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Abstract
Matroids are a fundamental object of study in combinatorial optimization. Three closely related and

important problems involving matroids are maximizing the size of the union of k independent sets (that is,
k-fold matroid union), computing k disjoint bases (a.k.a. matroid base packing), and covering the elements
by k bases (a.k.a. matroid base covering). These problems generalize naturally to integral and real-valued
capacities on the elements. This work develops faster exact and/or approximation problems for these and some
other closely related problems such as optimal reinforcement and matroid membership. We obtain improved
running times both for general matroids in the independence oracle model and for the graphic matroid. The
main thrust of our improvements comes from developing a faster and unifying push-relabel algorithm for the
integer-capacitated versions of these problems, building on previous work by Frank and Miklós [24]. We then
build on this algorithm in two directions. First we develop a faster augmenting path subroutine for k-fold
matroid union that, when appended to an approximation version of the push-relabel algorithm, gives a faster
exact algorithm for some parameters of k. In particular we obtain a subquadratic-query running time in the
uncapacitated setting for the three basic problems listed above. We also obtain faster approximation algorithms
for these problems with real-valued capacities by reducing to small integral capacities via randomized rounding.
To this end, we develop a new randomized rounding technique for base covering problems in matroids that may
also be of independent interest.

1 Introduction

Matroids are a fundamental object of study in combinatorial optimization. Three closely related and important
problems involving matroids are maximizing the size of the union of k independent sets (also known as matroid
union where we are taking k copies of the same matroid), computing k disjoint bases (a.k.a. matroid base packing),
and covering the groundset by k bases (a.k.a. matroid base covering). These problems generalize naturally to
integral and real-valued capacities as we explain later. This work develops faster exact and/or approximation
problems for these and some other closely related problems. The main thrust of our improvements comes from
developing a faster and unifying push-relabel algorithm for the integer-capacitated versions of these problems.

The push-relabel framework is most commonly associated with maximum flow. The push-relabel framework
for flow, introduced by [37] and then improved and generalized by [36] (cf. [38]), is an elegant framework that has
lead to new algorithms and perspectives for max-flow (e.g., [1, 12, 63]) and related problems such as minimum
cost flow [35], parametric flow [33] and directed minimum cuts [42, 43] (to name a few). Empirical work has also
shown that push-relabel algorithms can work well in practice (e.g., [13, 14]). Loosely speaking, the push-relabel
algorithm for flow departs from previous algorithms by making local improvements, “pushing” flow along one
edge at a time, rather than augmenting along paths. Rather than maintaining an (s, t)-flow (conserving flow at
non-terminals), the push-relabel algorithm maintains a relaxation of flow called preflows that allow for positive
surplus at non-terminal vertices. Vertex labels, assigning integer levels to each vertex, are introduced to guide the
push operations and obtain polynomial running times.

The push-relabel concept has been extended (in a much more abstract form) to more general combinatorial
problems including submodular flow [25], submodular intersection [26], submodular minimization [21, 22, 48], and
other related problems [46, 47]. More recently, Frank and Miklós [24] developed simpler strongly polynomial-time
push-relabel algorithms for abstract combinatorial optimization problems ranging from matroid partition to
submodular flow. Their work builds on and helps unify some of these past results. Our work directly builds on
[24]. Focusing on the class of matroid problems listed above, we contribute both structural observations and
algorithmic techniques to their framework that accelerate exact algorithms and also extend the framework to yield
fast approximation algorithms.
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We complement these techniques (that fall within the push-relabel framework) in two di�erent ways. The first
is to design an augmenting path subroutine specialized to integer-capacitated k-fold matroid union, which can be
used augment an approximate solution produced (very quickly) by the push-relabel framework to an optimal one.
We point out that this augmenting-path subroutine requires additional structure provided by the push-relabel
framework to work. The augmenting paths lead to faster running time for certain ranges of parameters, including a
subquadratic-query running time for the uncapacitated setting. The second extension is based on random sampling,
which is used to reduce approximation problems for real-capacitated problems to approximation problems with
(small) integer capacities. Some of these randomized rounding techniques are new while others are provided by
previous work [51]. The reduced setting with integer capacities is particularly well-suited for the push-relabel
algorithms that we develop and this leads to a series of approximation algorithms with nearly linear oracle and
running time complexity for real-valued capacities.

Given that many of these problems have classically been studied primarily from the perspective of exact
algorithms, we take a moment to motivate our additional interest in fast approximation algorithms. One motivation
comes from the trend of large datasets and the need for algorithms that can scale with the data. For su�ciently
large inputs, one may be more willing to exchange exact correctness for a polynomial reduction in the running
time, especially if we can still control the worst-case approximation factor. Fast approximation algorithms are also
utilized as subroutines in other algorithms in situations where weaker approximation factors su�ce. We list a
few examples from graph algorithms. Benczúr and Karger’s [4] graph sparsification algorithm needs only a loose
approximation of so-called “edge strengths” to generate its sampling probabilities. The linear time minimum cut
algorithm of [50] begins with an approximate tree packing. A large wave of recent graph algorithms are based
on expander decompositions [59], which is based on fast approximation algorithms for sparsest cut. The recent
breakthrough in max flow uses fast subroutines approximating minimum ratio cycles [10]. These applications
do not require exact solutions to their subproblems. (We note that for some of these applications, there are
other considerations besides static speed, such as fast dynamic updates.) Of direct relevance to this work is a
recent result [57] which generalizes graph and hypergraph sparsifiers to quotient-preserving sparsifiers to matroids
and submodular functions. The sparsification algorithm builds on the ideas in this paper and uses fast matroid
push-relabel approximation algorithms to build a hierarchical decomposition of the elements of a matroid, from
which the sampling probabilities are then inferred.

1.1 Outline of results We now outline the improved running times obtained in this work. For the sake of
brevity we defer more detailed descriptions of each problem to later in the paper when they are analyzed in full.
For each we state the new running time and only the most competitive and directly comparable running times
in the literature (at the time of this work). We provide pointers to the full theorem statements for each result.
Additional background is described in appendix A. The problems we discuss are all basic and well-studied problems
in matroid optimization and can be found in [60], which we refer to for additional background. We pose these
problems for general matroids in the oracle model and for the graphic matroid (i.e., forests of an undirected graph).

We briefly mention some preliminaries needed to describe the results; additional preliminaries including further
notation and relevant definitions are provided in section 2. For matroid problems, we let n denote the number of
elements, and r the rank of the matroid. We assume access to an independence oracle to which we can query if a
set of elements S is independent. We adopt the standard and simplifying convention of counting, as part of the
independence query, the O(|S|) work one typically needs to assemble and transmit the set S to the oracle. For
graph problems, we let m denote the number of (distinct) edges and n the number of vertices in the graph. When
the graph has integer edges capacities, we let U denote the total capacity.

