > 1/Et; + €) both decay at an exponential rate,

lim sup—log P({3j < N(n):1; 2 nod}) =

n—oo
This, along with (3.17) and (3.14), proves the desired exponential equivalence. O
Now, we have all the necessary components to prove Theorem 2.1.

Proof of Theorem 2.1. The preceding sequence of lemmas has resulted in LDPs of Z, (Lemma 3.7) and S,
(Lemma 3.1). Because Z, and S, are independent, (Z,,S,) satisfies an LDP in H D[0,1] with the rate function
I75(C,&) & IZ(C) +I5(&); see, for example, Ganesh et al. [11, theorem 4.14].

Let ¢ : Hl 1 D[0,1] — D[0,1] denote the addition function ¢(&,C) =&+ C. Because ¢ is continuous on (&,C) as
far as £ and C do not share a jump time with opposite directions (which follows from a straightforward modifica-
tion of Bazhba et al. [2, lemma B.1]), ¢ is continuous on the effective domain of Iz s. Let Iw(C) £ inf{lz, s(&1, &) :
C=&1+&,& € DW [0,1], & € DSY0, 1]}, and note that it is straightforward to check that I}y =1Iy. By the extended
contraction principle (see Puhalskii and Whitt [17]), we conclude that Z. + S, satisfies the sample-path LDP with
the rate function Iy.
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We now prove the large deviation upper bound. Let F be a closed set w.r.t. the M} topology, and let F. £ {£ €
D[0,1] : dur (&, F) < €}. Then,

lim sup—log P(Y,€F)

n—oo

= lim sup—log{P(Y €F, dw (Yn,Z,+S,) <e)+ P(dwm, (Y, Z,+S,) >e€)}

n—oo

< lim sup—log P(Z,+S,€F.) < — mf Iy(Q),

n—o0

where the first inequality is due to Lemma 3.8. Note that lim._,¢ infser, Iy(C) = infser Iy(C), because Iy is good w.r.t.
T, (see Bazhba et al. [3, proposition A.3]). The desired large deviation upper bound follows by taking e — 0.

For the lower bound, let G be an open set in Ty;. We assume that infeec Iy(&) < oo because the lower bound is
trivial otherwise. For any given € > 0, pick C€ G such that I (0) < infeeg Iy(€) +€. Let 6> 0 be such that By, (C,26)
€ G. Then, we know from Lemma 3.8, P(d(Y,,,Z,, +S,) < 0)/P(Z, +S, € Bwm; (C,0)) — 0, and hence,

lim infnl—alog P(Y,€G)

> lim inf%log P(Zy + 5 € Bu (C,0), d(Y, Zos + 5) < 0)

>lim 1nf—log P(Z,+S, € Bwm; (C,0))

n—oo

| PE(YV.,,Z,+5,) <)
P(zn + §n € BM% (C/ 6))

= lim inf%log P(Z,+S, € B (C,0))

> i > > —i -
> 56814{11&/6) (&) > -Iv(0) > gelé Iv(&) —e.

Taking € — 0, we arrive at the desired lower bound. O

4. Tail Asymptotics for the Area of a Busy Period

Our focus in this section is on proving Theorems 2.2 and 2.3. In Section 4.1, we collect several analytic properties of
key variational problems related to these theorems. The proofs of these analytic properties as well as some other
analytic results are deferred to Section 5 to keep the focus of this section on probabilistic arguments as much as pos-
sible. In Section 4.2, we state two key propositions (Propositions 4.2 and 4.3), which are applied to providing the
proofs of Theorems 2.2 and 2.3. The rest of this section is devoted to the proofs of Propositions 4.2 and 4.3. The focus
is again on probabilistic ideas; the substantial number of additional analytical arguments that are directly needed
are stated as lemmas of which the proofs can be found in Section 5.

4.1. Key Auxiliary Variational Problems and Related Properties
Recall that B4 = B, N AC[0, o). Our first lemma establishes that the infimum defining B,, taken over paths of
bounded variation, can be confined to absolutely continuous paths. Its proof is given in Section 5.1.

Lemma 4.1. Recall that B, is the optimal value of the variational problem ().
i Lety = (Jul(p+1))~ For any y >y, there exists a path & € BACC so that I,(&") = 0 and B}, = 0.
ii. Foranyy>0, B, = 1nf§€Bf;c 1,(8).

We provide the proof of the following proposition in Section 5.2. It facilitates the proof of Proposition 4.3, which
is a key result for the tail asymptotics of Wy and V..

Proposition 4.1. The optimal value B, of (B,) satisfies the following properties:
i. y > B, is nonincreasing iny, y € [0 vl

ii. yr— B is Lipschitz continuous, y € [0, ¥].
iii. Foreveryy €[0,7), B, € (0, 0).
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Fix T>0 and consider a functional ®7:D[0,T] — R, where @7 (&) = fOT (W(&)(s))Pds. Now, let V;* denote the
optimal value of the optimization problem

W e, 0
where

V, £{£eD[0,T]: &(0) =y, Pr(&) = 1},
and

T
V0TI g) { /O AE " ©)s +0.E(T) +6_£9(T) if £(0) =y and & € B[O, T],
Y

00 otherwise.

The variational problem (V; ) naturally appears in large deviations estimates. The next lemma, proved in Section
5.3, summarizes several of its properties.

Lemma 4.2. Consider an arbitrary path & € BV[0, T] and set y £ &£(0).
i. There exists a path Cy € BV[0, T] such that
i-1. G(0)=y.
i-2. Dr(Gy) = Pr(€).
i3, BVOTI(E,) < 2VOT),
i-4. For somet € [0, T], C; is nonnegative over [0,t] and Cy is linear with slope y over [t, T].
ii. There exists a path C; € AC[0,T]and az € [0, EW(T)] such that
ii-1. G(0) =y +z.
ii-2. Or(Cp) > Pr(¢).
ii-3. 6, -z + I;BYZ[O’ Ty < 15710 TI(E), where we interpret 0., - z as zero if 0, = co and z = 0.
ii-4. For somet € [0, T], Cy is nonnegative over [0, t] and Cy is linear with slope u over ¢, T].
iii. If, in addition, & € ACI0, T], there exists a path C3 € AC[0, T such that
iii-1. G5(0) = .
iti-2. Or(G3) = Dr(8).
iii-3. I;YI0TI(G) < YO TI(E).

iii-4. G is concave over [0, T] and its derivative is bounded by p from below.
4.2. Proof of Theorems 2.2 and 2.3
The following propositions are instrumental.

Proposition 4.2.
i. Recall that Ty = inf{k > 0: Xy = 0}. Then,

1 Tl/X
lim sup;log Py / Xy /x)du =1 ) < =B,
0

X—00

ii. Recall that Wy = Y11, X*. Then,

1
lim infﬁlog Po(Wy > u) > —B;.
U—0o

We provide the proof of Proposition 4.2 in Section 4.3.
Proposition 4.3.

LS XD >l e [ By > .,

ii. It holds that

B, =B

4
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ifi. Finally,

lim mm{l—ﬁy + B } = inf {By+ B} =5,
y€l0, o)

k—oo  i>1

We provide the proof of Proposition 4.3 in Section 4.4.
With Propositions 4.2 and 4.3 in our hands, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. For the upper bound, setting t = x*1 = x/%,

T -1
lim sup—log P(W; > t) =lim sup— log Py (ZX” > x”p)

t—oo0 X—00 k=0

Ti/x /¥, P
=lim sup— 10g Py (/ (%) du > 1)
X—00 0

< -B,

We used Y1, X! = -1 X? to obtain the first equality, applied part (i) of Proposition 4.3 to derive the second
equality, and invoked part (i) of Proposition 4.2 to establish the inequality. Together with the matching lower
bound in part (ii) of Proposition 4.2, this yields the desired asymptotics (2.4). O

The proof of Theorem 2.3 is slightly more involved.

