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Abstract
Given the increasing prevalence of wildland fires in the Western US, there is a crit-
ical need to develop tools to understand and accurately predict burn severity. We 
develop a novel machine learning model to predict post-fire burn severity using pre-
fire remotely sensed data. Hydrological, ecological, and topographical variables col-
lected from four regions of California — the site of the Kincade fire (2019), the CZU 
Lightning Complex fire (2020), the Windy fire (2021), and the KNP Fire (2021) — 
are used as predictors of the differenced normalized burn ratio. We hypothesize that 
a Super Learner (SL) algorithm that accounts for spatial autocorrelation using Vec-
chia’s Gaussian approximation will accurately model burn severity. We use a cross-
validation study to show that the spatial SL model can predict burn severity with 
reasonable classification accuracy, including high burn severity events. After fitting 
and verifying the performance of the SL model, we use interpretable machine learn-
ing tools to determine the main drivers of severe burn damage, including greenness, 
elevation, and fire weather variables. These findings provide actionable insights that 
enable communities to strategize interventions, such as early fire detection systems, 
pre-fire season vegetation clearing activities, and resource allocation during emer-
gency responses. When implemented, this model has the potential to minimize the 
loss of human life, property, resources, and ecosystems in California.
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1  Introduction

Current trends reveal an increase in the magnitude and frequency of wildland fires 
in the Western US (Dennison et al. 2014). The rise of “megafires” in recent years 
posed a threat to the environment, human life, property, and resources (Coen et al. 
2018). Wildland fires disturb microclimates by causing “type conversions” of land-
scapes (Coop et al. 2020). This is when once dominant vegetation (such as forestry) 
is replaced with new vegetation (such as grasses). “Type conversions” intensify 
the conditions conducive to wildland fires by creating a hotter landscape with less 
moisture (Coop et al. 2020) which also has dangerous social implications. For one, 
wildland fire smoke has proven to be detrimental to respiratory health (Heaney et al. 
2022). Furthermore, communities bear the economic burden of recovering from 
devastating structural damages. Therefore, studying the factors that influence the 
severity and spread of burn incidents has reached a critical point. By understand-
ing the drivers of wildland fires, communities can effectively allocate their time and 
resources to minimize losses.

Burn severity is a metric used to evaluate the post-fire damage to soil and vegeta-
tion (Keeley 2009). This metric is influenced by the availability and flammability 
of fuels, environmental stressors, and topography (Coen et al. 2018). Previous stud-
ies have shown that plant water stress variables are important for predicting burn 
severity (Pascolini-Cambell et al. 2021). There is also evidence that pre-season soil 
moisture is a strong predictor (Jensen et al. 2018). Data from the ECOsystem and 
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 
satellite (Fisher et  al. 2020) provides high spatial (70 m) and temporal (3-5 days) 
resolution of hydrological information such as evapotranspiration (ET), evaporative 
stress index (ESI), and water use efficiency (WUE). We incorporate these variables 
into our study due to their relevance in characterizing fuel amount and flammability. 
We hypothesize that these variables will increase the predictability of burn sever-
ity. Regions with greater plant productivity, and more fire fuel, tend to have higher 
measures of ET (Fisher et al. 2010). Moreover, ESI, which evaluates the moisture 
available to vegetation, serves as an indicator of the flammability of those fuels 
(Huang et  al. 2020). Finally, WUE measurements provide insight into the vulner-
ability of plants to climatic stressors (Pascolini-Cambell et al. 2021). The complex 
relationship between fuels, climate and topography influences the spatial patterns 
of burn severity (Kane et al. 2015a). Due to this complexity, the prediction of the 
spatial patterns of burn severity has garnered the attention of researchers in recent 
decades.

Traditional physics-based simulations that capture physical processes (Hoffman  
et  al. 2015) pose challenges. These simulators are time dependent and rely on 
numerical solutions to computational fluid dynamics. Jain et al. (2020) reports that 
it is unfeasible to apply such models on large scales and often produce low accu-
racy. To overcome these issues, many wildland fire researchers turn to empirical 
and statistical models. However, this requires the implementation of nonlinear rela-
tionships, introducing complexity. Machine learning (ML) has emerged as a con-
temporary approach in wildland fire research. This approach is independent of the 
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implementation of physical processes. Instead, it learns directly from data (Jain et al. 
2020). Many ML methods, henceforth referred to as base learners, have been applied 
to wildland fire prediction including Random Forests (RF), MaxEnt, Artificial Neu-
ral Networks, Decision Trees, Support Vector Machines (SVM), and Genetic Algo-
rithms (Jain et al. 2020).

A study of the Basic Complex fire (2008) in Big-Sur, California compared the 
performance of RF, Gaussian Process Regression (GPR), and SVM to multiple 
regression in assessing burn severity. RF performed the best and reduced model 
error by 48% compared to Linear Regression. This reduction in model error is likely 
due to its ensemble learning approach (Hultquist et  al. 2014). Ensemble learning 
merges multiple base learners to solve a single learning problem (Zhou 2021). To 
date, the use of ensemble ML models to predict burn severity remains relatively 
unexplored. Current literature indicates that ensemble learning outperforms indi-
vidual learners (e.g., van Breugel et al. 2015). When base algorithms are accurate 
and diverse, performance is further enhanced (Zhou 2021). Our model incorporates 
a Super Learner ensemble algorithm that aggregates diverse base learners by stack-
ing them in a second-stage regression (van der Laan et al. 2007) to forecast wildland 
burn severity. In addition, our model accounts for spatial autocorrelation both in 
estimating the stacking weights and regression residuals. To the best of our knowl-
edge, this has yet to be done for burn severity.