The results come in one of three flavors: (1) exact algorithms for integral capacities that produce integral
solutions, (2) integral approximation algorithms for integral capacities that produce integral solutions, and (3)
approximate decision algorithms for real-valued capacities. Type (1) usually comes with two (incomparable)
running times — one given directly by the push-relabel algorithm, and one combining push-relabel with augmenting
paths. Algorithms of the second type are typically truncated versions of the corresponding push-relabel algorithms
of type (1). Algorithms for the third type are typically obtained by reducing to problems of the second type via
random sampling. All the algorithms for integer capacities — of type (1) and type (2) — are deterministic and
construct integral and mutually certifying primal and dual solutions. The algorithms for real-valued capacities (type
(3)) are randomized Monte Carlo algorithms that succeed with high probability. They construct an approximate
and integral dual solution but not a primal solution.
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We proceed to present the results. We will present the results for matroids in the independence oracle model
first and then a parallel set of results for the graphic matroid.

In the uncapacitated setting, the k-fold matroid union problem asks for k bases B1, . . . , Bk maximizing the size
of their union. This naturally extends to integer capacities where we now count each element in B1, . . . , Bk with
multiplicity up to its capacity. We first obtain a running time of O(n + OPT r log(kr)) independence queries, where
OPT denotes the optimum value, via the push-relabel algorithm (theorem 3.2). We also obtain a running time of
O

1
n + OPT


nÕ log(kr)

2
independence queries, where n

Õ = min{n + OPT log(r), rk log(kr)}, by combining the
push-relabel algorithm with augmenting paths (theorem 8.1). Note that in the uncapacitated setting, OPT Æ n

and n
Õ Æ n log(r), so the second running time is at most Õ

!
n

3/2"
queries for any choice of parameters k and r.

These running times are to be compared to O

11
OPT3/2 +k

2
nQ + OPT1/2

kn

2
for the uncapacitated setting [15],

where Q denotes the time for a query to an independence oracle. One can also reduce uncapacitated k-fold matroid
union to unweighted matroid intersection (with nk elements and rank OPT); this yields a randomized running
time of Õ

1
nk

Ô
OPT

2
queries [5].

We also consider approximation algorithms for capacitated k-fold matroid union. Let ‘ œ (0, 1) be a given
parameter; the goal is to achieve an objective value of at least (1 ≠ ‘) OPT. For integer capacities we obtain
a running time of O(n + OPT log(kr)/‘) independence queries (theorem 3.3). The algorithm produces both
integral primal and dual solution which mutually certify that they are (1 ± ‘)-approximately optimal. As per
comparable running times, while [15] does not consider approximations explicitly, [15] implicitly contains a
(1 ≠ ‘)-approximation algorithm for the uncapacitated setting with time O(knQ + (OPT nQ + kn)/‘). One can
also reduce uncapacitated k-fold matroid union to approximate matroid intersection, yielding a running time of
Õ

1
nk

Ô
OPT/‘

2
queries [5]. The k-fold matroid union problem generalizes to real-valued capacities where one

instead optimizes over fractional combinations of k bases. For this setting we develop a randomized algorithm
with randomized running time bounded by O

!
n + (OPT /k) log(n) log

!
r log(n)/‘

2"
/‘

3"
independence queries. We

are not aware of comparable algorithms in the literature.
The next problem we consider is base packing, which we describe for integer capacities. The goal is to compute

k bases so that no element appears in more bases than its capacity. It is easy to see that (exactly solving) the
problem reduces to k-fold matroid union, hence we obtain the same running times as listed above. In addition to
the [15] result mentioned above, one can also compare to a Las Vegas randomized algorithm for the uncapacitated
setting that runs in randomized O

1
n + r

3
k

5/2 log3/2(kr)
2

independence queries with high probability [51]. [51]

also gives a deterministic algorithm running in O

1
n + (rk)3 logO(1)(kr)

2
.

We also consider approximate base packing. The goal is to either pack (1 ≠ ‘)k bases or certify that there
is no packing of (1 + ‘)k bases, for a parameter ‘ œ (0, 1). Here approximate k-base packing does not reduce
directly to approximate k-fold matroid union, although we use similar techniques. We obtain a running time of
O(n + kr log(n) log(kr)/‘) (theorem 4.1). This is to be compared to a randomized Monte Carlo algorithm for the
uncapacitated setting running in Õ

!
n + r

3
k/‘

3"
independence queries [51]. For real-valued capacities we obtain a

randomized Monte Carlo algorithm running in O
!
n + r log2(n)(log log(n) + log(1/‘))/‘

3"
independence queries

that succeeds with high probability (theorem 7.4, page 20). This can be compared to a deterministic Õ
!
nk/‘

2"
-

query time algorithm from [9] or a randomized Monte Carlo algorithm running in O

1
n + r

3 logO(1)(kr)/‘
5
2

independence queries [51]. We believe that ideas from [9, 51] can be combined to also obtain a randomized Monte
Carlo algorithm running in Õ

!
n + r/‘

4"
independence queries. Our randomized algorithm for fixed k can be

converted to a randomized algorithm to compute the maximum value k (which we call the matroid strength) via
a modified binary search. The running time we obtain is slightly better than one gets from a straightforward
application of binary search (theorem 7.5, page 21).

Next we discuss base covering. Here the capacities are interpreted as lower bounds. The goal is to compute
k bases so that for each element, the number of bases containing each element is at least the lower capacity of
that element. If that is not possible then one expects a dual certificate of feasibility. As with packing, exact base
covering can be solved by k-fold matroid union so we inherit those running times. To the best of our knowledge,
the best comparable running time is that of the k-fold matroid union algorithm of [15] for the uncapacitated
setting, mentioned above. (In particular we are not aware of developments for base covering analogous to [51]
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or [9] which focus on base packing.) For (1 ≠ ‘)-approximate base covering with integer lower capacities, which
we note does not reduce to approximate k-fold matroid union, we obtain a O(n log(n) log(kr)/‘) query running
time (theorem 4.2). (Note that n Æ kr without loss of generality for base covering.) For real-valued capacities
we may assume without loss of generality k = 1. In this case we have the matroid membership problem where
the goal is to decide if a real-valued vector is in the independent set polytope of a matroid. [17] gave the first
strongly-polynomial time algorithm and there is an exact algorithm running in O

!
n

3
r

2"
independence queries

[53]. We obtain a randomized Monte Carlo algorithm running in O
!
n + r ln(n) ln(r/‘)/‘

3"
queries (theorem 7.6).