Proof of Theorem 2.3. We start by proving the large deviation upper bound for 1 V,,. Denote the time-reversed
Markov process of {Xk,k 1,...,n} with {X;,k=0,...,n}, and let T; 2inf{i >0: X; =0}. Let ¥ 2 (|u|(p +1))%,
and fix b> 0. Setting x**! £ nb, we obtain that

1 1 -1
Py (E V, > b) = TZHXP > nb 0 (Z(X*)P > nb, X = o)

Ty 1 /x
"(+O; (ZXP _nb) 0P </T/ (X;‘”)pdu > 1), 4.1)
0

where the second equality follows from Lemma A.1 with g(yo, ..., ¥x) = 1. <=0} v/ > nb), the second
inequality follows from the upper bound in Lemma A.2, and the last equality follows from part (i) of Proposi-
tion 4.3.

From the tower property, we have that

T]/X
Pn </ (XLuxJ/x)pdu > 1)
0

k l_ 1 l Tl/X
=E. || 1{Xo = 27} + Z]I{XO € {Txy, Exy} } P / (X)X du > 1
0

i=1

Xo))

k . T1/X
< Enﬂ{Xo > xy} + ZET’ 1{X0 € —13(?, OO)} Pi"g </ (Xl_uxj/x)pdu > 1>‘|
i=1 0
koli-1 Ti/x
< mlxy, 00) + Zn Txy, 00 Plxy / (Xpuz)/x)Pdu>1|, 4.2)
i=1 0
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where, in the first inequality, we used that the Markov chain {X,,, n > 1} is monotone with respect to the initial state.
Therefore, by the principle of the maximum term and part (i) of Proposition 4.2,

Tl/x
lim sup%log (/ (Xux) /) du > 1)
0

X—00

< lim sup%log 1[xy/, o)

X—00

. 1 i—1 _ Tu/x
v i_‘f,‘??*,k{m?illpik’g (” lT"V' °°> Py (/o K2 2 1)) }

_ i-1 _ 1 Ti/x
= (=py) v max k{ ~— Py +limsuplog Py ( /0 (Xpux) /) dut > 1) }

—1
< (- ﬁy)v maxk{_lkﬁy_B;y}

1

Note that, because B, = 0 for y > § because of part (i) of Lemma 4.1,
, i-1 i-1 o\ [i=1
(=By) v ,--r{,‘??ik{_—k pY — B;fy} = rgng{——k pY — Bﬁy} == rglln{—k By + Bﬁ'g}
Taking k — oo and applying parts (ii) and (iii) of Proposition 4.3,

T1/x
lim supjl—clog P, (/ (Xpux) /) du = 1) < —-B, =-B;.
0

X—00

From this, along with (4.1), we arrive at the desired upper bound:

Tl/x
lim supnl—alog Py Cl Vi 2 b) < lim supjlfclog P, </ (Xpux) /) du > 1) b < =By - b°.
X—00 0

X—00

Next, for n sufficiently large, using the lower bound of Lemma A.2 for n > ny,

i=Tnm+1

1 - p p
Po(nv,,zb>_ ( Z X>nb> (Z(X) > nb, X, _0>
”(O) <va > nb> o) =0 )PO(W1 > nb) — O(e~). (4.3)
We can now apply part (ii) of Proposition 4.2 to (4.3) and obtain the matching lower bound:

lim infilog P (1 V> b) >-B;-b*. O
n—oo pno n

4.3. Proof of Proposition 4.2

We first state a number of preliminary results. These results are analytic in nature, and their proofs can be found in
Sections 5.4 and 5.5. For a fixed M >0, let BQAC?M = Bﬁc N{EeD[0,00): 7T (&) < M}, and let BSA £ B, N{&eD[0,00):
T(&) < M}

Lemma 4.3. For any given y > 0, there exists a constant M = M(y) > 0 such that
i. Foreach & € ByAC, there exists a path C € B‘;C?M satisfying I,(C) < I,(&).
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ii. It holds that
i f I - i f I . 4.4
inf 1,(&) 5613?0 (&) (44)

EeBpt

iii. Moreover, M(y) < cy +d for some ¢>0 and d>0.

Lemma 4.4. Let M >0 be the constant in Lemma 4.3. Then, B, = VyT*for any T > M.
Set

K & {5 e D[0, ] : £(0) =0, /O t(‘I’(é)(s))pds >1, &(s) > 0for s € [0, t]}.

The following corollary is immediate from the previous lemma and Lemma 4.3.

Corollary 4.1. Let M >0 be the constant in Lemma 4.3. For any y > 0,

inf inf Ig (&) = V) = B,
tEEO,M] ik, 0 (&) =Vg 0

Next, we formulate a key preparatory lemma. This lemma is motivated by a result of Vysotsky [21], stated as Result
B.3(ii). To apply this result, we need to verify a uniform continuity result. The next lemma provides the desired uni-
form continuity, whose proof is deferred to Section 5.6.

Recall the function @7 : D[0, T] — [0, o) defined as (&) = | OT (W(&)(s))Pds and I?f VIOT] Jefined as

BVIO,T] o\ & / TA*(é(”)<s))ds+9+(5<”>(T>>+6,|é<d)(T)| if £ € BV[0,T] and £(0) =0,
I IR

) otherwise.

Lemma 4.5. For each y > 0, @r is uniformly continuous on the set {& : Igw[o’ T](é) < v} w.r.t. the M} metric.
We apply this lemma in our next and final preparatory lemma.

Lemma 4.6.
i. Foranyt,y >0and T>0,

1
lim sup;log Py (T1/x>T) < ty+T log Ee'l. (4.5)
ii. Foranyy >0and T>0,
1 T
lim sup;log P,, (/ (X|sx)/x)ds > 1) < —VyT*, (4.6)
X—00 0

Proof of Lemma 4.6. For part (i), note that

LT)

ny(Tl > xT) < PX]/(XI_XTJ > 0) = P(Z ui > _xy> < etxyE(etU)LxTJ,
i=1

where the last inequality is from the Markov inequality. Taking logarithms, dividing both sides by x, and taking
lim sup, we get (4.5).

