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Abstract

Training an accurate object detector is expensive and time-consuming. One main reason lies
in the laborious labeling process, i.e., annotating category and bounding box information
for all instances in every image. In this paper, we examine ways to improve performance of
deep object detectors without extra labeling. We first explore to group existing categories
of high visual and semantic similarities together as one super category (or, a superclass).
Then, we study how this knowledge of hierarchical categories can be exploited to better
detect objects using multi-grained RCNN branches*. Experimental results on DeepFashion2
and OpenlmagesV4-Clothing reveal that the proposed detection heads with multi-grained
branches can boost the overall performance by as high as 2% with no additional time-
consuming annotations. In addition, classes that have fewer training samples tend to benefit
more from the proposed multi-grained heads with superclass grouping. In particular, we
improve the mAP for the last 30% categories (in terms of training sample number) by 2.6%
and 4.6% on DeepFashion2 and OpenlmagesV4-Clothing, respectively.
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1 Introduction

In the deep learning era, accurate object detection relies on a large amount of training data
and annotations. However, instance-level annotations, such as bounding boxes, are expen-
sive to collect compared to image-level labels. Therefore, it is important to make full use
of currently available data and annotations. To this end, we propose to improve detection
performance using multi-grained detection heads with superclass grouping in this paper.
We integrate and utilize information from different abstraction levels during both training
and inference. Such detectors that can extract and utilize hierarchical features are desirable
in many real-world scenarios. For example, in case of fashion items, the features that sep-
arate different kinds of tee-shirts should be on different levels with those that distinguish
tee-shirts from skirts. In practice, most items in catalogs of online retailers are organized
hierarchically so that data and ground-truth labels are usually collected and used for train-
ing in a multi-grained fashion. However, most existing object detection algorithms such as
SSD [24], YOLO and its variants [2, 26-28], RCNNs [10, 11, 29] are designed to exploit
labels in a flat manner. Consequently, these models cannot benefit from hierarchical nature
of the data.

In addition, most real-world datasets are imbalanced in that some categories have more
samples than others. Strategies such as data resampling [4, 13] and cost-sensitive learn-
ing [19, 33, 44] can be adopted to alleviate this imbalance problem. Relatively speaking,
fewer deep learning approaches [18, 35, 36, 43] have been proposed to address this issue for
object detection. Detectors trained on imbalanced datasets can lead to low detection accu-
racy for small classes (i.e., classes with a limited number of samples). We hypothesize that
closely-related fine-grained categories may utilize similar coarse-grained features. Utilizing
multi-grained detection heads, we attempt to improve performance on small categories via
learning shared coarse features with the help of data from related large categories. In this
way, we make full use of available bounding box annotations.

In this paper, we apply our multi-grained detection heads to apparel detection because
it is a challenging task that needs more attention and investigation. As discussed by many
researchers in this field [12], apparel detection is challenging for several reasons: (1) defor-
mation of clothing items, (2) various sizes (one-piece dress vs. earrings), (3) different styles
in a certain clothing category. Accurate apparel detection can serve as a crucial first step of a
wide range of e-commerce applications. For example, on online retailers like Amazon, peo-
ple can upload their pictures of fashion items to retrieve similar or identical merchandise. If
the detection is poor, totally irrelevant items may be returned.

2 Related works

In this section, we review some important deep-learning-based object detection approaches.
One of the dominant paradigms in modern object detection is based on a two-stage approach
[17]. In the first stage, a set of candidate proposals are generated using techniques like
Selective Search [34] and EdgeBoxes [45]. The second stage refines the proposals into
a final set of bounding boxes along with their corresponding categories. RCNN [11] and
its variants, namely Fast RCNN [10] and Faster RCNN [29], belong to this category of
detectors. Mask RCNN [15] is based on Faster RCNN with a separate mask branch added
for instance segmentation. In an effort to produce more accurate bounding boxes, multi-
step detectors have also been proposed that explore different ways of gradually refining the
detections. Some examples are multi-region detector [8], CRAFT [40], AttractioNet [9], and
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Cascade R-CNN [3]. Cascade R-CNN [3] consists of a sequence of detectors trained with
increasing values of Intersection over Union (IoU). Recently, specialized RCNNs are shown
to beat the baseline in particular use cases, such as Beta R-CNN for pedestrian detection [39]
and Forest R-CNN [38] for large-vocabulary long-tailed scenarios.

