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Abstract. We prove a sample-path large deviation principle (LDP) with sublinear speed 
for unbounded functionals of certain Markov chains induced by the Lindley recursion. The 
LDP holds in the Skorokhod space D[0, 1] equipped with the M′

1 topology. Our technique 
hinges on a suitable decomposition of the Markov chain in terms of regeneration cycles. 
Each regeneration cycle denotes the area accumulated during the busy period of the 
reflected random walk. We prove a large deviation principle for the area under the busy 
period of the Markov random walk, and we show that it exhibits a heavy-tailed behavior.
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1. Introduction
In this paper, we develop sample-path large deviation principles (LDPs) for additive functionals of a Markov chain, 
which is important in operations research (OR), namely, Lindley’s recursion. This Markov chain describes the wait
ing time sequence in a single-server queue under a first in, first out discipline and under independent and identi
cally distributed (i.i.d.) interarrival times and service times. We focus on the case in which the input is light-tailed; 
that is the service times and interarrival times have a finite moment-generating function in a neighborhood of the 
origin.

Whereas the model that we consider is vital to many OR applications and, therefore, important in its own right, 
our main contributions are also fundamental from a methodological standpoint. We contribute, as we explain, to 
the development of key tools in the study of sample-path large deviations for additive functionals of light-tailed 
and geometrically ergodic Markov chains.

A rich body of theory, pioneered by Donsker and Varadhan in classic work that goes back more than 40 years 
(see, for example, Donsker and Varadhan [9]), provides powerful tools designed to study large deviations for addi
tive functionals of light-tailed and geometrically ergodic Markov chains. Roughly speaking, these are chains that 
converge exponentially fast to stationarity and whose stationary distribution is light-tailed.

Unfortunately, despite remarkable developments in the area, including the more recent contributions in Kon
toyiannis and Meyn [13], the prevailing assumptions in the literature are often not applicable to natural functionals 
of well-behaved geometrically ergodic models, such as Lindley’s recursion with light-tailed input.

In particular, every existing general result describing sample-path large deviations of functionals of a process 
such as Lindley’s recursion must assume the function of interest to be bounded. Hence, the current state of the art 
rules out very important cases, such as the sample-path behavior of the empirical average of the waiting time 
sequence in a single-server queue over large time scales. Our development allows one to study sample-path large 
deviations for the cumulative waiting time sequence of a single-server queue. In particular, we provide methodo
logical ideas that, we believe, will be useful in further development of the general theory of sample-path large 
deviations for additive functionals of geometrically ergodic Markov processes. More precisely, our contributions 
are summarized as follows: 

1 

MATHEMATICS OF OPERATIONS RESEARCH 
Articles in Advance, pp. 1–32 

ISSN 0364-765X (print), ISSN 1526-5471 (online) https://pubsonline.informs.org/journal/moor 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

62
.2

54
.1

70
.4

1]
 o

n 
14

 A
pr

il 
20

24
, a

t 0
1:

38
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

mailto:M.Bazhba@uva.nl
mailto:jose.blanchet@stanford.edu
mailto:chang-han.rhee@northwestern.edu
https://orcid.org/0000-0002-1651-4677
mailto:Bert.Zwart@cwi.nl
https://orcid.org/0000-0001-9336-0096
https://doi.org/10.1287/moor.2020.0094


A. Let {Xk, k ≥ 0} follow Lindley’s recursion. Assume that the associated increments have a finite moment- 
generating function in a neighborhood of the origin and the traffic intensity is less than one, and let f (x) � xp for 
any p> 0. We establish a sample-path large deviation principle for Yn(·) �

P⌊n·⌋

k�1 f (Xk)=n as n → ∞ with respect to 
(w.r.t.) the M′

1 topology on D[0, T] with a good rate function and a sublinear speed function, all of which are fully 
characterized in Theorem 2.1. Though our result only pertains to a specific Markov chain, it can be extended to 
more general stochastic recursions and diffusions; this will be pursued in future work. Related work, covering the 
case of one-dimensional Langevin diffusions can be seen in Bazhba et al. [1].

B. We believe that our overall strategy for establishing Theorem 2.1 can be applied generally to the sample-path 
large deviation analysis of additive functionals of geometrically ergodic Markov chains. Our strategy involves split
ting the sample path into cycles, roughly corresponding to returns to a compact set (in the case of the Lindley recur
sion, the origin). Then, we show that the additive functional in a cycle has a Weibullian tail. Finally, we use ideas 
similar to those developed in Bazhba et al. [3], involving sample-path large deviations for random walks with Wei
bullian increments for the analysis. The result in Bazhba et al. [3], however, cannot be applied directly to our setting 
here because of two reasons. First, the cycle in progress at the end of the time interval is different from the rest. Sec
ond, the number of cycles (and, thus, the number of terms in the decomposition) is random.

The sublinear speed of convergence highlighted in (A) underscores the main qualitative difference between our 
result and those traditionally obtained in the Donsker–Varadhan setting. In our setting, as hinted in (B), the large 
deviations behavior of Yn is characterized by heavy-tailed phenomena (in the form of Weibullian tails), which arise 
when studying the tails of the additive functional over a given busy period. Our choice of f (·) underscores the frailty 
of the boundedness assumptions required to apply the Donsker–Varadhan type theory. Note that, although f (·)

grows slowly when p ≈ 0, just a small amount of growth derails the application of the standard theory.
The choice of topology is an important aspect of our result. In Bazhba et al. [3], it is argued that M′

1 is a natural 
topology to consider for developing a full sample-path large deviation principle for random walks with Wei
bullian increments. It is explained that such a result is impossible in the context of the J1 topology in D[0, T]. 
Actually, to be precise, the topology that we consider is a stronger variation of the one considered by Puhalskii 
and Whitt [17, 18], who introduced the M′

1 topology in D[0, ∞) but in such a way that its direct projection onto 
D[0, T] loses important continuous functions (such as the maximum of the path in the interval). The key aspect 
in our variation is the evaluation of the metric at the right endpoint. The version that we consider merges the 
jumps in the same way in which it is done at the left endpoint in the standard M′

1 description. This variation 
results in a stronger topology when restricted to functions on compact intervals, and it includes the maximum 
as a continuous function. An important reason for using the M′

1 topology is that it allows merging jumps. This 
seems to be particularly relevant given that, in our setting, the large deviations behavior eventually merges the 
increments within the busy periods.

In addition to the two elements mentioned in (B), which make the result in Bazhba et al. [3] not directly applica
ble, our choice of a strong topology also makes the approach in Bazhba et al. [3] difficult to use. In fact, in contrast to 
Bazhba et al. [3], in this paper, we use a projective limit strategy to obtain our large deviation principle. A direct 
approach we explored, using the result in Bazhba et al. [3], consisted of replacing the random number of busy peri
ods by its fluid limits (for which there is a large deviations companion with a linear speed rate). Then, we tried to 
verify that this replacement results in an exponentially good approximation. This would have been a successful 
strategy if we had used the version of the M′

1 topology considered by Puhalskii and Whitt [17], but unfortunately, 
such exponential approximation does not hold in the presence of our stronger topology.

The development of Theorem 2.1 highlights interesting and somewhat surprising qualitative insights. For exam
ple, consider the case f (x) � x, corresponding to the area drawn under the waiting time as a curve. As we show, 
deviations of order O(1) upward from the typical behavior of the process Yn(·) occur because of extreme behavior 
in a single busy period of duration O(n1=2). A somewhat surprising insight involves the busy period in process at 
time n, which is split into two parts of size O(n1=2) involving the age and forward lifetime of the cycle (the former 
contributes to the area calculations, whereas the latter does not). This asymmetry, relative to the other busy periods 
during the time horizon [0, n], which are completely accounted for inside the area calculation, raises the question of 
whether a correction in the LDP is needed, because of this effect, at the end of the time horizon. The answer is no; 
the contribution to the current busy period and the ones inside the time horizon are symmetric. This result is 
highlighted in Theorems 2.2 and 2.3, which characterize the variational problem governing extreme busy periods.

There are several related works that deal with large deviations for the area under the waiting time sequence in a 
busy period. But they focus on queue length as in Blanchet et al. [4] or assume that the moment-generating function 
of the increment is finite everywhere as in Duffy and Meyn [10]. None of these works obtains sample-path results. 
Instead, we do not assume that the moment-generating function of the service times or interarrival times is finite 
everywhere. To handle this level of generality, we employ recently developed sample-path LDPs (Borovkov and 
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Mogulskii [5, 6], Vysotsky [21]). This level of generality requires us to put in a substantial amount of work to rule 
out discontinuous solutions of the functional optimization problems that appear in the large deviations analysis.

Another hurdle in developing tail asymptotics for the additive functional in a busy period (reported in Theorems 
2.2 and 2.3) is the fact that the functional describing the area under the busy period is not continuous. To deal with 
this, we exploit path properties of the most probable—in an asymptotic sense—trajectories of the busy period along 
with the continuity of the area functional over a fixed time horizon. In particular, we rigorously show how to 
approximate the area over the busy period (which has a random endpoint) with the area over a large, fixed horizon. 
This is counterintuitive at first because the former approach allows one to remove the reflection operator. However, 
the latter approach does not have a first passage time (which is a discontinuous function) as a horizon, and this 
turns out to carry more weight. The proof of our sample-path LDP is provided in Section 3. Section 4 focuses on the 
technical details behind deriving the tail asymptotics for the area under a busy period. The paper is closed with 
three appendices covering auxiliary duality results for Markov chains (Appendix A), large deviations results 
(Appendix B), and smoothness properties of our variational problem (Appendix C).

2. Model Description and Main Results
2.1. Preliminaries
We consider the time-homogeneous Markov chain {Xn, n ≥ 0} that is induced by the Lindley recursion, that is, 
Xn+1 ¢ [Xn + Un+1]

+, n ≥ 0, and X0 � 0. Note that the random variables {Ui, i ≥ 1} are i.i.d. copies of a random vari
able U such that µ¢E(U) < 0. The state space of the Markov chain {Xn, n ≥ 0} is the half-line of nonnegative real 
numbers. We make the following technical but necessary assumptions.

Assumption 2.1. Let θ+ and θ� be the supremum and infimum of the set {θ : E(eθU) < ∞}, respectively. We assume that 
�∞ ≤ θ� < 0 < θ+ ≤ ∞.

Assumption 2.2. For θ+ and θ� in Assumption 2.1,

lim
n→∞

log P(U ≥ n)

n
� �θ+, lim

n→∞

log P(�U ≥ n)

n
� θ�:

Assumption 2.3. We assume that P(U > 0) > 0.

The purpose of this paper is to prove a sample-path LDP for Yn � {Yn(t), t ∈ [0, T]}, where

Yn(t)¢
1
n
X⌊nt⌋

i�1
Xp

i , t ∈ [0, 1], 

and p > 0 is a fixed constant. We introduce basic notions that are used in the statement of one of our main results 
(Theorem 2.1). First, we set α¢1=(1 + p). Let D[0, T] denote the Skorokhod space: the space of càdlàg paths from 
[0, T] to R. We sometimes also consider the space D[0, ∞) of càdlàg paths from [0, ∞) to R.

Let TM′
1 

denote the M′
1 Skorokhod topology, whose precise definition is provided subsequently. Unless specified 

otherwise, we assume that D[0, T] is equipped with TM′
1 

throughout the rest of this paper.

Definition 2.1. For ξ ∈ D[0, T], define the extended completed graph Γ′(ξ) of ξ as

Γ′(ξ)¢ {(u, t) ∈ R × [0, T] : u ∈ [ξ(t�) ∧ ξ(t), ξ(t�) ∨ ξ(t)]}, 

where ξ(0�)¢0. Define an order on the graph Γ′(ξ) by setting (u1, t1) < (u2, t2) if either t1 < t2 or t1 � t2 and 
|ξ(t1�) � u1 | < |ξ(t2�) � u2 | . We call a continuous nondecreasing function (u, t) � ((u(s), t(s)), s ∈ [0, T]) from [0, T]

to Γ′(ξ) a parameterization of Γ′(ξ) if Γ′(ξ) � {(u(s), t(s)) : s ∈ [0, T]}. We also call such (u, t) a parameterization of ξ, 
and we denote the set of all parameterizations of ξ with Π′(ξ).

Definition 2.2. Define the M′
1 metric dM′

1 
on D as follows

dM′
1
(ξ,ζ)¢ inf

(u, t)∈Π′(ξ)
(v, r)∈Π′(ζ)

{‖u � v‖∞ + ‖t � r‖∞}:

We say that ξ ∈ D[0, T] is a pure jump path if ξ �
P∞

i�1 xi1[ui, T] such that xi ∈ R and ui ∈ [0, T] for each i ≥ 1 and 
the ui’s are all distinct. Let D↑

⩽∞[0, T] be the subspace of D[0, T] consisting of nondecreasing pure jump paths that 
assume nonnegative values at the origin. Let BV[0, T] be the subspace of D[0, T] consisting of paths with finite 
variation. Every ξ ∈ BV[0, T] has a Lebesgue decomposition with respect to the Lebesgue measure. That is, 

Bazhba et al.: Large Deviations for Unbounded Additive Functionals 
Mathematics of Operations Research, Articles in Advance, pp. 1–32, © 2024 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

62
.2

54
.1

70
.4

1]
 o

n 
14

 A
pr

il 
20

24
, a

t 0
1:

38
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



ξ � ξ(a) + ξ(s), where ξ(a) denotes the absolutely continuous part of ξ, and ξ(s) denotes the singular part of ξ. Sub
sequently, using Hahn’s decomposition theorem, we can decompose ξ(s) into its nondecreasing singular part ξ(u)

and nonincreasing singular part ξ(d) so that ξ(s) � ξ(u) + ξ(d). Without loss of generality (w.l.o.g.), we assume that 
ξ(s)(0) � ξ(u)(0) � ξ(d)(0) � 0. We sometimes also consider BV[0, ∞): the subspace of D[0, ∞) consisting of paths 
that are of bounded variation on any compact interval.

2.2. Sample-Path Large Deviations
In this section, we present the sample-path large deviation principle for Yn and the main ideas of its proof. We 
start with a few definitions. Let Ψ be the reflection map defined by Ψ(ξ)(t)¢ξ(t) � infs∈[0, t]{ξ(s) ∧ 0}, ∀t ≥ 0. 
Define T (ξ)¢ inf{t > 0 :Ψ(ξ)(t) � 0}, By ¢ {ξ ∈ BV[0, ∞) : ξ(0) � y,

R T (ξ)
0 Ψ(ξ)(s)

pds ≥ 1}, and Λ∗(y)¢ supθ∈R{θy �

log E(eθU)}: Set

Iy(ξ)¢

Z T (ξ)

0
Λ∗(ξ̇

(a)
(s))ds +θ+ξ

(u)(T (ξ)) +θ�ξ
(d)(T (ξ)) if ξ(0) � y and ξ ∈ BV[0, ∞),

∞ otherwise,

8
<

:

and denote with B∗
y the optimal value of the variational problem

(By) B∗
y ¢ inf

ξ∈By
Iy(ξ):

Similarly, denote with B∗
π the optimal value of the variational problem

(Bπ) B∗
π¢ inf

y∈[0,∞), ξ∈By
{βy + Iy(ξ)}, 

where β¢ sup{θ ≥ 0 : E(eθU) ≤ 1} is the decay rate of the steady-state distribution π of the reflected random walk 
(see Result B.2). Note that β ≤ θ+, and β is strictly positive in view of Assumption 2.1 and the assumption that 
µ < 0. Note also that B∗

π � infy∈[0, ∞){βy + B∗
y}.

Let T0 ¢0 and Ti ¢ inf{k > Ti�1 : Xk � 0} for i ≥ 1, and subsequently, define λ¢E(
PT1

i�1 Xp
i )=E(T1). Define D(λ)

[0, T]¢ {ξ ∈ D[0, T] : ξ(t) � λt + ζ(t), ∀t ∈ [0, T], ζ ∈ D↑
⩽∞[0, T]}, that is, the subspace of increasing paths with slope 

λ and countable upward jumps. Recall that α � 1=(1 + p).

Theorem 2.1. The stochastic process Yn satisfies a large deviation principle in (D[0, T],T M′
1
) with the speed nα and the 

rate function IY : D[0, T] → R+ defined as

IY(ζ)¢
B∗

0

X

t:ζ(t)≠ζ(t�)

(ζ(t) � ζ(t�))
α if ζ ∈ D(λ)[0, T],

∞ otherwise:

8
<

:
(2.1) 

That is, for any measurable set A,

� inf
A◦

IY(ξ) ≤ lim inf
n→∞

log P(Yn ∈ A)

nα
≤ lim sup

n→∞

log P(Yn ∈ A)

nα
≤ � inf

A
IY(ξ): (2.2) 

The full proof of Theorem 2.1 is deferred to Section 3. The strategy relies on a suitable representation for Yn using 
renewal theory, which is presented next. The sequence {Tj, j ≥ 1} induces a renewal process {N(t), t ≥ 0} defined by 
N(t)¢max{k ≥ 0 : Tk ≤ t}, t ≥ 0: We decompose the process Yn as follows. For fixed t ≥ 0,

Yn(t) �
1
n
XN(nt)

j�1

XTj

i�Tj�1+1
Xp

i +
1
n
X⌊nt⌋

i�TN(nt)+1
Xp

i , (2.3) 

with the convention that 
P⌊nt⌋

i�TN(nt)
Xp

i is zero in case the superscript ⌊nt⌋ is strictly smaller than the subscript TN(nt). 
We introduce some notation for the analysis of Yn. Define 

• τj ¢Tj � Tj�1, j ≥ 1, the interarrival times of the renewal process N.
• Wj ¢

PTj
i�Tj�1+1 Xp

i , j ≥ 1, the area under Xp
i during the jth busy period of Xn.
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• Zn(t)¢ 1
n
PN(nt)

j�1 Wj, t ∈ [0, 1], the aggregate process (excluding the last regeneration cycle).
• Rn(t)¢ 1

n
P⌊nt⌋

i�TN(n)+1 Xp
i , t ∈ [0, 1], the process that equals Yn during the last regeneration cycle.