Our motivation for combining ensemble prediction and spatial modeling stems 
from current literature which reveals the effectiveness of combining ML algorithms 
with traditional spatial statistics methods. When handling spatially dependent data, 
ML algorithms alone are limited in their ability to account for common errors that 
arise in geostatistics such as data gaps (Wikle and Zammit-Mangion 2023). Further-
more, unlike geostatistical methods, many common machine learning algorithms are 
not able to provide estimates of prediction or classification error (Wikle and Zam-
mit-Mangion 2023).

Applying a ML algorithm in conjunction with a statistical method is likely to be 
more applicable to spatially correlated data and yield stronger predictions. There are 
multiple ways to implement a spatial-ML model; one way is to account for spatial 
correlation after implementing the ML algorithm (Fayad et  al. 2016). Another is 
attempting to account for spatial correlation within the ML algorithm, such as Ran-
dom Forest (Hengl et al. 2018). Li et al. (2011) found that a combination of Random 
Forest and Ordinary Kriging (a form of spatial prediction) provided the best results 
out of 23 methods. Current literature reveals that spatial prediction is used in tandem 
with diverse ML algorithms. Koike et al. (2001) got the most accurate predictions 
at new locations after training with a Multi-layer Neural Network that includes spa-
tial relationships compared to just ordinal Kriging and normal Multi-layer Neural 
Network. Another paper also found the benefits of combining Neural Networks and 
Kriging for spatial prediction (Yasrebi et al. 2020).

A mixed spatial ML model was proposed by Saha et al. (2021) that incorporates 
a RF machine learning algorithm and accounts for spatial autocorrelation using 
Gaussian processes. The mixed-model approach proved superior to RF alone when 
evaluating spatially correlated data. Davies and van der Laan (2016) examine the use 
of an ensemble machine learning algorithm that includes Kriging in its base learner 
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library. The favorabilty of a mixed-method approach was further confirmed by their 
results which found that SL performs as good or better than the best base learner in 
spatial prediction. Similarly, Kim (2022) takes a Bayesian approach to average over 
uncertainty in the form of regression trees to improve spatial prediction. Another 
study found that optimizing the predictions from both Kriging and SL separately 
provided an  accurate estimation of geological attributes (Gamze Erdogan  Erten 
2022). Because there is strong geospatial correlation in our wildland fire datasets, 
we expect to find that accounting for spatial correlation on the ensemble predictions 
will enhance the prediction performance of our SL model.

In this study, we investigate the spatial pattern of burn severity of four wildfires 
between 2019-2021. Two fires, the Kincade and San Mateo–Santa Cruz Unit (CZU) 
Lightning Complex fire, represent fires occurring along the Northern Pacific Coast 
in California (California Department of Forestry and Fire Protection 2023). This ter-
ritory is characterized by a warm/hot summer Mediterranean climate. In contrast, 
the Windy and Sequoia and Kings Canyon National Park (KNP) Complex represents 
fires that occur in the Sierra Nevada region which spans the majority of the inland 
mid-latitudes of California (InciWeb 2022). A dry summer subarctic climate can be 
found in this region. This paper is motivated by the questions:

•	 How can we relate areas of intense burn to vegetation, weather, and topography?
•	 Can a Super Learner algorithm accurately predict post-wildfire burn severity 

throughout California?
•	 Which variables are most important to burn severity?

The remainder of the paper proceeds as follows. The wildland fire data are described 
in Sect.  2. Section  3 introduces the methods and computational algorithms. The 
results are summarized in Sect. 4. Section 5 concludes.

2 � Data description

We analyze data from four fires in California: the Kincade fire, the CZU Lightning 
Complex fire, the Windy fire, and the KNP Fire. The fires are described in Table 1 
and plotted in Fig. 1. The data sources described in this section include the ECOS-
TRESS satellite (Hook and Hulley 2019c, a, b, d), Harmonized Landsat Sentinel 
(Masek et  al. 2021b, a), Digital Elevation Model (NASA JPL 2013), Moderate 

Table 1   Summary of wildland fires used in the study. Images are captured pre-fire onset within a two 
week time interval

Fire Location Ignited Fully contained Acreage # of Pixels

Kincade Sonoma County, CA Oct. 23, 2019 Nov. 6, 2019 77,758 82,125
CZU Santa Cruz & San Mateo, CA Aug. 16, 2020 Sept. 22, 2020 86,509 88,581
Windy Sierra Nevada, CA Sept. 9, 2021 Nov. 15, 2021 97,528 99,458
KNP Sierra Nevada, CA Sept. 9, 2021 Dec. 16, 2021 88,307 92,171
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Resolution Imaging Spectroradiometer (Friedl and Sulla-Menashe 2022, MODIS), 
Parameter-elevation Relationships on Independent Slopes Model (PRISM Climate 
Group 2023), and Soil Moisture Active Passive (SMAP 2023) (Table 2). All prod-
ucts were regridded to 70 m resolution to match the resolution of the ECOSTRESS 
data. The burn severity response variable (Sect. 2.1) is obtained after the fire, and 
thus is observed only once per pixel per fire. The predictor variables (Sects. 2.2) are 
all measured before the onset of the fire and some are measured multiple times in 
the two weeks prior to the onset of the fire. For instance, for the KNP fire, the Water 
Use Efficiency (WUE) variable was measured four times before the onset of ignition 
(Aug. 26, Aug. 30, Sep. 03, and Sep. 07). For each of the four fires, the number of 
pre-fire images captured for each covariate (defined in Table 2) is summarized in 
Table 3. In Sect. 2.3 we describe how we handle missing data and how we resolve 
the repeated measures.

