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A B S T R A C T

Pulmonary hypertension (PH), defined by a mean pulmonary arterial blood pressure above 20 mmHg in the
main pulmonary artery, is a cardiovascular disease impacting the pulmonary vasculature. PH is accompanied by
chronic vascular remodeling, wherein vessels become stiffer, large vessels dilate, and smaller vessels constrict.
Some types of PH, including hypoxia-induced PH (HPH), also lead to microvascular rarefaction. This study
analyzes the change in pulmonary arterial morphometry in the presence of HPH using novel methods from
topological data analysis (TDA). We employ persistent homology to quantify arterial morphometry for control
and HPH mice characterizing normalized arterial trees extracted from micro-computed tomography (micro-CT)
images. We normalize generated trees using three pruning algorithms before comparing the topology of control
and HPH trees.

This proof-of-concept study shows that the pruning method affects the spatial tree statistics and complexity.
We find that HPH trees are stiffer than control trees but have more branches and a higher depth. Relative
directional complexities are lower in HPH animals in the right, ventral, and posterior directions. For the radius
pruned trees, this difference is more significant at lower perfusion pressures enabling analysis of remodeling
of larger vessels. At higher pressures, the arterial networks include more distal vessels. Results show that the
right, ventral, and posterior relative directional complexities increase in HPH trees, indicating the remodeling
of distal vessels in these directions. Strahler order pruning enables us to generate trees of comparable size,
and results, at all pressure, show that HPH trees have lower complexity than the control trees.

Our analysis is based on data from 6 animals (3 control and 3 HPH mice), and even though our analysis
is performed in a small dataset, this study provides a framework and proof-of-concept for analyzing properties
of biological trees using tools from Topological Data Analysis (TDA). Findings derived from this study bring
us a step closer to extracting relevant information for quantifying remodeling in HPH.
1. Introduction

Cardiovascular diseases are the leading cause of death in the West-
ern world. The World Health Organization (WHO) [1] estimates that in
2019, 17.9 million people died from cardiovascular diseases, approx-
imately 32% of all deaths. While cardiovascular diseases encompass
many phenotypes, a common trait is that they are associated with
the remodeling of the vasculature and the heart, causing a range of
functional problems, the most prominent being high blood pressure.
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1 née Chambers.

Another important finding is that early detection is essential to improve
quality of life and lessen the burden on the healthcare system [1].

Cardiovascular diseases are typically diagnosed by combining imag-
ing measurements, such as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI), with dynamic (heart rate, blood pressure,
and flow), and static measurements. The latter include patient char-
acteristics, physiological and biochemical markers derived from blood
tests. Cardiovascular disease can target any part of the vascular system
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changing blood pressure, blood flow, and heart rate, often caused
by tissue remodeling at the local (within specific vessels) and global
(network/tree) levels. Tissue remodeling can be viewed from two per-
spectives: at the vessel level, remodeling causes changes in vessel
compliance and diameter, and at the tree level, changes in morphom-
etry, e.g., via vascular rarefaction. Both impact blood pressure and
flow. This study uses techniques from topological data analysis to
characterize changes in the morphometry of pulmonary arteries in mice
with hypoxia-induced pulmonary hypertension (HPH).

Pulmonary hypertension (PH) is characterized by high blood pres-
sure (a mean ≥ 20 mmHg) in the main pulmonary artery. Severe
increases in pulmonary arterial pressure are typically caused by vas-
cular remodeling and inflammation in the veins or left heart [2].
Symptoms of the disease include shortness of breath, fatigue, dizziness,
chest pain, heart palpitations, and swelling of the legs and ankles. These
symptoms are common in many illnesses, making PH difficult to diag-
nose [3]. Moreover, PH is a heterogeneous disease encompassing five
subtypes, each with a different pathophysiology [4]. Early diagnosis
and targeted treatment can improve quality of life by delaying severe
complications, which is essential because all but one type of PH have
no cure [5]. This study analyzes the morphometry in murine pulmonary
arterial trees excised from healthy and HPH animals. In HPH, vascular
remodeling impacts the pulmonary arteries [6,7]. This disease starts in
the arterioles, stiffening and constricting the vessels, then migrating to
the larger arteries, which stiffen and dilate. The structural modifica-
tions in individual vessels are characterized in Hopkins et al. [8] while
our study focuses on an open question about the morphometry changes.

Pulmonary arterial morphometry characterizes arterial tree proper-
ties. Since early contributions by Murray in 1926 [9], many researchers
(e.g., [6,7,10–12]) have examined the morphometry of the pulmonary
arterial tree. The early studies by Murray [9] and Zamir [13] devise
optimality principles, finding that arterial branching minimizes pump-
ing power and lumen volume. These studies assume that the arterial
trees bifurcate and that the dimensions of the two daughter vessels
can be determined as functions of the parent vessel. Results include
a power law defining how vessel radii change across a bifurcation, an
asymmetry ratio relating the radii of the two daughter vessels, and an
area ratio relating the combined cross-sectional area of daughter vessels
to that of the parent vessel. These studies were supplemented by work
from Singhal et al. [12], Horsfield [11], and [14,15] incorporating data
from lung casts to devise relations between parent and daughter vessels.
The casts are generated by injecting liquid resin into the arterial trees.
The vessel dimensions are measured using calipers on the hardened
resin cast. The data provide geometric information, but each study only
examined a single lung, as human cadaver data are not easily obtained.
Moreover, the casts are fragile, and there is inherent human error in
using calipers to measure the vessel dimensions. More recent studies
by Molthen et al. [6], Vanderpool et al. [7], Davidoiu et al. [16], and
Chambers et al. [10] use medical imaging to accurately and efficiently
extract geometric information from arterial networks.

Persistent homology is one of the major techniques of Topological
Data Analysis (TDA) using methods from algebraic topology to identify
qualitative features of data providing robust numerical descriptors of
shape that can further be used as an input for statistical analysis [17].
These techniques have been applied to a range of scientific problems,
including biology; see [18] for a concise and focused introduction.

To our knowledge, this study is the first to use persistent homology
to characterize pulmonary arterial trees, and it is inspired by ideas
by Bendich et al. [19] and Belchi et al. [20]. The study by Bendich
et al. [19] analyzes human brain arterial trees generated from a tube-
tracking segmentation algorithm on magnetic resonance images (MRI),
showing that persistence correlates strongly with age and sex. While
Belchi et al. [20] use persistent homology to compare airway CT images
from healthy and chronic obstructive pulmonary disease (COPD) pa-
2

tients. They found that persistent homology can distinguish the patient
groups and detect inspiration and expiration. Our study introduces
new quantitative summaries of spatial trees extracted from micro-CT
images based on 0-dimensional persistent homology, using directional
complexity, to obtain a more detailed characterization than the one from
combinatorial invariants, such as tree depth and Strahler order [21,22].