Again there is not much literature explicitly on approximate base covering or matroid membership with real
capacities. However we believe that the techniques in [9] could have also obtained a deterministic Õ

!
nk/‘

2"
-query

time algorithm; we note that such an algorithm does not produce an integral packing when the lower capacities
are integral.

The final problem we discuss for matroids is optimal reinforcement. In the integral version, given a matroid
with integer element capacities, real-valued element costs, and an integer parameter k, the goal is to compute a
minimum cost extension of the capacities so that the resulting capacitated matroid has matroid strength k. [16]
proposed and analyzed this problem in graphic matroids. Generalized to matroids, his algorithm is a reduction to
Õ(n) calls to k-fold matroid union. Multiplied against the running time for [15] mentioned above (here OPT = kr)
gives a running time of O

!!
(kr)3/2 + k

"
n

2
Q + k

3/2
rn

2"
. ([16] also considers real capacities which we do not

address.) We show how to compute the optimum reinforcement in time equal to 1 call to our first push-relabel
algorithm for k-fold matroid union, running in O(n + OPT r log(kr)) independence queries. More precisely, we
show that the push-relabel algorithm directly solves the optimal reinforcement with only a minor modification to
how we initialize the algorithm.

We now outline the corresponding results for the graphic matroid. (For a graph G = (V, E), we
denote m = |E| and n = |V |.) Generally speaking, we take the algorithms above for general ma-
troids and replace the independence oracle with appropriate data structures that can answer queries di-
rectly. This generally replaces the query in the running times with a polylogarithmic overhead (or bet-
ter, such as the inverse Ackermann –(n).) For k-fold matroid union — that is, maximizing the total
size of a packing of k forests — we obtain a running time of O(m–(n) + n OPT(log(n) + log(k)–(n))) by
push-relabel alone (theorem 5.2) and O

1
m–(n) + OPT3/2 log2(nk)–2(n)

2
(in connected graphs) by combin-

ing push-relabel with augmenting paths (theorem 8.2). (Note that OPT Æ nk.) Comparable running
times are (a) O

!
n

2
k log k

"
and (b) O

1
min{U, nk}


k(U + n log n)

2
. [32]. In particular our first running

time improves (a) and our second running time improves (b) because OPT Æ min{U, nk}. For (1 ≠ ‘)-
approximations, we obtain an O(m–(n) + OPT log(n)(log(n) + log(k)–(n))/‘) for integer capacities and ran-
domized O

!
m–(n) + (OPT /k) log2(n)(log(n) + log(k)–(n))/‘

3"
time for real capacities.

Packing bases translates to packing spanning trees. This can be solved by the algorithms for k-fold union and
we obtain the same running times. In addition to the running times listed above for k-fold matroid union, one can
also compare to running times of O(Un log(m/n)) [32] and O

!
kn


U + n log n

"
[27]. For (1 ≠ ‘)-approximations,

we obtain O(m–(n) + nk(log(n) + log(k)–(n))/‘) for approximate integer tree packings. This can be compared to
a Las Vegas randomized algorithm that runs in Õ

!
kn

3/2
/‘

2"
time with high probability. The maximum number of

spanning trees that can be packed into a graph is called the network strength. For real-valued capacities we obtain
a randomized O

!
m–(n) + (OPT /k) log(n) log

!
n log(m)/‘

2""
time for (1 ± ‘)-approximately testing the network

strength and a slightly greater running time for approximating the network strength up to a (1 ± ‘)-factor. This
result result can be compared with a deterministic Õ

!
m/‘

2"
time algorithm or a randomized Õ

!
m + n/‘

4"
time

algorithm in [9].
Covering by bases corresponds to covering by spanning trees. Again new exact running time for integer lower

capacities are obtained via the k-fold union algorithms listed above. Additional comparable running times besides
k-fold union are Õ

!
U

5/3"
and O(Un log(n)) [32]. For (1 ≠ ‘)-approximations with integer lower capacities, we

obtain a running time of O(m–(n) + nk log(n)(log(n) + log(k)–(n))/‘). The minimum number of spanning trees
required to cover a graph is called the arboricity. The arboricity can be computed exactly in O

!
mn log

!
n

2
/m

""
time

[29]. We obtain a randomized O
!
m–(n) + n ln(n)(log(n) + log(log(n)/‘)–(n))/‘

3"
time Monte Carlo algorithm

for (1 ± ‘)-approximately testing the arboricity and slightly greater running time for approximating the arboricity
up to a (1 ± ‘)-factor (theorems 7.7 and 7.9). As was the case for matroids, there are not as many developments
for approximate covering by spanning trees as for packing spanning trees. However we believe the techniques in [9]
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lead to Õ
!
m/‘

2"
and randomized Õ

!
m + n/‘

4"
-time algorithms to (1 ± ‘)-approximate the arboricity (value).

Lastly, by the same reduction as for matroids, the optimal reinforcement problem in graphs is solved by a
single call to the push-relabel algorithm for k-fold union, running in O(m–(n) + n OPT(log(n) + log(k)–(n)))
time where OPT refers to the optimum for k-fold union, and is at most nk. This improves [16]’s reduction to n

calls to k-fold union, as well as the running time of O
!
n

2
m log

!
n

2
/m

""
by [29] for small k. ([29]’s algorithm and

[16]’s reduction also extend to real-valued capacities.)

1.2 Discussion and overview of technical ideas As mentioned above, our improved running times start
with a common “matroid push-relabel” algorithm building on ideas from [24]. Before describing our contributions,
it may be helpful to first describe their framework at a high-level, especially given the unusual perspective for
those coming for flow.

We informally describe their algorithm for k-fold matroid union for illustrative purposes. We assume the
uncapacitated setting for simplicity; the goal is to compute a set of k bases B1, . . . , Bk maximizing the size of
their union. Call an element e uncovered if it is not in any Bi, covered if it is in some Bi, and overpacked if it is in
more than one Bi. We want to cover as many elements as possible, and loosely speaking, overpacked elements
represent wasted slots among the bases. The push-relabel algorithm of [24] manipulates B1, . . . , Bk by repeatedly
selecting an uncovered element e and trying to exchange it into some Bi so that it is covered. To make direct
progress one would have to exchange it out for an overpacked element d; otherwise the size of the union stays the
same. However, such a profitable exchange may not be available, even if B1, . . . , Bk is not yet an optimal solution.
While one can exchange e for other covered (but not overpacked) elements, it is not clear how this helps. This is
analogous to pushing flow from one non-terminal vertex with surplus to another non-terminal vertex; it is not
clear that we are making progress towards a sink.