For part (ii), note that, conditional on X, = xy, |, OT (Xsx)/ x)ds = Op(K, + y). From Lemma 5.2, we know that ®r
is uniformly continuous over the sublevel sets of the rate function I;BV[O’ T of K, +y. Hence, we can apply Result
B.3(ii) to obtain

1 T
lim ~log P, ( / (xlsxj/x)msm) < — inf J(a),
X 0 ag[1, )

X—00
where [, (a) = inf{IgW[O’T](E) :£€D[0,T],&(0) =y, Dr(&) = a}. Obviously, infe(1, o) Jy(a) = VyT*, and (4.6) follows. O

Now we are ready to prove Proposition 4.2.
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Proof of Proposition 4.2. For part (i), consider a small enough ¢, > 0 so that Ee®" < 1, which is possible because

EU < 0 and U is light-tailed. Then, thanks to Lemma 4.4, we can pick a sufficiently large T>0 so that B, = VT*
and toy + T log EeY < —B,. Considering the case T1/x < T and T /x > T separately and then applying the prm—
ciple of the maximum term,

~T1/x
lim sup%log P, (/ (Xuz)/x) du > 1)
0

X—00

X—00

T1/X
< lim sup%log{ny </ (Xpuz) /) du>1, Ty /x < T) + Py (T1 /x> T)}
0

< lim sup%log Py, (/ (Xux) /%) du > 1) v lim sup log Py (T1/x>T)

< (—VyT") v (toy + T log Ee"Y) = (=B,) v (toy + T log Eeot) = ~B,, 4.7)

where we used Lemma 4.6 for the third inequality.
Next, we move on to part (ii). For any given t >0, let

o Ay 2{£eD[0,H]:£0) =€, [{W(E)(s)ds > 1, &(s) >0, Vs e [0,t]}.

o Ape £{EeD[0,t]:£(0) =€, [W(E)(s)'ds > 1, &(s) > e/2, Vse[0,t]}.

Set u = x1*7. Let € be small enough such that P(U; > v/€) > 0. Define the event B, . £ {U; > V€, i=1,...,[xe]}.
Setting k* = [xv/e] + 1, we obtain

lim inf%log Po(W1 > u)
1U—00

=lim 1nf log Py (ZXP > u)

> 11rn 1nf log Py (ZXP > ¥, B, €>

-

x—oo X

_ lim inf_ log | Py <ZX£ > x!*P |Bx,e> PO(BX,G)]
pare

T
> lim 1nf log P.. ZX > x1+p> Po(By, 6)1

x>0 X e

—

x—oo X

T]/X
=lim 1nf log P, (/ (X|sx)/x) ds > 1) PO(BX,E)]
0

> lim mf log Pex (XLst/x)pds >1, T > xt) PO(BX,G)]

x—oo X

=lim inf%log P, </ (Xisx)/x)ds > 1, Xjsx /x>0, Vs €0, t]) PQ(BM)}
X—00 L 0

1 _
> lim inf;log[Pe(Kx € At.e)Po(By.e)]

>— inf BVI0(&) + Ve log P(U; > Ve)
ée(At e)

— inf BVI0(&) + Ve log P(U; > Ve),

QE t,e

where the third equality is from part (i) of Proposition 4.3. The second-to-last inequality follows from part (i) of
Result B.3 because the integral and the infimum are both continuous in the M; topology (see Whitt [22, respectively,
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theorems 11.5.1 and 13.4.1]). Recall that
t
K; = {5 e D[0,t]: &£(0) =0, / (W(&)(s))Pds =1, &(s) = 0for s € [0, t]}.
0

Note that, for alle >0,

inf EV04(&) < inf 2V (g). (4.8)
E€Ay e EeK;

To see this, suppose that & € K;. Then, & = ¢ + & belongs to A; . and IZVI94(&) = IIOB VIO, t](é). Because the construc-
tion holds for every & € K;, we have that infzex, I?f VO£ > inf sed,. [BVI0A(&). Therefore,

lim inful—alog Po(Wy > u) > — .ngf 1E1%1() + Ve log P(U, > Ve).
€Ky

U—00

Because € and f are arbitrary, taking € — 0 and taking the infimum over t € [0, M], Corollary 4.1 gives

| . ¢ 7BV[0,f] "
= > _ , -
llin mfua log Po(W1 > u) te%}f | gg}ft I &) B, O

4.4. Proof of Proposition 4.3

For part (i), note that
1 m—1 1 m 1 m/x m/x X P
P _ p _ p — Lxs]
= [ Mot [ K= [ (5]

where the second equality is from the change of variable u = xs. The claimed equivalence is immediate from this.
For part (iii), note that

i1 L . | N (O S
fim min{ g+ | = im (mip{p 5| ) = fim i+ 2

Moreover, from part (ii) of Proposition 4.1,

. ] e _ . .
tm n 5 f =t (g )
For part (ii), note that, by definition, 3, > B;.. Therefore, we only have to prove that 5, < B;.. Recall that 8 = sup{6 >
0:E(e%Y) < 1} and 6, = sup{0 € R : E(e?Y) < oo}. For the rest of this proof, let A be the log-moment-generating func-
tion, and let D, denote the effective domain of A, thatis, D = {x : A(x) < oo}. We start with a claim: for any € > 0,
there exists a u >0 such that

AN(u)/u < B+e. 4.9)

To prove (4.9), we distinguish between the cases § < 0, and § = 0... For the first case, note that § € D}. In view of
the convexity and continuity of E(e?Y), E(e!) = 1. Because of Dembo and Zeitouni [8, lemma 2.2.5(c)], A is a differ-
entiable function in D}, with A’(n) = Eég:ff;) Because € D3, we have that A’(8) = E(UefY) < co. In addition, A’(0) =
E(U) < 0 implies that A(7) is decreasing for small values of 7. Now, the strict convexity and differentiability of A
over its effective domain implies that A’ is increasing at 8, and thus, E(UefY) > 0. It can be checked that, for

u = E(UefY),

AN (u) _ BE(UefY) —log E(efY) _

u E(UefY) !
and hence, our claim is proved. Consider now the case f=0.. In view of Mogulskii [15, equation (5.5)],
limy—eo Af‘) = 0,. That is, for any € > 0, we can choose a u so that A"(u)/u < 6, +€ =p+¢e. We proved the claim

4.9).
Back to the inequality B; < B;, we show that, for any given € > 0 and any given path & € B, we can construct a
path C € By so that Iy(C) < I,(£) + By + €. To this end, let u > 0 be such that A*(u) /u <  +¢€/y and set

C(s) = uS]l{ssy/u} +&(s — y/u)]l{s>y/u}-
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Then, C(0) =0, C(y/u) =y, and C € By. Also, one can see that I,(C) = (v/u)A"(u) + f()T(‘S)A*(E(s))ds +0. (T (&) =
(y/u)A(u) + I,(£). From the construction of u,

Ih(CQ) < By+e+1,(&)

as desired. This concludes the proof of part (iv). O

5. Additional Technical Lemmas and Proofs
5.1. Proof of Lemma 4.1
We first state a lemma on the monotonicity of the reflection map that is useful in the proof of Lemma 4.1.

Lemma 5.1. Suppose that o, 8, € D[0, T, a(s) = B(s) + y(s), and y(s) is nonnegative and nondecreasing. Then, W(a)(t)
>W(B)(¢) forall t € [0, T].

Proof. The proof of this lemma is an immediate consequence of Ramasubramanian [19, theorem 14.2.2]. O

Proof of Lemma 4.1. For (i), consider &'(f) £ y + u - t and note that 1,(£") = 0. Also, y > i implies that & € B, and
hence, B; =0. For part (ii), we first show that B; = infeep,ny, 1,(&), where ], £ {£eD[0,): &9 = 0}. To prove
this, let ¢ € B, be given arbitrarily. We construct a path &, so that &, € B, N ], and I,(&,) < I,(&). Toward this, dis-
card the downward jumps of & and let & 2 £@ + £, Then, set &,(t) £ &1 (t A T(E)) + ([t — T(E)]Y), t = 0. In view
of Lemma 5.1, W(&,) > W(&) over [0,7(£)], and hence, &, € B, and I,(£) = I,(&;) + 0_E (T (&) = 1,(&) + 0-ENT
(€)) 2 Iy(&>). This proves B) = infeep,ny, I(E).