Both numerical descriptors work in synergy to provide a detailed
characterization of the pulmonary arteries comparing murine control
and HPH trees at four different pressures. The topology-based descrip-
tors capture the spatial tree structure, while the combinatorial features
provide insight into the tree size. This study demonstrates the strength
of combining these, using the former to generate comparable trees
and the latter to differentiate the trees. The former is vital to control
differences induced by remodeling. Both trees come from the same
species. In HPH, vascular remodeling leads to wall thickening and
increased diameter of the large vessels [23] while the medium and
small vessels (not visible in the micro-CT) constrict and rarefy [23,24],
i.e., HPH trees have the same or fewer branches. As a result, in HPH
trees, we can identify more vessels from an image at a finite resolution.
However, this is not a feature of the network size. Therefore to extract
other differences caused by remodeling, we prune trees according to
the radius or their Strahler order and then employ the topological
machinery.

2. Methods

This study identifies topological and combinatorial features charac-
terizing differences between control and HPH pulmonary arterial trees
extracted from murine micro-CT images. The methods include three
steps. First, we generate a 3-dimensional (3D) rendered network from
the micro-CT image and construct a labeled spatial tree with edges,
representing vessels, and vertices, junctions. Each vertex has coordinates
in R3, and each edge is labeled by its length, spatial orientation, and
the radius of its corresponding vessel. Second, we compare the spatial
trees obtained from control and HPH animals. To glean biologically
important information from these trees, comparing only corresponding
parts of the control and HPH trees is essential. In HPH, the diameter
of the large vessels increases [10], making more vessels visible in the
3D-rendered trees. Therefore, to compare the trees, we employ pruning
algorithms to normalize the trees. Finally, we use persistent homology
to characterize the normalized trees. Inspired by Belchi et al. [20], we
compute 0-dimensional persistent homology for spatial trees, including
height filtration and corresponding directional complexities.

2.1. Imaging protocol

The micro-CT images used in this study are made available by
Chesler, University of California-Irvine [7]. This study uses images from
six C57BL6/J mice, aged 10–12 weeks, and weight 25.8 ± 2.3 grams.
Three of the six mice are controls, and three have PH induced by
placing them in a hypoxic environment (FiO2 reduced by half) for
ten days. The mice are anesthetized with (52 mg/kg body weight)
pentobarbital sodium and euthanized by exsanguination before the
lungs are extracted. After extraction, the lungs are imaged following
the protocol described in [7]. First, a cannula (PE-90 tubing, 1.27 mm
outer and 0.86 mm inner diameter) is positioned in the main pulmonary
artery (MPA) well above the first arterial bifurcation. Next, the lungs
are ventilated in a gas mixture with (15% O2, 6% CO2, balance ni-
trogen), rinsed with a physiological salt solution, and perfused with
perfluorooctyl bromide (PFOB). The lungs are prepared by adjusting
the intravascular pressure from 0 to 25 mmHg multiple times. After
preparation, the arterial pressure is kept constant as the lungs are
rotated around an X-ray beam at 1◦ increments to obtain 360 planar
images. The lungs are imaged at 6.3, 7.4, 13.0, and 17.4 mmHg
pressure measured in the main pulmonary artery (Fig. 2). For each
pressure, planar images are constructed using the Feldkamp cone-beam
algorithm and converted into a 3D volumetric dataset, saved as a
Digital Imaging and Communications in Medicine (DICOM) 3.0 image
(Fig. 1(a)).
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Fig. 1. Spatial tree extraction process. (a) Micro-CT image from a control mouse (coronal view). (b) 3D rendering of the segmented arterial tree overlaid with the centerline
skeleton (marked with the red arrow). (c) Labeled spatial tree extracted from the skeleton, with branch colors denoting the vessel radii. (d) Detailed representation of edges and
vertices in the labeled spatial tree. The edges (teal) connect two vertices (blue). Vertices forming a junction (connected to three or more edges) or creating a root or terminal point
(connected to one edge) are marked in orange. The series of vertices and edges between 2 junction points or between a junction point and a terminal point is called a branch.
Fig. 2. Labeled spatial trees from a control mouse (top row) and an HPH mouse (bottom row) extracted from lungs perfused at four different pressures (6.3, 7.4, 13.0, and
17.4 mmHg) measured in the main pulmonary artery. As the pressure increases, the contrast is transported further, making smaller vessels visible in the image resulting in more
branches in the spatial trees.
2.2. Segmentation and skeletonization

The micro-CT images are saved in the Digital Imaging and Com-
munications in Medicine (DICOM) 3.0 format. Each image has the
dimensions (497 × 497 × 497) voxels with a spatial resolution of 30 −
40 μm per voxel. Each voxel 𝑣 has spatial coordinates (𝑥𝑣, 𝑦𝑣, 𝑧𝑣) and
intensity 𝐼(𝑣) ∈ [0, 255], with 0 representing the intensity of a black
voxel and 255 of a white voxel.

Segmentation is the process used to partition the voxels into the set of
foreground voxels, which represent the arteries, and background voxels
representing the surrounding space or tissue. We segment the images
using the open-source program 3D Slicer [25–27], from Kitware, Inc.,
employing a combination of techniques, including global thresholding,
median smoothing, and manual editing as described in detail in our
previous study [10]. Global thresholding is used to identify voxels in
the foreground, finding voxels with intensities 𝐼(𝑣) ∈ [𝜏min, 𝜏max]. The
pulmonary arteries are the only anatomical structures in the image, so
𝜏 = 255 for all images. The minimum threshold 𝜏 is adjusted ad
3

max min
hoc to ensure that all visible arteries are included. To reduce noise,
median smoothing is used, replacing the intensity of all the voxels
within a kernel of (3 × 3 × 3) voxels with the median of the adjacent
voxel intensities. Since the cannula and the hypobaric cylinder can
distort the image, manual editing is required to remove voxels from
the foreground, which do not represent the actual arterial structure.
The result of segmentation is a foreground that can be visualized as
a 3D-rendered surface representing the pulmonary arterial tree. The
constructed foreground is referred to as the segmented network (shown
in Fig. 1(b)). Each segmented artery is a portion of the segmented
network that lies between two junctions (or between a junction and
a terminal point).

Skeletonization: The skeleton is a voxel complex comprising a thinned
representation of the segmented arteries where each branch is 1 voxel
in width. In the skeleton, the branching structure of the segmented
arteries is preserved, i.e., each branch is represented by a chain of
adjacent voxels that is centered in the artery. The skeleton is ob-
tained by iteratively removing voxels from the segmented arteries using
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Fig. 3. The Strahler ordering system is illustrated on an example tree. (a) Example tree of Strahler order 4. (b) Maximum Strahler order pruning to order 3. This tree removes as
few vessels as possible from the original tree to reach Strahler order 3. (c) Minimum Strahler order pruning to order 3. This tree removes as many vessels as possible, still getting
a tree of Strahler order 3, i.e., if one more round of pruning is performed, the tree will have Strahler order 2. (d) Radius pruned tree. This tree removes vessels with a radius
smaller than a given threshold. Note the pruned tree is Strahler order 3 but has a different structure than any of the Strahler order pruned trees.
Couprie and Bertrand’s ‘‘Asymmetric Thinning’’ algorithm. For details
see [10,28]. Fig. 1(b) shows an example of a centered skeleton.