Table 2   Variables used as covariates in the Super Learner model

These the exception of the final three variables, all variable were included as both their current state and 
temporal trend

Variable Source Resolution

Evapotranspiration (ET) ECOSTRESS 70 m
Evaportaive stress index (ESI) ECOSTRESS 70 m
Water use efficiency (WUE) ECOSTRESS 70 m
Land surface temperature (LST) ECOSTRESS 70 m
Normalized differened vegetation index (NDVI) Harmonized Landsat Sentinel 30 m
Leaf area index (LAI) MODIS 500 m
AM soil moisture (AM SM) SMAP 9 km
PM soil moisture (PM SM) SMAP 9 km
Daily average dew point temperature (TDMEAN) PRISM 4 km
Daily average air temperature (TMEAN) PRISM 4 km
Vapor pressure deficit maximum (VPDMAX) PRISM 4 km
Vapor pressure deficit minimum (VPDMIN) PRISM 4 km
Elevation Digital Elevation Model 30 m
Aspect Digital Elevation Model 30 m
Slope Digital Elevation Model 30 m

Table 3   Number of satellite images in the two weeks prior to the onset of the fire for each fire (Table 1) 
and covariate (Table 2); the covariates TDMEAN, TMEAN, VPDMAX and VPDMIN all have at least 
14 images for each fire

Fire LST ET ESI WUE LAI NDVI AM SM PM SM

Kincade 4 4 4 4 4 6 8 6
CZU 7 6 7 7 5 4 7 8
Windy 10 3 3 3 4 6 6 7
KNP 12 4 4 4 6 8 6 7
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2.1 � Burn severity

Our outcome variable of interest is burn severity, which is a function of the nor-
malized burn ratio (NBR). NBR compares measurements in the near infrared 
(NIR) and the short-wave infrared (SWIR) sections of the electromagnetic spec-
trum as

Healthy vegetation reflects in the NIR section whereas burned vegetation reflects 
stronger in the SWIR section (Pascolini-Cambell et al. 2021). The response variable 
is the differenced normalized burn ratio, or dNBR, which is the difference between 
pre-fire NBR and post-fire NBR so that a large dNBR value implies extreme burn 
severity and vice versa. Landsat 30 m images were used to calculate dNBR values. 
The dNBR data was retrieved from the interagency program “Monitoring Trends 
in Burn Severity (MTBS)" and multiplied by 1,000. We change this continuous 
measure of burn severity to a categorical measure using the following categories 
Wasser (2019): high enhanced growth (dNBR from − 500 to − 251), low enhanced 
regrowth (− 250 to − 101), unburned (− 100 –99), low (100 –269), moderate-low 
(270 –439), moderate-high (440 –659), and high (660–1300). We build our model 

(1)NBR =
NIR − SWIR

NIR + SWIR
.

Fig. 1   Maps of the burn severity measure (dNBR) for the Californian wildland fires described in Table 1
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for the continuous severity response, but evaluate performance for correctly predict-
ing the categorical measure.

2.2 � Covariates

Data for each covariate was collected within a two-week period preceding fire onset. 
We are interested in a snap shot of conditions before the fire which gives differ-
ent information to longer-term information. The snapshot will capture week-to-week 
variability in fire weather and plant stress conditions conducive to extreme fire con-
ditions, whereas longer term would capture more slowly varying drought and cli-
mate processes. For this study we are interested in short-term drivers. Using a two 
week pre-fire time interval ensures our predictions are based on relevant pre-fire 
conditions while still providing a sufficient amount of data. We acquired variables 
at a 70  m resolution describing plant water stress from the ECOSTRESS (Fisher 
et al. 2020), which gives information on fuel availability, drought, and other poten-
tially important predictors of wildland fire burn severity (Pascolini-Cambell et  al. 
2021). Evapotranspiration (ET) measures the amount of water being lost in the soil 
from both evaporation from soil surface and transpiration from the plant leaves. The 
Evaportaive Stress Index (ESI) is the ratio of actual ET to potential ET, and can be 
an indicator of drought. Water use efficiency (WUE) indicates how a plant responds 
to stress, such as short-term drought. Land surface temperature (LST) is defined as 
the temperature that the land would feel to the touch.

In addition to ECOSTRESS measurements, we include variables describing veg-
etation. The normalized differenced vegetation index (NDVI) and the leaf area index 
(LAI) quantify the plant canopies. The morning soil moisture (AM SM) and after-
noon soil moisture (PM SM) were also variables of interest. Moreover, we have vari-
ables describing weather two weeks before the fire. These include both morning and 
evening soil moisture, daily average dew point temperature (TDMEAN), daily aver-
age air temperature (TMEAN), vapor pressure maximum (VPDMAX), and vapor 
pressure minimum (VPDMIN). Lastly, the variables elevation, slope, and aspect, 
describe the topography of the region. A summary of the covariates with their cor-
responding satellite origin and original product resolutions are provided in Table 2.