Compared to the two-stage paradigm, one-stage object detectors have gained popular-
ity mainly due to their efficiency. Unlike the final sparse prediction in RCNN, single-stage
detectors perform dense prediction in the end (no intermediate ROI proposal process).
OverFeat [30] is one of the first one-stage object detectors. More recently, SSD [24]
and YOLOs [2, 26-28] have reduced the detection accuracy gap between one-stage and
two-stage detectors while improving on the computation efficiency. To achieve better
accuracy without much extra computation, Lin et al. [23] have proposed focal loss to
assign higher weights to hard examples dynamically. One special variant of YOLO, called
YOLO9000 [27], detects over 9000 object categories by taking advantage of both the abun-
dance of fine-grained category labels in ImageNet [5] and the plentifulness of coarse-class
bounding box annotations in the MS-COCO dataset [21]. Another work that uses coarse-
and fine-grained category organization is [41]. It detects at the level of fine grained classes,
while only requiring a small set of bounding box annotations at coarse-grained class level.
Based on better backbones derived from extensive neural architecture search on hundreds
of GPUs [31], Tan et al. [32] have developed an efficient and accurate family of object
detectors, named EfficientDets.

In most modern detectors such as the above-mentioned Faster RCNN [29], the same level
of (top) features is used to detect and classify different categories. However, representa-
tions discriminative for different categories may lie on different abstraction levels. Previous
works, such as skip connection [14, 16] and layer aggregation [42], have been shown to be
effective for integrating different-level information. As far as we know, few, if any, works
have experimented with utilizing multi-level information in distinct detection heads (after
ROI determination). Also, none has attempted to inject multi-level supervision information
on such heads to explicitly learn features at different granularities.

Our work builds on the two-stage Faster RCNN backbone (one of the best-performing
object detectors [28]) and we propose detection heads with multi-grained branches to exploit
information from different abstractness levels. Unlike Mask RCNN [15] (another Faster-
RCNN multiple-branch extension as mentioned previously), our multiple branches capture
multi-grained information and tackle the same final task (fine-grained apparel detection
in our case). To train these multi-grained branches, we first group the categories into
hierarchical manner (i.e., superclass grouping).

3 Category grouping and multi-grained detection heads

In this section, we first discuss category grouping strategies and then present different
detection head architectures to improve the overall detection performance as well as the
performance for minority categories.

3.1 Superclass grouping for multi-grained detection heads

First, we need to build a hierarchical structure of the data. If the dataset contains hierarchical

information, we respect the original hierarchy or superclass grouping. If not, the Word-
Net [25] hierarchy can be used as a guidance (as many works do [6, 27]). In this paper, we

@ Springer



7386 Multimedia Tools and Applications (2023) 82:7383-7400

Short sleeved shirt, 71645
Long sleeved outwear, 13457
Long sleeved shirt, 36064
Vest, 16095

Sling, 1985

Short sleeved outwear, 543

TOP, 139789 @

Shorts, 36616
DF2, 312186 o— Bottom; 122838 ¢———— Trousers, 55387

Skirt, 30835

Short sleeved dress, 17211
Sling Dress, 6492

Long sleeved dress, 7907
Vest dress, 17949

One-piece Dress; 49559 @

Fig. 1 Category grouping and instance number in each category of DeepFashion?2 training set

group fine-grained categories into coarse-grained super-categories based on visual and func-
tional similarity. It is worth noting that the extra superclass grouping/labeling is cheap. It
simply becomes a dictionary checkup procedure after a hierarchy containing supercategory-
category pairs is defined. This cost can be negligible in most cases compared to expensive
instance-level labeling. Specifically, we use two publicly available datasets, namely Deep-
Fashion2 [7] and OpenlmagesV4 [20] in this paper. The details of the two datasets and our
category grouping strategies are as follows:

DeepFashion2 contains 491K images of 13 clothing categories from both commercial
shopping stores and consumers, out of which 312,186 training instances and 52,490 vali-
dation instances are publicly available. For our detection task, only category and bounding
box information are utilized in our experiments. The 13 categories are grouped into 3 super
categories, namely top, bottom, and one-piece dress, as shown in Fig. 1.

OpenlmagesV4 [20] contains 15.4 million bounding boxes for 600 categories on 1.9 mil-
lion images, rendering it one of the largest existing public datasets with object location
annotations (approximately 15 times more bounding boxes than ImageNet [5] and MS-
COCO [21]). For our purpose, we select the subset of clothing instances, which we refer
to as OpenlmagesV4-Clothing dataset in the rest of the paper. There are 490,777 bounding
box instances for training and 3,897 instances for validation in OpenlmagesV4-Clothing.
While grouping the categories, we respect the hierarchy provided by the dataset! with a few
changes. In particular, we perform the following modifications to the original dataset (A —
B means A’s subclass B):

We merge helmet, hat, and fashion accessory — hat as headwear.
We merge fashion accessory — necklace, tie, and clothing — scarf as neckwear.