This is where the relabel aspect of the push-relabel framework comes in. Each element is labeled by an integer
level. Overpacked elements are kept at level 0, analogous to sinks in flow. Exchanges are restricted so that an
element e is exchanged into a base Bi for an element d that is one level below Bi. In some sense, the “excess”
represented by e being uncovered is transferred down one level to d, and thus closer to the overpacked elements at
level 0. These ideas eventually lead to a more elaborate argument in [24] about why the algorithm terminates in
polynomial time.

Above is a sketch omitting details, proofs of correctness, and even a complete description of the algorithm
(deferring a more technical treatment to later). However it starts to form an analogy between the familiar
push-relabel framework for max flow, and the abstract version presented by [24]. Instead of labeling vertices of
a graph, we label elements of a matroid. In flow, we push flow along edges from one vertex to another; with
matroids, we “push” exchanges of one element for another that maintain feasibility. Similar to flow, pushes are
restricted to go “down” a level, and when no pushes are available, there is a relabel operation where some elements
have their level increased. Doing so may reveal a violating constraint induced by the level sets of vertices, similar
to how minimum cuts emerge from the labels in flow.

In analyzing their push-relabel framework, for problems ranging from matroid partition to submodular flows,
[24] focuses on demonstrating that the algorithms are strongly polynomial while keeping the algorithms and
analysis as simple as possible. (Historically, obtaining strongly polynomial running times for these abstract
problems was highly non-trivial.) To this end, rather than directly bound the running time, [24] gave worst-case
polynomial bounds on the number of “basic operations” — the number of push and relabel operations — made by
the framework. (E.g., [24] gives a bound of O

!
n

5"
basic operations for the k-fold matroid union problem above.)

One can show that it takes polynomial time (and queries to an independence oracle) to identify and execute a
basic operation, but we caution that this is far less straightforward to do this than for flow, due to the abstract
nature of matroids and the oracle model. For example, in flow, the edges explicitly specify where we can “push”.
With matroids, finding an exchangeable pair of elements e1 and e2 (as described above) may require nested loops
over the ground set of elements and an independence query for each inner iteration. There are additional technical
issues that [24] addresses which have no obvious analogy for flow.

We have taken to calling this framework matroid push-relabel, to distinguish from push-relabel for flow. Initially
we were drawn by the conceptual appeal of [24], and started developing algorithms for some more specific problems
hoping at best for some simpler or more practical alternatives to existing algorithms (similar to the role now
assumed by push-relabel for flow). Given the large bounds and high level of abstraction in [24], it was not at all
clear that competitive bounds could be obtained from matroid push-relabel for basic, long-studied problems where
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there are alternative approaches that seem more direct. We were surprised to discover that, upon developing
several more ideas within the matroid push-relabel framework, one can actually improve the best known bounds
for several of these problems.

As mentioned above, the push-relabel algorithm manipulates a collection of bases and assigns levels to each
element. The algorithm modifies the bases and levels while obeying a set of “push-relabel invariants”, proposed
by [24], which impose a discipline on the exchanges made to the bases. We extend these invariants slightly by
introducing an integer-valued parameter called the height. The height is the minimum level of any uncovered
element. One motivation for the height is to facilitate the analysis of fast approximation algorithms, as discussed
below. The running time of our core matroid push-relabel algorithm is expressed as a function of height. The
height parameter is chosen based on the problem and whether we seek exact or approximate solutions.

As mentioned above, the algorithms in [24] are not very concrete (let alone e�cient), and the algorithms were
analyzed to the point of bounding the number of push/relabel operations, as opposed to bounding the running
time. We fill in the running time analysis and introduces several more ideas to improve the running time. Some
of these ideas are somewhat subtle, detailed and local; such as a refined bound on the height for k-fold matroid
union, or more careful application of data structures for spanning tree problems. There are also some broader
ideas that are easier to isolate and which we now highlight below.

Level-wise decreasing order of bases. Recall that the push-relabel algorithms maintains a collection of k

bases for an input parameter k. Every time we want to exchange an element e into the solution (so to speak), the
multitude of bases raises an algorithmic issue of quickly identifying a suitable base in which to exchange e. A naive
approach loops through all the bases, which is very slow, especially with large convex combinations. An important,
new idea introduced in this work, that seems very specific both to matroids and the push-relabel framework, is to
maintain the bases in “level-wise decreasing order”. The definition of this ordering is based on the upper level sets
of the bases induced by the labels. We require and maintain the bases in such an order that for every level, the
level set of one base spans the level set of the next one. Speaking intuitively and abstractly, it turns out that
the monotonic nature of this order cooperates nicely with the way that elements are relabeled and exchanged in
the push-relabel framework. In particular, some simple and necessary greedy rules for selecting between di�erent
choices of push and relabel operations are shown to be su�cient for maintaining the descending order. Moreover,
given the bases in level-wise descending order, we no longer have to loop over the bases as (loosely) described
above. Instead, we can apply a binary search to identify the right base in logarithmic time and queries. The
descending order also allows for a binary search along the levels when relabeling an element, which also improves
the running time.

Approximation via truncation. An important technique for obtaining fast approximations in the push-relabel
framework is the idea that a truncated height, depending primarily on the desired accuracy, su�ces to obtain an
approximate solution. This is analogous to the well-known connection; in problems such as edge/vertex disjoint
paths, bipartite matching, and matroid intersection; between the length of the shortest augmenting path and
the quality of the current solution (e.g., [15, 20, 44]). In this work, the matroid push-relabel algorithms frame
matroid optimization problems in a perspective more amenable to these types of arguments. For many problems,
we show that either O(1/‘) or O(log(n)/‘) levels su�ce to obtain a (1 ± ‘)-factor approximation. We note that
there are di�erent arguments that lead to either the O(1/‘) or O(log(n)/‘) bounds, and some additional analysis
was required to identify which was appropriate for each problem.

As mentioned earlier, besides the enhancements to the matroid push-relabel algorithm, we develop two more
techniques that extend the applicability of the push-relabel algorithm.