2.3 � Data manipulation

The variables used in the study are derived from different sources and thus have 
different spatial resolutions (Table  2). The resolution differences are resolved by 
converting all variables to the ECOSTRESS 70 m grid using area-weighted averag-
ing. We used bilinear interpolation for continuous variables and nearest neighbor for 
categorical variables using the raster package in R (Hijmans 2023). Missing data 
is present due to factors such as cloud coverage. We removed variables with more 
than 28% missing pixels across each geographic region. For the remaining varia-
bles, missing observations were imputed using KNearest Neighbor imputation, with 
K = 10 and distance defined using latitude and longitude.
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Many of the variables are collected at different times within the two-week period 
leading up to the fire ignition. To resolve collinearity between subsequent measure-
ments and harmonize variables across fires with a different number of replications 
of the variables, we convert the sequence of observations to estimates of the current 
value and the trend at the time of ignition for each pixel. Variables that are treated in 
this way will be labeled with the term “current" or “trend." For instance, TDMEAN 
(trend) would refer to the change in average dew point temperature over the time 
interval of our data and TDMEAN (current) would refer to the average dew point 
temperature at the onset of the fire. Estimates are made using Linear Regression 
separately by variable and pixel. For example, let ETit be the observed evapotranspi-
ration (ET) at spatial location si t days before ignition. We then fit the linear model 
E (ETit) = �0i + �1it and use the least-squares estimates of �0i and �1i as covariates to 
summarize the current value and trend in ET, respectively, for pixel i at the time of 
ignition. Therefore, even the variables labelled as “current” are functions of obser-
vations made prior to ignition.

3 � Statistical methods

In this section, we discuss the methods used for predicting the continuous burn 
severity response variable; the method is summarized in Fig.  2. We implement a 
spatial extension of a SL algorithm, an ensemble learning method that combines 
base learners to achieve superior predictive accuracy. Section 3.1 gives the overall 
model framework. The model is fit in two stages: in the first stage (Sect. 3.2) we use 
non-spatial regression to train the base learners and in the second stage (Sect. 3.3) 
we use the first-stage estimates as covariates and fit a spatial process model used for 
prediction (Sect. 3.4).

Fig. 2   Flowchart depicting the Super Learner algorithm (based on a diagram from van der Laan et al. 
(2007))
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3.1 � Spatial Super Learner model

Let Yi be the continuous measure of burn severity (dNBR) at spatial location si , and 
Xi = (Xi1, ...,Xip) be the associated covariates (the p = 27 variables in Table  2). 
Rather than using the covariates directly in the linear model, we use them to train 
L machine learning algorithms (e.g., RF) to allow for interactions and non-linear-
ity, and use the outputs of these algorithms as predictors in the next stage. Denote 
Zil = fl(Xi) as the non-linear function of the covariates determined by learner 
l ∈ {1, ..., L} . The spatial model is

where �0 is the intercept, �l is the weight given to learner l, Ti is the  spatially-
correlated error and �i

iid
∼ Normal (0, �2) is an  independent error that accounts for 

small-scale, unexplained variance. The spatial error term Ti captures correla-
tion not explained by the covariates and is taken to be a stationary Gaussian pro-
cess with E (Ti) = 0 , Var (Ti) = �2 and isotropic exponential correlation function 
Cor (Ti,Tj) = exp(−dij∕�) , with dij denoting the distance between si and sj ,  while � 
is the spatial range parameter.

3.2 � Stage 1: fitting the base learners

The Super Learner is a stacking ensemble method, introduced by van  der Laan 
et al. (2007), that seeks the optimal combination of base learners ensuring predic-
tive performance at least as well or better than the best performing base learner. 
The effectiveness of SL is attributed to the diversity of its base learners. Different 
learners, each offering a unique approach to problem solving, contribute to a robust 
and adaptive model. The choice of base learners can be customized based on the 
requirements or constraints of a given problem. We incorporate L = 11 diverse base 
learners: Elastic Net (Zou and Hastie 2005), Decision Tree Regression (Morgan and 
Sonquist 1963), Ridge Regression (Hoerl and Kennard 1970b, a), Lasso Regression 
(Tibshirani 1996), KNearest Neighbors Regression (Cover and Hart 1967), Gradi-
ent Boosting Regression (Friedman 2001), XGBoost Regression (Chen and Guestrin 
2016), Bagging Regression (Breiman 1996), Random Forest Regression (Breiman 
2001), Extra Trees Regression (Geurts et  al. 2006), and Multilayered Perceptron 
Regression (Rosenblatt 1958). The first 10 base learners in the aforementioned list 
were implemented using the scikit-learn package (Pedregosa et al. 2011).

The base learners are fit individually and without regard to spatial correlation. For 
model-fitting (we take a slightly different approach for prediction in Sect.  3.4), the 
training data are split into 10 folds using completely random sampling over i. The 
covariate Zil in (2) is the prediction of base learner l trained on the 9 folds that exclude 
observation i. Cross validating tests our models ability to perform well on unseen data 
and prevents possible overfitting. This method of cross validation was implemented for 

(2)Yi = �0 +

L
∑

l=1

Zil�l + Ti + �i,
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both the within-fire (those predictions from which the training and test data are from 
the same fire) and combined fire datasets (those predictions from which the training 
data is derived of multiple fires and tested on a subset of that data). More details of base 
learner training are given in Appendix A.1.