®  We group clothing — shorts, trousers — jeans, and skirt — miniskirt together as
bottom.

Figure 2 demonstrates the super category and category relationship with the number of
training instances added to each category.

In the following section, we will present how we exploit the resulting hierarchical data
structure through coarse- and fine-grained detection heads.

Thttps://storage.googleapis.com/openimages/2018_04/bbox _labels_600_hierarchy_visualizer/circle.html
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Bottom, 96273 @ Jeans, 78348
Miniskirt, 954

Shirt, 7416
Top, 39632 @ Jacket, 25782
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Cowboy hat, 3034

Fedora, 3624

Sombrero, 644

Sun hat, 6935
Headwear, 43507 @ Swim cap, 591

Bicycle helmet, 15927

Football helmet, 11657

Crown, 684

Tiara, 411

Clothing, 480777 — Goggles, 9593
Eyewear; 91406 @ Glasses, 57857
Sunglasses, 23956

Backpack, 1205

Suitcase, 602
LuggageBags, 4387 ¢————= Briefcase, 155

Handbag, 2425

Swimwear, 10052
Roller skates, 5283

Boot, 3113
Footwear, 15660 @ High heels, 3093
Sandal, 2912
Suit, 110063 Sock, 1259
Waistwear, 416 Belt, 416
Umbrella, 6752-@ Umbrella, 6752
Dress, 51280 Dress, 51280
Wristwear, 1880-@ Watch, 1880
Gloves, 2528-¢ Baseball glove, 2528

Fig.2 Category grouping and instance number in each category of OpenlmagesV4-Clothing training set

3.2 Detection heads with multi-grained branches

In Faster RCNN, after backbone feature extraction and region-of-interest (ROI) proposal
stages, a single branch with one set of bounding box regression and classification heads
are plugged on top of the pooled/aligned ROI features. Consequently, it cannot integrate
information from different abstract levels explicitly or utilize labels in a hierarchical manner.
Instead, we propose to add several branches of different depths to the ROI features.

The entire pipeline is shown as Table 1.

Different branch depths extract features of different granularities and abstractness levels,
on which our localization and classification are based. We refer such head structures as

Table 1 Object detector with multi-grained branches

Input: Image

Backbone: ResNet-101 (He et al. 2016)

Neck: Feature Pyramid Networks or FPN (Lin et al. 2017)
Dense Proposal: Region Proposal Network or RPN (Ren et al. 2016)

Sparse Multi-grained Detection Head:
— One-Level prediction branch

— Two-Level prediction branch
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multi-grained heads or detection heads with multi-grained branches. Each branch can be
any type of network that helps increase feature abstractness, e.g., convolutional or fully
connected. To be more specific, the multi-grained branch ideas/variants explored in this
paper are demonstrated in Fig. 3. For our datasets, the labels have been organized in two
levels. Therefore, we only study detection heads of two granularity levels here. They can be
easily extended to cases with more granularity levels.

Figure 3a shows the original Faster RCNN structure [29]. We choose ROI alignment [15]
instead of ROI pooling [29] for all our configurations.

Classification

Head
Backbone

sofew|

saJnjea4 deaqg

pueig
a18uis suQ

Detection
Head

(a) Single detection head in Faster RCNN

Classification
Head

Detection
Head

Backbone

safew)|

saJnjea4 deag

Classification
Head

Fine-grained Branch

Detection
Head

(b) Multi-grained detection heads with Faster RCNN backends

Classification
Head

Detection Merged
Head Classification
Head

Backbone

safew)|

sainjeaq dasg

Merged
Classification Detection
Head Head

Deeper Branch

Detection
Head

(c) Merged detection heads with Faster RCNN backends

Fig. 3 Detection heads with single or multi-grained branches on Faster RCNN backends. RPN: region pro-
posal network. Blue blocks represent network structures while light orange blocks indicate feature maps and
input (only important feature maps are shown). In our experiments, more layers are added to the one single
branch in (a) to match the size of others
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In Fig. 3b, two detection branches of different depths are added to the ROI-aligned fea-
ture maps. With more depths, the longer branch is expected to learn more abstract and
finer-grained features than the shallower branch. The same number of neurons are on top of
the coarse- and fine-grained branches. Fine-grained supervision is applied on the fine-
grained branch. We can inject either superclass (with grouping) or fine-grained class (w/o
grouping) information onto the coarse branch. The latter is equivalent to grouping each cat-
egory as a separate super category on its own. For the ‘with grouping’ option, the amount
of work needed to perform category-level grouping is negligible compared to instance-
level annotation. We use only the fine-grained bounding box regression head to evaluate
localization performance.