• Vn ¢
Pn

i�TN(n)+1 Xp
i , the area under Xp

i during the last regeneration cycle.
• Sn(t)¢ 1

n Vn1{1}(t), the process with one jump, which aggregates the area under Xp
i during the last regenera

tion cycle.
We often refer to the functions associated with these quantities by dropping the argument; for example, by writ

ing Rn, we refer to {Rn(t), t ∈ [0, T]}. The strategy to prove our main result, Theorem 2.1, builds on tail estimates for 
W1 and Vn, which are presented in Theorems 2.2 and 2.3. Using Theorem 2.3, we derive an LDP for Sn in Lemma 
3.1. For the LDP of Zn in D[0, T], we start by obtaining an LDP for the finite projections of Zn in Lemmas 3.2–3.4. 
Then, the finite-dimensional LDP is lifted in the standard projective limit to the pointwise convergence topology in 
Lemma 3.6 and, finally, extended to the M′

1 topology using the continuity of the identity map in the subspace of 
increasing cádlág paths in Lemma 3.7. In the last step, we infer an LDP for Zn + Sn through the use of a continuous 
mapping approach, and hence, we obtain the LDP for Yn.

For the sample-path LDP of Yn, we prove the exponential equivalence of Yn and Zn + Sn in Lemma 3.8 by con
sidering the M′

1 distance of Yn with the aggregate process Zn and the last regeneration cycle Rn pushed to 
the end of the time horizon. Consequently, the LDP of Yn is deduced because of the LDPs of Sn and Zn in 
(D[0, T],TM′

1
).

Before embarking on the execution of this technical program, it is worth commenting on the role of Rn because 
this element allows us to expose the importance of a careful analysis involving the area during a busy period. As 
mentioned in the introduction, one may wonder if the contribution of Rn may end up counting differently in the 
form of the LDP. The typical path for Yn is a straight line with drift equal to the steady-state workload. Our develop
ments indicate that most likely large deviations behavior away from the most likely path occur because of isolated 
busy periods that exhibit extreme behavior. For example, in the case p� 1, substantially extreme busy periods (lead
ing to large deviations of order O(n)) have a duration of O(n1=2) and exhibit excursions of order O(n1=2), therefore 
accumulating an area of order O(n).

Each busy period, including the one in progress at the end of the time horizon, contributes the same way in the 
rate function. This follows from Theorems 2.2 and 2.3, but may be somewhat remarkable. The reason is that, when 
the cycle in progress at the end of the time horizon is extreme, its duration is of order O(n1=2). This suggests that the 
remainder of the cycle is also of order O(n1=2). It turns out that this long time duration has no significant contribu
tion to the total area: whereas the remainder of the cycle in progress may be large, the position of the chain is actu
ally of order o(n1=2) from the end of the time horizon, so the total contribution to the area of the remaining portion 
of the cycle is negligible. This calculation is exposed in Proposition 4.3, and a time-reversal argument is given in 
Appendix A.

2.3. Busy Period Asymptotics
It is clear that a large deviations analysis of the area under a busy period is indispensable for deriving the 
sample-path LDP of Yn in Theorem 2.1. Our next two theorems provide the asymptotic estimation for the tails 
of W1 and Vn, showing that they exhibit Weibull behavior. We discuss their statements and defer their proofs to 
Section 4.

Theorem 2.2. Recall that W1 �
PT1

k�1 Xp
k and α � 1=(1 + p). It holds that

lim
t→∞

1
tα

log P(W1 ≥ t) � �B∗
0: (2.4) 

For Vn, our analysis points to Weibull-like asymptotic behavior similar to W1 except that the prefactor associated 
with Vn is B∗

π (instead of B∗
0). It turns out that (see Proposition 4.3) the prefactor B∗

π is equal to B∗
0. This leads to the 

conclusion that every busy period, including the one in progress at the end of the time horizon, has the same tail 
asymptotics.

Theorem 2.3. For the area of the last busy period, we have the following tail asymptotics: for any b ≥ 0,

lim
n→∞

1
nα

log P(Vn ≥ nb) � �B∗
0 · bα: (2.5) 

The tail asymptotics for W1 and Vn are derived using a recently developed LDP for random walks with light-tailed 
increments from Borovkov and Mogulskii [5, 6] and Vysotsky [21]; compare this with Result B.3. Specifically, the 
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tail probability of W1 can be written as the tail probability of the image Φ(K0
n) of the unrestricted scaled random 

walk {K0
n(t), t ∈ [0, T]}, where Ky

n(t)¢y + 1
n K⌊nt⌋, Kn ¢

Pn
i�1 Ui, and the functional Φ is defined as Φ(ξ)¢

R T (ξ)
0 (Ψ 

(ξ)(s))
pds. Note that Φ : D[0, ∞) → R+ is not continuous, and hence, the proof for the tail asymptotics of W1 gets 

more involved than simply applying the contraction principle. We derive large deviations upper and lower bounds 
and show that they coincide.

For the upper bound, we replace the hitting time T1 with a sufficiently large value T. This enables us to study the 
area of Xn over the finite time horizon [0, T]. For T large enough, we show that the area of the reflected random 
walk over the whole time horizon [0, T] serves as an asymptotic upper bound for W1 (see the proof of Proposition 
4.2), and it is expressed as a functional of Kn (see Lemma 4.6). This functional is shown to be uniformly continuous 
in the M′

1 topology on level sets of the rate function associated with the LDP for Kn (cf. Lemma 5.2). Invoking Result 
B.3, recently established in Vysotsky [21], we get a large deviation upper bound.

For the lower bound, we confine the functional of the area under the busy period over a fixed time horizon by 
imposing an extra condition; see the proof of Proposition 4.2. Subsequently, we exploit some regularity properties 
of a variational problem associated with the lower bound to show that B0 has the same optimal value as the varia
tional problem associated with the large deviation upper and lower bounds. We have organized the presentation in 
such a way that analytic details associated to variational problems are gathered in Section 5.

For Vn, we follow the same approach with some slight modifications. In order to carry out our analysis for Vn, we 
associate the tail of Vn with the tail of W1 through Lemmas A.1 and A.2. In particular, we prove that

lim
n→∞

log P0(Vn > nx)

nα � lim
n→∞

log Pπ(W1 > nx)

nα :

To show this, we also rely on Nuyens and Zwart [16, result B.2], describing the asymptotic behavior of the invariant 
measure π. Finally, we repeat similar steps as in the analysis of W1.

The constant B∗
0 appears in all our theorems and is the solution of a variational problem. We show in Proposition 

4.1 that B∗
0 ∈ (0, ∞). This property is all that is needed for our main sample-path large deviations results. Neverthe

less, it is of interest to compute B∗
0. This can be done by solving a suitable variational problem, which, in turn, is typ

ically done using the associated Euler–Lagrange equations. However, for the Euler–Lagrange equations to 
characterize the solution, it must be shown that an optimizing path ξ∗ exists that is sufficiently smooth, that is, not 
just absolutely continuous, but differentiable with continuous derivative. In general, showing a priori sufficient 
smoothness of an optimizer is a nontrivial task, but we explain how to execute this for the case p � 1, using a frame
work presented in Cesari [7]. The details can be found in Appendix C.

3. Proof of the Sample-Path LDP
In this section, we prove Theorem 2.1. For notational convenience, we take T � 1 throughout this section. We begin 
our analysis with a lemma that establishes the large deviations behavior of the area under the busy period active 
at time n. To this end, define D[0, 1]

⩽1
¢ {ξ ∈ D[0, 1] : ξ � x1{1} for some x ≥ 0}. Recall that Sn � 1

n Vn1{1} and Vn �Pn
i�TN(n)+1 Xp

i .

Lemma 3.1. Sn satisfies the LDP in (D[0, 1],TM′
1
) with the speed nα and the rate function IS : D[0, 1] → R+, where

IS(ζ)¢
B∗

0(ζ(1) � ζ(1�))
α if ζ ∈ D[0, 1]

⩽1,
∞ otherwise:

(

(3.1) 

Proof. Define a function Υ : R+ → D[0, 1]
⩽1 as Υ(x)¢x · 1{1}. Then, Sn � Υ 1

n Vn
� �

, and it is straightforward to see 
that Υ is a continuous function w.r.t. the M′

1 topology. Therefore, the desired LDP follows from the contraction 
principle if we prove that 1

n Vn satisfies an LDP in R+ with the sublinear speed nα and the good rate function 
IV : R+ → R+, where IV(x)¢B∗

0 · xα: To prove the LDP for 1
n Vn, note first that P 1

n Vn ∈ ·
� �

is exponentially tight 
(w.r.t. the speed nα) from Theorem 2.3. Therefore, it is enough to establish the weak LDP. For the weak LDP, we 
start with showing that, for any a, b ∈ R, B¢ (a, b) ∩ R+ satisfies lim supn→∞

log P 1
nVn∈B( )

nα � lim infn→∞
log P 1

nVn∈B( )
nα . 

Because this holds trivially with value �∞ if 0 ≥ b or a ≥ b, we assume that 0 ∨ a < b. Note that, from Theorem 2.3,

lim sup
n→∞

log P 1
nVn ∈ B
� �

nα ≤ lim sup
n→∞

log P 1
nVn ≥ 0 ∨ a
� �

nα ≤ �B∗
0 · (0 ∨ a)

α
:
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For the lower bound, note that Theorem 2.3 implies that P 1
n Vn ≥ b
� �

=P 1
n Vn ≥ 0 ∨ a + ɛ
� �

→ 0 for any ɛ > 0. There
fore, we obtain

lim inf
n→∞

log P 1
n Vn ∈ B
� �

nα
≥ lim inf

n→∞

log P 1
n Vn ≥ 0 ∨ a + ɛ
� �

� P 1
n Vn ≥ b
� �� �

nα

≥ lim inf
n→∞

log P 1
n Vn ≥ 0 ∨ a + ɛ
� �

1 �
P 1

nVn≥b( )
P 1

nVn≥0∨a+ɛ( )

� �� �

nα

� lim inf
n→∞

log P 1
n Vn ≥ 0 ∨ a + ɛ
� �

nα
� �B∗

0 · (0 ∨ a + ɛ)
α
:

Taking ɛ → 0, we see that the limit supremum and the limit infimum coincide. Because {(a, b) ∩ R+ : a, b ∈ R, a ≤

b} forms a base of the Euclidean topology on R+, Dembo and Zeitouni [8, theorem 4.1.11] applies and, hence, 
proves the desired weak LDP with the rate function IV. This concludes the proof.

We next work toward a sample-path LDP for Zn. We employ a well-known technique based on the projec
tive limit theorem by Dawson and Gärtner; see Dembo and Zeitouni [8, theorem 4.6.1]. The following three 
lemmas lead to the first key step in this approach, which consists of obtaining the finite-dimensional LDP 
for Zn.

Lemma 3.2. For any given 0 � t0 < t1 < t2 < ⋯ < tk, let ∆ti ¢ ti � ti�1 for i � 1, : : : , k. Then,

lim sup
n→∞

1
nα

log P
XN(nt1)

j�1
Wj ≥ na1, : : : ,

XN(ntk)

j�N(ntk�1)+1
Wj ≥ nak

0

@

1

A ≤ �B∗
0

Xk

i�1
(ai �λ∆ti)

α
+

 !

, (3.2) 

lim inf
n→∞

1
nα

log P
XN(nt1)

j�1
Wj ≥ na1, : : : ,

XN(ntk)

j�N(ntk�1)+1
Wj ≥ nak

0

@

1

A ≥ �B∗
0

Xk

i�1
(ai �λ∆ti)

α
+

 !

, (3.3) 

where (x)+ ¢x ∨ 0.

Proof. Recall that τj � Tj � Tj�1, where Tj is the jth hitting time of zero. Fix an arbitrary ɛ > 0 and let E(n)
i (ɛ)¢ 

n[li, ui], where li ¢ ti=Eτ1 � ɛ and ui ¢ ti=Eτ1 + ɛ. We use this notation throughout the proof of this lemma. For 
the upper bound in Equation (3.2), note that

P
XN(nt1)

j�1
Wj ≥ na1, : : : ,

XN(ntk)

j�N(ntk�1)+1
Wj ≥ nak

0

@

1

A ≤
Xk

i�1
P(N(nti) ∉ E(n)

i (ɛ))

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�(I)

+ P
XN(nt1)

j�1
Wj ≥ na1, : : : ,

XN(ntk)

j�N(ntk�1)+1
Wj ≥ nak, N(nti) ∈ E(n)

i (ɛ) for i � 1, : : : , k

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�(II)

:

Note also that τ1 is light-tailed because P(τ1 ≥ k) � P(
Pj

i�1 Ui ≥ 0, j � 1, : : : , k) ≤ P
� 1

k
Pk

i�1 Ui ≥ 0
�
, and P

� 1
k
Pk

i�1 
Ui ≥ 0

�
decays at a geometric rate as k → ∞ because of our assumptions that EU1 < 0 and θ+ > 0 along with 

Cramér’s theorem. Moreover,

{N(nti) ∉ E(n)
i } � {N(n(li + ɛ)Eτ1) < ⌈nli⌉} ∪ {N(n(ui � ɛ)Eτ1) > ⌊nui⌋}

⊆

P⌈nli⌉
i�1 τi

⌈nli⌉
>

n(li + ɛ)

⌈nli⌉
Eτ1

( )

∪

P⌈nui⌉
i�1 τi

⌈nui⌉
<

n(ui � ɛ)

⌈nui⌉
Eτ1

( )

:
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Therefore, again, by Cramér’s theorem,

lim sup
n→∞

log(I)
nα � �∞: (3.4) 

Shifting our attention to (II),

P
XN(nt1)

j�1
Wj ≥ na1, : : : ,

XN(ntk)

j�N(ntk�1)+1
Wj ≥ nak, N(nti) ∈ E(n)

i (ɛ) for i � 1, : : : , k

0

@

1

A

≤
X⌊n(t1=Eτ1+ɛ)⌋

i1�⌈n(t1=Eτ1�ɛ)⌉

⋯
X⌊n(tk=Eτ1+ɛ)⌋

ik�⌈n(tk=Eτ1�ɛ)⌉

P
Xi1

j�1
Wj ≥ na1, : : : ,

Xik

j�ik�1+1
Wj ≥ nak, N(ntl) � il for l � 1, : : : , k

0

@

1

A

≤
X⌊n(t1=Eτ1+ɛ)⌋

i1�⌈n(t1=Eτ1�ɛ)⌉

⋯
X⌊n(tk=Eτ1+ɛ)⌋

ik�⌈n(tk=Eτ1�ɛ)⌉

P
Xi1

j�1
Wj ≥ na1, : : : ,

Xik

j�ik�1+1
Wj ≥ nak

0

@

1

AI(i1 ≤ ⋯ ≤ ik)

�
X⌊n(t1=Eτ1+ɛ)⌋

i1�⌈n(t1=Eτ1�ɛ)⌉

⋯
X⌊n(tk=Eτ1+ɛ)⌋

ik�⌈n(tk=Eτ1�ɛ)⌉

P
Xi1

j�1
Wj ≥ na1

0

@

1

A ⋯ P
Xik

j�ik�1+1
Wj ≥ nak

0

@

1

A

≤ (2ɛn)
k P

X⌊n(t1=Eτ1+ɛ)⌋

j�1
Wj ≥ na1

0

@

1

A ⋯ P
X⌊n(tk=Eτ1+ɛ)⌋

j�⌈n(tk�1=Eτ1�ɛ)⌉

Wj ≥ nak

0

@

1

A:

Now, we have that, from Result B.1 and Theorem 2.2,

lim sup
n→∞

1
nα

log(II) ≤
Xk

i�1
lim sup

n→∞

1
nα

log P
X⌊n(ti=Eτ1+ɛ)⌋

j�⌈n(ti�1=Eτ1�ɛ)⌉

Wj ≥ nai

0

@

1

A + lim sup
n→∞

log(2ɛn)
k

nα

≤ �B∗
0

Xk

i�1
(ai � λ(∆ti + 2ɛEτ1))

α
+:

Taking ɛ → 0, we arrive at

lim sup
n→∞

1
nα log(II) ≤ �B∗

0

Xk

i�1
(ai �λ∆ti)

α
+: (3.5) 

In view of (3.4) and (3.5),

lim sup
n→∞

1
nα log P

XN(nt1)�1

j�1
Wj ≥ na1, : : : ,

XN(nti)�1

j�N(nti�1)

Wj ≥ nai, : : : ,
XN(ntk)�1

j�N(ntk�1)

Wj ≥ nak

0

@

1

A

≤ max lim sup
n→∞

log(I)
nα , lim sup

n→∞

log(II)
nα

� �

≤ �B∗
0

Xk

i�1
(ai � λ∆ti)

α
+:
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For the lower bound in Equation (3.3), notice that

P
XN(nt1)�1

j�1
Wj > na1, : : : ,

XN(ntk)�1

j�N(ntk�1)

Wj > nak

0

@

1

A

≥ P
XN(nt1)�1

j�1
Wj > na1, : : : ,

XN(ntk)�1

j�N(ntk�1)

Wj > nak, N(nti) ∈ E(n)
i (ɛ) for i � 1, : : : , k

0

@

1

A

≥ P
X⌊n(t1=Eτ1�ɛ)⌋�1

j�1
Wj > na1, : : : ,

X⌊n(tk=Eτ1�ɛ)⌋�1

j�⌈n(tk�1=Eτ1+ɛ)⌉

Wj > nak, N(nti) ∈ E(n)
i (ɛ) for i � 1, : : : , k

0

@

1

A

≥ P
X⌊n(t1=Eτ1�ɛ)⌋�1

j�1
Wj > na1, : : : ,

X⌊n(tk=Eτ1�ɛ)⌋�1

j�⌈n(tk�1=Eτ1+ɛ)⌉

Wj > nai

0

@

1

A� (I)

� P
X⌊n(t1=Eτ1�ɛ)⌋�1

j�1
Wj > na1

0

@

1

A
Yk

i�2
P

X⌊n(ti=Eτ1�ɛ)⌋�1

j�⌈n(ti�1=Eτ1+ɛ)⌉

Wj > nai

0

@

1

A� (I)

� P
X⌊n(t1=Eτ1�ɛ)⌋�1

j�1
Wj > na1

0

@

1

A
Yk

i�2
P

X⌊n(ti=Eτ1�ɛ)⌋�⌈n(ti�1=Eτ1+ɛ)⌉

j�1
Wj > nai

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�(III)

�(I): (3.6) 

From Theorem 2.2, Result B.1, and (3.4), we get (I)
(III) → 0 as n → ∞. Therefore, (3.6) leads to

lim inf
n→∞

1
nα log P

XN(nt1)�1

j�1
Wj > na1, : : : ,

XN(ntk)�1

j�N(ntk�1)

Wj > nak

0

@

1

A

≥ lim inf
n→∞

1
nα log III( ) 1 �

(I)
(III)

� �� �

� lim inf
n→∞

1
nα log III( )

� �B∗
0

Xk

i�1
(ai �λ(∆ti � 2ɛEτ1))

α
+:

Taking ɛ → 0, we arrive at (3.3) concluding the proof.
Our next lemma establishes the LDP for 

� 1
n
PN(nt1)

j�1 Wj, : : : , 1
n
PN(ntk)

j�N(ntk�1)+1 Wj
�
.