3.3 � Stage 2: fitting the spatial model

For the purpose of estimating the parameters {�0, ..., �p, �2, �2,�} in (2), we treat the 
base learner predictions Zil as fixed and known covariates and fit a standard spatial lin-
ear regression model. Unlike some SL estimators (van der Laan et al. 2007), we do not 
restrict the weights �1, ..., �L to be positive or sum to zero. Since we fit the base learners 
under a working assumption of independent residuals, we allow for the possibility that 
their relationship with the response may change considerably when spatial dependence 
is included (e.g., Hodges and Reich 2010). Therefore, we estimate the weights using 
unconstrained (i.e., without a sum-to-zero constraint) spatial regression to compensate 
for fitting the base learners using non-spatial regression. The regression coefficients 
�l are identifiable in the two-stage approach if the first-stage estimates of the Zil are 
linearly-independent.

Due to the large number of  pixels (Table 1), the exact maximum likelihood esti-
mator cannot be computed and so we use the Vecchia approximation (Vecchia 1988) 
implemented in the GpGp package (Guinness et  al. 2021). The Vecchia approxima-
tion orders the observations and approximates the joint likelihood as a product of the 
univariate conditional distributions of each site given a local subset of sites that appear 
before the site in the ordering. In our analysis, we use the default number of nearby 
sites in the subset ( k = 15 ) and ordering scheme.

3.4 � Stage 3: Prediction

For prediction on the training data, we refit the base learners using the entire training 
dataset and compute fitted values at the training locations and predicted values at the 
testing locations as the covariates, Zil (Fig. 2). Given these covariates, standard Kriging 
predictions can be applied. For prediction, we use the estimated parameters (including 
the �l ) from the Stage-2 spatial regression fit. However, due to the size of the train-
ing data, standard methods are too computationally expensive and so we use the local 
Kriging prediction option in the GpGp package that makes predictions at a test loca-
tion based on the nearest k training set observations. Given the predicted values for the 
continuous measure of burn severity, we predict the categorical burn severity measure 
by discretizing the Kriging prediction into the corresponding category using the thresh-
olds given in Sect. 2.1. Details of fitting the spatial model and subsequent prediction 
are given in Appendix A.2.
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4 � Results

4.1 � Within‑fire predictions

We first analyze the four fires separately. We fit four models (Table  4): Linear 
Regression versus SL for the mean with spatial versus independent errors. The 
first step in the spatial SL method is to compute the base-learner predictions, Zil . 
Table 5 gives the sample correlations between the base learners for the KNP fire. 
The base learners with the largest �l contribute the most to the predictive model. 
While there are some highly correlated base learners, there are many with moder-
ate correlation and so as desired the set of base learners is diverse and conducive 
to ensemble prediction. Table 6 gives estimates of the weight parameters, �l , for 
the spatial SL fit for each fire. For all fires, extra trees regression has the most 
weight followed by multilayer perceptron regression and XGBoost regression. 
The consistency of the �l estimates across fires and small standard errors suggest 
the model weights are well identified. We did not restrict the mean of the spatial 
model to be a convex combination of the base learners because the base learners 
were fit under independence. However, the intercept estimates are all near zero 
and the weights are mostly positive or near zero and sum to approximately one for 
each fire. The consistency of the results across fires also suggests the predictive 
model may be generalizable across similar fires.

Methods are compared in Table 7 using prediction Root Mean Squared Error 
(RMSE), classification accuracy for all categories, and classification accuracy for 
high burn severity categories. For all four fires, the non-spatial linear regression 
models perform poorly with high RMSE and low classification accuracy. Includ-
ing either the SL model in the mean or spatial dependence gives a large reduc-
tion in MSE and an increase in classification accuracy. Across the four fires, the 
classification accuracy of the spatial SL approach for predicting the burn severity 
category is between 58 and 71%, and thus the predictions are fairly reliable.

Table 4   Spatial-coordinates only (S), linear regression (LR) and Super Learner (SL) models for the mean 
with spatial versus independent errors for p ∈ {1, ...,P} covariates and l ∈ {1, ...,L} base learners

The mean models differ by whether spatial coordinates (si = (si1, si2) ), the original covariates ( Xip ) or the 
base learners ( Zil ) are included in the mean and whether the spatial random effects ( Ti ) are included in 
the covariance

Mean Covariance Model

S Independent Yi = �0 + si1�1 + si2�2 + �i

S Spatial Yi = �0 + si1�1 + si2�2 + Ti + �i

LR Independent Yi = �0 +
∑P

p=1
Xip�p + �i

LR Spatial Yi = �0 +
∑P

p=1
Xip�p + Ti + �i

SL Independent Yi = �0 +
∑L

l=1
Zil�l + �i

SL Spatial Yi = �0 +
∑L

l=1
Zil�l + Ti + �i
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Table 6   Fitted values (standard errors), separate by fire, for the regression coefficients �j
Parameter KNP Windy CZU Kincade