Now, suppose that & € B, N ], is given. It is sufficient to prove that there exists a constant c; € (0, o) such that,
for any given € > 0, one can construct a &, € Bﬁc such that

Iy(&e) < L&) +e-ce. (5.1)

In case y >y, simply consider IHOE y+ u -t regardless of & and e. Then, F= Bﬁc and Iy(ée) =0 <[ (&)+e-ce
with ¢z = 0. In case y <y, we first prove the following claim w.r.t. the local rate function A™: for any € > 0, there
exists a y. € R, such that

AN(y) < (O0++e)y, Yy=ye.

Because this is trivially true if 6, = oo, we prove the claim with the assumption that 0, < co. Note that, because
of Jensen’s inequality and the monotonicity of the map x — log x, we see that A(0) = log(E(e?"1)) > log e/F{1) =
u - 0. This implies, for any 0 < 0.,

y0 —A0) < y0—ub <y, —ub, < (6. +e)y, VYy>—ub,/e.
Therefore,

A'(y) = sup{y0 — A(O)} < (04 +€)y, Vy=—u0./e,
0<0,4

which is the claim with y. = —u0, /e.

To conclude the proof, pick ¢ € B, N ], and assume w.lL.o.g. that [,(¢) < oo (because (5.1) is trivial otherwise).
For any given € > 0, we construct a path &, such that &, € B{j*c and I,(&e) < I, (&) +e-&M(T(&)), which is (5.1)
with ¢; = EY(T(E)). Set Ec(t) =y +y.t for t € [0,E"(T(&))/ye] and Ec(t) = E9(t — E(T () Jye) + EM(T (&) for t>
5(”)(7’ (&)/ye with y. = —u6b,/e. Then, it is straightforward to check that &. € BAC from its construction and
Lemma 5.1. In addition, &.(T(&)+ &M (T(E))/ye) = ENT (&) +E(T(£)) =0 because &e B,N]J;, and hence,

T(E.) < T(E)+EW(T(E))/ye. Consequently,

A'(ye) + A ED (s — ED(T(E) Jye))ds

£ (1)
Ve

- TE) . W (T 7(5)+é<“>;€m))
1) = /0 A*(ge(s))ds=5(y(5))

W (&) (@) ®
<& (T(cf))(9++e)+/O N(E77(s))ds < L (&) +e-EMT(E)).

We have arrived at the desired inequality. O
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5.2. Proof of Proposition 4.1
For part (i), let x, y be such that 0 < x < y. We show that, for any € > 0, there exists C € B4© such that I,(C) < B +e.
To show this, note from Lemmas 4.1 and 4.3 that there exists & € BxA(C such that [,(&) < B, +eand 7 (&) < oo. Set

(HEW—x)+EEAT(E)+u-[t—T&)]".

Because ((0) = y and (t) — £(t) is nonnegative and nondecreasing on t € [0, 7 (¢)], Lemma 5.1 implies that W(C)(f) >
W(E)(t) ont €[0,7(£)], and hence, C € B,“. Moreover, note that 7 (£) < 7(C), and A(L(s)) = A'(u) =0ons e [T(&),
7(Q)]. Therefore,

T(C) . 7() . (&) .
LO= [N Ces= [ Cos= [ A GO =1 < 5 e

For part (ii), note that we only need to prove one side of the inequality thanks to part (i). That is, it is enough to
show that, if 0 < x <y, then B, < B, + (y — x)A"(1). Fixan e > 0 and pick C € B‘yw such that I,(C) < B; +€, which is
always possible because of part (ii) of Lemma 4.1. Set

é(t) = (x + t)]l[O,y—xJ (t) + C(t - (y - x))ll[yfx,oo)(t)-

It follows that 7 (&) = 7(C) + y — x, and hence,
T(O+y—x

—Xx T(&) .
1) = /0 A Wds + / A'(E(s)ds = (y — A1) + / A'E(s))ds
Yy

—X X

T(C ) 70
= (- DN+ /0 A(EGs+(y—0)ds = (y — A (1) + /0 A(E(s))ds

=y -—0AN D +1,(0) < y—x)A (1) +B, +e.

Because & € By, B, < (y —x)A(1) + B, + €. Taking € — 0 yields (ii).
For part (iii), we first note that By < oo: if we set &(f) £ (Ju|(p+1))"(1+ u(t — 1))L[1,00)(t), then &€ BA(C and
I,(&) < oo. To show that By > 0, we can take y € (0,7) without loss of generality in view of (i). Define y(f) =y + ut
and set T, =7 (y(-)) =y/|ul. Write

B; = min{teinf inf 1,(&), inf inf Iy(é)}. (5.2)

[0, Tu] &eBC, T(&)=t te[Ty, o] £eBC, T(&)=t

We show that each of the two infima in this minimum is strictly positive. Observe that

inf inf  L,(&)> inf inf / tA*(é(s))ds

te[ Ty, 0] sEB'A;‘”, T(&)=t te[ Ty, 0] &:£(0)=y, E€AC, T (&)=t Jo

. * y * y
> f tA'(—y/t) > —=—A =] >0,
e A VD 2 1 (“y)

using that A" is a convex nonnegative function with A*(u) = 0, and Jensen’s inequality.
To lower bound the double infimum in (5.2), observe that, because y < y, the area constraint foé(s)p ds > 1 can
only be valid if there exists an s € [0, f] such that &(s) > i/ + us. Consequently,

inf >inf inf !
eByS, T(e)=t B) SSIEEAC, E(0)=y, E(s)zy+us ")
sinf  inf / A(Eo))du
s<t&eAC, 5(0) Y, E(s)ZY+us

=inf / A*(&E(u))du

s<t&eAC, é(s) 5(0)>y y+us

>infsA* (?S;er y),

s<t
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where we applied Jensen’s inequality in the last step. Consequently,

nf f I,(&) = inf 2 =7 7 _J )
te[lo,Tp]eeB;iﬁé?T(é):t Y (E)_SISHTHSA ( s +H) IIUIA (H+ vl v ) >0

The equality holds because A" is a strictly convex nonnegative function with A*(u) =0. O

5.3. Proof of Lemma 4.2
For part (i), we first construct a new trajectory &; from & by discarding the downward jumps, thatis, &; = 5(”) + 5(“).
Obviously, I;EV[O' T < IIyW[O’ TI(&). Note that & = &+ (—&9), where —&@ is nonnegative and nondecreasing.
From Lemma 5.1, we have that W(&)(t) > W(&)(t) for all £ € [0,T], and hence, ®r(&;) = Pr(&). For each t € [0, T],
let I(t) £ inf{s € [0,T]: W(&)(u) >0 for all u € [s,t]}, r(t) £ sup{s € [0,T]: W(E)(u) >0 for all u € [t,5]}, and o(t) £
[1(t), r(t)). Set Cf £ {o(t) C[0,T]:t€[0,T]}. Note that, by construction, the elements of C{ cannot overlap, and
hence, there can be at most countable number of elements in C; . In view of this, we write C{ = {[l;,7;) : i € N} and let
o; £ [I;,7;). The following observations are immediate from the construction of C7, the right continuity of &, and the
fact that &; does not have any downward jumps.

O1.1f t € [0, T) does not belong to any of the elements of C, then W(&;)(f) = 0.