Distance map: To obtain the dimensions for the segmented arteries, we
generate a distance map. This is a separate voxel complex with the same
spatial dimensions as the original CT image. It encodes distances from
the segmented network. Each voxel 𝑣 in the segmented network has an
associated voxel 𝑣𝐷 in the distance map at the same spatial coordinates
(𝑥𝑣, 𝑦𝑣, 𝑧𝑣). The intensity of this distance map voxel is 𝐼(𝑣𝐷) = 𝑑(𝑣),
where 𝑑(𝑣) is defined as

𝑑(𝑣) = min
𝑢∈background

‖𝑢 − 𝑣‖2 , (1)

where ‖𝑢 − 𝑣‖2 is the Euclidean distance from 𝑣 to each background
voxel, 𝑢. In other words, we know the distance from each voxel in the
segmented network (AKA image foreground) to the nearest background
voxel. Since voxels in the skeleton are approximately in the center
of the arteries, their 𝑑(𝑣) values approximate the radius of the artery
at that point (discussed in the next section). This distance map, the
skeleton, and the labeled spatial tree are obtained using the Spatial
Graph Extractor (SGEXT) in the Digital Geometry Tools and Algorithms
Library (DGtal) available in GitHub [29–31].

2.3. Spatial trees

Each skeleton is used to generate a spatial graph (also known as an
embedded metric graph), a collection of vertices in R3 connected by
edges. Every voxel in the skeleton corresponds to a vertex in the spatial
graph. Each vertex, denoted by a numerical ID 𝐴, has 3D coordinates
(𝑥𝐴, 𝑦𝐴, 𝑧𝐴). Each edge connecting two vertices 𝐴 and 𝐵 is denoted
𝑒𝐴𝐵 . If deg(𝐴) = 1, 𝐴 is either at the inlet to the main pulmonary
artery (MPA) (called 𝐴root) or a leaf, a terminal vertex. If deg(𝐴) = 2,
𝐴 is a vertex along the length of a segmented artery. If deg(𝐴) > 2,
𝐴 is a junction point, a point where a parent artery splits into multiple
daughter arteries. Typically, junction points have degree 3, as 98%–99%
of junctions are bifurcations [10]. All edges are oriented toward blood
flow (away from 𝐴root). With this orientation in place, we can refer to
𝑒𝐴𝐵 as an edge from the start vertex 𝐴 to the end vertex 𝐵.

Constructing the spatial tree is subject to errors that can be cor-
rected using the protocol introduced in [10]. Errors include edges that
do not accurately represent the segmented arteries. These small cycles
arise when three adjacent voxels are connected in a loop, duplicated
edge points, and duplicated edges that connect the same vertices.
False branches must be manually identified and removed from the
graph, while small cycles and duplicate edges/points can be removed
automatically. Cycles are broken by removing the longest edge. Af-
ter implementing the corrections, the graph becomes a spatial tree 𝑇
4

(Fig. 1(c)).
Each vertex in 𝑇 is labeled with its radius, determined from the
distance map. Recall that the skeleton is centered in the segmented ar-
teries. Therefore, for voxel 𝑣 in the skeleton, the distance 𝑑(𝑣) calculated
using Eq. (1) gives an estimate for the radius of the artery centered
at (𝑥𝑣, 𝑦𝑣, 𝑧𝑣). Hence, every vertex 𝐴 in 𝑇 can be labeled by its radius
𝑟𝐴 = 𝑑(𝑣), i.e., for the corresponding voxel 𝑣 (𝑥𝑣, 𝑦𝑣, 𝑧𝑣) = (𝑥𝐴, 𝑦𝐴, 𝑧𝐴).

In the 3D rendered surface, every artery is represented by a series of
edges connecting consecutive degree 2 vertices between two junctions
or a junction and a leaf. We refer to the collection of edges as a branch
of 𝑇 , i.e., each branch corresponds to an artery. Branches are labeled
with an average radius and length in microns (μm). To convert the voxel
measurements into μm, all dimensions, 𝑥, 𝑦, and 𝑧, are multiplied by the
scaling factor 𝜆𝑇 , obtained by dividing the cannula’s radius (430 μm) by
the average of the first five radius measurements of the MPA, the radii
of vertices 𝐴root, 𝐴1,… , 𝐴4, i.e.,

𝜆𝑇 =
5 × 430 μm

(𝑟𝐴𝑟𝑜𝑜𝑡
+ 𝑟𝐴1

+ 𝑟𝐴2
+ 𝑟𝐴3

+ 𝑟𝐴4
) voxels . (2)

The radius 𝑟𝐴𝐵 of a branch from a leaf/junction point 𝐴 to a leaf/
junction point 𝐵 is represented by the interquartile mean (IQM) of the
radius measurements from 𝐴 to 𝐵, and the degree 2 vertices 𝐴1,… , 𝐴𝑚
along the branch:

𝑟𝐴𝐵 = 𝜆𝑇 (𝐼𝑄𝑀
(

𝑟𝐴, 𝑟𝐴1
, 𝑟𝐴2

..., 𝑟𝐴𝑚
, 𝑟𝐵

)

). (3)

The length 𝐿𝐴𝐵 of a branch is the scaled sum of the Euclidean distances
between consecutive vertices along that branch,

𝐿𝐴𝐵 = 𝜆𝑇

(

‖

‖

𝐴 − 𝐴1
‖

‖2 +
𝑚
∑

𝑖=2

‖

‖

𝐴𝑖−1 − 𝐴𝑖
‖

‖2 + ‖

‖

𝐴𝑚 − 𝐵‖
‖2

)

. (4)

2.4. Spatial trees: combinatorial statistics

The number of branches, leaves, tree depth, and the Strahler order
(number) are used as features of the spatial trees. The tree depth is
defined as the number of branches in the longest direct path from 𝐴root
to any leaf. The Strahler order (𝑆𝑂𝑖) of a branch 𝑖 is an indicator of
its level within the tree [32]. The computation of the Strahler order is
illustrated in Fig. 3(a). Terminal branches all have Strahler order one.
If two joining daughter vessels have equal Strahler order 𝑆𝑂𝑑1 = 𝑆𝑂𝑑2,
then the parent’s edge Strahler is 𝑆𝑂𝑝 = 𝑆𝑂𝑑1 + 1. Otherwise, the
Strahler order of the parent’s edge is 𝑆𝑂𝑝 = max {𝑆𝑂𝑑1, 𝑆𝑂𝑑2}. The
Strahler order of a tree 𝑆𝑂(𝑇 ) refers to the maximum Strahler order of
any branch within that tree. Note that the Strahler order and tree depth
coincide in symmetric trees.
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2.5. Spatial trees: pruning

The trees from HPH mice have significantly more branches than
those from the control animals, mainly because the corresponding ves-
sels are wider and, therefore, detectable in the micro-CT images. Thus,
we use pruning techniques to obtain comparable trees. As mentioned
above, if pulmonary trees were symmetric, pruning trees according to
the tree depth would be sufficient. However, pulmonary arterial trees
are asymmetrical [9,10,13,15]. We examine three pruning methods for
the systematical removal of terminal branches. Two pruning techniques
rely on computing the minimal and maximal Strahler order, and the
third method uses the vessel radius.