Lemma 3.3. For any given t � (t1, : : : , tk) such that 0 � t0 ≤ t1 < ⋯ < tk ≤ 1, the probability measures µn of 
� 1

n
PN(nt1)

j�1 
Wj, : : : , 1

n
PN(ntk)

j�N(ntk�1)+1 Wj
�

satisfy the LDP in Rk
+ w.r.t. Euclidean topology with the speed nα and the good rate function 

It : Rk
+ → R+:

It(x1, : : : , xk)¢
B∗

0

Xk

i�1
(xi �λ∆ti)

α if xi ≥ λ∆ti, ∀i � 1, : : : , k,

∞ otherwise:

8
><

>:
(3.7) 

Proof. Note that it is straightforward from (3.2) of Lemma 3.2 to see that 
� 1

n
PN(nt1)

j�0 Wj, : : : , 1
n
PN(ntk)

j�N(ntk�1)+1 Wj
�

is ex
ponentially tight by considering compact sets 

Qk
i�1[0, ai] for sufficiently large ai’s. Also, we claim that 

� 1
n
PN(nt1)

j�0 
Wj, : : : , 1

n
PN(ntk)

j�N(ntk�1)+1 Wj
�

satisfies a weak LDP. Once this claim is established, Dembo and Zeitouni [8, lemma 
1.2.18] applies, showing that the full LDP is satisfied.
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Now, to prove the claimed weak LDP, we start by showing that

lim sup
n→∞

log µn(A)

nα
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¢ LA

� lim inf
n→∞

log µn(A)

nα|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ LA

(3.8) 

for every A ∈ A¢ {
Qk

i�1((ai, bi) ∩ R+) : ai < bi}. Let

LA ¢
�B∗

0

Xk

i�1
(ai �λ∆ti)

α
+ if bi ≥ λ∆ti for i � 1, : : : , k,

�∞ otherwise:

8
><

>:

We prove (3.8) by showing that LA ≤ LA ≤ LA. We consider two cases: 
Case 1: bi ≥ λ∆ti for i � 1, : : : , k.
Case 2: bi < λ∆ti for some i ∈ {1, : : : , k}.

Let A¢
Qk

i�1((ai, bi) ∩ R+) and ai < bi for i � 1, : : : , k. We start with case 1. Because A ⊆
Qk

i�1[ai, bi),

LA ≤ lim sup
n→∞

1
nα log P

XN(nt1)

j�1
Wj ≥ na1, : : : ,

XN(ntk)

j�N(ntk�1)+1
Wj ≥ nak

0

@

1

A ≤ �B∗
0

Xk

i�1
(ai �λ∆ti)

α
� LA, (3.9) 

where the second inequality is from (3.2). Because 
Qk

i�1[ai + ɛ, bi) ⊆ A for small enough ɛ > 0,

LA ≥ lim inf
n→∞

1
nα

log P

  
1
n
XN(nt1)

j�0
Wj, : : : , 1

n
XN(ntk)

j�N(ntk�1)+1
Wj

!

∈
Yk

i�1
[ai + ɛ, bi)

!

≥ lim inf
n→∞

1
nα

log
(

P

 
1
n
XN(nt1)

j�0
Wj > a1 + ɛ, : : : , 1

n
XN(ntk)

j�N(ntk�1)+1
Wj > ak + ɛ

!

�
Xk

l�1
P

 
XN(nti)

j�N(nti�1)+1
Wj ≥ nai ∀ i ≠ l,

XN(ntl)

j�N(ntl�1)+1
Wj ≥ nbl

!)

≥ lim inf
n→∞

1
nα log P

 
1
n
XN(nt1)

j�0
Wj > a1 + ɛ, : : : , 1

n
XN(ntk)

j�N(ntk�1)+1
Wj > ak + ɛ

!

+ lim inf
n→∞

1
nα log 1 �

Pk
l�1 P 1

n
PN(nti)

j�N(nti�1)+1 Wj ≥ ai + ɛ ∀i ≠ l, 1
n
PN(ntl)

j�N(ntl�1)+1 Wj ≥ bl

� �

P 1
n
PN(nt1)

j�1 Wj > a1 + ɛ, : : : , 1
n
PN(ntk)

j�N(ntk�1)+1 Wj > ak + ɛ
� �

0

@

1

A: (3.10) 

Note that, because of the logarithmic asymptotics of Lemma 3.2, for every l ∈ {1, : : : , k},

P 1
n
PN(nti)

j�N(nti�1)+1 Wj ≥ ai + ɛ for i ∈ {1, : : : , k} \ l, 1
n
PN(ntl)

j�N(ntj�1)+1 Wj ≥ bl

� �

P 1
n
PN(nt1)

j�1 Wj > a1 + ɛ, : : : , 1
n
PN(ntk)

j�N(ntk�1)+1 Wj > ak + ɛ
� � → 0, 

and hence, the second term of (3.10) disappears. Therefore,

LA ≥ lim inf
n→∞

log P 1
n
PN(nt1)

j�1 Wj > a1 + ɛ, : : : , 1
n
PN(ntk)

j�N(ntk�1)+1 Wj > ak + ɛ
� �

nα

≥ �B∗
0

Xk

i�1
(ai + ɛ �λ∆ti)

α
:

Taking ɛ → 0, we arrive at LA ≥ LA, which, together with (3.9), proves (3.8) for case 1.
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For Case 2, note that, by Result B.1,

LA ≤ lim sup
n→∞

1
nα

log P
XN(nti)

j�N(nti�1)+1
Wj < nbi

0

@

1

A � �∞, 

and hence, LA � LA � LA � �∞.
Now, note also that

It(x1, : : : , xk) � sup{�LA : A ∈ A, (x1, : : : , xk) ∈ A}: (3.11) 

Because A is a base of the Euclidean topology, the desired weak LDP follows from (3.8), (3.11), and Dembo and 
Zeitouni [8, theorem 4.1.11]. w

The following is an immediate corollary of Lemma 3.3.

Lemma 3.4. For any given t � (t1, : : : , tk) such that 0 � t0 ≤ t1 < ⋯ < tk ≤ 1, the probability measures (µn) of 
� 1

n
PN(nt1)

j�0 
Wj, : : : , 1

n
PN(ntk)

j�0 Wj
�

satisfy an LDP in Rk
+ with the speed nα and with the good rate function Ĩt : Rk

+ → R+,

Ĩ t(x1, : : : , xk)¢
B∗

0

Xk

i�1
(xi � xi�1 �λ∆ti)

α if xi � xi�1 ≥ λ∆ti, for i � 1, : : : , k,

∞ otherwise:

8
><

>:
(3.12) 

Proof. The proof is an application of the contraction principle (Dembo and Zeitouni [8]). To this end, consider 
the function f : Rk

+ → Rk
+, f (x1, x2, : : : , xk)¢ (x1, x1 + x2, : : : , x1 + ⋯ + xk): Notice that

1
n
XN(nt1)

j�0
Wj, : : : , 1

n
XN(ntk)

j�0
Wj

0

@

1

A � f 1
n
XN(nt1)

j�0
Wj, : : : , 1

n
XN(ntk)

j�N(ntk�1)+1
Wj

0

@

1

A, 

where f is a continuous function. That is, 
� 1

n
PN(nt1)

j�0 Wj, : : : , 1
n
PN(ntk)

j�0 Wj
�

satisfies a large deviation principle with the 
rate function Ĩ t(y1, : : : , yk) � inf{It(x1, : : : , xk) : y � f (x1, : : : , xk)}. However, because (y1, : : : , yk) � f (x1, : : : , xk), it is 
immediate that y1 ≤ y2 ≤ ⋯ ≤ yk. Therefore,

Ĩ t(y1, : : : , yk) �
B∗

0

Xk

i�1
(yi � yi�1 �λ∆ti)

α if yi+1 � yi ≥ λ∆ti for i � 1, : : : , k,

∞ otherwise: w

8
><

>:

Now, for a path ξ ∈ D[0, 1], let

IZ(ξ)¢

B∗
0

X

t:ξ(t)≠ξ(t�)

(ξ(t) � ξ(t�))
α if ξ ∈ D(λ)[0, 1],

∞ otherwise:

8
<

:
(3.13) 

Because Zn satisfies a finite-dimensional LDP, we can show that the Dawson–Gärtner projective limit theorem 
implies that Zn satisfies an LDP in D[0, 1] endowed with the pointwise convergence topology. The next lemma veri
fies that the rate function associated with the LDP of Zn is indeed IZ.

Lemma 3.5. Let T¢ ∪∞
d�1 {(t1, : : : , tk) : 0 ≤ t1 < t2 < ⋯ < td ≤ 1} be the collection of all ordered (in the increasing 

order) finite subsets of [0, 1]. Then,

sup
t∈T

Ĩ t(ξ(t1), : : : ,ξ(tk)) � IZ(ξ):

Proof. The proof is essentially identical to the proof of Gantert [12, lemma 4] and, hence, omitted. w

We derive the sample-path LDP for the stochastic process Zn w.r.t. the pointwise convergence topology, which 
we denote with W. Recall that D(λ)[0, 1] denotes the subspace of increasing paths with slope λ.

Lemma 3.6. The stochastic process Zn satisfies a large deviation principle in (D[0, 1],W) with the speed nα and the good 
rate function IZ.
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Proof. This is an immediate consequence of the Dawnson and Gärtner projective limit theorem, (Dembo and Zei
touni [8, theorem 4.6.1]) and Lemmas 3.4 and 3.5. w

Next, we establish the sample-path LDP for the stochastic process Zn in (D[0, 1],TM′
1
).

Lemma 3.7. The stochastic process Zn satisfies a large deviation principle in D[0, 1] w.r.t. the M′
1 topology with the speed 

nα and the good rate function IZ.

Proof. For the upper bound, consider a set KM ¢ {ξ ∈ D[0, 1] : ξ is nondecreasing, ξ(0) ≥ 0, ‖ξ‖∞ ≤ M}. Let F be a 
closed set in (D[0, 1],TM′

1
). Then,

lim sup
n→∞

1
nα

log P(Zn ∈ F) ≤ lim sup
n→∞

1
nα

log{P(Zn ∈ F ∩ KM) + P(Zn ∈ Kc
M)}

≤ lim sup
n→∞

1
nα

log P(Zn ∈ F ∩ KM) + P
XN(nt)

j�1
Wj ≥ M

0

@

1

A

8
<

:

9
=

;
:

From Bazhba et al. [3, proposition A.2], one can check that pointwise convergence in KM implies the convergence 
w.r.t. the M′

1 topology, and KM (and, hence, F ∩ KM as well) is closed w.r.t. TM′
1
. Suppose that ξ is in the closure 

of F ∩ KM w.r.t. W. Then, because of the aforementioned properties of KM, there exists a sequence of paths {ξn}

in F ∩ KM such that ξn → ξ w.r.t. TM′
1
, which, in turn, implies that ξ ∈ F ∩ KM. That is, F ∩ KM is closed in W as 

well. Now, applying the sample-path LDP w.r.t. W we have proved in Lemma 3.6, and then picking M large 
enough,

lim sup
n→∞

1
nα log P(Zn ∈ F) ≤ max � inf

ξ∈F∩KM
IZ(ξ), � B∗

0M
� �

� � inf
ξ∈F∩KM

IZ(ξ) ≤ � inf
ξ∈F

IZ(ξ):

Moving on to the lower bound, let G be an open set in (D[0, 1],TM′
1
). We assume that I(G) < ∞ because we have 

nothing to show otherwise. Fix an arbitrary ξ ∈ G ∩ D(λ)[0, 1], and let k be such that an open ball of radius 1+λ
k 

around ξ is inside of G. That is, BM′
1
ξ; 1+λ

k
� �

¢
�
ζ ∈ D[0, 1] : dM′

1
(ξ,ζ) < 1+λ

k
�

⊆ G. Note that, because ξ ∈ D(λ)[0, 1]

and Zn is nondecreasing, |Zn(i=k) � ξ(i=k) | < 1=k, for i � 0, : : : , k
� �

⊆
�

Zn ∈ BM′
1

�
ξ; 1+λ

k
��

. Therefore, in view of 
Lemma 3.4,

lim inf
n→∞

1
nα

log P(Zn ∈ G) ≥ lim inf
n→∞

1
nα

log P Zn ∈ BM′
1
ξ, 1 +λ

k

� �� �

≥ lim inf
n→∞

1
nα

log P( |Zn(i=k) � ξ(i=k) | < 1=k, for i � 0, : : : , k)

� � inf
(y1, : : : ,yk)∈

Qk
i�1

(ξ(i=k)�1=k,ξ(i=k)+1=k)

Ĩ t(y1, : : : , yk)

≥ �B∗
0

(p)
Xk

i�1
(ξ(i=k) � ξ((i � 1)=k) �λ=k)

α

≥ �B∗
0

(p)
X

t:ξ(t)≠ξ(t�)

(ξ(t) � ξ(t�))
α

� �IZ(ξ):

Becaue ξ was an arbitrary element of G ∩ D(λ)[0, 1], we arrive at the desired lower bound:

� inf
ξ∈G

IZ(ξ) � � inf
ξ∈G∩D(λ)[0,1]

IZ(ξ) ≤ lim inf
n→∞

1
nα

log P(Zn ∈ G): w 

Our next lemma shows that Zn + Sn is exponentially equivalent to Yn.

Lemma 3.8. Yn and Zn + Sn are exponentially equivalent in (D[0, 1],TM′
1
).
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Proof. Because of the construction of Yn, Zn, and Sn, we have that, for any δ > 0,

{dM′
1
(Yn, Zn + Sn) ≥ δ} ⊆ {(n � TN(n))=n ≥ δ} ∪ {∃j ≤ N(n) : τj ≥ nδ}: (3.14) 

To bound the probability of the first set, define Dn(ɛ)¢ {N(n)=n ≥ 1=Eτ1 � ɛ} for any ɛ > 0 and notice that P((n �

TN(n))=n > δ) � P(TN(n) ≤ n(1 � δ)) � P(TN(n) ≤ n(1 � δ), Dn(ɛ)) + P(TN(n) ≤ n(1 � δ), Dn(ɛ)
c
), and hence,

lim sup
n→∞

1
nα log P((n � TN(n))=n ≥ δ)

≤ lim sup
n→∞

1
nα

log{P(TN(n) ≤ n(1 � δ), Dn(ɛ)) + P(Dn(ɛ)
c
)}

� max lim sup
n→∞

1
nα log P(TN(n) ≤ n(1 � δ), Dn(ɛ)), lim sup

n→∞

1
nα log P(Dn(ɛ)

c
)

� �

: (3.15) 

Letting ɛ < δ=(2Eτ1), we see that, from the same argument as the one preceding (3.4),

lim sup
n→∞

1
nα

log P(TN(n) ≤ n(1 � δ), Dn(ɛ)) ≤ lim sup
n→∞

1
nα

log P T�
n
�

1
Eτ1

�ɛ

�� ≤ n(1 � δ), Dn(ɛ)

� �

� lim sup
n→∞

1
nα log P N(n(1 � δ)) ≥

$

n 1
Eτ1

� ɛ

� �%

, Dn(ɛ)

 !