In addition, based on Fig. 3b, we add extra merging layers that combine information
from the coarse and fine-grained stages as shown in Fig. 3c. Compared to other parts of the
network (backbone, RPN, and head branches), a merging layer is light. It only consists of
one fully connected layer to integrate the outputs from different abstract levels and produce
one final set of results. The lower layers to be merged are first concatenated before being
fully connected with the merging layer. One difference of Fig. 3¢ from Fig. 3b is that apart
from the supervision added at the end, no separate coarse-level supervision is applied.

Loss function For Fig. 3a and c, standard softmax cross entropy and smooth L; loss [10]
are used as loss functions for box head classification and regression, respectively. For multi-
grained branches without the additional merging head (Fig. 3b), we modify these losses
to:

L C
1
Ee=—y Y wt®my? 0
=1 c=1
and

L
Eloc = Z Z wﬁl) * smoothp, (0 — v;) 2)
I=1ie(x,y,w,h)

where E., and Ej,. correspond to the cross entropy and bounding box regression losses, [
indicates level or stage, L is the number of levels used (L = 2 in our case), ¢ represents
category (including background), y is the set of predicted results after softmax, ¢ is the set of
ground-truth labels (one-hot encoded in our case), w,(cl) and wfl) are level [ weighting factors
for classification and bounding box regression losses, respectively. smooth, stands for the
smooth L function as proposed in [10]. o* is predicted bounding-box offsets tuple for the
true class u and v is ground-truth bounding-box regression target. In our experiments, L
equals 2. I = 0 and [ = 1 represent the coarse-grained level and the fine-grained level,
respectively. w,(clzo) = 0.2, w,ilzl) = 1.0, wﬁlzl) = 1.2, and w, for the coarse branch is
0. We drop the loss component from the coarse branch to avoid the complex bounding box
merging process from multiple branches. The total loss of the framework is the sum of the
above two losses together with the binary classification and localization regression losses
of the RPN subnetwork.

4 Experiments
In this section, we first describe the experimental setup (Section 4.1) and the evaluation

metrics (Section 4.2) for our proposed solutions. Then, we present our quantitative and
qualitative results and compare the proposed approaches and the baseline (Section 4.3).
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Table 2 Training time per iteration of the competing architectures

Baseline Multi-branch Merged

Training time 0.4301s 0.4311s 0.4317s

Baseline: Fig. 3a, Multi-branch: Fig. 3b, Merged: Fig. 3c. The results are reported on DeepFashion2 images
with a batch size of 24 (8 Tesla V100 GPUs, 3 images on each GPU)

4.1 Experimental setup

Our implementations are based on Detectron2 [37]. Modifications are made to support
detection heads with multi-grained branches and superclass grouping. Our frameworks are
trained with a batch size of 24 for 200k iterations using a stochastic gradient descent (SGD)
optimizer. The base learning rate is 0.005 and is decreased twice at 150K and 175K itera-
tions by a factor of 10. We use a weight decay of 0.0001 and momentum of 0.9. For each
RPN anchor, 5 scales and 3 aspect ratios are used to generate original anchor boxes. As
in [22], an anchor box is considered positive if its Intersection over Union (IoU) with a
groundtruth box exceeds 0.5.

All our frameworks studied adopt a ResNetl01 backbone [14] with Feature Pyra-
mid Network (FPN) [22] support. The shared backbone is pre-trained on the MS-COCO
dataset [21]. The coarse-grained and fine-grained branches consist of one and two fully
connected layers of 1024 neurons, respectively. More architectural details can be found in
Appendix. Parameter size differences between multi-grained detection heads with and with-
out merged heads are negligible. As for the baseline model, we add more layers to the single
branch after ROI alignment in order to match the size of our multi-grained approach. In our
experiments, all competing models have approximately 73M trainable parameters.

Tables 2 and 3 demonstrate the timing of the training and inference processes of the com-
peting networks (DeepFashion2 images are used for this purpose). In Table 2, the training
time of a network is per iteration where one batch contains 24 images (8 Tesla V100 GPUs,
3 images on each GPU).