02. W(&,) is continuous on the right end of the intervals ¢; except for the case r;=T.

Note that O1 also implies that &;(f) = &(t—) for such t's. Let s, £ Z?;ll(ri —1;) for n € N. Note that s,, — s €

[0,T] asn — co. Let & (t) denote the time derivative %é(“)(t) of &@ att, and set

G2y [ (o) + L)
where
Lih) & ZN ENE =51+ 1) () + o, 1y (8),
and

GO0 2 3T EWE A s —si+ 1) — ED L), (1),

ieN

That is, on the interval [s;, si+1), C; behaves the same way as &; does on the interval [/;, 7;), whereas (; decreases line-
arly at the rate || outside of those intervals. Given this, it can be checked that

O3. [7H(W(C)(s) ds > [['(W(&1)(s)Y ds.
Od. [AEW(s))ds = [7 A (5))ds.
05. C{(sis1—) — 0 (si—) = &1 (ri—) — & (1),
Now, we verify the conditions i-1, i-2, i-3, and i-4. Note first that the conditions i-1 and i-4 are obvious from the
construction of C;. We can verify i-2 as follows:

T Sc0 © Sit1
CDT((fz):/O (‘I’(Cl)(s))pdszfo (W(C)(s)Yds = > / (W(C1)(s))"ds
i=1 /si

o0 r T
=) [y as= [ WEEy ds=or,

where the second inequality is from O3, and the second-to-last equality is from O1. Moving onto i-3, note that,
because of the left continuity of (y, s, — s. implies that &(s,—) — &(Se—). Also, C(lu)(soo) — C(lu (So—) =0 and C(lu) is
constant on [Sw,T]. Therefore, ZZl(C(f’)(sm—) — C(ll‘)(si—)) = limn_mc(f’)(snﬂ—) = C%”)(sm_) = Cg”)(T), where we
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adopted the convention that C(lu)(O—) = 0. From O4, O5, and this observation,

T .
EONG) = [ Ao+,

_ Z/SMA*(Cl(t))dS +0,- Z(Cﬁl‘)(siﬂ—) - Cgu)(sz‘_))
-1 /si

i=1

=3 [N s 03 () - )
=174 i=1

T
< [ W@ Wy ds o.M =00,
0

For part (ii), we construct {, from {; by moving all the jumps of £&* to time 0. This neither increases IIyW[O' T nor
decreases ®@7. That is, if we set

t .
G 2 y+ /0 Ey(s)ds + C(T),

then ®7(C,) = Pr(Cy) obviously, and 6, - C(T) + 1T
satisfies all the claims of the lemma.
For part (111) let C € AC[0, T] be a concave majorant of &. Then, there exists a nonincreasing ¢ e DJo, T] such that
C(t)=&(0)+ fo (s)ds. (Because of the continuity of &, £(0) and {(0) should coincide.) Let C5(f) £ £(0) + foy v {(s)ds.
Note that iii-1, 111 -2, and iii-4 are straightforward to check from the construction. To show that iii-3 is also satisfied,
we construct C5 £ {(I/,r}) €[0,T] : i € N} in a similar way to C] so that the elements of C; are nonoverlapping, and
&(s) < C5(s) if and only if s € (I/,7}) for some i € N. Note that, because of the continuity of C and &, (I}) = &(/}) and
C(r)) = &(r}), and C has to be a straight line on (I/,7/) for each i € N. Set sy £ 0 v sup{t € [0,T] : OB t}. Then, no
interval in C; contains s, because, otherwise, C has to be a straight line in a neighborhood of s, and hence, C has to
be constant there, but this is Contradlctory to the definition of so. Now, let & denote a derivative of &. Then, fl AN (un
C(s))ds = f, A*(u)ds = 0 for i’s such that 7} > sy, and hence,

w (T)(Cz) < II(Cy). Noting that C(f’)(T) < EW(T), we see that C

BY[O, Tl e\ _ 7BYIO,T] 7 \ o B T .

1,1 E) — 1M1 TG = / N'(E(s))ds /A(yvC(s))ds
/ (A (E(5)) — A*(C(6)ds.
zeNr<s0

Note that, from the construction of C3, if s € [I/, /] for some i such that 7/ < sy, we have that ((s) = (C3(r]) — C3(10)/
(rt =17) = (&(r)) — &)/ (r; — I7), and hence, from Jensen’s inequality,

/ "AES) - AEE)ds = / A Es))ds — / "AE) — EWN/( — D)ds
I I I

- / NS - (- 1) A </ - lg))
4 !

>0.
Therefore, (5 satisfies iii-3 as well. 0O

5.4. Proof of Lemma 4.3

Recall that 7 2 (|ul(p + 1))1/ P y >, the equality in (4.4) holds with the optimal values of the left- (LHS) and
right-hand sides (RHS) both being zero: to see this, we invoke Lemma 4.1, part (i). Moving on to the case y < ¥, itis
enough to show that there exists M > 0 such that

for any given & € B‘;C \BJ;C;M, one can find C € B‘;C;M such that I,(C) < I,(&). (5.3)
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To construct such M, consider w and z such that y < w < 0 < z, A"(w) < oo, and A’(z) < co. We consider a piece-
wise linear path

C(t) & (v + 210,y () + T + ult — T — 9 /2L G-y)/z ) ()

sothatC € B‘;C;M and [,(C) = A'(z) y%y Let

A
Mémax{%/ Y-y/z—y/u —y/w}.

Suppose that & € B, \ B;“™, and hence, 7(¢) > M. Note that 4 < w < —y/7 (&) by the construction of M. We can
now estimate

Y e N s Ty
L= [ AEOMs 2 TE) N Cy/TE) 2 TE-Nw) > M-A @) 2 LN @ = 1,0,

In this derivation, the first inequality is from Jensen’s inequality. The second inequality follows because A*(x) is
nondecreasing in x > p. The third and fourth inequalities are from the choice of £ and the construction of M, respec-
tively. This concludes the proof of (5.3).

To see the existence of c >0 and d > 0, note that, for the case y > ¥, our construction of M(y) is linear in y, whereas
M(y) isbounded for thecasey < 7. O

5.5. Proof of Lemma 4.4
The proof that B; = V;T for sufficiently large t’s follows immediately from the following claims along with
Lemma4.1.

Claim 5.1. V; " is nonincreasing in T.

Proof of Claim 5.1. Let t; < t,. For each &; € th, consider &x(s) £ &1(s A ty) + (s — 1)L, 1,1 (). Then, & € V’f2 and
I;’Wlo' hl(g)) = IIB%V [0.£](&,). Therefore, Vg isat least as small as V.

Claim 5.2. If M >0 is such that 1nf5€B§c;M I,(&) = mfgeB;}C I,(§) as in Lemma 4.3, then

inf L,(&) = VM.
geBiCM WE)=Vy

Proof of Claim 5.2. Given an € >0, consider & € Bi®M such that I,(&.) < inf,, B L,(&) +e. Set C(t) & E(tn
T (&) + ult =T (ENT(r(e,),m (D). Then, C. € V}, and hence,

Ms _ - BV[0,M] BV[0,M] _ .
V= 551/54 I &) <1 (Ce)=1y(&) < éler;gA Iy(&) +e.

Taking € — 0, we arrive at Claim 5.2.