� �∞:

Using the definition of a renewal process and Cramérs theorem, we obtain

lim sup
n→∞

1
nα log P(Dn(ɛ)

c
) � �∞: (3.16) 

Therefore,

lim sup
n→∞

1
nα

log P((n � TN(n))=n > δ) � �∞: (3.17) 

Moving on to the bound for the probability of the second term in (3.14), for any ɛ > 0,

P({∃j ≤ N(n) : τj ≥ nδ}) � P(∃j ≤ N(n) : τj ≥ nδ, N(n)=n ≤ 1=Eτ1 + ɛ) + P(N(n)=n > 1=Eτ1 + ɛ)

≤ P(∃j ≤ ⌈n=E(τ1) + nɛ⌉ : τj ≥ nδ) + P(N(n)=n > 1=Eτ1 + ɛ)

≤ ⌈n=E(τ1) + nɛ⌉P(τ1 ≥ nδ) + P(N(n)=n > 1=Eτ1 + ɛ):

Because P(τ1 ≥ nδ) and P(N(n)=n > 1=Eτ1 + ɛ) both decay at an exponential rate,

lim sup
n→∞

1
nα log P({∃j ≤ N(n) : τj ≥ nδ}) � �∞:

This, along with (3.17) and (3.14), proves the desired exponential equivalence. w

Now, we have all the necessary components to prove Theorem 2.1.

Proof of Theorem 2.1. The preceding sequence of lemmas has resulted in LDPs of Zn (Lemma 3.7) and Sn 
(Lemma 3.1). Because Zn and Sn are independent, (Zn, Sn) satisfies an LDP in 

Q2
i�1D[0, 1] with the rate function 

IZ, S(ζ,ξ)¢ IZ(ζ) + IS(ξ); see, for example, Ganesh et al. [11, theorem 4.14].
Let φ :

Q2
i�1D[0, 1] → D[0, 1] denote the addition function φ(ξ,ζ) � ξ+ ζ: Because φ is continuous on (ξ,ζ) as 

far as ξ and ζ do not share a jump time with opposite directions (which follows from a straightforward modifica
tion of Bazhba et al. [2, lemma B.1]), φ is continuous on the effective domain of IZ, S. Let IW(ζ)¢ inf{IZ, S(ξ1,ξ2) :

ζ � ξ1 + ξ2, ξ1 ∈ D(λ)[0, 1], ξ2 ∈ D⩽1[0, 1]}, and note that it is straightforward to check that IW � IY. By the extended 
contraction principle (see Puhalskii and Whitt [17]), we conclude that Zn + Sn satisfies the sample-path LDP with 
the rate function IY.
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We now prove the large deviation upper bound. Let F be a closed set w.r.t. the M′
1 topology, and let Fɛ ¢ {ξ ∈

D[0, 1] : dM′
1
(ξ, F) ≤ ɛ}. Then,

lim sup
n→∞

1
nα

log P(Yn ∈ F)

� lim sup
n→∞

1
nα

log{P(Yn ∈ F, dM′
1
(Yn, Zn + Sn) ≤ ɛ) + P(dM′

1
(Yn, Zn + Sn) > ɛ))}

≤ lim sup
n→∞

1
nα

log P(Zn + Sn ∈ Fɛ) ≤ � inf
ξ∈Fɛ

IY(ζ), 

where the first inequality is due to Lemma 3.8. Note that limɛ→0 infξ∈Fɛ
IY(ζ) � infξ∈F IY(ζ), because IW is good w.r.t. 

T M′
1 

(see Bazhba et al. [3, proposition A.3]). The desired large deviation upper bound follows by taking ɛ → 0.
For the lower bound, let G be an open set in TM′

1
. We assume that infξ∈G IY(ξ) < ∞ because the lower bound is 

trivial otherwise. For any given ɛ > 0, pick ζ ∈ G such that I(ζ) ≤ infξ∈G IY(ξ) + ɛ. Let δ > 0 be such that BM′
1
(ζ, 2δ)

∈ G. Then, we know from Lemma 3.8, P(d(Yn, Zn + Sn) < δ)=P(Zn + Sn ∈ BM′
1
(ζ,δ)) → 0, and hence,

lim inf
n→∞

1
nα

log P(Yn ∈ G)

≥ lim inf
n→∞

1
nα

log P(Zn + Sn ∈ BM′
1
(ζ,δ), d(Yn, Zn + Sn) < δ)

≥ lim inf
n→∞

1
nα log P(Zn + Sn ∈ BM′

1
(ζ,δ)) 1 �

P(d(Yn, Zn + Sn) < δ)

P(Zn + Sn ∈ BM′
1
(ζ,δ))

( )

� lim inf
n→∞

1
nα

log P(Zn + Sn ∈ BM′
1
(ζ,δ))

≥ � inf
ξ∈BM′

1
(ζ,δ)

IY(ξ) ≥ �IY(ζ) ≥ � inf
ξ∈G

IY(ξ) � ɛ:

Taking ɛ → 0, we arrive at the desired lower bound. w

4. Tail Asymptotics for the Area of a Busy Period
Our focus in this section is on proving Theorems 2.2 and 2.3. In Section 4.1, we collect several analytic properties of 
key variational problems related to these theorems. The proofs of these analytic properties as well as some other 
analytic results are deferred to Section 5 to keep the focus of this section on probabilistic arguments as much as pos
sible. In Section 4.2, we state two key propositions (Propositions 4.2 and 4.3), which are applied to providing the 
proofs of Theorems 2.2 and 2.3. The rest of this section is devoted to the proofs of Propositions 4.2 and 4.3. The focus 
is again on probabilistic ideas; the substantial number of additional analytical arguments that are directly needed 
are stated as lemmas of which the proofs can be found in Section 5.

4.1. Key Auxiliary Variational Problems and Related Properties
Recall that BACy � By ∩ AC[0, ∞). Our first lemma establishes that the infimum defining B∗

y, taken over paths of 
bounded variation, can be confined to absolutely continuous paths. Its proof is given in Section 5.1.

Lemma 4.1. Recall that B∗
y is the optimal value of the variational problem (By). 

i. Let y ¢ ( |µ | (p + 1))
α. For any y ≥ y, there exists a path ξ∗ ∈ BACy so that Iy(ξ∗) � 0 and B∗

y � 0:

ii. For any y ≥ 0, B∗
y � infξ∈BACy

Iy(ξ).

We provide the proof of the following proposition in Section 5.2. It facilitates the proof of Proposition 4.3, which 
is a key result for the tail asymptotics of W1 and Vn.

Proposition 4.1. The optimal value B∗
y of (By) satisfies the following properties: 

i. y ⊢→ B∗
y is nonincreasing in y, y ∈ [0, y].

ii. y ⊢→ B∗
y is Lipschitz continuous, y ∈ [0, y].

iii. For every y ∈ [0, y), B∗
y ∈ (0, ∞).
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Fix T > 0 and consider a functional ΦT : D[0, T] → R+, where ΦT(ξ) �
R T

0 (Ψ(ξ)(s))
pds. Now, let VT

y
∗ denote the 

optimal value of the optimization problem

(VT
y ) VT

y
∗ ¢ inf

ξ∈VT
y

IBV[0, T]
y (ξ), 

where

VT
y ¢ {ξ ∈ D[0, T] : ξ(0) � y, ΦT(ξ) ≥ 1}, 

and

IBV[0, T]
y (ξ)¢

Z T

0
Λ∗(ξ̇

(a)
(s))ds +θ+ξ

(u)(T) +θ�ξ
(d)(T) if ξ(0) � y and ξ ∈ BV[0, T],

∞ otherwise:

8
<

:

The variational problem (VT
y ) naturally appears in large deviations estimates. The next lemma, proved in Section 

5.3, summarizes several of its properties.

Lemma 4.2. Consider an arbitrary path ξ ∈ BV[0, T] and set y¢ξ(0). 
i. There exists a path ζ1 ∈ BV[0, T] such that 

i-1. ζ1(0) � y.
i-2. ΦT(ζ1) ≥ ΦT(ξ).
i-3. IBV[0, T]

y (ζ1) ≤ IBV[0, T]
y (ξ).

i-4. For some t ∈ [0, T], ζ1 is nonnegative over [0, t] and ζ1 is linear with slope µ over [t, T].
ii. There exists a path ζ2 ∈ AC[0, T] and a z ∈ [0,ξ(u)(T)] such that 

ii-1. ζ2(0) � y + z.
ii-2. ΦT(ζ2) ≥ ΦT(ξ).
ii-3. θ+ · z + IBV[0, T]

y+z (ζ2) ≤ IBV[0, T]
y (ξ), where we interpret θ+ · z as zero if θ+ � ∞ and z � 0.

ii-4. For some t ∈ [0, T], ζ2 is nonnegative over [0, t] and ζ2 is linear with slope µ over [t, T].
iii. If, in addition, ξ ∈ AC[0, T], there exists a path ζ3 ∈ AC[0, T] such that 

iii-1. ζ3(0) � y.
iii-2. ΦT(ζ3) ≥ΦT(ξ).
iii-3. IBV[0, T]

y (ζ3) ≤ IBV[0, T]
y (ξ).

iii-4. ζ3 is concave over [0, T] and its derivative is bounded by µ from below.

4.2. Proof of Theorems 2.2 and 2.3
The following propositions are instrumental.

Proposition 4.2.
i. Recall that T1 � inf{k > 0 : Xk � 0}. Then,

lim sup
x→∞

1
x

log Pxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

≤ �B∗
y:

ii. Recall that W1 �
PT1

i�1 Xp
i . Then,

lim inf
u→∞

1
uα

log P0(W1 > u) ≥ �B∗
0:

We provide the proof of Proposition 4.2 in Section 4.3.

Proposition 4.3.
i. 
Pm�1

k�0 Xp
k > x1+p � 

Rm=x
0 (

X⌊ux⌋

x )
pdu > 1.

ii. It holds that

B∗
0 � B∗

π, 
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iii. Finally,

lim
k→∞

min
i≥1

i � 1
k
βy + B∗

i
ky

� �

� inf
y∈[0, ∞)

{βy + B∗
y} � B∗

π:

We provide the proof of Proposition 4.3 in Section 4.4.
With Propositions 4.2 and 4.3 in our hands, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. For the upper bound, setting t � xp+1 � x1=α,

lim sup
t→∞

1
tα

log P(W1 ≥ t) � lim sup
x→∞

1
x

log P0
XT1�1

k�0
Xp

k ≥ x1+p

 !

� lim sup
x→∞

1
x log P0

Z T1=x

0

X⌊ux⌋

x

� �p
du ≥ 1

 !

≤ �B∗
0:

We used 
PT1

i�1 Xp
i �
PT1�1

i�0 Xp
i to obtain the first equality, applied part (i) of Proposition 4.3 to derive the second 

equality, and invoked part (i) of Proposition 4.2 to establish the inequality. Together with the matching lower 
bound in part (ii) of Proposition 4.2, this yields the desired asymptotics (2.4). w

The proof of Theorem 2.3 is slightly more involved.

Proof of Theorem 2.3. We start by proving the large deviation upper bound for 1
n Vn. Denote the time-reversed 

Markov process of {Xk, k � 1, : : : , n} with {X∗
k, k � 0, : : : , n}, and let T∗

1 ¢ inf{i > 0 : X∗
i � 0}. Let y ¢ ( |µ | (p + 1))

α, 
and fix b > 0. Setting xp+1 ¢nb, we obtain that

P0
1
n Vn ≥ b
� �

� P0
Xn

i�TN(n)+1
Xp

i ≥ nb

0

@

1

A �
1
π(0)

Pπ
XT

∗
1�1

i�0
(X∗

i )
p

≥ nb,X∗
n � 0

 !

≤
n + 1
π(0)

Pπ
XT1�1

i�0
Xp

i ≥ nb

 !

�
n
π(0)

Pπ
Z T1=x

0

X⌊ux⌋

x

� �p
du ≥ 1

 !

, (4.1) 

where the second equality follows from Lemma A.1 with g(y0, : : : , yn) � 1(
Pn

max{i ≤ n:yi�0} yp
i > nb), the second 

inequality follows from the upper bound in Lemma A.2, and the last equality follows from part (i) of Proposi
tion 4.3.

From the tower property, we have that

Pπ
Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

� Eπ 1{X0 ≥ xy} +
Xk

i�1
1 X0 ∈

i � 1
k xy, i

k xy
� �� � !

P
Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1

�
�
�
�
�
X0)

 !" #

≤ Eπ1 X0 ≥ xy
� �

+
Xk

i�1
Eπ 1

(

X0 ∈

"
i � 1

k xy, ∞)

)

P i
kxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !" #

≤ π[xy, ∞) +
Xk

i�1
π

"
i � 1

k xy, ∞

!

P i
kxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

, (4.2) 
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where, in the first inequality, we used that the Markov chain {Xn, n ≥ 1} is monotone with respect to the initial state. 
Therefore, by the principle of the maximum term and part (i) of Proposition 4.2,

lim sup
x→∞

1
x

log Pπ
Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

≤ lim sup
x→∞

1
x

log π[xy, ∞)

∨ max
i�1, : : : ,k

lim sup
x→∞

1
x log π

"
i � 1

k xy, ∞

!

P i
kxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 ! !( )

� (�βy) ∨ max
i�1, : : : ,k

�
i � 1

k βy + lim sup
x→∞

1
x log P i

kxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !( )

:

≤ (�βy) ∨ max
i�1, : : : ,k

�
i � 1

k
βy � B∗

i
ky

� �

:

Note that, because B∗
y � 0 for y ≥ y because of part (i) of Lemma 4.1,

(�βy) ∨ max
i�1, : : : ,k

�
i � 1

k
βy � B∗

i
ky

� �

� max
i≥1

�
i � 1

k
βy � B∗

i
ky

� �

� � min
i≥1

i � 1
k
βy + B∗

i
ky

� �

:

Taking k → ∞ and applying parts (ii) and (iii) of Proposition 4.3,

lim sup
x→∞

1
x

log Pπ
Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

≤ �B∗
π � �B∗

0:

From this, along with (4.1), we arrive at the desired upper bound:

lim sup
x→∞

1
nα

log P0
1
n

Vn ≥ b
� �

≤ lim sup
x→∞

1
x

log Pπ
Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

· bα ≤ �B∗
0 · bα:

Next, for n sufficiently large, using the lower bound of Lemma A.2 for n ≥ n0,

P0
1
n Vn ≥ b
� �

� P0
Xn

i�TN(n)+1
Xp

i ≥ nb

0

@

1

A �
1
π(0)

Pπ
XT

∗
1�1

i�0
(X∗

i )
p

≥ nb,X∗
n � 0

 !

≥
π(0)

2 P0
XT1

i�1
Xi

p > nb

 !

� O(e�cn) �
π(0)

2 P0(W1 > nb) � O(e�cn): (4.3) 

We can now apply part (ii) of Proposition 4.2 to (4.3) and obtain the matching lower bound:

lim inf
n→∞

1
nα

log P0
1
n

Vn ≥ b
� �

≥ �B∗
0 · bα: w 

4.3. Proof of Proposition 4.2
We first state a number of preliminary results. These results are analytic in nature, and their proofs can be found in 
Sections 5.4 and 5.5. For a fixed M > 0, let BAC;M

y ¢BACy ∩ {ξ ∈ D[0, ∞) : T (ξ) ≤ M}, and let BM
y ¢By ∩ {ξ ∈ D[0, ∞) :

T (ξ) ≤ M}.

Lemma 4.3. For any given y ≥ 0, there exists a constant M � M(y) > 0 such that 
i. For each ξ ∈ BACy , there exists a path ζ ∈ BAC;M

y satisfying Iy(ζ) ≤ Iy(ξ).
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ii. It holds that

inf
ξ∈BACy

Iy(ξ) � inf
ξ∈BAC;M

y

Iy(ξ): (4.4) 

iii. Moreover, M(y) ≤ cy + d for some c> 0 and d > 0.

Lemma 4.4. Let M > 0 be the constant in Lemma 4.3. Then, B∗
y � VT

y
∗ for any T ≥ M.

Set

Kt ¢ ξ ∈ D[0, t] : ξ(0) � 0,
Z t

0
(Ψ(ξ)(s))

pds ≥ 1, ξ(s) ≥ 0 for s ∈ [0, t]
� �

:

The following corollary is immediate from the previous lemma and Lemma 4.3.

Corollary 4.1. Let M > 0 be the constant in Lemma 4.3. For any y ≥ 0,

inf
t∈[0,M]

inf
ξ∈Kt

IBV[0, t]
0 (ξ) � VM

0
∗ � B∗

0:

Next, we formulate a key preparatory lemma. This lemma is motivated by a result of Vysotsky [21], stated as Result 
B.3(ii). To apply this result, we need to verify a uniform continuity result. The next lemma provides the desired uni
form continuity, whose proof is deferred to Section 5.6.

Recall the function ΦT : D[0, T] → [0, ∞) defined as ΦT(ξ) �
R T

0 (Ψ(ξ)(s))
pds and IBV[0, T]

0 defined as

IBV[0, T]
0 (ξ)¢

Z T

0
Λ∗(ξ̇

(a)
(s))ds +θ+(ξ(u)(T)) +θ� |ξ(d)(T) | if ξ ∈ BV[0, T] and ξ(0) � 0,

∞ otherwise:

8
<

:

Lemma 4.5. For each γ ≥ 0, ΦT is uniformly continuous on the set {ξ : IBV[0, T]
0 (ξ) ≤ γ} w.r.t. the M′

1 metric.