Randomized rounding To extend the push-relabel framework for integer capacities to real-valued capacities,
for the sake of fast approximation algorithms, we employ randomized rounding. More specifically, we use
random sampling to discretize the capacities and e�ectively reduce the capacities to small integer values (at most
O

!
ln(n)/‘

2"
). For packing problems, the randomized techniques we need are already provided by [51]. For k-fold

matroid union and covering problems, such techniques were not known, and the arguments from [51] did not seem
to extend. We develop a new analysis for these remaining problems. Interestingly, this analysis also recovers the
results of [51], via an arguably simpler proof. (In particular, the new analysis does not depend on the random
contraction algorithm.) See theorem 7.1, section 7.1. The randomized techniques for matroid base covering and
k-fold matroid union may be of independent interest.
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Augmenting paths. Historically the most common approach to the problems considered here is via augmenting
paths. Augmenting paths can also be used to extend an approximate (integral) solution to an optimal one (which is
our application). With augmenting paths for (say) k-fold matroid union, one maintains a packing of k independent
sets I1, . . . , Ik and tries to extend it one element at a time. Extending such a packing is non-trivial, and may
require a complicated sequence of exchanges to open up a slot for a new element, so to speak. A shortest path
between a designated source and sink in this graph can be shown to give an augmenting path. Now, the most
straightforward approach is to build out the entire auxiliary graph explicitly by testing for the presence of each
possible arc, and then running BFS in the resulting graph. However the graph is potentially dense and building
out the graph becomes the bottleneck.

We instead explore techniques that look for the desired path implicitly. At a high-level, one recognizes that
identifying all the vertices reachable from the designated source does not require exploring all the arcs. Indeed,
we need not test the existence of an arc where the head is already “marked” as explored. That said, we do need
to be able to identify arcs to “unmarked” auxiliary vertices. To help us search for these useful arcs we impose
additional invariants. One invariant is to keep I1, . . . , Ik in “decreasing order”, in a way similar to the level-wise
order of decreasing bases in the matroid push-relabel algorithm. This restricts the family of augmentations we
allow in each iteration. The second invariant comes within a single search for an augmenting path. As we mark
auxiliary vertices as they are explored, we also require the subset of elements in I1, . . . , Ik corresponding to marked
auxiliary vertices to also be in “decreasing order”. This is addressed by introducing a “pre-search” subroutine that
is called on an auxiliary vertex before marking it. With this additional structure — keeping the I1, . . . , Ik and the
marked elements of the I1, . . . , Ik (so to speak) in descending order — it becomes much easier to navigate the
auxiliary graph implicitly. The overall running time for one search comes out to roughly a logarithmic number of
independence queries per vertex in the auxiliary graph. (Lemma 8.1, section 8.)

We use the augmenting path subroutine to extend an (1 ≠ ‘)-approximate solution produced by the push-relabel
algorithm to an optimum solution, for an appropriate choice of ‘. However, to apply our augmenting path algorithm
we require the output of the push-relabel algorithm to satisfy certain invariants: namely, the bases B1, . . . , Bk

should contain a packing I1, . . . , Ik of the same total capacity and in descending order. Fortunately this is the
case, and the proof critically depends on the fact that the B1, . . . , Bk were in level-wise decreasing order already.

We note that some similar ideas pertaining to implicitly navigating the auxiliary graph have been applied
recently to accelerating augmenting path algorithms for matroid intersection [5, 6, 8, 56], which is a closely related
problem. Still, additional ideas specific to k-fold matroid union as well as the added structure from the matroid
push-relabel algorithm are required to obtain our running time.

Future work. We recognize that some of the ideas here can be useful for exact push-relabel algorithms for real
capacities and defer this to future work. We have also continued to develop algorithms from the push-relabel
perspective for more abstract problems such as polymatroid intersections and submodular flow. These topics
require much more abstract machinery and the conceptual focus is di�erent from the presentation here which is
more specialized to matroids. We defer these developments to future work.

Independent work. Independent work by [7] also develops fast exact algorithms for some of the matroid
packing and covering problems considered here, with similar running times. The techniques are di�erent, as [7]
focuses on augmenting path algorithms, and takes a more data-structure-centric point of view highlighting the use
of dynamic rank oracles that can accelerate these algorithms. Our algorithms are instead based on independence
oracles. One interesting structural observatio n (in hindsight) is that in some situations where the algorithms in
[7] use fully dynamic data structures, the algorithms here only leverage partially dynamic data structures. (E.g.,
the use of fully dynamic connectivity oracles [34, 49] in [7] versus the use of the disjoint union data structure here,
for the graphic matroid.)

1.3 Organization. The rest of this work is organized as follows.

• In section 2 we present preliminary definitions and notation.

• In section 3, we present and analyze the matroid push-relabel algorithm for k-fold matroid union with integer
capacities.

• In section 4, we analyze the base packing and covering problems for integer capacities.
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• In section 5, we implement the matroid push-relabel algorithms for the graphic matroid.

• In section 6 we analyze the minimum cost reinforcement problem.

• In section 7 we develop the randomized algorithms for real-valued capacities.

• In section 8 we develop the augmenting path algorithm.

• Additional background is given in A.
Acknowledgements. We thank András Frank for his helpful feedback which has improved this paper.

2 Preliminaries

We briefly introduce matroids and refer to [23, 60] for additional background. A matroid M = (N , I) consists of a
finite ground set N and a collection of independent sets I ™ 2N that satisfy three properties: (i) ÿ œ I (ii) A œ I
and B µ A implies B œ I and (iii) A, B œ I and |B| > |A| implies that there is e œ B \ A such that A fi {e} œ I.
The rank function of a matroid is an integer valued function over the subsets of N where rank(S) is the cardinality
of the largest independent set contained in S. We let span(S) = {e : rank(S + e) = rank(S)} denote the set of
elements spanned by S. For an independent set I œ I, and an element e œ span(I) \ I, there is a unique minimal
set in I + e, called the circuit of e in I and denoted C(I + e).

The independence polytope is the set of vectors x œ RN
Ø0 that can be expressed as a convex combination of

indicator vectors of independent sets. We let PI denote the independence polytope. For k > 0, we let kPI scale
up PI by a factor of k; equivalently, kPI denotes the the set of vectors x such that x/k œ PI .

In all our problems the elements are equipped with capacities u œ RN
>0. The capacities are usually integral

except in section 7 where we consider real-valued capacities. Abusing notation, for a set S ™ N , we denote the
sum of capacities over S by

u(S) def=
ÿ

eœS

u(e).

Many of our problems manipulate a set of k bases B1, . . . , Bk which may have overlapping elements. In such a
context, for an element e œ N , let

x(e) def= |{i œ [k] : e œ Bi}|

We say that an element is uncovered if x(e) < u(e), covered if x(e) Ø u(e), feasibly packed if x(e) Æ u(e), and
overpacked if x(e) > u(e).

3 Matroid push-relabel with integer capacities

This section presents the matroid push-relabel algorithm. Our discussion centers on the k-fold matroid union
problem, presenting an algorithm that accelerates an algorithm for k-fold matroid union presented in [24]. The
k-fold matroid union problem was briefly introduced in section 1.1 and we reintroduce the problem here.