Claim 5.3. For any T >0,
. < T*.
e =

Proof of Claim 5.3. (Throughout this proof, we interpret 6. - z as zero if 6, = co and z=0. Likewise, we interpret €/z = oo if
z=0.) First note that the claim is trivial if VI* = 0, and hence, we only consider the case that V* < co. Fix an € > 0
and consider &, € V; such that IIEW 0Tl < VT* + €. (Note that this implies that cf(")(T; 0 if B, = c0.) Because of
Lemma 4.2, part (ii), there exists a path & A(C[O T] such that £&,(0) =y +z,0 <z < é "(T), & is nonnegative over
[0, to] for some ty € [0, T], &, is affine with slope p over [to, T], Pr(&,) = Pr(&1) > 1, and

0, z+L10T(&) < EVOTI(E) < V' +e. (5.4)

y+z
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Recall the well-known property of A* that lim, A}") =0, (see, for example, Mogulskii [15, equation (5.5)]).

Consequently, we can choose a u >0 large enough so that

AN(u)/u < 04 +¢/z. (5.5)
Set T 2 z/u+ T and consider &; € AC|0, T] such that
E3(6) = (y+ )10, (6) + Eals — 2/}, 71(5), 5 € [0, T

Then, £5(0) = y and ®4(&3) > Pr(&,) > 1. Moreover, in view of (5.4) and (5.5),

N T :
BT = /a0 + [ AEs

T .
= (2/u)A" (1) + /0 A (E(5))ds

<04 -z+e+[V0TI(E)

< V;* + 2e¢.

Next, from part (111) of Lemma 4.2, we know that there exists a path £, € AC[0, T] such that £4(0) =y, (&) >
Dp(E5) 2 1, VIO Tlg,) < e Tlg,) < V" +2€, & is concave on [0, T], and &, is bounded by u from below.
Finally, defme &eDIo, 00) as

Et) 2 &4t A D) +u(t - T1%), t=0.

Note that, if 7(&) < T, because of the concavity of &, W(&) and W(&4) are zero after 7(&). Therefore, (D(é)
Dp(Ey) 21 If T(E) > T, then ®(&) > ®;(&4) 2 1. That is, £ € By in all cases. Moreover, because &)= u for t > T,
I,(&) = 2V TIg,) < vT* + 2¢. Therefore,

. < T )
é12;fyly(5) <V, +2e

Because € is arbitrary, this proves Claim 5.3. O

5.6. Uniform Continuity: Proof of Lemma 4.5
We first state two preparatory lemmas. Let TV(&) be the total variation of .

Lemma 5.2. For any M < oo, the function H : D[0, T] — [0, o0) given by H(&) & fOTE(s)ds is Lipschitz continuous on the
set {&: TV(E) +&(0) < M} w.r.t. the M} metric.

Proof. Let & be such that TV(E) +£(0) < M, and let C be such that dy (5, 0) < e Setn_(t) £inf{x:d((x,t),T(&))
< €}, where I'(£) is the completed graph of & and d is the L, distance in R thatis, d((x,t), (1,5)) = [x —y| + |t —s].
Then, duv (&,C) < e implies that C(t) > n_(t) for all t € [0, T]. Note that, if we denote the arc length of I'(£) with
len(I'(£)), then len(I'(&)) is bounded by T + TV(&) + &£(0). Because of the construction of n and the fact that L, balls
are contained in L, balls of the same radius, the difference between the area below & and the area below 7 is
bounded by len(I'(§)) - €. Putting everything together, we conclude that

T T T T
/ £(s)ds — / C(s) < / £(s)ds — / 1 () < len(T(£)) - € < (T+TV(E)+ E0))-€ < (T+M)-e.
0 0 0 0

Similarly, by majorizing C with 1, (f) £ inf{x : d((x,),[(&)) < €}, we also get

T T
/ &(s)ds — / Us)=(T+M)-e,
0 0

proving the Lipschitz continuity of H with Lipschitz constant (T + M). O
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Lemma 5.3. The reflection map \V is a Lipschitz continuous map from D[0,T] to D[0, T] w.r.t. the M] topology with
Lipschitz constant two.

Proof. The proof is a straightforward adaptation of the proof of Lipschitz continuity given in Whitt [22, theo-
rem 13.5.1] for the M; topology. That theorem is based on elementary estimates, and the key in Whitt [22,
lemma 13.5.3], which establishes that parametric representation of a path & € D[0, T] is preserved under taking
projections. The proof of this property for M;, given in Whitt [22], extends to M} by using the definition of an
extended completed graph I for M] rather than the completed graph I' for M;. Along these lines, it follows
that, if (u, t) is a parametric representation of I'(&), then (W(u),t) is a parametric representation of I"(W(¢)).
Using this result, the steps in the proof of Whitt [22, theorem 13.5.1] follow verbatim for M]. We omit the
details. [J
Now we are ready to prove Lemma 4.5.

Proof of Lemma 4.5. Suppose that I(;E VIO Tl (&), I(;BV[O’T](C) €[0,7]. Then, from Vysotsky [21, inequality (13)], we
know that there exists y’ such that TV(&),TV(C) €[0,9’]. To prove the uniform continuity, suppose that
dy (&,C) < €. Then, dy (W(E), W(C)) < 2€ by Lemma 5.3, and TV(W(¢&)), TV(W(C)) € [0,2)’]. In turn, we have that
dyr (W(E) ve, W(C) ve) < 2e and TV(V(E) ve), TV(W(C) ve) € [0,2y]. Using the mean value theorem, we obtain
the following inequality for x,y,a,b € [0, ) such that x,y € [a, b]:

| =y’ < pl@ " v |x—yl. (5.6)

Now, suppose that (i, t) and (v, s) are the parametric representations of W(&) v e and W(C) v €, respectively. Then,
there exists r¢ € [0, 1] such that u(r) < € for r < r; and u(r) > € for r > r¢. Likewise, there exists 7. € [0, 1] such that
v(r) < e for r < rc and v(r) > € for r > r.. We assume w.l.o.g. that r: < r.. Note that, because u(r),v(r) € [0,€] on
re[0,r¢], we get

sup |uP(r) —oF(r)| < €.
[O,T‘g]

Also, because u(r) € [€,2)'] and v(r) € [0,€] on 7 € [rs, 1¢], we get from (5.6) that

sup |uP(r) —P(r)| < sup {|uf(r) — €| + |’ =¥ (r)|} < sup {|uP(r) —€”| + €}
[re,re] [re,7c] [re,rc]

< sup {p(e" ' v 2y Hu(r) —e| +€"}

[re,rc]
: [Sup]{P(G’F1 v (2 D (Julr) = o(r)] + [o(r) — e]) + €}
< sup {p(e" " v (2)")" )(|u(r) — v(r)| +€) + €’}

[re,rc]

< ple v () (lu—oll +€) + €.
Finally, because u(r),v(r) € [€,2)'] on r € [r¢, 1], we get again from (5.6) that

sup |1(r) — " (r)] < sup p(e’~t v 2y Y Hu(r) —o(r)| < pe v )"Vt — vl
[re,1] [re,1]

From these inequalities, we see that, if (1,f) e T'(W(&) v €) and (v,5) e T"(W(C) v €),

" — 0P|l = sup |t (r) =¥ (r)| v sup [uF(r) —(r)| v sup |[u"(r) —P(r)]
[0,7¢] [re,rel [re,1]

< ple ' v 2y (lu— vl +€) + €.
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Now, we can bound the M} distance between (W(&) v €)’ and (W(C) v )’ as follows:

A, (W(E) ve), (W) ve))

= inf {llee — ol + 11t — sl }
(u, )T’ (W(&)ve))
(0,9)l"(W(Q)ve))

= inf {lle? — Pl + It — slloo

(u,t)el’(W(&)ve)
(v,5)eT’(W(C)ve)

IN

inf v (2 VY Yl -0l +€) + €+t — sl
(u,t)er’(\y(g)ve){P( ( )/) ){ [ ) I lloo ¥
(v,8)el"(W(Q)ve)

IN

1V (per v 2y ) ) inf  {llu—vlle + It —sll} + P v ()Y e+
(u, ) el"(W(&)ve)
(v,5)eT"(W(0) ve)

= (Lv (pe v 2y ) (W(E) v e, W) ve) +p(er ! v 2y ) e+
< (IvpEe vy Y )2e+pe vy ) e+e
£ 5(e).