We apply this lemma in our next and final preparatory lemma.

Lemma 4.6.
i. For any t, y ≥ 0 and T> 0,

lim sup
x→∞

1
x

log Pxy(T1=x > T) ≤ ty + T log EetU: (4.5) 

ii. For any y ≥ 0 and T> 0,

lim sup
x→∞

1
x

log Pxy

Z T

0
(X⌊sx⌋=x)

pds ≥ 1
� �

≤ �VT
y

∗: (4.6) 

Proof of Lemma 4.6. For part (i), note that

Pxy(T1 > xT) ≤ Pxy(X⌊xT⌋ > 0) � P
X⌊xT⌋

i�1
Ui > �xy

 !

≤ etxyE(etU)
⌊xT⌋, 

where the last inequality is from the Markov inequality. Taking logarithms, dividing both sides by x, and taking 
lim sup, we get (4.5).

For part (ii), note that, conditional on X0 � xy,
R T

0 (X⌊sx⌋=x)
pds �ΦT(Kx + y). From Lemma 5.2, we know that ΦT 

is uniformly continuous over the sublevel sets of the rate function IBV[0, T]
y of Kx + y. Hence, we can apply Result 

B.3(ii) to obtain

lim
x→∞

1
x

log Pxy

Z T

0
(X⌊sx⌋=x)

pds ≥ 1
� �

≤ � inf
a∈[1,∞)

Jy(a), 

where Jy(a)¢ inf{IBV[0, T]
0 (ξ) : ξ ∈ D[0, T],ξ(0) � y,ΦT(ξ) � a}. Obviously, infa∈[1, ∞) Jy(a) � VT

y
∗, and (4.6) follows. w

Now we are ready to prove Proposition 4.2.
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Proof of Proposition 4.2. For part (i), consider a small enough t0 > 0 so that Eet0U < 1, which is possible because 
EU < 0 and U is light-tailed. Then, thanks to Lemma 4.4, we can pick a sufficiently large T > 0 so that B∗

y � VT
y

∗

and t0y + T log Eet0U < �B∗
y. Considering the case T1=x ≤ T and T1=x > T separately and then applying the prin

ciple of the maximum term,

lim sup
x→∞

1
x

log Pxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1
 !

≤ lim sup
x→∞

1
x

log Pxy

Z T1=x

0
(X⌊ux⌋=x)

pdu ≥ 1, T1=x ≤ T

 !

+ Pxy(T1=x > T)

( )

≤ lim sup
x→∞

1
x log Pxy

Z T

0
(X⌊ux⌋=x)

pdu ≥ 1
� �

∨ lim sup
x→∞

1
x log Pxy(T1=x > T)

≤ (�VT
y

∗) ∨ (t0y + T log Eet0U) � (�B∗
y) ∨ (t0y + T log Eet0U) � �B∗

y, (4.7) 

where we used Lemma 4.6 for the third inequality.
Next, we move on to part (ii). For any given t > 0, let 
• At, ɛ ¢ {ξ ∈ D[0, t] : ξ(0) � ɛ,

R t
0Ψ(ξ)(s)

pds > 1, ξ(s) > 0, ∀s ∈ [0, t]}.
• Ãt, ɛ ¢ {ξ ∈ D[0, t] : ξ(0) � ɛ,

R t
0Ψ(ξ)(s)

pds > 1, ξ(s) > ɛ=2, ∀s ∈ [0, t]}.
Set u � x1+p. Let ɛ be small enough such that P(U1 >

ffiffiffi
ɛ

√
) > 0. Define the event Bx, ɛ ¢ {Ui >

ffiffiffi
ɛ

√
, i � 1, : : : , ⌈x

ffiffiffi
ɛ

√
⌉}:

Setting k∗ � ⌈x
ffiffiffi
ɛ

√
⌉ + 1, we obtain

lim inf
u→∞

1
uα log P0(W1 > u)

� lim inf
x→∞

1
x

log P0
XT1

k�0
Xp

k > u

 !

≥ lim inf
x→∞

1
x log P0

XT1

k�k∗

Xp
k > x1+p, Bx, ɛ

 !

� lim inf
x→∞

1
x

log P0
XT1

k�k∗

Xp
k > x1+p |Bx, ɛ

 !

P0(Bx, ɛ)

" #

≥ lim inf
x→∞

1
x log Pɛx

XT1

k�0
Xp

k > x1+p

 !

P0(Bx, ɛ)

" #

� lim inf
x→∞

1
x

log Pɛx

Z T1=x

0
(X⌊sx⌋=x)

pds > 1
 !

P0(Bx, ɛ)

" #

≥ lim inf
x→∞

1
x log Pɛx

Z t

0
(X⌊sx⌋=x)

pds > 1, T1 > xt
� �

P0(Bx, ɛ)

� �

� lim inf
x→∞

1
x

log Pɛx

Z t

0
(X⌊sx⌋=x)

pds > 1, X⌊sx⌋=x > 0, ∀s ∈ [0, t]
� �

P0(Bx, ɛ)

� �

≥ lim inf
x→∞

1
x log[Pɛ(Kx ∈ At, ɛ)P0(Bx, ɛ)]

≥ � inf
ξ∈(At,ɛ)

◦
IBV[0, t]
ɛ (ξ) +

ffiffiffi
ɛ

√
log P(U1 >

ffiffiffi
ɛ

√
)

≥ � inf
ξ∈Ãt,ɛ

IBV[0, t]
ɛ (ξ) +

ffiffiffi
ɛ

√
log P(U1 >

ffiffiffi
ɛ

√
), 

where the third equality is from part (i) of Proposition 4.3. The second-to-last inequality follows from part (i) of 
Result B.3 because the integral and the infimum are both continuous in the M1 topology (see Whitt [22, respectively, 
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theorems 11.5.1 and 13.4.1]). Recall that

Kt � ξ ∈ D[0, t] : ξ(0) � 0,
Z t

0
(Ψ(ξ)(s))

pds ≥ 1, ξ(s) ≥ 0 for s ∈ [0, t]
� �

:

Note that, for all ɛ > 0,

inf
ξ∈Ãt,ɛ

IBV[0, t]
ɛ (ξ) ≤ inf

ξ∈Kt
IBV[0, t]
0 (ξ): (4.8) 

To see this, suppose that ξ ∈ Kt. Then, ξ̃ � ɛ + ξ belongs to Ãt, ɛ and IBV[0, t]
ɛ (ξ̃) � IBV[0, t]

0 (ξ). Because the construc
tion holds for every ξ ∈ Kt, we have that infξ∈Kt IBV[0, t]

0 (ξ) ≥ infξ∈Ãt,ɛ
IBV[0, t]
ɛ (ξ). Therefore,

lim inf
u→∞

1
uα

log P0(W1 > u) ≥ � inf
ξ∈Kt

IBV[0, t]
0 (ξ) +

ffiffiffi
ɛ

√
log P(U1 >

ffiffiffi
ɛ

√
):

Because ɛ and t are arbitrary, taking ɛ → 0 and taking the infimum over t ∈ [0, M], Corollary 4.1 gives

lim inf
u→∞

1
uα

log P0(W1 > u) ≥ � inf
t∈[0,M]

inf
ξ∈Kt

IBV[0, t]
0 (ξ) � �B∗

0: w 

4.4. Proof of Proposition 4.3
For part (i), note that

1
x1+p

Xm�1

k�0
Xp

k �
1

x1+p

Z m

0
Xp

⌊u⌋
du �

1
x1+p

Z m=x

0
xXp

⌊xs⌋
ds �

Z m=x

0

X⌊xs⌋

x

� �p
ds, 

where the second equality is from the change of variable u � xs. The claimed equivalence is immediate from this.
For part (iii), note that

lim
k→∞

min
i≥1

i � 1
k βy + B∗

i
ky

� �

� lim
k→∞

min
i≥1

β
i
k y + B∗

i
ky

� �

�
1
k βy

� �

� lim
k→∞

min
i≥1

β
i
k y + B∗

i
ky

� �

:

Moreover, from part (ii) of Proposition 4.1,

lim
k→∞

min
i≥1

i
k βy + B∗

i
ky

� �

� inf
y∈[0, ∞)

{βy + B∗
y}:

For part (ii), note that, by definition, B∗
0 ≥ B∗

π. Therefore, we only have to prove that B∗
0 ≤ B∗

π. Recall that β � sup{θ >

0 : E(eθU) ≤ 1} and θ+ � sup{θ ∈ R : E(eθU) < ∞}. For the rest of this proof, let Λ be the log-moment-generating func
tion, and let DΛ denote the effective domain of Λ, that is, DΛ � {x :Λ(x) < ∞}. We start with a claim: for any ɛ > 0, 
there exists a u> 0 such that

Λ∗(u)=u ≤ β+ ɛ: (4.9) 

To prove (4.9), we distinguish between the cases β < θ+ and β � θ+. For the first case, note that β ∈ D◦
Λ. In view of 

the convexity and continuity of E(eθU), E(eβU) � 1. Because of Dembo and Zeitouni [8, lemma 2.2.5(c)], Λ is a differ
entiable function in D◦

Λ with Λ′(η) �
E(UeηU)

E(eηU)
. Because β ∈ D◦

Λ, we have that Λ′(β) � E(UeβU) < ∞. In addition, Λ′(0) �

E(U) < 0 implies that Λ(η) is decreasing for small values of η. Now, the strict convexity and differentiability of Λ 
over its effective domain implies that Λ′ is increasing at β, and thus, E(UeβU) > 0. It can be checked that, for 
u � E(UeβU),

Λ∗(u)

u �
βE(UeβU) � logE(eβU)

E(UeβU)
� β, 

and hence, our claim is proved. Consider now the case β � θ+. In view of Mogulskii [15, equation (5.5)], 
limx→∞

Λ∗(x)

x � θ+. That is, for any ɛ > 0, we can choose a u so that Λ∗(u)=u ≤ θ+ + ɛ � β+ ɛ. We proved the claim 
(4.9).

Back to the inequality B∗
0 ≤ B∗

π, we show that, for any given ɛ > 0 and any given path ξ ∈ By, we can construct a 
path ζ ∈ B0 so that I0(ζ) ≤ Iy(ξ) + βy + ɛ. To this end, let u> 0 be such that Λ∗(u)=u ≤ β+ ɛ=y and set

ζ(s)¢us1{s ≤ y=u} + ξ(s � y=u)1{s>y=u}:
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Then, ζ(0) � 0, ζ(y=u) � y, and ζ ∈ B0. Also, one can see that Iy(ζ) � (y=u)Λ∗(u) +
R T (ξ)

0 Λ∗(ξ̇(s))ds +θ+ξ
(u)(T (ξ)) �

(y=u)Λ∗(u) + Iy(ξ). From the construction of u,

I0(ζ) ≤ βy + ɛ + Iy(ξ)

as desired. This concludes the proof of part (iv). w

5. Additional Technical Lemmas and Proofs
5.1. Proof of Lemma 4.1
We first state a lemma on the monotonicity of the reflection map that is useful in the proof of Lemma 4.1.

Lemma 5.1. Suppose that α,β,γ ∈ D[0, T], α(s) � β(s) + γ(s), and γ(s) is nonnegative and nondecreasing. Then, Ψ(α)(t)
≥Ψ(β)(t) for all t ∈ [0, T].

Proof. The proof of this lemma is an immediate consequence of Ramasubramanian [19, theorem 14.2.2]. w

Proof of Lemma 4.1. For (i), consider ξ∗(t)¢y + µ · t and note that Iy(ξ∗) � 0. Also, y ≥ y implies that ξ∗ ∈ By, and 
hence, B∗

y � 0. For part (ii), we first show that B∗
y � infξ∈By∩J+

Iy(ξ), where J+ ¢ {ξ ∈ D[0, ∞) : ξ(d) ≡ 0}. To prove 
this, let ξ ∈ By be given arbitrarily. We construct a path ξ2 so that ξ2 ∈ By ∩ J+ and Iy(ξ2) ≤ Iy(ξ). Toward this, dis
card the downward jumps of ξ and let ξ1 ¢ξ(a) + ξ(u). Then, set ξ2(t)¢ξ1(t ∧ T (ξ)) + µ([t � T (ξ)]+

), t ≥ 0. In view 
of Lemma 5.1, Ψ(ξ2) ≥Ψ(ξ) over [0,T (ξ)], and hence, ξ2 ∈ By and Iy(ξ) � Iy(ξ1) +θ�ξ

(d)(T (ξ)) � Iy(ξ2) +θ�ξ
(d)(T 

(ξ)) ≥ Iy(ξ2). This proves B∗
y � infξ∈By∩J+

Iy(ξ).
Now, suppose that ξ ∈ By ∩ J+ is given. It is sufficient to prove that there exists a constant cξ ∈ (0, ∞) such that, 

for any given ɛ > 0, one can construct a ξ̃ɛ ∈ BACy such that

Iy(ξ̃ɛ) ≤ Iy(ξ) + ɛ · cξ: (5.1) 

In case y ≥ y, simply consider ξ̃ɛ(t)¢y + µ · t regardless of ξ and ɛ. Then, ξ̃ɛ ∈ BACy and Iy(ξ̃ɛ) � 0 ≤ Iy(ξ) + ɛ · cξ 
with cξ � 0. In case y < y, we first prove the following claim w.r.t. the local rate function Λ∗: for any ɛ > 0, there 
exists a yɛ ∈ R+ such that

Λ∗(y) ≤ (θ+ + ɛ)y, ∀y ≥ yɛ:

Because this is trivially true if θ+ � ∞, we prove the claim with the assumption that θ+ < ∞. Note that, because 
of Jensen’s inequality and the monotonicity of the map x ⊢→ log x, we see that Λ(θ) � log(E(eθU1 )) ≥ log eθE(U1) �

µ ·θ. This implies, for any θ < θ+,

yθ�Λ(θ) ≤ yθ� µθ ≤ yθ+ � µθ+ ≤ (θ+ + ɛ)y, ∀y ≥ �µθ+=ɛ:

Therefore,

Λ∗(y) � sup
θ≤θ+

{yθ�Λ(θ)} ≤ (θ+ + ɛ)y, ∀y ≥ �µθ+=ɛ, 

which is the claim with yɛ � �µθ+=ɛ.
To conclude the proof, pick ξ ∈ By ∩ J+, and assume w.l.o.g. that Iy(ξ) < ∞ (because (5.1) is trivial otherwise). 

For any given ɛ > 0, we construct a path ξ̃ɛ such that ξ̃ɛ ∈ BACy and Iy(ξ̃ɛ) ≤ Iy(ξ) + ɛ · ξ(u)(T (ξ)), which is (5.1) 
with cξ � ξ(u)(T (ξ)). Set ξ̃ɛ(t) � y + yɛt for t ∈ [0,ξ(u)(T (ξ))=yɛ] and ξ̃ɛ(t) � ξ(a)(t � ξ(u)(T (ξ))=yɛ) + ξ(u)(T (ξ)) for t >

ξ(u)(T (ξ))=yɛ with yɛ � �µθ+=ɛ. Then, it is straightforward to check that ξ̃ɛ ∈ BACy from its construction and 
Lemma 5.1. In addition, ξ̃ɛ(T (ξ) + ξ(u)(T (ξ))=yɛ) � ξ(a)(T (ξ)) + ξ(u)(T (ξ)) � 0 because ξ ∈ By ∩ J+, and hence, 
T (ξ̃ɛ) ≤ T (ξ) + ξ(u)(T (ξ))=yɛ. Consequently,

Iy(ξ̃ɛ) �

Z T (ξ̃ɛ)

0
Λ∗(

˙̃ξ ɛ(s))ds �
ξ(u)(T (ξ))

yɛ

Λ∗(yɛ) +

Z T (ξ)+ξ
(u)(T (ξ))

yɛ

ξ(u) (T (ξ))
yɛ

Λ∗(ξ̇
(a)

(s � ξ(u)(T (ξ))=yɛ))ds

≤ ξ(u)(T (ξ))(θ+ + ɛ) +

Z T (ξ)

0
Λ∗(ξ̇

(a)
(s))ds ≤ Iy(ξ) + ɛ · ξ(u)(T (ξ)):

We have arrived at the desired inequality. w
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5.2. Proof of Proposition 4.1
For part (i), let x, y be such that 0 ≤ x < y. We show that, for any ɛ > 0, there exists ζ ∈ BACy such that Iy(ζ) < B∗

x + ɛ. 
To show this, note from Lemmas 4.1 and 4.3 that there exists ξ ∈ BACx such that Ix(ξ) < B∗

x + ɛ and T (ξ) < ∞. Set

ζ(t)¢ (y � x) + ξ(t ∧ T (ξ)) + µ · [t � T (ξ)]+
:

Because ζ(0) � y and ζ(t) � ξ(t) is nonnegative and nondecreasing on t ∈ [0,T (ξ)], Lemma 5.1 implies that Ψ(ζ)(t) >

Ψ(ξ)(t) on t ∈ [0,T (ξ)], and hence, ζ ∈ BACy . Moreover, note that T (ξ) ≤ T (ζ), and Λ∗(ζ̇(s)) � Λ∗(µ) � 0 on s ∈ [T (ξ), 
T (ζ)]. Therefore,