Maximum Strahler order pruning: This method removes pairs of
sister leaves at the lowest Strahler order, i.e., 𝑆𝑂𝑑1 = 𝑆𝑂𝑑2 = 1. Once
all branches of this type have been removed, the branches’ Strahler
orders are updated and pruning repeats until the desired Strahler order
is obtained. This pruning method is illustrated in Fig. 3. Panel (a) shows
the original tree and (b) the tree after maximum Strahler order pruning,
removing all sister vessels with Strahler order one from the original
tree. The Strahler order of the pruned tree in (b) is one lower than that
of the original tree.

Minimum Strahler order pruning: Since the trees are asymmetric,
they vary significantly in size at a given Strahler order. To mitigate this
variation, we perform minimum Strahler order pruning. This pruning
method removes all pairs of terminating sister branches for which
𝑆𝑂𝑑1 = 𝑆𝑂𝑑2 = 1. In addition, this algorithm removes any branches
that will not impact the final Strahler order. For each set of removed
daughter vessels, the Strahler order is recomputed. The process contin-
ues until the next iteration of branch removal would decrease the tree’s
Strahler order. This method is illustrated in Fig. 3(c).

Radius pruning: The radius pruning technique removes pairs of sister
leaves with a radius less than or equal to a given radius threshold
𝜏𝑟. This threshold is chosen so that any tree group has the desired
number of branches. After radius pruning, all bifurcations with terminal
daughter branches have at least one daughter with 𝑟 ≥ 𝜏𝑟. This method
s illustrated in Fig. 3(d).

.6. Spatial trees: topological statistics

This section describes how Topological Data Analysis (TDA) can
rovide a new numerical descriptor of spatial trees called directional
omplexity. TDA provides an extensive toolbox of data analysis methods
or learning data shape. This study uses persistent homology [33–35] to
nalyze control and HPH spatial pulmonary arterial trees. Specifically,
e compute the 0-dimensional persistent homology of height filtrations
n biologically relevant directions. We use this to create a barcode
nd compute a topological marker known as directional complexity.
hese techniques are robust to noise [18,36], making them useful for
iological applications such as the one studied here.
In the remainder of this section, we provide a brief background

or TDA methods illustrated by examples from this study. Computing
ersistent homology involves: (a) building a sequence of topological
paces upon a data set, (b) computing the corresponding homology
or each, and (c) tracking the changes in topological summaries that
escribe the shape of the data through filtration.

implicial homology: Spatial trees are 1-dimensional simplicial com-
lexes in R3. We are using simplicial homology in computing persis-
ence. In this section, we provide a brief introduction to simplicial
omology. A 𝑘-dimensional simplex, for 𝑘 ≥ 0, is a convex hull of
+ 1 vertices [37]. For example, 0-simplex is a point, a 1-simplex is
n edge, a 2-simplex is a triangular face, and a 3-simplex is a filled
etrahedron. A simplicial complex is the formal sum of building blocks
alled simplices. Each labeled spatial tree in this study consists of a set
f points/vertices, which are 0-simplices, connected by a set of edges
5

a

which are 1-simplices. Note that all simplices come with orientation
which is consistent with the fact that the edges of spatial trees examined
in this study are directed away from the tree’s root to represent the
direction of blood flow.

For simplicity, we describe simplicial homology in terms of linear
algebra, using only vector spaces and linear maps. For a given simplicial
complex 𝑆, the chain vector space, 𝐶𝑘(𝑆) is the vector space whose basis
is the set of oriented 𝑘-simplices in 𝑆 [37]. The elements 𝑐 = ∑

𝑖 𝑎𝑖𝜎𝑖 ∈
𝑘 are called a 𝑘-chains where each 𝑎𝑖 is an integer and each 𝜎𝑖 is an
riented 𝑘-simplex from 𝑆. The boundary map, 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1, maps 𝑘-
imensional chains to a linear combination of their (𝑘−1)-dimensional
oundaries.
Let 𝐿𝑘(𝑆) be the kernel of 𝜕𝑘 and 𝐵𝑘(𝑆) be the image of 𝜕𝑘+1. The

th simplicial homology, 𝐻𝑘(𝑆), is the quotient

𝑘(𝑆) = 𝐿𝑘(𝑆)∕𝐵𝑘(𝑆) = ker(𝜕𝑘)∕im(𝜕𝑘+1). (5)

he 𝑘th Betti number, 𝛽𝑘, is the dimension of the k-dimensional homol-
gy 𝐻𝑘. Intuitively, 𝛽0 counts the number of clusters (connected com-
onents) in a simplicial complex [18]. Property of a simplicial complex
ounted by 𝛽𝑘 is often referred to as a 𝑘-feature. Betti numbers 𝛽0, 𝛽1,
nd 𝛽2 count the number of clusters (disjoint connected components),
unfilled) loops 𝑆1, and (hollow) spheres 𝑆2, respectively.

ersistent homology: Persistent homology combines ideas from al-
ebraic topology and statistics, providing a powerful tool for data
nalysis. The idea behind persistent homology is to compute the ho-
ology of a sequence of nested simplicial complexes built from data
oints (point cloud) based on their proximity.
Given any positive parameter 𝜀 and a point cloud, we first build
simplicial complex 𝑆𝜀 by connecting all points that are less than 𝜀
way from each other. Next, given an increasing sequence of positive
arameter values 0 < 𝜀1 < 𝜀2,… < 𝜀𝑚 we apply the construction above
o each 𝜀𝑖 to obtain a set of nested simplicial complexes based on our
ata 𝑆𝜀1 ⊂ 𝑆𝜀2 ⊂ ... ⊂ 𝑆𝜀𝑚 . This is called a filtration of a point cloud
etermined by a parameter 𝜀. Finally, 𝑘–dimensional persistent homology
nalyzes changes in homology groups of each simplex in the filtration:
𝑘(𝑆𝜀1 ),… ,𝐻𝑘(𝑆𝜀𝑚 ). In turn, this provides insights into the evolution
f the underlying space’s topological features.
In practice, we track the changes of 𝑘th Betti numbers that count