The inference speed is shown in Table 3.

As we can see from the tables, the training/inference latency of the different nets are
similar. The multi-branch network is slightly faster than the merged net and is slightly
slower than the baseline network. Given that many hardware and environmental factors can
influence the numbers, the differences are trivial.

4.2 Metrics

We adopt mean average precision (mAP) to evaluate our methods. In our context, the overall
mAP score is calculated by taking the mean AP over all classes and over all IoU thresholds.

Table 3 Inference time of the competing architectures (on DeepFashion2 images)

Baseline Multi-branch Merged

Inference time 0.079064s 0.080199s 0.081445s

Baseline: Fig. 3a, Multi-branch: Fig. 3b, Merged: Fig. 3c. The numbers reported are seconds/image per
device, on 8 Tesla V100 devices
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Table 4 Results on the validation set of DeepFashion2

AP APsg APss AP APy, AP
YOLOv4 53.18 72.59 63.92 20.20 38.50 53.35
Faster RCNN Baseline 67.02 79.90 75.61 40.05 47.09 67.23
Multi-grained W/O Group 67.54 79.87 75.88 25.10 47.74 67.79
Multi-grained Merged 68.80 81.55 77.40 31.75 50.80 69.04
Multi-grained with Group 69.02 81.60 78.12 31.75 51.16 69.23

The Faster RCNN baseline is shown in Fig. 3a, “W/O Group’ indicates the naive multi-grained branches
approach without grouping (Fig. 3b), ‘with Group’ refers to the multi-grained branches with superclass
grouping (Fig. 3b), ‘Merged’ represents the merged heads approach (Fig. 3c). AP, without any postfix,
represents AP[.5:.5:.95]. YOLOV4 results are reported just for reference (implementation based on [1])

Following the standard COCO metrics, for each framework on each dataset, we report AP
(averaged over the IoU thresholds [0.5:0.5:0.95]), A P59 (IoU threshold 0.5), A P75 (IoU
threshold 0.75), and A Py (small objects with area < 32%), AP, (medium size objects), and
A P (large objects with area > 962).

4.3 Results

In this section, we first present our quantitative results. Our focus is on both overall mAP
and per-category AP (especially for small categories). Then, qualitatively, we show some
success and failure cases of our approaches.

4.3.1 Overall mAP

Tables 4 and 5 show the detection results on DeepFashion2 and OpenlmagesV4-Clothing,
respectively.

As we can see, it is beneficial to use information from different abstraction levels (in
contrast to just the top one) to produce final detection results. The multi-grained branches
with superclass grouping can clearly improve mAP scores by up to 2%. In general, the
multi-grained branches utilizing superclass information is better than other multi-grained
solutions on the two datasets. This shows that the injected superclass knowledge (at nearly
no cost) helps with overall detection. It is worth mentioning that despite a lower overall

Table 5 Results on the validation set of OpenlmagesV4-Clothing

AP APso A P75 AP AP, AP
YOLOv4 30.61 49.52 33.43 7.20 22.29 32.80
Faster RCNN Baseline 47.88 67.19 52.45 8.21 29.05 52.21
Multi-grained W/O Group 48.40 67.79 53.53 8.96 31.31 52.85
Multi-grained Merged 49.48 68.59 54.98 8.79 29.23 54.12
Multi-grained with Group 49.50 68.34 55.12 9.77 29.19 53.91

The Faster RCNN baseline is shown in Fig. 3a, “W/O Group’ indicates the naive multi-grained branches
approach without grouping (Fig. 3b), ‘with Group’ refers to the multi-grained branches with superclass
grouping (Fig. 3b), ‘Merged’ represents the merged heads approach (Fig. 3c). AP, without any postfix,
represents AP[.5:.5:.95]. YOLOV4 results are reported just for reference (implementation based on [1])
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mAP score, the merged head actually achieves comparable mAP50 scores (slightly lower
on DeepFashion? and slightly higher on OpenlmagesV4-Clothing). A possible contributing
factor here is the relatively large amount of quality training data, especially in the larger
OpenlmagesV4-Clothing dataset. With enough training data, the network can possibly learn
some hierarchical information itself. For this architecture to work well, much more data
and annotations are needed. Comparing the 2nd and 3rd rows in Tables 4 and 5, we can see
that the naive multi-grained branches without category grouping does not help much over
the baseline. In some cases, the no-grouping solution even leads to worse performance than
the baseline. One possible cause is the confusion that the W/O Group method introduces
when injecting the same fine-grained information to both branches designed for learning
different-level features.