Iy(ζ) �

Z T (ζ)

0
Λ∗(ζ̇(s))ds �

Z T (ξ)

0
Λ∗(ζ̇(s))ds �

Z T (ξ)

0
Λ∗(ξ̇(s))ds � Ix(ξ) < B∗

x + ɛ:

For part (ii), note that we only need to prove one side of the inequality thanks to part (i). That is, it is enough to 
show that, if 0 ≤ x < y, then B∗

x ≤ B∗
y + (y � x)Λ∗(1). Fix an ɛ > 0 and pick ζ ∈ BACy such that Iy(ζ) ≤ B∗

y + ɛ, which is 
always possible because of part (ii) of Lemma 4.1. Set

ξ(t)¢ (x + t)1[0, y�x](t) + ζ(t � (y � x))1[y�x, ∞)(t):

It follows that T (ξ) � T (ζ) + y � x, and hence,

Ix(ξ) �

Z y�x

0
Λ∗(1)ds +

Z T (ξ)

y�x
Λ∗(ξ̇(s))ds � (y � x)Λ∗(1) +

Z T (ζ)+y�x

y�x
Λ∗(ξ̇(s))ds

� (y � x)Λ∗(1) +

Z T (ζ)

0
Λ∗(ξ̇(s + (y � x)))ds � (y � x)Λ∗(1) +

Z T (ζ)

0
Λ∗(ζ̇(s))ds

� (y � x)Λ∗(1) + Iy(ζ) ≤ (y � x)Λ∗(1) + B∗
y + ɛ:

Because ξ ∈ Bx, B∗
x ≤ (y � x)Λ∗(1) + B∗

y + ɛ. Taking ɛ → 0 yields (ii).
For part (iii), we first note that B∗

y < ∞: if we set ξ(t)¢ ( |µ | (p + 1))
α
(1 + µ(t � 1))1[1, ∞)(t), then ξ ∈ BACy and 

Iy(ξ) < ∞. To show that B∗
y > 0, we can take y ∈ (0, y) without loss of generality in view of (i). Define y(t) � y + µt 

and set Tµ � T (y(·)) � y= |µ | . Write

B∗
y � min inf

t∈[0,Tµ]
inf

ξ∈BACy ,T (ξ)�t
Iy(ξ), inf

t∈[Tµ,∞]
inf

ξ∈BACy ,T (ξ)�t
Iy(ξ)

( )

: (5.2) 

We show that each of the two infima in this minimum is strictly positive. Observe that

inf
t∈[Tµ, ∞]

inf
ξ∈BACy , T (ξ)�t

Iy(ξ) ≥ inf
t∈[Tµ, ∞]

inf
ξ:ξ(0)�y,ξ∈AC, T (ξ)�t

Z t

0
Λ∗(ξ̇(s))ds

≥ inf
t∈[Tµ, ∞]

tΛ∗(�y=t) ≥
y

|µ |
Λ∗ µ

y
y

� �

> 0, 

using that Λ∗ is a convex nonnegative function with Λ∗(µ) � 0, and Jensen’s inequality.
To lower bound the double infimum in (5.2), observe that, because y < y, the area constraint 

R t
0ξ(s)

pds ≥ 1 can 
only be valid if there exists an s ∈ [0, t] such that ξ(s) ≥ y + µs. Consequently,

inf
ξ∈BACy ,T (ξ)�t

Iy(ξ) ≥ inf
s ≤ t

inf
ξ∈AC,ξ(0)�y,ξ(s)≥y+µs

Iy(ξ)

≥ inf
s ≤ t

inf
ξ∈AC,ξ(0)�y,ξ(s)≥y+µs

Z s

0
Λ∗(ξ̇(u))du

� inf
s ≤ t

inf
ξ∈AC,ξ(s)�ξ(0)≥y�y+µs

Z s

0
Λ∗(ξ̇(u))du

≥ inf
s ≤ t

sΛ∗ y � y
s + µ

� �

, 
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where we applied Jensen’s inequality in the last step. Consequently,

inf
t∈[0,Tµ]

inf
ξ∈BACy ,T (ξ)�t

Iy(ξ) ≥ inf
s ≤ Tµ

sΛ∗ y � y
s

+ µ

� �

�
y

|µ |
Λ∗ µ + |µ |

y � y
y

� �

> 0:

The equality holds because Λ∗ is a strictly convex nonnegative function with Λ∗(µ) � 0. w

5.3. Proof of Lemma 4.2
For part (i), we first construct a new trajectory ξ1 from ξ by discarding the downward jumps, that is, ξ1 � ξ(a) + ξ(u). 
Obviously, IBV[0, T]

y (ξ1) ≤ IBV[0, T]
y (ξ). Note that ξ1 � ξ+ (�ξ(d)), where �ξ(d) is nonnegative and nondecreasing. 

From Lemma 5.1, we have that Ψ(ξ1)(t) ≥Ψ(ξ)(t) for all t ∈ [0, T], and hence, ΦT(ξ1) ≥ΦT(ξ). For each t ∈ [0, T], 
let l(t)¢ inf{s ∈ [0, T] : Ψ(ξ)(u) > 0 for all u ∈ [s, t]}, r(t)¢ sup{s ∈ [0, T] : Ψ(ξ)(u) > 0 for all u ∈ [t, s]}, and σ(t)¢ 

[l(t), r(t)). Set C+
1 ¢ {σ(t) ⊆ [0, T] : t ∈ [0, T]}. Note that, by construction, the elements of C+

1 cannot overlap, and 
hence, there can be at most countable number of elements in C+

1 . In view of this, we write C+
1 � {[li, ri) : i ∈ N} and let 

σi ¢ [li, ri). The following observations are immediate from the construction of C+
1 , the right continuity of ξ, and the 

fact that ξ1 does not have any downward jumps. 
O1. If t ∈ [0, T) does not belong to any of the elements of C+

1 , then Ψ(ξ1)(t) � 0.
O2. Ψ(ξ1) is continuous on the right end of the intervals σi except for the case ri � T.

Note that O1 also implies that ξ1(t) � ξ1(t�) for such t’s. Let sn ¢
Pn�1

i�1 (ri � li) for n ∈ N. Note that sn → s∞ ∈

[0, T] as n → ∞. Let ξ̇(a)
(t) denote the time derivative d

dtξ
(a)(t) of ξ(a) at t, and set

ζ1(t)¢y +

Z t

0
ζ̇1(s)ds + ζ(u)

1 (t), 

where

ζ̇1(t)¢
X

i∈N
ξ̇

(a)
(t � si + li)1[si, si+1)(t) + µ1[s∞, T](t), 

and

ζ(u)

1 (t)¢
X

i∈N
(ξ(u)(t ∧ si+1 � si + li) � ξ(u)(li�))1[si, T](t):

That is, on the interval [si, si+1), ζ1 behaves the same way as ξ1 does on the interval [li, ri), whereas ζ1 decreases line
arly at the rate |µ | outside of those intervals. Given this, it can be checked that

O3. 
R si+1

si
(Ψ(ζ1)(s))

p ds ≥
R ri

li (Ψ(ξ1)(s))
pds.

O4. 
R ri

li Λ
∗(ξ̇

(a)
(s))ds �

R si+1
si
Λ∗(ζ̇

(a)

1 (s))ds.
O5. ζ(u)

1 (si+1�) � ζ(u)

1 (si�) � ξ(u)

1 (ri�) � ξ(u)

1 (li�).
Now, we verify the conditions i-1, i-2, i-3, and i-4. Note first that the conditions i-1 and i-4 are obvious from the 

construction of ζ1. We can verify i-2 as follows:

ΦT(ξ2) �

Z T

0
(Ψ(ζ1)(s))

pds ≥

Z s∞

0
(Ψ(ζ1)(s))

pds �
X∞

i�1

Z si+1

si

(Ψ(ζ1)(s))
pds

≥
X∞

i�1

Z ri

li
(Ψ(ξ1)(s))

p ds �

Z T

0
(Ψ(ξ1)(s))

p ds � ΦT(ξ1), 

where the second inequality is from O3, and the second-to-last equality is from O1. Moving onto i-3, note that, 
because of the left continuity of ζ1, sn → s∞ implies that ξ(sn�) → ξ(s∞�). Also, ζ(u)

1 (s∞) � ζ(u)

1 (s∞�) � 0 and ζ(u)

1 is 
constant on [s∞, T]. Therefore, 

P∞
i�1(ζ(u)

1 (si+1�) � ζ(u)

1 (si�)) � limn→∞ζ
(u)

1 (sn+1�) � ζ(u)

1 (s∞�) � ζ(u)

1 (T), where we 
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adopted the convention that ζ(u)

1 (0�) � 0. From O4, O5, and this observation,

IBV[0, T]
y (ζ1) �

Z T

0
Λ∗(ζ̇1(t))ds +θ+ · ζ(u)

1 (T)

�
X∞

i�1

Z si+1

si

Λ∗(ζ̇1(t))ds +θ+ ·
X∞

i�1
(ζ(u)

1 (si+1�) � ζ(u)

1 (si�))

�
X∞

i�1

Z ri

li
Λ∗(ξ̇

(a)
(t))ds +θ+ ·

X∞

i�1
(ξ(u)(ri�) � ξ(u)(li�))

≤

Z T

0
Λ∗(ξ̇

(a)
(t)) ds +θ+ · ξ(u)(T) � IBV[0, T]

y (ξ1):

For part (ii), we construct ζ2 from ζ1 by moving all the jumps of ξ(u) to time 0. This neither increases IBV[0, T]
y nor 

decreases ΦT. That is, if we set

ζ2(t)¢y +

Z t

0
ζ̇1(s)ds + ζ(u)

1 (T), 

then ΦT(ζ2) ≥ ΦT(ζ1) obviously, and θ+ · ζ(u)

1 (T) + IT
y+ζ(u)

1 (T)
(ζ2) ≤ IT

y (ζ1). Noting that ζ(u)

1 (T) ≤ ξ(u)(T), we see that ζ 
satisfies all the claims of the lemma.

For part (iii), let ζ ∈ AC[0, T] be a concave majorant of ξ. Then, there exists a nonincreasing ζ̇ ∈ D[0, T] such that 
ζ(t) � ξ(0) +

R t
0ζ̇(s)ds. (Because of the continuity of ξ, ξ(0) and ζ(0) should coincide.) Let ζ3(t)¢ξ(0) +

R t
0µ ∨ ζ̇(s)ds. 

Note that iii-1, iii-2, and iii-4 are straightforward to check from the construction. To show that iii-3 is also satisfied, 
we construct C+

2 ¢ {(l′
i , r′

i ) ⊆ [0, T] : i ∈ N} in a similar way to C+
1 so that the elements of C+

2 are nonoverlapping, and 
ξ(s) < ζ3(s) if and only if s ∈ (l′

i , r′
i ) for some i ∈ N. Note that, because of the continuity of ζ and ξ, ζ(l′

i ) � ξ(l′i ) and 
ζ(r′

i ) � ξ(r′
i ), and ζ has to be a straight line on (l′

i , r′
i ) for each i ∈ N. Set s0 ¢0 ∨ sup{t ∈ [0, T] : ζ̇(t) ≥ µ}. Then, no 

interval in C+
2 contains s0 because, otherwise, ζ has to be a straight line in a neighborhood of s0, and hence, ζ̇ has to 

be constant there, but this is contradictory to the definition of s0. Now, let ξ̇ denote a derivative of ξ. Then, 
R r′

i
l′i
Λ∗(µ ∧ 

ζ̇(s))ds �
R r′

i
l′i
Λ∗(µ)ds � 0 for i’s such that r′

i > s0, and hence,

IBV[0, T]
y (ξ) � IBV[0, T]

y (ζ3) �

Z T

0
Λ∗(ξ̇(s))ds �

Z T

0
Λ∗(µ ∨ ζ̇(s))ds

≥
X

i∈N: r′
i ≤ s0

Z r′
i

l′i
(Λ∗(ξ̇(s)) �Λ∗(ζ̇(s)))ds:

Note that, from the construction of C+
2 , if s ∈ [l′i , r′

i ] for some i such that r′
i ≤ s0, we have that ζ̇(s) � (ζ3(r′

i ) � ζ3(l′
i ))=

(r′
i � l′i ) � (ξ(r′

i ) � ξ(l′
i ))=(r′

i � l′i ), and hence, from Jensen’s inequality,
Z r′

i

l′i
(Λ∗(ξ̇(s)) �Λ∗(ζ̇(s)))ds �

Z r′
i

l′i
Λ∗(ξ̇(s))ds �

Z r′
i

l′i
Λ∗((ξ(r′

i ) � ξ(l′
i ))=(r′

i � l′i ))ds

�

Z r′
i

l′i
Λ∗(ξ̇(s))ds � (r′

i � l′i ) ·Λ∗

Z r′
i

l′i
ξ̇(s)ds=(r′

i � l′i )

 !

≥ 0:

Therefore, ζ3 satisfies iii-3 as well. w

5.4. Proof of Lemma 4.3
Recall that y ¢ ( |µ | (p + 1))

1=1+p. If y ≥ y, the equality in (4.4) holds with the optimal values of the left- (LHS) and 
right-hand sides (RHS) both being zero: to see this, we invoke Lemma 4.1, part (i). Moving on to the case y < y, it is 
enough to show that there exists M> 0 such that

for any given ξ ∈ BACy \ BAC;M
y , one can find ζ ∈ BAC;M

y such that Iy(ζ) ≤ Iy(ξ): (5.3) 
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To construct such M, consider w and z such that µ < w < 0 < z, Λ∗(w) < ∞, and Λ∗(z) < ∞. We consider a piece- 
wise linear path

ζ(t)¢ (y + zt)1[0, (y�y)=z](t) + (y + µ(t � (y � y)=z))1[(y�y)=z, ∞)(t)

so that ζ ∈ BAC;M
y and Iy(ζ) � Λ∗(z)

y�y
z . Let

M¢max (y � y)Λ∗(z)

zΛ∗(w)
, (y � y)=z � y=µ, � y=w

� �

:

Suppose that ξ ∈ BACy \ BAC;M
y , and hence, T (ξ) > M. Note that µ < w < �y=T (ξ) by the construction of M. We can 

now estimate

Iy(ξ) �

Z T (ξ)

0
Λ∗(ξ̇(s))ds ≥ T (ξ) ·Λ∗(�y=T (ξ)) ≥ T (ξ) ·Λ∗(w) ≥ M ·Λ∗(w) ≥

(y � y)

z Λ∗(z) � Iy(ζ):

In this derivation, the first inequality is from Jensen’s inequality. The second inequality follows because Λ∗(x) is 
nondecreasing in x ≥ µ. The third and fourth inequalities are from the choice of ξ and the construction of M, respec
tively. This concludes the proof of (5.3).

To see the existence of c > 0 and d > 0, note that, for the case y ≥ y, our construction of M(y) is linear in y, whereas 
M(y) is bounded for the case y < y. w

5.5. Proof of Lemma 4.4
The proof that B∗

y � V∗
y

T for sufficiently large t’s follows immediately from the following claims along with 
Lemma 4.1.

Claim 5.1. VT
y

∗ is nonincreasing in T.

Proof of Claim 5.1. Let t1 < t2. For each ξ1 ∈ Vt1
y , consider ξ2(s)¢ξ1(s ∧ t1) + µ(s � t1)1(t1, t2](t). Then, ξ2 ∈ Vt2

y and 
IBV[0, t1]
y (ξ1) � IBV[0, t2]

y (ξ2). Therefore, Vt2
y

∗ is at least as small as Vt1
y

∗.

Claim 5.2. If M > 0 is such that infξ∈BAC;M
y

Iy(ξ) � infξ∈BACy
Iy(ξ) as in Lemma 4.3, then

inf
ξ∈BAC;M

y

Iy(ξ) ≥ VM
y

∗:

Proof of Claim 5.2. Given an ɛ > 0, consider ξɛ ∈ BAC;M
y such that Iy(ξɛ) ≤ infξ∈BAC;M

y
Iy(ξ) + ɛ. Set ζɛ(t)¢ξɛ(t ∧ 

T (ξɛ)) + µ(t � T (ξɛ))1(T (ξɛ), M](t): Then, ζɛ ∈ VM
y , and hence,

VM
y

∗ � inf
ξ∈VM

y

IBV[0, M]
y (ξ) ≤ IBV[0, M]

y (ζɛ) � Iy(ξɛ) ≤ inf
ξ∈BM

y

Iy(ξ) + ɛ:

Taking ɛ → 0, we arrive at Claim 5.2.