-dimensional features describing the data’s shape. If a feature appears
or the first time in the homology of some 𝑆𝜀𝑖 but is no longer present
or 𝑆𝜀𝑗 , for 𝑗 > 𝑖, then the birth of that feature is 𝜀𝐵 = 𝜀𝑖, and the
eath is 𝜀𝐷 = 𝜀𝑗 . The persistence of a feature is the difference 𝜀𝐷 − 𝜀𝐵 .
ore persistent features exist for a large range of 𝜀 values. Note that
or a large enough persistence parameter, the corresponding complex
as the topology of a point.

arcodes: Persistent homology 𝐻𝑘(𝑆𝜀𝑖 ) can be visualized by creating a
arcode B𝑘 for each dimension 𝑘, a diagram which contains one bar or
nterval for each generator. Each bar spans the length from the birth 𝜀𝐵
o the death 𝜀𝐷 for that feature; see Fig. 5. Though the interpretations
f the lengths of bars in the barcode are application-specific, shorter
ars are often considered to represent noise. In our case, see Fig. 5(b)
or the 0-dimensional barcode of one of the spatial trees; the longest
ertical bar on the far left represents the whole spatial tree since at the
nd of filtration all of the branches will be connected to the root.

eight filtration: We compute the 0-dimensional persistent homol-
gy of the spatial trees for a height filtration [33]. The idea behind
he height filtration in 0-dimensional persistence is that by analyzing
ub-level sets of the height function, we are recording statistics of
hen new components appear and existing ones merge. For spatial
rees, this translates into the appearance of branches pointing toward
ower levels. In particular, we analyze six directions: anterior–posterior,
hich corresponds to the direction in which lungs grow and air flows;
orsal–ventral, in which gravity acts; and left–right, which captures the

symmetry of lungs, partially due to the position of the heart, see Fig. 4.
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Fig. 4. The six height filtration directions are illustrated relative to a mouse’s body. The directional complexities are named after the direction of the branches they capture, which
ill be the reverse of the direction in which the filtration moves.
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his filtration was used by Belchi et al. [20] in the case of human lungs
nd COPD.
Given a spatial tree 𝑇 ∈ R3 and its bounding box placed so that

he minimum value of the coordinate corresponding to the direction is
qual to zero, consider the distance of any vertex 𝑉 or a point on some
dge 𝐸 of 𝑇 to one of the sides of the box along the chosen direction.
he height filtration requires that each 𝑆𝜀𝑖 includes all vertices 𝑣 ∈ 𝑉
nd edges 𝑒 ∈ 𝐸 for which the value of the distance function 𝜀(⋅)
s at most 𝜀𝑖. The 𝜀(⋅) formula depends on the filtration direction
xamined. As mentioned above, we consider six filtration directions:
he positive/negative 𝑥-directions (+𝑥/−𝑥), the positive/negative 𝑦-
irections (+𝑦/−𝑦), the positive/negative 𝑧-directions (+𝑧/−𝑧) (shown
n Fig. 4). For a given filtration direction the height ±𝜉, 𝜀 of the vertex
∈ 𝑉 with spatial coordinates (𝑥𝑣, 𝑦𝑣, 𝑧𝑣) is defined as

(𝑣) =

{

𝜉𝑣, if direction = +𝜉
𝜉𝑇max − 𝜉𝑣, if direction = −𝜉,

(6)

here 𝜉𝑇max is the maximum 𝜉 coordinate of any 𝑣 ∈ 𝑉 for 𝜉 = 𝑥, 𝑦, or
. For an edge 𝑒 ∈ 𝐸 between two vertices 𝑣1 and 𝑣2,

(𝑒) = max
{

𝜀(𝑣1), 𝜀(𝑣2)
}

.

For example, a height filtration in the +𝑧 direction indicates that the
iltration moves along the 𝑧-axis in the positive direction, and each 𝑆𝜀𝑖
ncludes all vertices with 𝑧𝑣 ≤ 𝜀𝑖 and all edges with max

{

𝑧𝑣1 , 𝑧𝑣2
}

≤ 𝜀𝑖.
onversely, a direction of −𝑧 indicates that the filtration moves along
he 𝑧-axis in the negative direction, and each 𝑆𝜀𝑖 includes all vertices
ith 𝑧𝑇max − 𝑧𝑣 ≤ 𝜀𝑖 and all edges with max

{

𝑧𝑇max − 𝑧𝑣1 , 𝑧
𝑇
max − 𝑧𝑣2

}

≤ 𝜀𝑖.
n illustration of the −𝑧 height filtration is shown in Fig. 5.
Directional complexity: Given a spatial tree 𝑇 and a filtration

direction ±𝜉, the 0-dimensional barcode is computed by counting the
number of disjoint connected components in the nested set of subgraphs
at each 𝜀𝑖, Fig. 5. For the tree 𝑇 , the directional complexity 𝐷𝐶(𝑇 ) is
the total persistence of the bar code associated with this tree, computed
by summing the lengths of the bars in the barcode

𝐷𝐶(𝑇 ) =
no. of bars
∑

𝑘=1
(𝑑𝑘 − 𝑏𝑘). (7)

Directional complexities are named relative to murine anatomy and
capture the length and occurrence of branches in the designated direc-
tion (Fig. 4). For example, the −𝑧 filtration yields anterior complexity,
referring to branches pointing toward the head of the mouse (Fig. 5).

3. Results

Data consists of mouse lung arteries imaged at four contrast pres-
6

sures: 6.3, 7.4, 13.0, and 17.4 mmHg. Results in Tables 1 and 2 are t
Table 1
Spatial tree statistics from micro-CT images at 4 different contrast pressures (6.3,
7.4, 13.0, and 17.2 mmHg). Abbreviations used are ‘‘C’’ for control trees, ‘‘HPH’’
for unpruned HPH trees, ‘‘HPHR ’’ for radius-pruned HPH trees, ‘‘HPHM ’’ for maximal
Strahler-order pruned HPH trees, and ‘‘Cm ’’ and ‘‘HPHm ’’ for the minimal Strahler-order
pruned control and HPH trees, respectively. The Strahler order is the same for all trees
in each group, except for the HPHR trees at 7.4 & 13.0 mmHg, where one tree had
Strahler order 7, and the other two equal to 6. All other values are reported as mean
± standard deviation.
Pressure Type # Branches # Leaves Tree depth Strahler order

C 1018 ± 151 513 ± 77 25.3 ± 1.5 6
HPH 2196 ± 778 1107 ± 395 32.3 ± 4.0 7

6.3 HPHR 1022 ± 53 516 ± 29 30.7 ± 3.5 6
HPHM 1519 ± 530 766 ± 270 31.3 ± 4.0 6
Cm 829 ± 262 418 ± 132 24.7 ± 1.5 6
HPHm 729 ± 178 368 ± 91 28.7 ± 3.5 6