4.3.2 Per-category AP
In addition to overall mAP, we report per-category AP in this section. The category columns

are sorted in ascending order of the number of instances. It is evident that both datasets are
imbalanced. In DeepFashion2, the largest category has 71,645 instances while the smallest

Table 6 Per-category AP on DeepFashion2

Short sleeve Sling Sling dress Long sleeve dress
outwear
Num 543 1985 6492 7907
Baseline 42.45 47.55 65.40 53.43
W/O Grp 44.29 48.12 66.74 53.21
Merged 46.11 49.63 68.41 56.28
W Group 46.51 51.59 68.24 57.06
Long sleeve Vest Short sleeve Vest dress
outwear dress
Num 13457 16095 17211 17949
Baseline 72.57 66.93 72.31 72.69
W/O Grp 73.80 67.47 72.24 72.95
Merged 74.22 68.68 74.01 74.83
W Group 73.97 68.28 73.73 74.81
Skirt Long sleeve Shorts Trousers s.sleeve shirt
shirt
Num 30835 36064 36616 55387 71645
Baseline 74.20 73.26 71.08 75.32 81.12
W/O Grp 74.78 74.19 72.24 76.20 81.82
Merged 76.18 74.54 72.93 76.40 82.18
W Group 76.31 74.67 73.46 76.64 82.65

The columns are sorted in ascending order of the number of instances in that category. ‘s.sleeve shirt’
stands for short sleeve shirt. ‘Num’ refers to the number of training bounding box instances in that category.
‘Baseline’: Fig. 3a, “W/O Grp’: Fig. 3b without grouping, ‘W Group’: Fig. 3b with grouping, ‘Merged’:
Fig. 3c
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category has only 543 instances (130x smaller). In OpenlmagesV4-Clothing, there are S00x
more samples in the largest category than in the smallest category. A good overall detection
score may be misleading if the small classes are what we care more about. Tables 6 and 7
demonstrate the detailed per-category AP scores for all four frameworks.

Table 7 Per-category AP on OpenlmagesV4-Clothing

Brief-case Tiara Swimcap Suitcase Sombrero
Num 155 411 591 602 644
Baseline 4.81 51.20 49.16 33.90 38.04
W/O Grp 9.79 47.66 45.03 30.21 29.36
Merged 12.28 47.05 4741 35.05 42.89
W Group 12.98 55.40 47.99 36.10 48.00
Crown Miniskirt Backpack Sock Scarf
Num 684 954 1205 1259 2280
Baseline 47.55 51.19 43.90 57.82 37.74
W/O Grp 49.67 57.90 45.61 61.32 38.76
Merged 50.14 57.90 48.00 63.25 40.85
W Group 51.73 57.87 45.62 63.19 41.09
Hand-bag Necklace Sandal Cowboy hat High heels
Num 2425 2694 2912 3034 3093
Baseline 76.53 60.50 40.28 38.61 42.52
W/O Grp 78.32 62.21 40.97 41.22 42.18
Merged 78.49 63.86 43.26 35.63 40.09
W Group 78.76 62.10 44.34 41.99 4247
Boot Fedora Roller skates Coat Sunhat
Num 3113 3624 5283 6434 6935
Baseline 57.86 58.55 44.18 43.77 50.14
W/O Grp 59.27 64.64 45.49 43.73 52.69
Merged 58.16 66.11 44.15 46.16 51.25
W Group 58.03 62.79 44.58 44.76 49.63
Shirt Goggles Tie Football helmet Bike helmet
Num 7416 9593 10535 11657 15927
Baseline 59.49 37.36 72.11 52.12 41.31
W/O Grp 63.05 35.85 72.94 53.38 44.55
Merged 64.32 37.55 73.59 53.46 43.86
W Group 64.34 38.28 72.95 52.48 44.03
Shorts Sunglasses Jacket Glasses Jeans
Num 16971 23956 25782 57857 78348
Baseline 41.74 31.51 41.92 44.05 56.33
W/O Grp 41.28 33.60 41.81 46.81 58.43
Merged 42.87 31.97 42.96 46.90 58.83
W Group 40.59 33.06 41.73 46.12 57.95