Claim 5.3. For any T > 0,

inf
ξ∈By

Iy(ξ) ≤ VT
y

∗:

Proof of Claim 5.3. (Throughout this proof, we interpret θ+ · z as zero if θ+ � ∞ and z � 0. Likewise, we interpret ɛ=z � ∞ if 
z � 0.) First note that the claim is trivial if VT

y
∗ � ∞, and hence, we only consider the case that VT

y
∗ < ∞. Fix an ɛ > 0 

and consider ξ1 ∈ VT
y such that IBV[0, T]

y (ξ1) < VT
y

∗ + ɛ. (Note that this implies that ξ(u)

1 (T) � 0 if θ+ � ∞.) Because of 
Lemma 4.2, part (ii), there exists a path ξ2 ∈ AC[0, T] such that ξ2(0) � y + z, 0 ≤ z ≤ ξ(u)

1 (T), ξ2 is nonnegative over 
[0, t0] for some t0 ∈ [0, T], ξ2 is affine with slope µ over [t0, T], ΦT(ξ2) ≥ΦT(ξ1) ≥ 1, and

θ+ · z + IBV[0, T]
y+z (ξ2) ≤ IBV[0, T]

y (ξ1) ≤ VT
y

∗ + ɛ: (5.4) 
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Recall the well-known property of Λ∗ that limx→∞
Λ∗(x)

x � θ+ (see, for example, Mogulskii [15, equation (5.5)]). 
Consequently, we can choose a u > 0 large enough so that

Λ∗(u)=u ≤ θ+ + ɛ=z: (5.5) 

Set T̂ ¢z=u + T and consider ξ3 ∈ AC[0, T̂] such that

ξ3(s) � (y + us)1[0, z=u](s) + ξ2(s � z=u)1(z=u, T̂](s), s ∈ [0, T̂]:

Then, ξ3(0) � y and ΦT̂ (ξ3) ≥ ΦT(ξ2) ≥ 1. Moreover, in view of (5.4) and (5.5),

IBV[0, T̂]
y (ξ3) � (z=u)Λ∗(u) +

Z T̂

z=u
Λ∗(ξ3

:

(s))ds

� (z=u)Λ∗(u) +

Z T

0
Λ∗(ξ2

:

(s))ds

≤ θ+ · z + ɛ + IBV[0, T]
y+z (ξ2)

≤ VT
y

∗ + 2ɛ:

Next, from part (iii) of Lemma 4.2, we know that there exists a path ξ4 ∈ AC[0, T̂] such that ξ4(0) � y, ΦT̂ (ξ4) ≥

ΦT̂ (ξ3) ≥ 1, IBV[0, T̂]
y (ξ4) ≤ IBV[0, T̂]

y (ξ3) ≤ VT
y

∗ + 2ɛ, ξ4 is concave on [0, T̂], and ξ̇4 is bounded by µ from below. 
Finally, define ξ ∈ D[0, ∞) as

ξ(t)¢ξ4(t ∧ T̂) + µ([t � T̂]
+

), t ≥ 0:

Note that, if T (ξ) ≤ T̂, because of the concavity of ξ, Ψ(ξ) and Ψ(ξ4) are zero after T (ξ). Therefore, Φ(ξ) �

ΦT̂ (ξ4) ≥ 1. If T (ξ) > T̂, then Φ(ξ) > ΦT̂ (ξ4) ≥ 1. That is, ξ ∈ By in all cases. Moreover, because ξ̇(t) � µ for t ≥ T̂, 
Iy(ξ) � IBV[0, T̂]

y (ξ4) ≤ VT
y

∗ + 2ɛ. Therefore,

inf
ξ∈By

Iy(ξ) ≤ VT
y

∗ + 2ɛ:

Because ɛ is arbitrary, this proves Claim 5.3. w

5.6. Uniform Continuity: Proof of Lemma 4.5
We first state two preparatory lemmas. Let TV(ξ) be the total variation of ξ.

Lemma 5.2. For any M < ∞, the function H : D[0, T] → [0, ∞) given by H(ξ)¢
R T

0 ξ(s)ds is Lipschitz continuous on the 
set {ξ : TV(ξ) + ξ(0) ≤ M} w.r.t. the M′

1 metric.

Proof. Let ξ be such that TV(ξ) + ξ(0) ≤ M, and let ζ be such that dM′
1
(ξ,ζ) ≤ ɛ. Set η�(t)¢ inf{x : d((x, t),Γ(ξ))

≤ ɛ}, where Γ(ξ) is the completed graph of ξ and d is the L1 distance in R2, that is, d((x, t), (u, s)) � |x � y | + |t � s | . 
Then, dM′

1
(ξ,ζ) ≤ ɛ implies that ζ(t) ≥ η�(t) for all t ∈ [0, T]. Note that, if we denote the arc length of Γ(ξ) with 

len(Γ(ξ)), then len(Γ(ξ)) is bounded by T + TV(ξ) + ξ(0). Because of the construction of η and the fact that L1 balls 
are contained in L2 balls of the same radius, the difference between the area below ξ and the area below η is 
bounded by len(Γ(ξ)) · ɛ. Putting everything together, we conclude that

Z T

0
ξ(s)ds �

Z T

0
ζ(s) ≤

Z T

0
ξ(s)ds �

Z T

0
η�(s) ≤ len(Γ(ξ)) · ɛ ≤ (T + TV(ξ) + ξ(0)) · ɛ ≤ (T + M) · ɛ:

Similarly, by majorizing ζ with η+(t)¢ inf{x : d((x, t),Γ(ξ)) ≤ ɛ}, we also get

Z T

0
ξ(s)ds �

Z T

0
ζ(s) ≥ (T + M) · ɛ, 

proving the Lipschitz continuity of H with Lipschitz constant (T + M). w

Bazhba et al.: Large Deviations for Unbounded Additive Functionals 
26 Mathematics of Operations Research, Articles in Advance, pp. 1–32, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

62
.2

54
.1

70
.4

1]
 o

n 
14

 A
pr

il 
20

24
, a

t 0
1:

38
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Lemma 5.3. The reflection map Ψ is a Lipschitz continuous map from D[0, T] to D[0, T] w.r.t. the M′
1 topology with 

Lipschitz constant two.

Proof. The proof is a straightforward adaptation of the proof of Lipschitz continuity given in Whitt [22, theo
rem 13.5.1] for the M1 topology. That theorem is based on elementary estimates, and the key in Whitt [22, 
lemma 13.5.3], which establishes that parametric representation of a path ξ ∈ D[0, T] is preserved under taking 
projections. The proof of this property for M1, given in Whitt [22], extends to M′

1 by using the definition of an 
extended completed graph Γ′ for M′

1 rather than the completed graph Γ for M1. Along these lines, it follows 
that, if (u, t) is a parametric representation of Γ′(ξ), then (Ψ(u), t) is a parametric representation of Γ′(Ψ(ξ)). 
Using this result, the steps in the proof of Whitt [22, theorem 13.5.1] follow verbatim for M′

1. We omit the 
details. w

Now we are ready to prove Lemma 4.5.

Proof of Lemma 4.5. Suppose that IBV[0, T]
0 (ξ), IBV[0, T]

0 (ζ) ∈ [0,γ]. Then, from Vysotsky [21, inequality (13)], we 
know that there exists γ′ such that TV(ξ), TV(ζ) ∈ [0,γ′]. To prove the uniform continuity, suppose that 
dM′

1
(ξ,ζ) < ɛ. Then, dM′

1
(Ψ(ξ),Ψ(ζ)) < 2ɛ by Lemma 5.3, and TV(Ψ(ξ)), TV(Ψ(ζ)) ∈ [0, 2γ′]. In turn, we have that 

dM′
1
(Ψ(ξ) ∨ ɛ,Ψ(ζ) ∨ ɛ) < 2ɛ and TV(Ψ(ξ) ∨ ɛ), TV(Ψ(ζ) ∨ ɛ) ∈ [0, 2γ′]. Using the mean value theorem, we obtain 

the following inequality for x, y, a, b ∈ [0, ∞) such that x, y ∈ [a, b]:

|xp � yp | ≤ p(ap�1 ∨ bp�1) |x � y | : (5.6) 

Now, suppose that (u, t) and (v, s) are the parametric representations of Ψ(ξ) ∨ ɛ and Ψ(ζ) ∨ ɛ, respectively. Then, 
there exists rξ ∈ [0, 1] such that u(r) ≤ ɛ for r ≤ rξ and u(r) ≥ ɛ for r ≥ rξ. Likewise, there exists rζ ∈ [0, 1] such that 
v(r) ≤ ɛ for r ≤ rζ and v(r) ≥ ɛ for r ≥ rζ. We assume w.l.o.g. that rξ ≤ rζ. Note that, because u(r), v(r) ∈ [0, ɛ] on 
r ∈ [0, rξ], we get

sup
[0, rξ]

|up(r) � vp(r) | ≤ ɛp:

Also, because u(r) ∈ [ɛ, 2γ′] and v(r) ∈ [0, ɛ] on r ∈ [rξ, rζ], we get from (5.6) that

sup
[rξ, rζ]

|up(r) � vp(r) | ≤ sup
[rξ, rζ]

{ |up(r) � ɛp | + |ɛp � vp(r) |} ≤ sup
[rξ, rζ]

{ |up(r) � ɛp | + ɛp}

≤ sup
[rξ, rζ]

{p(ɛp�1 ∨ (2γ′)
p�1

) |u(r) � ɛ | + ɛp}

≤ sup
[rξ, rζ]

{p(ɛp�1 ∨ (2γ′)
p�1

)( |u(r) � v(r) | + |v(r) � ɛ | ) + ɛp}

≤ sup
[rξ, rζ]

{p(ɛp�1 ∨ (2γ′)
p�1

)( |u(r) � v(r) | + ɛ) + ɛp}

≤ p(ɛp�1 ∨ (2γ′)
p�1

)(‖u � v‖∞ + ɛ) + ɛp:

Finally, because u(r), v(r) ∈ [ɛ, 2γ′] on r ∈ [rζ, 1], we get again from (5.6) that

sup
[rζ, 1]

|up(r) � vp(r) | ≤ sup
[rζ, 1]

p(ɛp�1 ∨ (2γ′)
p�1

) |u(r) � v(r) | ≤ p(ɛp�1 ∨ (2γ′)
p�1

)‖u � v‖∞:

From these inequalities, we see that, if (u, t) ∈ Γ′(Ψ(ξ) ∨ ɛ) and (v, s) ∈ Γ′(Ψ(ζ) ∨ ɛ),

‖up � vp‖∞ � sup
[0, rξ]

|up(r) � vp(r) | ∨ sup
[rξ, rζ]

|up(r) � vp(r) | ∨ sup
[rζ, 1]

|up(r) � vp(r) |

≤ p(ɛp�1 ∨ (2γ′)
p�1

)(‖u � v‖∞ + ɛ) + ɛp:
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Now, we can bound the M′
1 distance between (Ψ(ξ) ∨ ɛ)

p and (Ψ(ζ) ∨ ɛ)
p as follows:

dM′
1
((Ψ(ξ) ∨ ɛ)

p, (Ψ(ζ) ∨ ɛ)
p
)

� inf
(u, t)∈Γ′((Ψ(ξ)∨ɛ)

p
)

(v, s)∈Γ′((Ψ(ζ)∨ɛ)
p
)

{‖u � v‖∞ + ‖t � s‖∞}

� inf
(u, t)∈Γ′(Ψ(ξ)∨ɛ)
(v, s)∈Γ′(Ψ(ζ)∨ɛ)

{‖up � vp‖∞ + ‖t � s‖∞}

≤ inf
(u, t)∈Γ′(Ψ(ξ)∨ɛ)
(v, s)∈Γ′(Ψ(ζ)∨ɛ)

{p(ɛp�1 ∨ (2γ′)
p�1

)(‖u � v‖∞ + ɛ) + ɛp + ‖t � s‖∞}

≤ (1 ∨ (p(ɛp�1 ∨ (2γ′)
p�1

))) inf
(u, t)∈Γ′(Ψ(ξ)∨ɛ)
(v, s)∈Γ′(Ψ(ζ)∨ɛ)

{‖u � v‖∞ + ‖t � s‖∞} + p(ɛp�1 ∨ (2γ′)
p�1

)ɛ + ɛp

� (1 ∨ (p(ɛp�1 ∨ (2γ′)
p�1

)))dM′
1
(Ψ(ξ) ∨ ɛ,Ψ(ζ) ∨ ɛ) + p(ɛp�1 ∨ (2γ′)

p�1
)ɛ + ɛp

≤ (1 ∨ (p(ɛp�1 ∨ (2γ′)
p�1

)))2ɛ + p(ɛp�1 ∨ (2γ′)
p�1

)ɛ + ɛp

¢δ(ɛ):

Note that δ(ɛ) → 0 as ɛ → 0.
To apply Lemma 5.2, we examine the total variations of (Ψ(ξ) ∨ ɛ)

p and (Ψ(ζ) ∨ ɛ)
p. Recall the notation 

T �∪∞
d�1 {(t1, : : : , td) : 0 ≤ t1 < t2 < ⋯ < td ≤ 1}. From (5.6),

TV((Ψ(ξ) ∨ ɛ)
p
) � sup

t∈P

Xnt

i�1
| (Ψ(ξ) ∨ ɛ)

p
(ti) � (Ψ(ξ) ∨ ɛ)

p
(ti�1) |

≤ p(ɛp�1 ∨ (2γ′)
p�1

) sup
(t0, : : : , tk)∈T

Xk

i�1
| (Ψ(ξ) ∨ ɛ)(ti) � (Ψ(ξ) ∨ ɛ)(ti�1) |

� p(ɛp�1 ∨ (2γ′)
p�1

)TV(Ψ(ξ) ∨ ɛ)

≤ p(ɛp�1 ∨ (2γ′)
p�1

)2γ′:

Similarly,

TV((Ψ(ζ) ∨ ɛ)
p
) ≤ p(ɛp�1 ∨ (2γ′)

p�1
)2γ′:

These two bounds allow us to apply Lemma 5.2 to H to obtain

dM′
1
(H((Ψ(ξ) ∨ ɛ)

p
), H((Ψ(ζ) ∨ ɛ)

p
)) ≤ (T + 2γ′p(ɛp�1 ∨ (2γ′)

p�1
)) · dM′

1
(G(ξ) ∨ ɛp, G(ζ) ∨ ɛp)

≤ (T + 2γ′p(ɛp�1 ∨ (2γ′)
p�1

))δ(ɛ):

Therefore,

dM′
1
(ΦT(ξ),ΦT(ζ))

� dM′
1
(H(G(ξ)), H(G(ζ)))

≤ dM′
1
(H(G(ξ)), H(G(ξ) ∨ ɛp)) + dM′

1
(H(G(ξ) ∨ ɛp), H(G(ζ) ∨ ɛp)) + dM′

1
(H(G(ζ) ∨ ɛp), H(G(ζ)))

≤ ɛpT + δ(ɛ) + ɛpT:

This concludes the proof of the desired uniform continuity. w
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Appendix A. Results on the Theory of Markov Chains
Let {Xm, �∞ < m < ∞} be a geometrically ergodic stationary Markov chain on the state space S (which includes an element 
zero) and invariant distribution π, such that π({0}) � π(0) > 0. Let {X∗

m, � ∞ < m < ∞} be the time-reversed stationary version of 
{Xm, �∞ < m < ∞}. It is well-known that (X∗

0, : : : , X∗
k) �d(Xk, : : : , X0) for any k ≥ 0; see Sforzo [20] and references therein for a dis

cussion on reversibility for general state-space Markov chains. The following lemma follows directly by applying this identity.

Lemma A.1. It holds that

P0(Xi ∈ Ai : 1 ≤ i ≤ k) �
1
π(0)

Pπ(X∗
i ∈ Ak�i : 0 ≤ i ≤ k � 1, X∗

k � 0), (A.1) 

E0[g(X0, X1, : : : , Xk)] �
1
π(0)

Eπ[g(X∗
k, X∗

k�1, : : : , X∗
0)I(X∗

k � 0)], (A.2) 

for any nonnegative integer k and measurable g : Rk+1
+ → R.

Using the previous result, we can now establish the following lemma.

Lemma A.2. Define T � inf{n ≥ 1 : Xn � 0}, T∗ � inf{n ≥ 1 : X∗
n � 0}, and suppose that P0(T > n) � O(e�cn) for some c> 0. In addition, 

let n0 be such that infk≥n0 P0(Xk � 0) ≥ π(0)=2. Then,

Pπ
XT∗�1

k�0
(X∗

k)
p

≥ x, X∗
n � 0

 !

≤ (n + 1)Pπ
XT�1

k�0
Xp

k ≥ x

 !

, (A.3) 

and

Pπ
XT∗�1

k�0
(X∗

k)
p

≥ x, X∗
n � 0

 !

≥ (π(0)
2
=2)P0

XT

k�1
Xp

k ≥ x

 !

� O(e�cn): (A.4) 

Proof. We first derive the upper bound by noting that

Pπ
XT∗�1

k�0
(X∗

k)
p

≥ x, X∗
n � 0

 !

�
Xn

m�0
Pπ

Xm�1

k�0
(X∗

k)
p

≥ x, T∗ � m, X∗
n � 0

 !

�
Xn

m�0
Pπ

Xm�1

k�0
(X∗

k)
p

≥ x, X∗
1 > 0, : : : , X∗

m�1 > 0, X∗
m � 0, X∗

n � 0
 !

≤
Xn

m�0
Pπ

Xm�1

k�0
(X∗

k)
p

≥ x, X∗
1 > 0, : : : , X∗

m�1 > 0
 !

�
Xn

m�0
Pπ

Xm�1

k�0
Xp

m�1�k ≥ x, Xm�1 > 0, : : : , X1 > 0
 !

�
Xn

m�0
Pπ

Xm�1

k�0
Xp

k ≥ x, T ≥ m

 !

≤
Xn

m�0
Pπ

XT�1

k�0
Xp

k ≥ x, T ≥ m

 !

≤ (n + 1)Pπ
XT�1

k�0
Xp

k ≥ x

 !

:

For the lower bound, first write

Pπ
XT∗�1

k�0
(X∗

k)
p

≥ x, X∗
n � 0

 !

�
Xn

m�1
Pπ

Xm�1

k�0
(X∗

k)
p

≥ x, T∗ � m, X∗
n � 0

 !