The input consists of a matroid M = (N , I), integer capacities u : N æ N, and an integer k. This input
defines the following dual min-max problems shown by [55] to have equal objective values:

maximize
ÿ

eœN
min{u(e), x(e)} over k bases B1, . . . , Bk œ I;(3.1)

minimize k rank(S) +
ÿ

eœS̄

u(e) over all sets S ™ N .(3.2)

(x(e) is defined in section 2.) (3.1) is called the k-fold matroid union problem; we refer to (3.2) simply as its dual
problem. As mentioned earlier, [15] gave a O

1
(OPT3/2 +k)nQ + OPT1/2

kn

2
-time algorithm for the uncapacitated

version (i.e., u(e) = 1 for all e) of the problem. Additionally, [24] gave a bound of O
!
n

5"
“basic operations” (which

are defined below) in the uncapacitated setting. We note that both [15, 24] consider the more general matroid
union setting, where each Bi is a base in a di�erent matroid (over the same ground set).

We first introduce the high-level components of the matroid push-relabel framework, based on [24], in section 3.1.
We then analyze how optimality is obtained with the framework, improving bounds in [24] as well as extending
the analysis to approximations, in section 3.2. Finally we present and analyze the faster algorithm in section 3.3.
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3.1 Components of the matroid push-relabel framework The matroid push-relabel maintains a map
¸ : N æ ZØ0 assigning levels to each element, initially set uniformly to 0. The algorithm also maintains k bases
B1, . . . , Bk œ B, all initialized to be the same base chosen arbitrarily.

Our discussion frequently groups elements by their levels and to this end it is convenient to introduce the
following notation. For a fixed level j, we let Nj denote the set of elements at level j. We also let NÆj denote the
set of elements at level less than or equal to j; similarly we have N<j , N>j , and NØj .

As the algorithm updates the bases B1, . . . , Bk by inserting elements, for each base Bi and each element
e œ Bi, the algorithm tracks the level of e when it was inserted into Bi. For i œ [k] and j œ ZØ0, we let Bi,j ™ Bi

be the subset of elements e in Bi that were inserted into Bi when e was at level j. (Note that Bi,j does not equal
Bi fl Nj .) We let Bi,Øj denote the set of elements e inserted into Bi when ¸(e) was at least j. Similarly we have
Bi,Æj , Bi,>j , and Bi,<j .

In the matroid push-relabel algorithm, the k bases B1, . . . , Bk form a candidate solution for the maximization
problem (3.1). The sub-level sets NÆj (where j œ N) represent candidate solutions for the minimization problem
(3.2). The framework is designed to ensure that

ÿ

eœN
min{u(e), x(e)} Æ k rank(NÆj) + u(N>j)

for all j. As shown in section 3.2 below, at termination, the algorithm identifies a level j for which the inequality
above is (exactly or approximately) tight. Thereby B1, . . . , Bk and NÆj certify one another to be (exactly or
approximately) optimal for their respective problems.

The matroid push-relabel algorithm obeys the following invariants proposed by [24]. Here we say that an
element e is covered if it is contained in at least u(e) bases, and otherwise uncovered.

(I) ¸(e) = 0 for all elements e that are in (strictly) more than u(e) bases.

(II) For i = 1, . . . , k, and all levels j, Bi,Øj spans N>j.

(III) All uncovered elements e have ¸(e) Ø h for a parameter h œ ZØ0.
Given a configuration of bases and level assignments, the height is defined as the minimum level of any uncovered
element. That is, the height is the minimum value of h satisfying invariant (III).

The matroid push-relabel algorithm is composed of essentially two operations, which [24] calls basic operations.
1. Push (exchange): Given an uncovered element e, a base Bi, and an element d œ Bi,¸(e)≠1, such that

Bi ≠ d + e œ I, replace Bi with Bi ≠ d + e.1

2. Relabel / lift: Given an uncovered element e, increase ¸(e) to ¸(e) + 1.
To preserve invariant (II), an uncovered element e can only be relabeled if there is no push operation available.

As mentioned in section 1.2, identifying a feasible push for an element e is a computational bottleneck, in contrast
to flow. [24] proved that the push and relabel operations preserve invariants (I)–(III) which we assume as a fact.

3.2 Optimality via the matroid push-relabel invariants We will eventually develop an algorithm that
tries to obtain, as quickly as possible, a configuration of bases and levels satisfying invariants (I)–(III) above for a
given height parameter h œ N. First we show how particular values of h correlate with good solutions to the dual
min-max problems in eqs. (3.1) and (3.2). Here we have analyses for both exact and approximate solutions.

3.2.1 Exact solutions We first consider exact solutions to eqs. (3.1) and (3.2). Previously, [24] showed that
height �(n) su�ces to derive an exact solution in the more general setting of matroid union (with di�erent
matroids). For the specific case of k-fold matroid union we have the following stronger bound of r + 2.
Lemma 3.1. Suppose B1, . . . , Bk and ¸ : N æ RØ0 satisfy the invariants invariants (I)–(III) with height h > r + 2.
Then there exists a level j such that

ÿ

eœN
min{u(e), x(e)} Ø u(N<j) + k rank(NØj).

1
Note that d may be the same as e, inserted earlier when e was at a lower level.
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This certifies that B1 fi · · · fi Bk is a maximum solution and that NØj is a minimum dual solution.

Proof. As a function of j œ ZØ0, rank(NØj) is integral and nondecreasing from 0 to r. By the pigeonhole principle,
there exists a level j œ {1, . . . , h} such that rank(NØj) = rank(N>j). We will prove the claim for this choice of j.
By invariant (II)), Bi,Øj spans N>j , hence

kÿ

i=1
|Bi,Øj | Ø k rank(NØj) = k rank(N>j).

By invariant (I), no element in NØj is overpacked, so

kÿ

i=1
|Bi,Øj | Æ

kÿ

i=1
|Bi fl NØj | =

ÿ

eœNØj

min{x(e), u(e)}.

Lastly, by invariant (III), all elements in Nj are covered, so

u(N<j) =
ÿ

eœN<j

min{u(e), x(e)}.

Altogether we have

u(N<j) + k rank(NØj) Æ u(N<j) +
kÿ

i=1
|Bi,Øj | Æ

ÿ

eœN
min{u(e), x(e)},

as desired.

3.2.2 Approximate solutions We now turn to approximations. Here we show that height O(1/‘) su�ces to
obtain an (1 + ‘)-approximations for both the primal and dual problems.