Intercept −0.39 (3.62) 1.65 (4.58) −1.80 (2.90) 3.67 (1.39)
Elastic net −0.08 (0.03) −0.09 (0.03) −0.05 (0.01) −0.06 (0.02)
Decision Tree 2e-3 (4e-3) − 2e-3 (3e-3) 4e-3 (4e-3) − 2e-4 (4e-3)
Ridge Reg −0.02 (0.03) 0.05 (0.04) −0.11 (0.03) 0.04 (0.02)
Lasso Reg 0.05 (0.04) −0.02 (0.05) 0.14 (0.03) − 8e-3 (0.03)
KNeighbors Reg −0.05 (7e-3) −0.03 (6e-3) −0.04 (7e-3) 0.03 (7e-3)
Gradient Boosting Reg 0.10 (0.01) 0.13 (0.01) 2e-3 (0.01) 0.16 (0.01)
XGBoost Reg 0.10 (0.01) 0.08 (0.01) 0.17 (0.01) 0.07 (0.01)
Bagging Reg 0.01 (0.03) −0.03 (0.02) −0.08 (0.02) 1e-3 (0.03)
Random Forest Reg 0.02 (0.03) − 1e-3 (0.02) −0.12 (0.02) −0.02 (0.03)
Extra Trees Reg 0.56 (0.02) 0.60 (0.01) 0.94 (0.01) 0.49 (0.02)
Multilayered Perceptron Reg 0.29 (7e-3) 0.20 (7e-3) 0.18 (6e-3) 0.29 (7e-3)

Table 7   Within-fire cross-
validation root mean squared 
prediction error (RMSE), 
classification accuracy (CA) 
percent for fire severity level 
(high enhanced growth (dNBR 
from − 500 to − 251), low 
enhanced regrowth (− 250 to 
− 101), unburned (− 100 −  99), 
low (100–269), moderate-low 
(270 – 439), moderate-high (440 
–659), and high (660 – 1300)) 
and CA for the high categories 
for spatial-coordinates only 
(S), linear regression (LR) and 
Super Learner (SL) models with 
independent and spatial error 
structure

Fire Mean Covariance RMSE CA CA-High

KNP S Independent 233 24.0 0.00
S Spatial 117 56.9 57.2
LR Independent 213 28.0 0.03
LR Spatial 115 57.5 57.9
SL Independent 121 55.7 53.6
SL Spatial 114 58.0 55.4

Windy S Independent 259 23.3 0.0
S Spatial 104 64.1 75.4
LR Independent 215 32.1 9.8
LR Spatial 98 66.0 78.1
SL Independent 112 61.6 73.2
SL Spatial 98 66.5 77.8

CZU S Independent 285 19.4 0.0
S Spatial 96 68.8 83.5
LR Independent 207 37.3 39.0
LR Spatial 89 70.1 84.8
SL Independent 95 69.3 84.8
SL Spatial 91 70.7 86.3

Kincade S Independent 232 27.6 0.0
S Spatial 98 65.3 63.3
LR Independent 164 43.0 17.5
LR Spatial 88 66.8 67.8
SL Independent 94 65.3 69.1
SL Spatial 82 69.3 73.8



	 Environmental and Ecological Statistics

1 3

4.2 � Combined‑fire predictions

In contrast to within-fire predictions, combined-fire predictions combine data 
from multiple individual fires into one dataset to form predictions. By combining 
the fires, we can identify how well the model fits differ across the entire region in 
California that these fires span. The fitted values of the parameters from the spa-
tial SL method in Table 8 again show that extra trees regression is the dominant 
learner, followed by multilayer perceptron regression and XGBoost regression. 
Methods are compared in Table 9. The spatial SL model has the lowest RMSE 
and highest overall classification accuracy, followed closely by the spatial linear 
regression model, which gives the highest overall classification accuracy for the 
high category.

Table 8   Fitted values (standard 
errors), combining all fires, for 
the regression coefficients �j

Parameter Combined

Intercept −2.37 (1.46)
Elastic Net −0.01 (0.01)
Decision Tree -2e-3 (2e-3)
Ridge Reg 6e-3 (0.01)
Lasso Reg −0.02 (0.01)
K Neighbors Reg −0.01 (3e-3)
Gradient Boosting Reg 0.08 (6e-3)
XGBoost Reg 0.16 (6e-3)
Bagging Reg 0.03 (0.01)
Random Forest Reg 0.04 (0.01)
Extra Trees Reg 0.63 (8e-3)
Multilayered Perceptron Reg 0.12 (4e-3)

Table 9   Combined-fire cross-validation root mean squared prediction error (RMSE), classification accu-
racy (CA) percent for fire severity level (high enhanced growth (dNBR from -500 - -251), low enhanced 
regrowth (-250 - -101), unburned (-100 - 99), low (100 - 269), moderate-low (270 - 439), moderate-high 
(440 - 659), and high (660 - 1300)) and CA for the high categories for linear regression (LR) and Super 
Learner (SL) models with independent and spatial error structure

Fire Mean Covariance RMSE CA CA-High

Combined LR Independent 223 29.0 8.26
LR Spatial 100 64.5 76.54
SL Independent 108 62.4 59.06
SL Spatial 97 65.7 62.98
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4.3 � Variable importance measures

While the spatial SL method provides solid prediction performance, it does not 
inherently provide measures of the effect of individual covariates, which is one 
of our main objectives. Therefore, in this section we use interpretable machine 
learning tools to isolate the contribution of individual predictors on burn severity. 
Due to the high performance of the Extra Trees and XGBoost Regressors at low 
computational cost, we opted to analyze variable importance using these mod-
els. A fitted attribute within the scikit-learnn Python package (Pedregosa 
et  al. 2011) allowed us to extract the strongest predictors of wildland fire burn 
severity in California. The strongest predictors were calculated using Permuta-
tion Feature Importance (PFI). The PFI algorithm ranks the importance of covari-
ates as follows. First, a covariate column is selected within the dataset and its 
entries are shuffled 10 times. Then, the Extra Trees model is refit with the cor-
rupted covariate column. Finally, a metric of importance is determined by evalu-
ating the reduction of model score with the corrupted column, i.e. if shuffling PM 
SM resulted in a great reduction in model score, then that would indicate that 
the afternoon soil moisture is important for predicting burn severity in a given 
region. This VI measure quantifies the importance of covariates to the mean func-
tion, but does not consider spatial correlation (which is an important caveat given 
the expected spatial dependence Kane et al. (2015b)). This process is repeated for 
each covariate of interest to determine a ranking.