�
Xn

m�1
Pπ

Xm�1

k�0
(X∗

k)
p

≥ x, T∗ � m
 !

P0(Xn�m � 0):
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Applying Lemma A.1 with k � m and g(y0, : : : , ym) � I(
Pm

i�0 yp
i > x, y0 > 0, y1 > 0, : : : , ym�1 > 0), we obtain

Pπ
Xm�1

k�0
(X∗

k)
p

≥ x, T∗ � m
 !

� Pπ
Xm�1

k�0
(X∗

k)
p

≥ x, X∗
0 > 0, : : : , X∗

m�1 > 0, X∗
m � 0

 !

� Pπ
Xm

k�0
(X∗

k)
p

≥ x, X∗
0 > 0, : : : , X∗

m�1 > 0, X∗
m � 0

 !

� π(0)P0
Xm

k�1
Xp

k ≥ x, X∗
i > 0, i � 1, : : : , m � 1

 !

� π(0)P0
Xm

k�1
Xp

k ≥ x, T ≥ m

 !

≥ π(0)P0
Xm

k�1
Xp

k ≥ x, T � m

 !

:

Consequently, for every fixed n0 such that infk≥n0 P0(Xk � 0) ≥ π(0)=2,

Pπ
XT∗�1

k�0
(X∗

k)
p

≥ x, X∗
n � 0

 !

≥ π(0)
Xn�n0

m�1
P0

XT

k�1
Xp

k ≥ x, T � m

 !

P0(Xn�m � 0)

≥ π(0)P0
XT

k�1
Xp

k ≥ x, T ≤ n � n0

 !

inf
k≥n0

P0(Xk � 0):

≥ (π(0)
2
=2)P0

XT

k�1
Xp

k ≥ x

 !

� O(e�cn): w 

Appendix B. LDP Results
We collect some LDP results that have appeared in the literature. A straightforward adaptation of Bazhba et al. [3, Corollary 3.2] 
to our context is the following.

Result B.1. Let Kn ¢ 1
n
P⌊nt⌋

i�1 U i, t ∈ [0, 1] be the scaled random walk driven by an i.i.d. sequence {U i, i ≥ 1}. Assume that E[esU1 ] < ∞ for 
some s < 0, and P(U1 ≥ x) � e�L(x)xα for α ∈ (0, 1). Suppose that L is a slowly varying function, and L(x)xα�1 is eventually decreasing. Then, 
Kn satisfies the LDP in (D[0, T],TM′

1
) with the speed L(n)nα and the rate function IM′

1
: D[0, T] → [0, ∞],

IM1
′ (ξ)¢

X

t∈[0,1]

(ξ(t) � ξ(t�))
α if ξ ∈ D(EU1)[0, T] with ξ(0) ≥ 0,

∞ otherwise:

8
<

:

The following result, which is folklore but explicitly stated in Nuyens and Zwart [16], provides the logarithmic asymptotics 
for the invariant distribution π of {Xn}n≥0 with Xn+1 � [Xn + Un+1]

+, n ≥ 0, with {Ui, i ≥ 1} i.i.d. such that E(U1) � µ < 0.

Result B.2 (Nuyens and Zwart [16]). Recall that β � sup{s : E[esU] ≤ 1}. It holds that

lim
n→∞

log π([n, ∞))

n � �β:

Finally, we mention a recent sample-path LDP for random walks with light-tailed increments, developed in Vysotsky [21], that 
we use in this paper.

Result B.3. Recall that Ky
x � y + 1

x
P⌊xt⌋

i�1 Ui, t ∈ [0, 1] is the scaled random walk driven by the i.i.d. sequence {Ui, i ≥ 1}, which satisfies 
Assumptions 2.1 and 2.2. Recall also that

IBV[0, T]
y (ξ) �

Z T

0
Λ∗(ξ̇

(a)
(s))ds +θ+(ξ(u)(T)) +θ� |ξ(l)(T) | if ξ ∈ BV[0, 1] and ξ(0) � y,

∞ otherwise:

8
<

:
(B.1) 

i. (Borovkov and Mogulskii [5, 6]) Ky
x (as x → ∞) satisfies a large deviations lower bound in the M1 topology with the rate function 

IBV[0, T]
y .

ii. (Vysotsky [21]) Let φ be a real-valued function on D[0, T], which is uniformly continuous in the M′
1 topology on the level sets 

{ξ : IBV[0, T]
y (ξ) ≤ α},α < ∞. Then, φ(K0

x) satisfies an LDP with the rate function cl(Jφ), where cl(Jφ) is the lower semicontinuous regulariza
tion of Jφ(u) � infξ:φ(ξ)�u IBV[0, T]

0 (ξ).
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Appendix C. Computing B∗
0: Finding a Smooth Minimizer

In this appendix, we provide some details that could facilitate the computation of B∗
0. Note that it is not straightforward that the 

infimum in the representation of B∗
0 in (By) is attained because the associated objective function does not have compact level sets 

unless the moment-generating function of U1 is finite everywhere; compare this with Lynch and Sethuraman [14]. The following 
proposition, however, facilitates the characterization of B∗

0.

Proposition C.1. Let BACy ¢By ∩ AC[0, ∞), BCNCVy ¢BACy ∩ {ξ ∈ AC[0, ∞) : ξ is concave}, and recall that B∗
y � infξ∈By Iy(ξ). Then,

B∗
y � inf

ξ∈BACy

Iy(ξ) � inf
ξ∈BCNCVy

Iy(ξ):

We defer the proof of this proposition to the end of this appendix. We apply Proposition C.1 to write

B∗
y � inf

ξ∈BCNCVy

Iy(ξ) � inf
z0, zT :z0≥zT

inf
T≥0

inf
ξ∈Fy

z0, zT , T

Iy(ξ), (C.1) 

where Fy
z0, zT , T ¢ {ξ : ξ ∈ BCNCVy , ξ̇(0) � z0, ξ̇(T) � zT,ξ(T) � 0}. We next ensure compactness of Fy

z0, zT , T in the following lemma, 
which is also proven at the end of this appendix.

Lemma C.1. Fy
z0, zT , T is a compact set with respect to the J1 topology.

On the set Fy
z0, zT , T, the conditions ξ(0) � y,ξ(T) � 0, and concavity imply that ξ(s) > 0 for s ∈ (0, T). Therefore, the identity 

Iy(ξ) �
R T

0 Λ
∗(ξ̇(s))ds holds. The RHS of this identity is lower semicontinuous in ξ on the compact set Fy

z0, zT , T and, therefore, 
attains a minimum ξ∗ as long as the set Fy

z0, zT , T is nonempty. The latter property holds if the solution ξ with slope z0 > 0 on 
[0, T |zT |=(z0 + |zT | )] and slope zT < 0 on [T |zT |=(z0 + |zT | , T] yields an area of at least one.

We now characterize the minimizer of the inner infimum of the RHS in Lemma C.1 through Euler–Lagrange equations. Such 
a characterization is usually only possible if the minimum is sufficiently smooth (e.g., not just AC, but C1). This requires addi
tional assumptions. We use Lagrange duality and note that the feasible region of admissible paths is only convex (and, hence, 
the absence of a duality gap is only guaranteed) if p ≤ 1. In addition, we utilize sufficient conditions for smoothness of optimal 
solutions of variational problems developed in Cesari [7, chapter 2.6], which seems to exclude the case p< 1, so in what follows, 
we assume p � 1. We make the additional assumption that Λ(θ) � log E[exp{θU}] is steep at θ+ and θ�, that is, limθ↑θ+

∇Λ(θ) �

∞ and limθ↓θ�
∇Λ(θ) � �∞. Under these assumptions, Λ∗(z) � zθ(z) �Λ(θ(z)) with θ(z) the unique solution of z � ∇Λ(θ). The 

steepness assumptions make Λ∗ a smooth (C∞) function on the entire real line. Its derivative satisfies ∇Λ∗(z) � (∇Λ)
�1

(z). To 
reduce our setting to the framework in Cesari [7, chapter 2.6], we first incorporate our area constraint into a Lagrangian. Fix ℓ ≥ 0 
and define

fℓ(ξ(t), ξ̇(t)) �Λ∗(ξ̇(t)) � ℓ[ξ(s) � 1=T]: (C.2) 

The Lagrangian Lℓ(ξ) of our problem w.r.t. the constraint 
R T

0 ξ(s)ds ≥ 1 is 
R T

0 fℓ(ξ(s), ξ̇(s))ds. We show that the problem of minimiz
ing Lℓ(ξ) over the set of concave absolutely continuous paths ξ such that ξ(0) � ξ(T) � 0, ξ′(0) � z0,ξ′(T) � zT, z0 > 0 > zT pro
duces a solution that is C1 for every ℓ ≥ 0. Because ∇Λ∗ is strictly increasing, fℓ satisfies Cesari [7, (2.6.1)], which demands that 
f (y)

ℓ (x, y) � d
dy f (y)

ℓ (x, y) � ∇Λ∗(y) is strictly increasing. Cesari [7, property (2.6.4)], which demands that | f (y)

ℓ (x, y) | � |∇Λ∗(y) | → ∞

as |y | → ∞, uniform in x ≥ 0, follows from the fact that Λ is steep. We next propose an AC candidate solution ξ∗, which satisfies 
the Euler–Lagrange equation almost everywhere. In our setting, this equation is given by, for some constant c,

∇Λ∗(ξ∗
:

(s)) � c � ℓs, s ∈ [0, T]: (C.3) 

Because ξ̇(0) � z0, c � ∇Λ∗(z0). Apply ∇Λ∗(z) � (∇Λ)
�1

(z) to write, for almost every s,

ξ∗
:

(s) � ∇Λ(∇Λ∗(z) � ℓs), s ∈ [0, T]: (C.4) 

Because fℓ is C1 and ξ̇∗
(t) ∈ [zT, z0] on [0, T], we can now conclude from Cesari [7, theorem 2.6.ii] that ξ∗ is C1 on [0, T], so that 

(C.4) is valid for all t ∈ [0, T]. This expression can now be substituted into the Lagrangian Lℓ(ξ). Maximizing this over ℓ gives an 
expression for the inner infimum in (C.1), which can then be optimized further over z0, zT, T.

Proof of Proposition C.1. Because of Lemma 4.1(ii), B∗
y � infξ∈BACy

Iy(ξ). Because BCNCVy ⊆ BACy , we only have to prove that 
infξ∈BACy

Iy(ξ) ≥ infξ∈BCNCVy
Iy(ξ). For this, we show that, for any given ξ ∈ BACy , there is ζ ∈ BCNCVy such that Iy(ζ) ≤ Iy(ξ). To con

struct such ζ, we first note that we can find ξ1 ∈ BACy such that T (ξ1) < ∞ and Iy(ξ1) ≤ Iy(ξ) thanks to Lemma 4.3. Now, set T �

T (ξ1) and denote the restriction of ξ1 on [0, T] with ξˇ1—that is, ξˇ1 ∈ AC[0, T] and ξˇ1(t) � ξ1(t) for t ∈ [0, T]. We appeal to (iii) of 
Lemma 4.2 to pick a path ξ2 ∈ AC[0, T] such that ξ2(0) � y, ΦT(ξ2) ≥ΦT(ξˇ1) ≥ 1, IBV[0, T]

y (ξ2) ≤ IBV[0, T]
y (ξˇ1) � Iy(ξ1) ≤ Iy(ξ), and ξ2 

concave on [0, T] with the derivative bounded by µ from below. Now, set ζ � ξ2(t ∧ T) + µ([t � T]
+

), t ≥ 0. Then, ζ ∈ BCNCVy and 
Iy(ζ) � IBV[0, T]

y (ξ2) ≤ Iy(ξ). w

We end this section with the proof of compactness of Fy
z0, zT , T.
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Proof of Lemma C.1. Recall that Fy
z0, zT , T � {ξ : ξ ∈ BCNCVy , ξ̇(0) � z0, ξ̇(T) � zT,ξ(T) � 0}. Let P([0, T]) denote the space of all 

Borel probability measures. Consider φ : P([0, T]) → D[0, T], a mapping defined for each ν ∈ P([0, T]) as follows:

φ(ν)(t)¢y +

Z t

0
(z0 + (zT � z0)ν([0, s]))ds:

We consider the weak topology on P([0, T]) and the J1 topology on D[0, T]. Note that P([0, T]) is a compact space because of Pro
khorov’s theorem. Now, observe that

Fy
z0, zT , T � φ(P([0, T])) ∩ {ξ ∈ D[0, T] : ξ(T) � 0}:

Because {ξ ∈ D[0, T] : ξ(T) � 0} is closed, the proof of this lemma is complete if φ is continuous. To confirm the continuity of φ, 
consider a sequence νn that converges to ν in P([0, T]). Note that

dJ1 (φ(νn), φ(ν)) ≤ ‖φ(νn) � φ(ν)‖∞ � sup
t∈[0,T]

(zT � z0)

Z t

0
(νn([0, s]) � ν([0, s]))ds

�
�
�
�

�
�
�
�

≤ |z0 � zT |

Z T

0
|νn([0, s]) � ν([0, s]) |ds, (C.5) 

and |νn([0, s]) � ν([0, s]) | is bounded by two for each n. Because the (weak) convergence of νn to ν implies that |νn([0, s]) �

ν([0, s]) | → 0 for almost every s ∈ [0, T], the bounded convergence theorem guarantees that (C.5) converges to zero as n → ∞, 
proving the continuity of φ. This concludes the proof of the desired compactness of Fy

z0, zT , T. w

References
0[1] Bazhba M, Blanchet J, Laeven RJA, Zwart B (2022) Large deviations asymptotics for unbounded additive functionals of diffusion pro

cesses. Preprint, submitted February 22, https://arxiv.org/abs/2202.10799.
0[2] Bazhba M, Blanchet J, Rhee CH, Zwart B (2019) Queue length asymptotics for the multiple-server queue with heavy-tailed Weibull ser

vice times. Queueing Systems 93(3–4):195–226.
0[3] Bazhba M, Blanchet J, Rhee CH, Zwart B (2020) Sample path large deviations for Lévy processes and random walks with Weibull incre

ments. Ann. Appl. Probab. 30(6):2695–2739.
0[4] Blanchet J, Glynn P, Meyn S (2013) Large deviations for the empirical mean of an M/M/1 queue. Queueing Systems 73(4):425–446.
0[5] Borovkov AA, Mogulskii AA (2013) Large deviation principles for random walk trajectories. II. Theory Probab. Appl. 57(1):1–27.
0[6] Borovkov AA, Mogulskii AA (2014) Large deviation principles for random walk trajectories. III. Theory Probab. Appl. 58(1):25–37.
0[7] Cesari L (1983) Problems with ordinary differential equations. Optimization—Theory and Applications, Applications of Mathematics, vol. 17 

(Springer-Verlag, New York).
0[8] Dembo A, Zeitouni O (2010) Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38 (Springer- 

Verlag, Berlin).
0[9] Donsker M, Varadhan S (1975) Asymptotic evaluation of certain Markov process expectations for large time, II. Comm. Pure Appl. Math. 

28(2):279–301.
[10] Duffy KR, Meyn SP (2014) Large deviation asymptotics for busy periods. Stochastic Systems 4(1):300–319.
[11] Ganesh A, O’Connell N, Wischik D (2004) Big Queues. Lecture Notes in Mathematics, vol. 1838 (Springer-Verlag, Berlin).
[12] Gantert N (1998) Functional Erdos-Renyi laws for semiexponential random variables. Ann. Probab. 26(3):1356–1369.
[13] Kontoyiannis I, Meyn SP (2003) Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 

13(1):304–362.
[14] Lynch J, Sethuraman J (1987) Large deviations for processes with independent increments. Ann. Probab. 15(2):610–627.
[15] Mogulskii AA (1993) Large deviations for processes with independent increments. Ann. Probab. 21(1):202–215.
[16] Nuyens M, Zwart B (2006) A large-deviations analysis of the GI/GI/1 SRPT queue. Queueing Systems 54(2):85–97.
[17] Puhalskii AA, Whitt W (1997) Functional large deviation principles for first-passage-time processes. Ann. Appl. Probab. 7(2):362–381.
[18] Puhalskii AA, Whitt W (1998) Functional large deviation principles for waiting and departure processes. Probab. Engrg. Inform. Sci. 

12(4):479–507.
[19] Ramasubramanian S (2000) A subsidy-surplus model and the Skorokhod problem in an orthant. Math. Oper. Res. 25(3):509–538.
[20] Sforzo R (2005) Reversible Markov processes on general spaces and spatial migration processes. Adv. Appl. Probab. 37(3):801–818.
[21] Vysotsky V (2021) Contraction principle for trajectories of random walks and Cramér’s theorem for kernel-weighted sums. ALEA Latin 

Amer. J. Probab. Math. Statist. 18(2):1103–1125.
[22] Whitt W (2002) Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues (Springer Science & Busi

ness Media, New York).

Bazhba et al.: Large Deviations for Unbounded Additive Functionals 
32 Mathematics of Operations Research, Articles in Advance, pp. 1–32, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

62
.2

54
.1

70
.4

1]
 o

n 
14

 A
pr

il 
20

24
, a

t 0
1:

38
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

https://arxiv.org/abs/2202.10799

	Sample-Path Large Deviations for Unbounded Additive Functionals of the Reflected Random Walk
	Introduction
	Model Description and Main Results
	Proof of the Sample-Path LDP
	Tail Asymptotics for the Area of a Busy Period
	Additional Technical Lemmas and Proofs