C 1122 ± 193 565 ± 98 28.0 ± 5.2 6
HPH 2362 ± 769 1193 ± 390 31.7 ± 2.9 7

7.4 HPHR 1122 ± 82 567 ± 42 30.0 ± 1.7 [6 6 7]
HPHM 1337 ± 346 676 ± 175 30.0 ± 2.6 6
Cm 837 ± 289 422 ± 146 27.0 ± 5.5 6
HPHm 728 ± 106 367 ± 53 27.7 ± 2.1 6

C 1693 ± 372 854 ± 191 30.3 ± 1.5 6
HPH 2730 ± 972 1379 ± 495 33.0 ± 3.6 7

13.0 HPHR 1689 ± 206 855 ± 108 32.0 ± 2.6 [6 6 7]
HPHM 1394 ± 306 706 ± 156 31.0 ± 3.0 6
Cm 961 ± 171 485 ± 84 28.7 ± 2.5 6
HPHm 725 ± 84 367 ± 43 28.3 ± 2.5 6

C 2573 ± 517 1301 ± 263 32.0 ± 4.4 7
HPH 3239 ± 1103 1639 ± 564 35.0 ± 4.0 7

17.2 HPHR 2592 ± 563 1312 ± 289 34.7 ± 3.5 7
HPHMa 3239 ± 1103 1639 ± 564 35.0 ± 4.0 7
Cma 2573 ± 517 1301 ± 263 32.0 ± 4.4 7
HPHm 1955 ± 304 989 ± 156 33.7 ± 3.5 7

aAt 17.2 mmHg, the HPHM and Cm are the same as their unpruned versions.

reported as the mean and standard deviation. Table 1 contains spatial
tree statistics of the original and pruned trees, including the number
of branches, leaves, tree depth, and Strahler order. Table 2 shows
the trees’ directional complexities generated from the 0-dimensional
persistent homology for the height filtration.

3.1. Spatial tree statistics

The results in Table 1 indicate that in the unpruned trees, the
umber of branches, leaves, and tree depth is lower in control than
n hypertension (HPH) trees. This can be explained by remodeling
ncreasing the diameter of the larger vessels and, therefore, the number
f branches visible in the segmented images. Another observation is
hat the relative branch count shown in Fig. 6(a) (computed at each
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Fig. 5. A labeled spatial tree illustrates directional filtration in the anterior (−𝑧) direction. Panel (a) shows a spatial tree from a control mouse with several examples of the
simplicial complexes 𝑆𝑡, where 𝑡 denotes the distance from the top of the tree, each labeled with their 0-dimensional Betti numbers. 𝑆50 and 𝑆80 each contain one connected
component, so 𝛽0 = 1 for both. 𝑆100 includes 3 connected components, so 𝛽0 = 3. Panel (b) illustrates the filtration process in the −𝑧 direction and shows a portion of the barcode.
Each time a new connected component emerges in some 𝑆𝑡, a new bar is added to the barcode. For example, the magnified branch would create a new connected component
in 𝑆𝑏, where 𝑡 = 𝑏 is called this component’s birth. Then, in 𝑆𝑑 , the branch reconnects to the main tree, no longer being a separate connected component. This means 𝑡 = 𝑑 is
he death, and the bar representing this component is ended. The persistence of this feature is the length of its bar, 𝑑 − 𝑏. The directional complexity (specifically anterior complexity
or −𝑧 filtration) is the sum of the persistence of all these bars (Eq. (7)). The longest and leftmost bar in the barcode begins with the root vessel, indicating that the entire tree
omprises one connected component.
Fig. 6. (a) Relative change in the number of branches (or leaves) with pressure for control trees and (b) the relative change in tree depth. All values are plotted as a ratio of the
value at that pressure over the value at the lowest pressure (hence, all graphs start at 1).
pressure as a ratio over the lowest pressure, i.e., all graphs start at 1)
increases more in control (blue line) than in HPH (red line) trees. This
is a consequence of vessels being more compliant in control animals
and expanding more with increasing pressure than the stiffer HPH
trees. Another critical observation (Fig. 6(a)) is that all the Strahler
order pruned trees have approximately the same relative branch count
independent of pressure, except for the highest pressure where the
Strahler order goes up by 1.

The maximum and minimum Strahler order pruned trees (Fig. 7)
all have Strahler order 6, except at the highest pressure (17.2 mmHg),
for which all trees have Strahler order 7. The relative increase in the
number of branches is approximately constant at the lower pressures.
The latter is more consistent for minimum Strahler order than maxi-
mum Strahler order pruning. While the number of branches remains
approximately constant at the lower pressures, the relative tree depth
is lower in the hypertensive trees.

3.2. Directional complexity

All directional complexities are higher in the unpruned HPH trees
than in the control trees. For the pruned trees, directional complexity
can easily be compared for the radius and the minimum Strahler order
7

pruned trees as these have approximately the same number of branches.
The radius pruned HPH trees have the same number of branches at
each pressure as the control trees, but as shown in Fig. 6 the number of
branches increases with pressure. The Strahler order pruned trees have
approximately the same number of branches for all pressures except the
highest pressure. This feature is most consistent in the minimum trees.

Fig. 8(a) shows that in the radius pruned trees, the right, ventral,
and posterior complexity is lower in the HPH animals at all pressures,
i.e., these trees have fewer or shorter branches than the control trees.
In contrast, hypertensive animals have slightly higher left, ventral, and
anterior complexity. At the lower pressures, the control tree mainly
contains larger vessels known to exhibit sustained vessel dilation [38].

Since the control trees have compliant vessels, they dilate at higher
pressures, allowing us to segment more distal vessels. The ability to
capture these additional vessels enables us to quantify the remodeling
of the smaller vessels. Results (Fig. 8(a)) show that the right, ventral,
and posterior complexity increases (becomes closer to that of the
control trees). This agrees with the observation [38] that smaller vessels
experience more remodeling than large vessels, possibly generating a
tree of similar complexity to the control trees. Like the lower pressure
complexity in the left, dorsal and anterior directions increase slightly
with increasing pressure (Fig. 8).
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Fig. 7. Pruned trees, shown in light blue, overlaid on their original trees in dark blue. The pruned trees are obtained via the three pruning algorithms defined in Section 2.5: (a)
inimum Strahler order pruning, (b) maximum Strahler order pruning, and (c) radius pruning.
Table 2
Directional complexities from micro-CT images at four different contrast pressures (6.3,
7.4, 13.0, and 17.2 mmHg). Abbreviations used are ‘‘C’’ for control trees, ‘‘HPH’’
for unpruned HPH trees, ‘‘HPHR ’’ for radius-pruned HPH trees, ‘‘HPHM ’’ for maximal
trahler-order pruned HPH trees, and ‘‘Cm ’’ and ‘‘HPHm ’’ for the minimal Strahler-order
runed control and HPH trees, respectively. All values are reported as mean ± standard
eviation.
Type Directional complexity