The top five strongest predictors for each individual fire for Extra Trees and 
XGBoost are reported in Table  10. The leading predictors for within-fire pre-
diction included the daily average dew point temperature (TDMEAN), normal-
ized differenced vegetation index (NDVI), elevation of topography (Elevation), 

Table 10   Variable important (VI) measures for the Extra Trees learner and XGBoost learner on the four 
separate fires

KNP VI Windy VI CZU VI Kincade VI

(a) Extra trees
TDMEAN (trend) 0.23 NDVI (current) 0.33 PM SM (current) 0.38 NDVI (current) 0.54
NDVI (current) 0.19 Elevation 0.17 Elevation 0.24 Elevation 0.15
Elevation 0.14 PM SM (trend) 0.11 NDVI (current) 0.08 AM SM (trend) 0.07
PM SM (trend) 0.10 PM SM (current) 0.08 TDMEAN (cur-

rent)
0.07 VPDMAX (cur-

rent)
0.04

AM SM (trend) 0.07 TDMEAN (cur-
rent)

0.07 TMEAN (trend) 0.07 PM SM (trend) 0.04

(b) XGBoost
TDMEAN (trend) 0.41 NDVI (current) 0.39 PM SM (current) 0.44 NDVI (current) 0.58
Elevation 0.29 Elevation 0.29 Elevation 0.35 Elevation 0.31
NDVI (current) 0.25 VPDMIN 0.20 ET (trend) 0.14 AM SM (trend) 0.19
PM SM (trend) 0.15 PM SM (trend) 0.17 ESI (trend) 0.13 TDMEAN (trend) 0.11
AM SM (trend) 0.08 PM SM (current) 0.14 VPDMIN (trend) 0.11 PM SM (current) 0.10
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afternoon soil moisture (PM SM), morning soil moisture (AM SM), daily average 
air temperature (TMEAN), and vapor pressure maximum (VPDMAX).

The ranking of variable importance is similar for the combined analysis. 
Within Extra trees, the five most important variables are NDVI (current) (VI = 
0.34), elevation (0.20), PM SM (current) (0.20), LST (current) (0.10) and PM 
SM (trend) (0.08). Within XGBoost, the five most important variables are NDVI 
(current) (VI = 0.40), elevation (VI = 0.35), TDMEAN (trend) (VI = 0.20), PM 
SM (trend) (VI = 0.15), and PM SM (current) (VI = 0.12). In addition to rank-
ing variables based on importance, Fig. 3 plots estimates of the direction of the 
effects of these covariates to illustrate their relationship with burn severity. The 
effects are estimated using the Accumulated Local Effects (ALE) of Okoli (2023). 
The local effect of a covariate is estimated by conditioning on all other covariates 
and computing the mean burn severity as estimated by the fitted SL model as a 
function of the covariate. These local estimates are then averaged over the distri-
bution of the other covariates. The covariates with most variability in their ALE 
are plotted in Fig. 3. These plots suggest that the regions that are the most suscep-
tible to burn damage are those with high greenness (NDVI, current), increasing 
temperature (TMEAN, trend), high elevation, decreasing vapor pressure definite 
maximum (VPDMAX, trend), low dew point temperature (TDMEAN, current) 
and increasing vapor pressure deficit minimum (VPDMIN, trend).
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5 � Discussion

This paper presents the results of evaluating the post-fire burn severity of four Cali-
fornia wildfires between 2019-2021 using Super Learner regression and geostatistical 
techniques designed to handle large and complex datasets. Although computationally 
expensive, the SL algorithm outperformed all base learners. This result is consistent 
with papers that have shown that ensemble learning reliably provides a more robust, 
accurate model than traditional machine algorithms alone. We built upon the work of 
Pascolini-Campbell et al. by including additional metrics to evaluate burn severity, such 
as those derived from the SMAP satellite. For the selected fires, hydrological data from 
ECOSTRESS proved less important than AM soil moisture as the leading predictor of 
burn severity. This aligns with Jensen et al. (2018) findings of the importance of pre-
season soil moisture as a strong predictor. Future work could explore the importance of 
elevation, NDVI, and PM soil moisture for wildland fire prediction.