Only grouped categories are shown. The columns are sorted in ascending order of the number of instances.
‘Num’ refers to the number of training bounding box instances in that category. ‘Baseline’: Fig. 3a, ‘W/O
Grp’: Fig. 3b without grouping, ‘W Group’: Fig. 3b with grouping, ‘Merged’: Fig. 3c
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We can see from Tables 6 and 7 that, in general, injecting superclass grouping informa-
tion to the coarse branch helps with small classes more than larger classes. The average mAP
improvements (over the baseline) across all categories are 2.3% and 2.5% on the Deep-
Fashion2 and OpenlmagesV4-Clothing datasets, respectively. In comparison, we improve

DeepFashion2

4.0

3.5

3.0

2.5

2.0

Improvement in AP

0.5

0.0

Sling

Sling dress

Long sleeve dress
Long sleeve outwear
Vest

Short sleeve dress
Vest dress

Skirt

Long Sleeve shirt
Shorts

Trousers

Short sleeve shirt

3

O Short sleeve outwear

ies(in i ing r ber of training samples)

OpenlmagesV4-Clothing

10

Improvement in AP
»

o
_—
——
—
|
i
=
=
=
=
=
=
==
—_—
|
I

Q ® Q0 0 Ct X Xt O O0OTER LV 0 TBEE QOB L2 0O QL
2588523998888 8038s5e3L8s2FR22F228 ¢85
s fcggi3Feg S 8 2 @ T OCE ®» @ £ e 390 93 8
S E2 29 5c & N Y xS L B & 5 9 T T H 88 TS
2 s 3 E S 3 8§ 8§ a8 < L% @a 8 £ < °°©
a & P3 & Tz 32 3 3¢ S
§* 3 fa 3
)
i

Categories( in increasing number of training samples)
Fig. 4 Improvement on AP for DeepFashion2 (top) and OpenlmagesV4-Clothing (bottom) datasets. The

categories are sorted in ascending order of number of training samples. We can see that the improvements
are significant for categories with a small number of samples

@ Springer



Multimedia Tools and Applications (2023) 82:7383-7400 7395

the mAP for last 30% categories (in terms of number of training samples) by 2.55% and
4.59% for the two datasets, respectively. In particular, the mAP score is improved by as
high as about 9.96% for the small sombrero category in Openlmages-Clothing that contains
only 644 instances. To better illustrate the general trend that small classes benefit more, we
present the improvement in AP for all categories and for both datasets in Fig. 4.

One possible reason for the trend is that similar classes can share many low-level fea-
tures. Explicitly grouping similar classes together helps to learn such low-level features
discriminatively, which is especially helpful for minority classes. In addition, category
grouping may alleviate the over-fitting issue when attempting to train millions of param-
eters using only a few hundred instances for a class. Our approach of injecting superclass

Original Image Baseline W/O grouping Merged With grouping

Fig. 5 Best viewed in color. Qualitative results of different heads with single and multi-grained branches.
‘Baseline’: the Faster RCNN baseline (Fig. 3a), W/O grouping: multi-grained branches (Fig. 3b) without
grouping, Merged: multi-depth branches with merged heads (Fig. 3c), W Grouping: multi-grained branches
(Fig. 3b) with superclass grouping. The first image is from DeepFashion2 (cropped for clarity) and the other
two are from OpenlmagesV4-Clothing. We have blurred faces for privacy reasons
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grouping information to the coarse branch is of great practical value. It can help address the
‘cold start problem’ when a new category, with a limited number of instances, is introduced
or added.

That said, there are some small category exceptions where the performance improvement
is small or even negative. This could be caused by the imperfection of superclass grouping.
Also, different categories have different difficulties to be detected/recognized. Information
from closely-related categories may not be enough to greatly improve the performance for
some challenging categories.

4.3.3 Qualitative results

Figure 5 demonstrates some successful qualitative examples on the two datasets. These
results give an idea of how multi-grained branches with superclass grouping can beat the
baseline. For example, our approach with superclass grouping correctly detects the long-
sleeved dress in the first image and successfully recognizes the scarf and necklace in the
second and third images. It is also worth mentioning that compared to the baseline, other
multi-grained heads (i.e., W/O grouping and Merged) tend to have lower confidence in
the false positives (e.g., the skirt and the long-sleeved shirt in the first image) and they
do not misdetect the elbow region in the second image as high heels. One possible reason
is that the multi-grained heads can pick up some useful grouping information themselves
via learning, although the results are sub-optimal without explicit human guidance in the
above-mentioned cases.

In Fig. 6, we demonstrate some of our typical failure cases. As we can see, our failure
cases correspond mostly to false negatives.