Note that 5(¢) — 0ase — 0.

To apply Lemma 5.2, we examine the total variations of (W(&)ve)’ and (W(C)ve)’. Recall the notation
T=U2, {(t1,...,t5):0 <ty <t <.+ <tz < 1}. From (5.6),

TV((W(&) ve)) =sup 2 [(W(E) v ey (t) — (W(E) vel(ti)l

teP =1

k
<pE@ vy sup D O[(W(E) ve)t) — (W) ve)tia)l

(to, .-, t)€T =1

=p(e v () HTV(¥(E) ve)

<ple vy ey
Similarly,

TV((W(Q) ve) < p(e" v (2 ) 12y
These two bounds allow us to apply Lemma 5.2 to H to obtain
dug (H(W(E) v €)"), H((W(Q) v e)f)) < (T+2)'p(e" " v (2)'V'7) - dug (G(E) v €, G(T) v €)
< (T+2y'p(e v ('Y )ole).

Therefore,

dm (Pr(&), Pr(C))
= dy (H(G(£)), H(G(D)))
< dy (H(G(£)), H(G(E) v &) + dyy (H(G(E) v €), H(G(C) v €)) +da (H(G(O) v ), H(G(D)))

< e’T+06(e) + €'T.

This concludes the proof of the desired uniform continuity. O
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Appendix A. Results on the Theory of Markov Chains
Let {X,;, —oco <m < co} be a geometrically ergodic stationary Markov chain on the state space S (which includes an element
zero) and invariant distribution 77, such that ({0}) = 7(0) > 0. Let {X,, — co < m < co} be the time-reversed stationary version of

{Xin, —00 <m < oo} It is well-known that (X, ..., X};) =4(Xy, ..., Xo) for any k > 0; see Sforzo [20] and references therein for a dis-
cussion on reversibility for general state-space Markov chains. The following lemma follows directly by applying this identity.

Lemma A.1. It holds that

Py(X;€A;:1<i<k)= P.(X;eAri:0<i<k—-1,X;=0), (A1)

1
7(0)

Eo[g(Xo, X1, ..., X)] = Er[g(X}, Xiq, -, XOI(X; = 0)], (A2)

1
(0)
Lo . ok
for any nonnegative integer k and measurable g : RE — R.
Using the previous result, we can now establish the following lemma.

Lemma A.2. Define T = inf{n >1: X, =0}, T* =inf{n > 1: X, = 0}, and suppose that Po(T > n) = O(e~") for some ¢ > 0. In addition,
let ng be such that infys,,, Po(Xi = 0) > 1(0)/2. Then,

-1 T-1
Pn<2(x;)p >x, X, =o> < (n+1)Pn< Xt 2x>, (A3)
k=0 k=0
and
-1 T
P, (Z X =, X, = o> > ((0)?/2)P, (Z X7 > x) — 0. (A4)
k=0 k=1

Proof. We first derive the upper bound by noting that

P, (%(X};)” >x, X, = o> = ip

k=0

Z(x*) >x, T =m, x*_o)
k=0

=) P, Z(Xk) >x, X1>o,...,x;_1>0,X*m=0,)q=0>
k=l

n m—1
<) P, (Z(X;;)P >x, X;>0,...,X, > 0)
k=

For the lower bound, first write

-1 n m—1
P, (Z(X;)sz, X =0> =>Pp (Z(Xk)”>x T =m, X, _o>
k=0

m=1 k=0

n m—1
= ZPT[ (Z(XZ)I) 2x, T = m) PO(Xn—m = 0)
m=1

k=0
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m

Applying Lemma A.1 with k=mand g(yo, .., ym) = 1> o} > %, 10> 0,1 >0,..., yu_1 > 0), we obtain

m—1 m—1
P, (Z(X;)P >x, T = m) =P, (Z(X;;)p >x,X5>0,..., X, 1>0,X;, = o)

k=0 k=0

m
=P,[<Z(x;;)f’zx,X;;>0,...,x;1 >0, X, =o>
k=0

=7(0)Py <ZX” >x,X] >0,i:1,..‘,m—1>
k=1

k=1

> 71(0)Pg (ZX’7 >xT= m) )
=

Consequently, for every fixed ng such that infy.,, Po(Xj = 0) > 7(0)/2,

T -1 n—ny T
P, (Z(X;)V >x, X, = 0> >7(0)> Py <ZX§ >xT= m> Py(Xp_m = 0)

k=0 m=1 k=1

= 71(0)P <zmjx” >x,T> m)

T
> 11(0)P (ZX” >x,T<n-— n0> kigf Py(X = 0).
k=1 =Mo

> (r(0)?/2)Py (ix” > x) —O0(e™"). O
=

Appendix B. LDP Results
We collect some LDP results that have appeared in the literature. A straightforward adaptation of Bazhba et al. [3, Corollary 3.2]
to our context is the following.

Result B.1. Let K, £ %ZZLZ? U;, t € [0,1] be the scaled random walk driven by an i.i.d. sequence {U;,i > 1}. Assume that E[e*] < oo for
some s < 0,and P(Uy 2 x) = e " for a € (0,1). Suppose that L is a slowly varying function, and L(x)x*~" is eventually decreasing. Then,
K,y satisfies the LDP in (D0, T], Ta, ) with the speed L(n)n® and the rate function Iy, : D[0, T] — [0, 0],

> (EB =@ if £ eDEV(O,T] with £(0) 2 0,
Iy, (&) &

te[0,1]
00 otherwise.

The following result, which is folklore but explicitly stated in Nuyens and Zwart [16], provides the logarithmic asymptotics
for the invariant distribution 7 of {X,},,5¢ with X,,41 = [X,, + Uy]", n >0, with {U;,i > 1} i.i.d. such that E(U;) = u <0.

Result B.2 (Nuyens and Zwart [16]). Recall that 8 = sup{s : E[e*Y'] < 1}. It holds that
-B.

Finally, we mention a recent sample-path LDP for random walks with light-tailed increments, developed in Vysotsky [21], that
we use in this paper.

lim log 7t([n, 00)) _

n—oco n

Result B.3. Recall that K. =y + }—(Zgaj U;, t €[0,1] is the scaled random walk driven by the i.i.d. sequence {U;,i > 1}, which satisfies
Assumptions 2.1 and 2.2. Recall also that

T
PYIOTI(g) = { /0 NE s+ 0, (TN +6- 1D if £€BVIO, 1] and £(0) =, (B.1)

00 otherwise.

i. (Borovkov and Mogulskii [5, 6]) K. (as x — co) satisfies a large deviations lower bound in the M topology with the rate function
BVIOT]
y
ii. (Vysotsky [21]) Let ¢ be a reakgalued function on D[0, T], which is uniformly continuous in the M} topology on the level sets
{&: IEV[O' TI(&) < a},a < co. Then, ¢p(K.,) satisfies an LDP with the rate function cl(J), where cl(]) is the lower semicontinuous regulariza-
) . B
tion of J (1) = infe. )=y Iy Vi T](é)-
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Appendix C. Computing 5B;: Finding a Smooth Minimizer

In this appendix, we provide some details that could facilitate the computation of 3. Note that it is not straightforward that the
infimum in the representation of 3 in (53,) is attained because the associated objective function does not have compact level sets
unless the moment-generating function of Uy is finite everywhere; compare this with Lynch and Sethuraman [14]. The following
proposition, however, facilitates the characterization of ;.