Lemma 3.2. Let ‘ œ (0, 1). Suppose B1, . . . , Bk and ¸ : N æ RØ0 satisfy invariants (I)–(III) with height
h > 1/‘ + 2. Then there exists a level j such that

u(N<j) + k rank(NØj) Æ (1 + ‘)
ÿ

eœN
min{u(e), x(e)}.

This certifies that B1, . . . , Bk is a 1/(1 + ‘)-approximately maximum solution, and that NØj is a (1 + ‘)-
approximately minimum dual solution.

Proof. Since h > 1/‘ + 2, there exists an index j œ {1, . . . , h ≠ 1} such that

|B1,j | + · · · + |Bk,j | Æ ‘(|B1,Ø1| + · · · + |Bk,Ø1|).(3.3)

We will prove the claim for this choice of j. Since each Bi,Øj spans N>j (per (II)),

k rank(N>j) Æ
kÿ

i=1
|Bi,Øj |.

Additionally, by choice of j per eq. (3.3), we have
kÿ

i=1
|Bi,Øj | Æ

kÿ

i=1
|Bi,>j | + ‘

kÿ

i=1
|Bi,Ø1| Æ x(N>j) + ‘x(NØ1).

Now, since x(e) Æ u(e) for all e œ N>0 and u(e) Æ x(e) for all e œ N<h by invariants (I) and (III), we have

u(NÆj) + k rank(N>j) Æ u(NÆj) + x(N>j) + ‘x(NØ1) Æ (1 + ‘)
ÿ

eœN
min{u(e), x(e)},

as desired.
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3.3 A faster matroid push-relabel algorithm Having now established how the push-relabel invariants (I)–
(III) imply exact or approximate, we turn to the algorithmic question of computing a configuration that satisfies
the invariants for a prescribed value of height h. The running times we obtain, as a function of h, are described in
the following theorem. Below, we let OPT denote the common optimum value of eqs. (3.1) and (3.2).

Theorem 3.1. Given a matroid M = (N , I), integer capacities u : N æ N, and parameters k, h œ N, there is an
algorithm that, in running time bounded by O(n + h OPT log(kr)) calls to an independence oracle, computes bases
B1, . . . , Bk and levels ¸ : N æ ZØ0 that satisfy invariants (I)–(III) with height h.

As a point of comparison, [24] showed that O(nh) basic operations su�ce to obtain height h for the unweighted
setting (which does not account for other computational factors such as identifying basic operations). The rest of
this subsection is devoted to proving theorem 3.1.

As mentioned above, the algorithm initializes B1, . . . , Bk to be any arbitrary base. Here the greedy algorithm
can compute a base in time proportional to O(n) independence queries. Initially we set ¸(e) = 0 for all elements e.
In addition to invariants (I)–(III), we impose the following monotonicity condition on B1, . . . , Bk and ¸.

Definition 1. Let B1, . . . , Bk be a sequence of independent sets, and let ¸ : N æ ZØ0 assign integer levels to
each element. We say that B1, . . . , Bk is monotone decreasing (or just decreasing) if Bi,Øj spans Bi+1,Øj for all
indices i = 1, . . . , k ≠ 1 and all levels j œ ZØ0.

Given h, the goal of the algorithm is to reach a configuration where ¸(e) Ø h for all uncovered elements e. To
this end, the push-relabel algorithm (described by [24]) repeatedly selects an uncovered element e with ¸(e) < h,
and in principle, wants to either push e into some Bi to cover e, or relabel e and bring ¸(e) closer to h. For the
faster algorithm, we describe a new procedure, called greedy insertion, that employs binary search along both
the levels and the bases, to more aggressively place e in the first available base (so to speak). Some justification
is required to argue that this process simulates a legal sequence of push-relabel operations; we prove this after
describing the procedure.

Greedily inserting an element e: Let e œ N be uncovered with ¸(e) < h.

1. If e is spanned by Bk,h≠1 then set ¸(e) = h and return.
2. Otherwise identify the first level j such that Bk,>j does not span e.
3. Otherwise search for the first index i such that Bi,>j does not span e. Set ¸(e) = j + 1, and

exchange e into Bi for an element d œ Bi,j such that B ≠ d + e œ I.

All put together, the overall algorithm is as follows. We initially set all bases B1, . . . , Bk to an arbitrary base,
and ¸(e) = 0 for all e. As long as there is an uncovered element e with ¸(e) < h, we greedily insert e, which either
places e in a base, or sets ¸(e) = h.

It remains to analyze both the correctness and the running time of this algorithm. We start with correctness,
and in particular, we first show that greedy-insertion maintains invariants (I)–(III). The proof will require the
fact that the bases were in decreasing order prior to greedy insertion; hence we also prove that greedy insertion
maintains the decreasing order of bases.

Lemma 3.3. Suppose B1, . . . , Bk and ¸ : N æ ZØ0 satisfy invariants (I)–(III), and B1, . . . , Bk are in descending
order. Then greedily inserting an element e maintains invariants (I)–(III) and keeps the bases in decreasing order.

Proof. We first show that greedy insertion maintains the descending order. We need only consider the case where
we execute an exchange in step 3, as otherwise there is no change to the bases. Thus, suppose we exchange an
element e into a base Bi at level j, in exchange for an element d at level j ≠ 1. We let B1, . . . , Bk denote the
bases before the exchange. We let B

Õ
i

= Bi ≠ d + e denote the updated base after the exchange; this is the only
change to the sequence of bases. It su�ces to compare B

Õ
i

to the bases Bi≠1 and Bi+1 that precede and succeed
Bi (assuming Bi is not the first or last base, respectively). There is no need to verify levels j

Õ strictly larger than
j since these level sets do not change.

Consider first Bi≠1 (when i > 1). For any level j
Õ Æ j, we have

B
Õ
i,ØjÕ ™ Bi,ØjÕ fi {e}

(a)
™ span(Bi≠1,ØjÕ),
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and taking the span of both sides gives the desired subset inequality. Here (a) is because Bi,ØjÕ ™ span(Bi≠1,ØjÕ)
by the fact that B1, . . . , Bk is in descending order, and also because e œ span(Bi≠1,Øj) by choice of the index i.

Consider now Bi+1 (when i < k). At level j, we have

Bi+1,Øj

(b)
™ span(Bi,Øj)

(c)
™ span

!
B

Õ
i,Øj

"
,

and taking the span of both sides gives the desired subset inequality. Here (b) is by the existing descending order.
(c) is because B

Õ
i,Øj

= Bi,Øj + e. For levels j
Õ
< j, we have

Bi+1,ØjÕ
(d)
™ span(Bi,ØjÕ) ™ span(Bi,ØjÕ + e) = span

!
B

Õ
i,ØjÕ + d

" (e)= span
!
B

Õ
i,ØjÕ

"
,

and taking the span of both sides gives the desired subset inequality. Here (d) is by the descending order, (e) is by
monotonicity, (f) is because B

Õ
i,ØjÕ + d = Bi,ØjÕ + e, and (g) is because d is spanned by B

Õ
i,ØjÕ = Bi,ØjÕ + e ≠ d.