Right Left Ventral Dorsal Posterior Anterior

Pressure 6.3 mmHg

C 3145 ± 235 2679 ± 530 2546 ± 456 3329 ± 494 4502 ± 551 1648 ± 423
HPH 5028 ± 1641 5222 ± 1600 4460 ± 1341 5843 ± 1495 6716 ± 1339 3659 ± 1369
HPHR 2582 ± 338 2717 ± 153 2160 ± 85 3198 ± 25 3788 ± 155 1678 ± 54
HPHM 3745 ± 1249 3840 ± 1160 3189 ± 925 4383 ± 1126 5043 ± 980 2601 ± 950
Cm 2627 ± 645 2249 ± 820 2120 ± 553 2801 ± 949 3836 ± 830 1363 ± 645
HPHm 1941 ± 595 1968 ± 394 1530 ± 246 2431 ± 402 2930 ± 274 1195 ± 293

Pressure 7.4 mmHg

C 3357 ± 299 2887 ± 421 2784 ± 559 3534 ± 264 4718 ± 638 1810 ± 288
HPH 5311 ± 1634 5549 ± 1418 4765 ± 1143 6135 ± 1209 7070 ± 1262 3904 ± 1221
HPHR 2814 ± 386 2908 ± 61 2339 ± 118 3435 ± 158 4074 ± 159 1852 ± 110
HPHM 3313 ± 731 3427 ± 815 2804 ± 636 3984 ± 700 4593 ± 767 2302 ± 613
Cm 2527 ± 807 2244 ± 843 2084 ± 753 2724 ± 975 3742 ± 1021 1353 ± 654
HPHm 1917 ± 256 1991 ± 414 1544 ± 313 2432 ± 204 2980 ± 318 1197 ± 207

Pressure 13.0 mmHg

C 4254 ± 706 3962 ± 872 3771 ± 500 4563 ± 1075 5821 ± 628 2728 ± 906
HPH 5912 ± 1859 6203 ± 1761 5368 ± 1397 6797 ± 1481 7700 ± 1600 4445 ± 1426
HPHR 4035 ± 530 4130 ± 314 3454 ± 218 4752 ± 156 5477 ± 125 2828 ± 233
HPHM 3397 ± 441 3547 ± 840 2926 ± 733 4059 ± 711 4643 ± 793 2361 ± 529
Cm 2702 ± 450 2367 ± 349 2270 ± 508 2879 ± 364 3812 ± 619 1493 ± 223
HPHm 1894 ± 256 1973 ± 259 1489 ± 190 2400 ± 50 2886 ± 173 1183 ± 75

Pressure 17.2 mmHg

C 5677 ± 796 5462 ± 737 5197 ± 531 6110 ± 1135 7400 ± 487 4040 ± 955
HPH 6619 ± 2148 7002 ± 2064 6134 ± 1655 7647 ± 1854 8455 ± 1891 5191 ± 1659
HPHR 5623 ± 1284 5797 ± 1091 5039 ± 761 6476 ± 944 7256 ± 922 4208 ± 811
HPHMa 6619 ± 2148 7002 ± 2064 6134 ± 1655 7647 ± 1854 8455 ± 1891 5191 ± 1659
Cma 5677 ± 796 5462 ± 737 5197 ± 531 6110 ± 1135 7400 ± 487 4040 ± 955
HPHm 4432 ± 749 4578 ± 704 3913 ± 449 5232 ± 608 5854 ± 505 3213 ± 530

aAt 17.2 mmHg, the HPHM and Cm are the same as their uncropped versions.

The Strahler order pruned trees have approximately the same com-
plexity with increased pressure (except for the highest pressure)
(Fig. 6). These trees mostly include larger vessels, which have lower
complexity in HPH animals than in control (Fig. 8(b). Again the trees
remodel more in the right, ventral, and posterior directions compared
8

to the right, dorsal, and anterior directions.
The maximum Strahler order pruned trees are challenging to com-
pare, likely because the control trees may not be ‘‘maximal’’, i.e., it
is possible to add branches without increasing the Strahler order. As
a result, the branch count varies significantly for maximum Strahler
order trees.

3.3. Computational code

Segmented images and computational code used for analysis are
provided in the GitHub repositories ‘‘mjchambers/Directed_Tree_
Extractor’’ and ‘‘mjchambers/TDA _MousePulmonary’’. To perform the
height filtration, we use the repository ‘‘ksian/ ML2015FP/3TDATools’’,
created by researchers at Duke University in 2014 [39].

4. Discussion

Pulmonary vascular remodeling observed in HPH has been char-
acterized by increased vessel stiffness and chronic dilation of large
arteries [10]. This observation was also noted by Strielkov et al. [38],
who reported that vessels >500 μm dilate chronically while the small
arteries and arterioles (<200 μm) constrict. It has also been shown that
the arterioles rarefy [7]. The diameters listed above are measured in
unstressed vessels after the animals were sacrificed.

This study uses combinatorial and topological methods to character-
ize control and HPH arterial tree remodeling, quantifying the number
of branches and leaves, tree depth, Strahler order, and directional
complexities. For each tree, the minimum radius captured during the
segmentation of micro-CT images is approximately 39 μm, with most
vessels having a radius greater than 50 μm (97.3% of vessels). As a
result, we can quantify the effects of dilation and constriction but not
the impact of microvascular rarefaction.

4.1. Spatial tree statistics

For the control trees, the tree depth and branch count increase with
pressure. The increase is higher than for HPH trees which have stiffer
vessels, but the tree depth and branch count are higher in HPH than in
control trees. The latter can be explained by chronic dilation making
more vessels visible in the CT images. However, the increased number
of branches in HPH trees is an artifact of the imaging process and does
not translate to the HPH mice having more pulmonary arteries. To
eliminate the effects of tree size, we pruned the trees and computed
the relative change in tree depth. Results show that the tree depth is
higher in control, a phenomenon preserved after pruning.

For the Strahler order pruned trees, the tree depth and branch count
are approximately constant following the Strahler order (𝑆𝑂 = 6). This
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Fig. 8. Relative directional complexity of radius pruned trees (a) and minimum Strahler order pruned trees (b). Each is mapped on the mouse in Fig. 4. Each panel shows
complexity in two opposing directions (left panel: right/left, center panel: dorsal/ventral, right panel: posterior/anterior) as mapped on the mouse in Fig. 4. The graphs show the
elative change in percent relative to the control computed as 100%×(HPH𝑖-control)/control, 𝑖 = 𝑅,𝑚 for the radius and minimum Strahler order pruned trees, respectively.
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olds for all trees except for the highest pressure, where the Strahler
rder is 7. The radius pruned trees are constructed to have the same
umber of branches as the control trees. Therefore, changes in relative
ree depth follow that of control. Comparison of radius pruned trees is
ssential as it allows us to quantify topological remodeling of different
essel sizes, whereas comparison of Strahler order pruned trees enables
s to study remodeling in trees not changing with pressure. In the
emainder of this discussion, for the radius pruned trees, we refer to
essels visible at the lowest perfusion pressure as the ‘‘large vessels’’
nd those visible at the highest perfusion pressure as ‘‘small vessels’’.