The current analysis has several limitations. As is often the case with machine learn-
ing methods, quantifying prediction uncertainty is not straightforward for the spatial 
Super Learner algorithm. The prediction variances from GpGp account for uncertainty 
in the model weights (�l) and the Kriging variance; they do not account for uncertainty 
in the first-stage base learner fits ( Zil ). Fully characterizing prediction uncertainty is 
an important area of future work. The approach to manipulating covariate data col-
lected prior to ignition (Sect. 2.3) requires selecting a time window, which we fix at two 
weeks. Future work could extend this time window. If data are included for a longer 
window before the onset of the fire, a temporally-weighted regression could be used to 
emphasize recent observations. Compared to the standard spatial linear regression, the 
SL methods require the additional step of fitting several base learners. However, having 
established this procedure, the extra computing time is not prohibitive for making, say, 
daily or weekly risk predictions. Therefore, we believe the added flexibility of the SL 
approach justifies the additional computational burden.

In summary, our mixed-model approach offers a compelling alternative to single 
learners, physics-based simulators, empirical models, and statistical models to predict 
wildland burn severity in California. By leveraging the spatial SL method, research-
ers can achieve accurate predictions of burn severity and better our understanding of 
the drivers of burn severity which is needed for pre-fire season monitoring. Identify-
ing the most important variables to be mindful of, such as evening soil moisture, can 
informs Californians of ways to effectively allocate their time and resources to prepare 
for and respond to wildland fire incidences. In doing so, the loss of human life, prop-
erty, resources, and ecosystems could be minimized.

Appendix A.1: training individual learners

Part of the Super Learner algorithm is choosing the library of base learning 
models. These models were chosen to include a range of linear and non-linear 
methods. Specifically, the set comprised of Elastic Net, Decision Tree, Ridge 
regression, Lasso regression, K-Nearest neighbors, Gradient Boosting, Extreme 
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Gradient Boosting (XGBoost), Bagging, Random Forest, Extra Trees, and a 
custom-built Neural Network model. All these models were trained using their 
scikit-learn default hyperparameters, except where explicitly mentioned 
otherwise. Specific hyperparameters are summarized in Table  11. The Super 
Learner code is publicly available on our GitHub page (https://​github.​com/​Nicho​
las-​Simaf​ranca/​Super_​Learn​er_​Wild_​Fire.​git).

The Neural Network model was implemented in PyTorch, comprising four 
fully connected hidden layers. All hidden layers used a rectified linear unit 
(ReLU) activation function. The output layer was a single neuron as this is a 
regression task. The model was trained using a mean squared error loss function 
and the Adam optimizer (Kingma and Ba 2014). The number of training epochs 
was set to 200 with a batch size of 115 and a learning rate of 0.01.

To generate the the out-of-fold predictions, a 10-fold cross-validation was 
performed on the entire dataset. In each fold of this cross-validation, each base 
model was trained on 80 percent of the data, and predictions were generated on 
the remaining 20 percent. This process was repeated such that every sample in 
the dataset had an associated set of out-of-fold predictions, one from each base 
learner. The out-of-fold predictions from all the base learners were then stacked 
horizontally to form a new matrix of meta-features, denoted as the Z matrix, one 
for each base learner (Fig. 2). Along with these meta-features, dNBR and corre-
sponding latitude and longitude were also stored. The process of generating out-
of-fold predictions ensured that the base learners and the meta-model remained 
decoupled, preventing data leakage and ensuring robustness of the ensemble.

In addition to generating out-of-fold predictions, the base learners were also 
trained on the entire training dataset, and predictions were made on the same 
dataset to obtain a set of fitted values. These fitted values were used to calculate 
the training RMSE for each base learner. Each base learning is fast to train. For 
example, for the KNP fire, the CPU time ranges from 141 milliseconds for Ridge 

Table 11   Specifications for 
scikit-learn base learner 
model.

All other models use the default settings

Base learner Hyperparameters

Ridge reg Alpha = 1
Lasso reg Alpha = 1
K neighbors reg n_neighbors=6, weights="distance"
Gradient boosting reg n_estimators=100, learn-

ing_rate=0.1, max_depth=10, 
random_state=42

XGBoost reg n_estimators=100, learn-
ing_rate=0.1, max_depth=20, 
random_state=42

Bagging reg n_estimators=100
Random forest reg n_estimators=100
Extra trees reg n_estimators=100

https://github.com/Nicholas-Simafranca/Super_Learner_Wild_Fire.git
https://github.com/Nicholas-Simafranca/Super_Learner_Wild_Fire.git
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Regressor to 8 min and 31 s for XGBoost. Each base learner must be fit several 
times in the cross validation routine.

Appendix A.2: fitting the spatial model

Once all base learners had been trained and their out-of-fold predictions had been 
generated, the meta-model is trained using the GpGp: Fast Gaussian Process Com-
puting package in R (Guinness et al. 2021). This package supports spatial models, 
including our exponential isotropic covariance function, with many ways of increas-
ing computational efficiency. It implements Vecchia’s Gaussian approximation, 
which is one of the most efficient Gaussian process approximations (Guinness 2021). 
Furthermore, Guinness (2021) improves upon Vecchia’s approximation in the pack-
age by implementing a Fisher scoring algorithm for efficient computing of the maxi-
mum likelihood estimation of parameters, �,�, �2, �2 . Fitting the model requires less 
than two minutes for any of the fires. It also uses Vecchia’s Gaussian approximation 
to predict at new unsampled locations, a form of Kriging (Allard et al. 2021). This 
utilizes computing the inverse Cholesky factorization of the covariance matrix when 
finding the conditional expectation as described in Allard et  al. (2021) and Katz-
fuss et al. (2020). In its prediction, the package also orders and groups observations 
based on spatial proximity, further decreasing computing time (Allard et al. 2021).
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