Fig.6 Best viewed in color. Examples of failure cases of our proposed solution on OpenlmagesV4-Clothing
dataset. We highlight the missed detections with red boxes and also specify what category we missed to
detect. We have blurred faces for privacy reasons
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5 Discussion and future work

Although human hierarchy knowledge is useful (especially when labeled data is limited), it
may not be well-aligned with the coarse-to-fine features that is deeply learned using a single
branch with only fine-grained supervision on top. Unlike popular deep layer aggregation
strategies [42], we have attempted to employ separate branches to capture coarse and fine
features and to integrate multi-grained human expertise in a flexible and hierarchical manner
(e.g., dog and golden retriever). Through shared lower layer features, the separate branches
can interact with each other. Our multibranch solution (Fig. 3b with grouping) has shown to
outperform the merged solution (Fig. 3c) that does not intake any human knowledge about
the superclass.

Also, our frameworks with multi-grained branches may handle newer categories more
easily. It is expected to alleviate the ‘cold start problem’ when a new category with a limited
number of samples is first introduced. If the new category’s superclass already exists in
our model, the retraining efforts can be focused more on the fine-grained branch than the
coarse-grained branch and the lower layers. Such explorations are deferred to future work.

Apart from human hierarchy knowledge, other superclass grouping strategies can be
explored or even learned if we have enough labeled data. Although both datasets we used
are already very large publicly available datasets in this field, it would be of interest to
experiment on even larger data and more annotations. It is possible that with unlimited data
and annotations, merged head can successfully learn to integrate different abstractness level
information to minimize the loss. That said, in most real-world cases with limited annotated
data, superclass grouping as shown can be a simple yet effective way to improve detection
performance.

Our multi-grained detection heads are designed for two-stage detectors and are built on
top of Regions of Interest (ROI). It would be computationally expensive if we plug our
multi-grained heads on all the regions at the end of a single detector (with no intermediate
ROI proposal). If we limit the number of candidate regions, it becomes essentially a RCNN-
like object detector (where the one-stage dense prediction head can be considered as the first
stage in RCNN). That said, it is possible to add multiple dense prediction heads of different
abstractness levels on top of some shared low-level features. Given the growing popularity
of single-stage detectors, this would be another interesting future direction.

6 Conclusion

In this paper, we study several detection head solutions with multi-grained branches, which
can make use of ROI information from different abstractness levels. According to our
experiments on DeepFashion2 and OpenlmagesV4-Clothing with Faster RCNN backends,
detection heads with multi-grained branches can boost detection performance by up to 2%
without requiring extra expensive annotations. Particularly, superclass grouping with human
knowledge can greatly improve the performance for minority categories with fewer images.
For example, in the sombrero case of OpenlmagesV4-Clothing, its mAP is increased by as
high as 10%.

@ Springer



7398 Multimedia Tools and Applications (2023) 82:7383-7400

Appendix : detailed configuration of RPN and ROl heads

(proposal_generator): RPN(
(anchor_generator): DefaultAnchorGenerator(
(cell_anchors): BufferList()
)
(rpn_head): StandardRPNHead(
(conv): Conv2d(256, 256, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1))
(objectness_logits): Conv2d(256, 3, kernel _size=(1, 1), stride=(1, 1))
(anchor_deltas): Conv2d(256, 12, kernel _size=(1, 1), stride=(1, 1))
)
)
(roi_heads): StandardROIHeads(
(box_pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(7, 7), spatial _scale=0.25, sampling_ratio=0, aligned=
<> True)
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned
— =True)
(2): ROIAlign(output_size=(7, 7), spatial _scale=0.0625, sampling_ratio=0,
< aligned=True)
(3): ROIAlign(output_size=(7, 7), spatial _scale=0.03125, sampling_ratio=0,
< aligned=True)
)

)
(box_head): FastRCNNConvFCHead(

(fc1): Linear(in_features=12544, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out_features=1024, bias=True)

)

(box_predictor): FastRCNNOutputLayers(
(cls_score): Linear(in_features=1024, out_features=14, bias=True)
(bbox_pred): Linear(in_features=1024, out_features=52, bias=True)

)

(super_box_head): SuperFastRCNNConvFCHead(
(fcl): Linear(in_features=12544, out_features=1024, bias=True)

)

(super_box_predictor): FastRCNNOutputClsLayer(
(cls_score): Linear(in_features=1024, out_features=4, bias=True)

)

)

Note: ‘Super’ indicates the superclass or coarse branch. For clarity, ReLLU layers are not
shown.
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