Proposition C.1. Let ByM: £ B, N AC[0, ), B;CNW ES ij*(c N {& € ACI0, ) : & is concave}, and recall that B, = infeep, I,(£). Then,

B, = inf I (5)— mf L(9).

(EB‘M‘ LNL

We defer the proof of this proposition to the end of this appendix. We apply Proposition C.1 to write

B = I,(&)= inf inf inf I(cf) (C.1)

Yy ch 20, 21320221 T20 £ F" o

where FZU T2 L£{f: e BCNCV,E (0) = 29, &(T) = z1, &(T) = 0}. We next ensure compactness of FZO,ZT,T in the following lemma,
which is also proven at the end of this appendix.

Lemma C.1. Fy ., 1 18 a compact set with respect to the [, topology.

On the set FZ ., the conditions £(0) =y, &(T) =0, and concavity imply that &(s) > 0 for s € (0, T). Therefore, the identity
1,(&) = fo A'(E (s))ds holds. The RHS of this identity is lower semicontinuous in & on the compact set F/ ..z, 7 and, therefore,
attains a minimum & as long as the set F/ 20,2r,7 18 nonempty. The latter property holds if the solution & w1th slope zp >0 on
[0, T|zr|/(zo + |zr|)] and slope zr < 0 on [T'|zr|/(zo + |zr|, T] yields an area of at least one.

We now characterize the minimizer of the inner infimum of the RHS in Lemma C.1 through Euler-Lagrange equations. Such
a characterization is usually only possible if the minimum is sufficiently smooth (e.g., not just AC, but C'). This requires addi-
tional assumptions. We use Lagrange duality and note that the feasible region of admissible paths is only convex (and, hence,
the absence of a duality gap is only guaranteed) if p < 1. In addition, we utilize sufficient conditions for smoothness of optimal
solutions of variational problems developed in Cesari [7, chapter 2.6], which seems to exclude the case p <1, so in what follows,
we assume p=1. We make the additional assumption that A(0) = log E[exp{OU}] is steep at 0. and O_, that is, limgyg, VA(O) =
co and limgjp VA(O) = —co. Under these assumptions, A*(z) = z6(z) — A(6(z)) with 8(z) the unique solution of z = VA(O). The
steepness assumptions make A" a smooth (C*) function on the entire real line. Its derivative satisfies VA*(z) = (VA) (). To
reduce our setting to the framework in Cesari [7, chapter 2.6], we first incorporate our area constraint into a Lagrangian. Fix £ > 0
and define

fe(&#), E(1) = A" (E(#) — LIE(s) = 1/T]. (C2)

The Lagrangian L(&) of our problem w.r.t. the constraint | OT &(s)ds > 1is [, OT fe(&(s), &(s))ds. We show that the problem of minimiz-
ing L(&) over the set of concave absolutely continuous paths & such that £(0) = &(T) =0, &(0) = zo, &'(T) = zr,20 > 0 > z7 pro-
duces a solutlon that is C! for every { > 0. Because VA" is strictly increasing, f; satisfies Cesari [7, (2.6. 1)] which demands that

(x y)=4 f[ (x y) = VA'(y) is strictly increasing. Cesari [7, property (2.6.4)], which demands that | ff (x Y| =|VA'(y)| = o
as ly| = oo,  uniform in x >0, follows from the fact that A is steep. We next propose an AC candidate solution &*, which satisfies
the Euler-Lagrange equation almost everywhere. In our setting, this equation is given by, for some constantc,

VA (&'(s) = c — 5,5 € [0, T). (C.3)
Because £(0) = zg, ¢ = VA*(zo). Apply VA*(z) = (VA)"1(2) to write, for almost everys,
&(s) = VA(VA*(z) — €s),s € [0, T]. (C.4)

Because f is C'and & *(t) € [zr1,20] on [0, T], we can now conclude from Cesari [7, theorem 2.6.ii] that & is C* on [0, T], so that
(C.4) is valid for all t € [0, T]. This expression can now be substituted into the Lagrangian L,(£). Maximizing this over £ gives an
expression for the inner infimum in (C.1), which can then be optimized further over zo, zr, T.

Proof of Proposition C.1. Because of Lemma 4.1(ii), B, 1nf5€BM I,(&). Because BfNCV C BAC, we only have to prove that
ln_féeBAC L,(&) > mfgeBmu 1,(&). For this, we show that, for any given & € BAC, there is C € BSVCY such that I,(C) < I,(&). To con-
struct such C, we first note that we can find &€ BA‘C such that 7(&;) < oo and I,(&1) £ 1,(&) thanks to Lemma 4.3. Now set T =
7 (&1) and denote the restriction of &; on [0, T w1th & —thatis, & € AC[0,T] and &, () = &;(¢) for t € [0, T]. We appeal to (iii) of
Lemma 4.2 to pick a path & € AC[0, T] such that &(0) =y, (&) > Pr(&;) > 1, IBV[O TI(E,) < I]IW [0, T](El) I,(&1) <1,(&), and &,
concave on [0, T] with the derivative bounded by p from below. Now, set { = éz(t AT+ u(t— T] ), t>0. Then Ce B(CN‘CV and
L,(Q) = VOT(&) < I,(8). O

We end this section with the proof of compactness of F 20,21, T"
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Proof of Lemma C.1. Recall that F _  ={£:&€ BENCY, E(0) = 20, E(T) = 21, &(T) = 0}. Let P([0, T]) denote the space of all

Z

Borel probability measures. Consider ¢ : P([0, T]) — D[0, T], a mapping defined for each v € P([0, T]) as follows:

t
PO L y+ /0 (20 + (21 — 20)([0,]))ds.

We consider the weak topology on P([0, T]) and the J; topology on D[0, T]. Note that P([0, T]) is a compact space because of Pro-
khorov’s theorem. Now, observe that

F 1 =¢(P(0,T]) N{EeD[0,T]: &T) =0}

zo,zr, T

Because {& € D[0, T] : £&(T) = 0} is closed, the proof of this lemma is complete if ¢ is continuous. To confirm the continuity of ¢,
consider a sequence v, that converges to v in P([0, T]). Note that

dp, (p(vn), p(v)) < llp(va) — (W)l = sup

tel0, T]

t
(zr —20) /O (a(10,5]) — ([0, s]))ds

T
<z *ZT|/O [va([0,s]) — v([0,s])|ds, (C5)

and [v,([0,s]) —v([0,s])| is bounded by two for each n. Because the (weak) convergence of v, to v implies that |v,([0,s]) —
v([0,s])| — O for almost every s € [0, T], the bounded convergence theorem guarantees that (C.5) converges to zero as n — oo,
proving the continuity of ¢. This concludes the proof of the desired compactness of FZO/ o1 O
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