.2. Directional complexity

The radius pruned HPH trees have slightly higher left, dorsal, and
nterior complexity than the control trees, while the right, ventral,
nd posterior complexity is lower. Therefore in HPH trees, more or
onger vessels point toward the head and the left, while fewer or shorter
essels point in the other directions. This is illustrated in Fig. 8 showing
he relative complexity computed as the percent change 100%×(HPH-
ontrol)/control. This may indicate that the network is effectively
dapting to transport blood to the heart (left) and upper part of the
ung.
In general, the directional complexities correlate with the number

f branches. By design, the radius-pruning algorithm makes the number
f branches in HPH trees close to that of controls. The directional
omplexity results from these trees are significant, as they allow us
o study vessels of different size. With the exception of the highest
ressure, the minimum Strahler order pruning is useful as it generates
rees with similar vessel counts (Strahler order) independent of pres-
ure. Therefore topological analysis of Strahler order cropped trees are
one at all but the highest pressure.
Results of radius and minimum Strahler order pruning reveal that

emodeling differentiates between large and small vessels. For the
arger vessels (at lower pressures), HPH trees have significantly lower
elative complexity than the control trees. This indicates that the
etwork may experience remodeling and/or rarefaction. However, as
he networks are perfused at higher pressure, the complexity of the
adius pruned HPH tree increases, becoming closer to that of the control
ree. This could indicate that remodeling changes in the smaller, more
essels with an unstressed diameter below 200 μm, which are known to
onstrict. More datasets should be analyzed to differentiate remodeling
t different vessel sizes. In particular, since the values reported here
9

eflect the complexity of the whole tree. Finally, the maximum Strahler
rder pruned trees are harder to analyze. This is likely because the
ontrol trees may not ‘‘maximal’’, i.e., adding vessels to these trees may
ot increase the Strahler order. Therefore, we recommend focusing on
adius, and minimum Strahler order pruned trees.
Our use of 0-dimensional persistent homology via height filtration is

nspired by Belchi et al. [20], who found that humans with mild to mod-
rate COPD have lower upwards directional complexity of the bronchial
etwork compared to healthy subjects. In this context, ‘‘upwards’’ di-
ectional complexity refers to bronchi pointing toward the head. Since
PH is the type of PH most commonly associated with COPD [3] and
he pulmonary arteries branch like the airways, we implemented the
ame filtration as [20]. Comparing our methods to those of Belchi,
e need to consider that mice are quadrupeds, their lungs are rotated
ompared to humans. Thus, dorsal or anterior complexity might be a
ore apt comparison to human upwards complexity because they are
n the direction of the head and countering gravity. Our data show that
he dorsal and anterior complexity is higher in the radius-pruned HPH
rees. This finding is likely an indication of the differences between
umans and mice, and pulmonary arteries vs airways, or it may appear
ue to the lack of data: we do not have enough animals to generate
tatistically significant conclusions.
We analyzed the response at several perfusion pressure providing

nsight into how the large vs. distal vessels remodel. Note that while
elchi et al.’s study analyzed data from more subjects, their trees had
ewer generations and lower depth. In contrast, our study examined
ewer images, but the generated larger trees had up to 35 generations.

.3. Future work and limitations

This study’s primary limitation is the lack of data, we analyzed
ata from three control and three HPH animals. Lack of data is a
ommon problem in physiological studies as it can be difficult to
onduct experiments with many animals or obtain data due to patients’
rivacy concerns. One way to remedy missing data is using generative
achine learning to construct surrogate trees representative of the
ctual trees, an approach we plan to pursue in future studies. Though
efore doing this, more work is needed to characterize arterial trees
rom more animals.
This approach was used in the persistent homology study by Ben-

ich et al. [19] analyzing brain arterial trees. Using machine learning,
hey generated 98 trees from repeated iterations of a tube-tracking
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algorithm. As a first step toward fitting the variables in generative
models, we will use simulated trees obtained by attaching self-similar
structured trees to principal branches of labeled spatial trees [10] and
incorporating angles extracted from our spatial trees to capture the
three-dimensional properties of arterial branching. While this approach
can generate many networks, more work is needed to ensure that the
networks follow the actual topological structure of the arterial trees.

Another challenge is translating the results reported here into the
analysis of clinical CT images. Human CT images have lower resolu-
tion, containing arteries, airways, and veins, making it challenging to
identify the arteries. Yet, the techniques proposed here are promising.
In a clinical CT image, it is possible to identify 2-300 vessels compared
to the 2000 vessels visible in the micro-CT images analyzed here.
Moreover, the mouse images are ideal because the pulmonary arteries
were excised, i.e., the arterial trees were the only anatomical objects in
the images.

5. Conclusion

This study serves as a proof of concept for TDA to identify differ-
ences between control and hypoxia-induced pulmonary hypertension
(HPH) arterial trees. We lay the foundation and explore the possibilities
of identifying features of vascular trees by combining numerical and
topological data analysis to study the shape of control and HPH arterial
trees. Data consists of spatial trees extracted from micro-CT images in
control and HPH mice. The HPH animals experience chronic dilation
of the larger vessels, therefore more vessels are visible in the micro CT
images. As a result, there is a significant discrepancy between branch
counts between the two groups. This result does not reflect that HPH
animals have more branches but is a consequence of imaging resolu-
tion. To address this limitation, we devised radius and Strahler order
pruning algorithms to obtain comparable trees. The latter was done
because pulmonary arterial trees branch asymmetrically. In addition
to standard graph statistics, we use a numerical summary derived from
persistent homology called directional complexity [20] to characterize
and compare the pulmonary arterial trees.

Several main findings and major methodological observations arise
from this study. The tree depth is higher in HPH trees, indicating that
HPH mice experience chronic dilation of the large vessels. A major
methodological observation is that we can extract more information
by applying different pruning techniques. Analysis of radius pruned
trees show that at low perfusion pressure, HPH trees have lower rel-
ative directional complexity in 3 of the 6 directions than control, and
complexity increases as more vessels are included. The latter agrees
with the understanding that large and small pulmonary arterial vessels
remodel differently. Analysis of minimum Strahler order pruned, trees
allow us to study comparable trees at several pressures. Results agree
with the analysis of low-pressure radius pruned trees, namely that HPH
complexity is lower than control.

The next steps include overcoming the major limitation in this
study, the lack of data. To do so we propose to include more trees
and use generative machine learning methods to generate surrogate
trees. The most exciting research direction is expanding TDA methods
to higher dimensional persistence and analyzing human lungs, the
vascular network, and the airways, as their structures and shapes are
intertwined and dependent.
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