Next we show that greedy insertion maintains the push-relabel invariants (I)–(III). More directly, we will show
that greedy insertion simulates a legal sequence of basic operations; as mentioned, [24] has already proven that
basic operations maintain the invariants.

Given e, suppose we repeatedly try to push or relabel e until we either (a) execute a push, or (b) increase ¸(e)
to h. In event (a), of all possible choices of base Bi in which to exchange e at a fixed level, we specifically select
the base Bi with the smallest index i. This describes a valid sequence of basic operations, hence would preserve
invariants (I)–(III). We will show that greedy insertion simulates this process.

Fix an uncovered element e with ¸(e) = j. First, we claim that an element e can be pushed into a base Bi (at
that level) i� e is not spanned by Bi,Øj . Indeed, if Bi,Øj spans e, then all elements d œ Bi that could be exchanged
for e are in Bi,Øj , and in particular, not in Bi,j≠1 as required for a push. Conversely, if Bi,Øj does not span e, then
the unique circuit of Bi + e must contain an element d with d œ Bi,<j . Moreover, by invariant (II), Bi,Øj≠1 spans
e, so this circuit is also the unique circuit of Bi,Øj≠1 + e. This implies that d œ Bi,j , and can be exchanged for e.

Second, we observe that for all i, if e /œ span(Bi,Øj), then e /œ span(BiÕ,Øj) for all i
Õ Ø i. This follows from

the decreasing order of bases which implies that the sets span(Bi,Øj) forms a nested, descending sequence of sets.
This observation implies the following two points. First, if e œ span(Bk,Øj), then e is spanned by all Bi,Øj , and we
can safely increase ¸(e). Second, if e /œ span(Bi,Øj) for some Bi, then we can binary search for the base Bi with
smallest index i such that e /œ span(Bi,Øj).

Putting everything together, recall that we want to argue that greedy insertion simulates a push/relabel process
that repeatedly relabels e until either ¸(e) = h or we can exchange e into a base Bi for an element d œ Bi,¸(e)≠1,
at which point it makes the exchange into the first such Bi. As observed above, such an exchange is possible
i� e /œ span

!
Bi,Ø¸(e)

"
. Moreover, as observed above, the latter is possible i� e /œ span

!
Bk,Ø¸(e)

"
. Since the sets

Bk,Øj forms a nested, decreasing sequence of sets in j, and span(· · ·) is a monotonically increasing set function, we
can binary search for the first (smallest) index j such that e /œ Bk,Øj . This index j is exactly the level that the
simulated push-relabel process would have eventually set ¸(e) to. Assuming j < h, the simulated push-relabel
process would then identify the first Bi into which we can exchange e. By the observations above, this base Bi is
the same as that identified via binary search in step 3.

Lemma 3.3 establishes the correctness of the algorithm via the invariants (I)–(III). To complete the proof of
theorem 3.1 it remains to prove the running time bound.

Each instance where we greedily insert an uncovered element e can be charged to either (a) setting ¸(e) = h,
or (b) increasing the size of Bi,>j for some i œ [k] and 0 Æ j < h. Each element has its level set to h once, so there
are n insertions of type (a). Each insertion of type (a) takes one independence query. To bound the number of
insertions of type (b), we observe that for a fixed level j > 0, the sets Bi,>j across i form a feasible solution to
(3.1), hence have total size at most OPT. Since there are h levels, we have at most h OPT insertions of type (b).
So to recap, we have at most n greedy insertions of the first type and O(OPT h) of the second type.

The first type of greedy insertion takes one oracle call. Consider the second type. With binary search, the first
search in step 2 takes O(log h) probes. Better yet, by standard doubling tricks, we can adjust the binary search so
that the first search also takes at most O(1 + ¸) probes where ¸ is the number of levels the element moves forward.
We will be able to charge these o� to increasing the ranks of at least ¸ sets Bi,>j . The search in step 3 takes
O(log k) probes. In both cases, each probe takes one independence query.

When executing an exchange, we also need to identify an element d to remove quickly. To this end, we can
maintain a balanced binary tree over Bi,j in insertion order, and use binary search to quickly identify the last

Copyright © 2024
Copyright for this paper is retained by authors2316

D
ow

nl
oa

de
d 

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



possible choice of d. (This is the first element d such that all the elements in Bi,j≠1 before d, along with the
elements in Bi,Øj , do not span e). This takes log(r) independence queries. We note that step 3 is only invoked for
one of the OPT h queries of type (b). This gives the total running time.

This completes the presentation of the faster matroid push-relabel algorithm for integer capacities.

3.4 Putting it all together By combining the running time of theorem 3.1 with the required heights per
lemmas 3.1 and 3.2, we obtain the following running times for exact and approximate k-fold matroid union with
integer capacities.

Theorem 3.2. For integer capacities, a maximum k-fold matroid union and a dual solution can be computed in
O(n + OPT r log(kr)) independence queries.

Theorem 3.3. For integer capacities, a (1 ≠ ‘)-approximately maximum k-fold matroid union, and a (1 + ‘)-
approximately minimum dual solution, can be computed in time bounded by O(n + OPT log(kr)/‘) independence
queries.

4 Base Packing and Covering

We now turn to the problems of packing and covering a matroid in bases. The problems were briefly introduced in
section 1.1 and we now describe them in greater detail.

In the base packing problem, given an integer k, the goal is to compute k bases B1, . . . , Bk such that x(e) Æ u(e)
for all e œ N . We say that B1, . . . , Bk is a packing when x(e) Æ u(e) for all e. Edmonds [18] proved there is a
packing B1, . . . , Bk of k bases i�

u
!
S̄

"
Ø k(r ≠ rank(S))

for all sets S.
In the base covering problem, the goal is to compute k bases B1, . . . , Bk such that x(e) Ø u(e) for all e œ N .

Such a set of B1, . . . , Bk is called a covering. Edmonds [19] proved there is a covering B1, . . . , Bk of k bases i�

k rank(S) Ø u(S)

for all sets S ™ N .
Both of the dual characterizations above, for base packing and for base covering, can be obtained via the dual

characterization for k-fold matroid union of [55] that was presented in section 3.
As mentioned there, exact base packing and covering reduces directly to k-fold matroid union. For example,

for packing, there is a base packing of k bases i� there are k bases whose union has size kr. For covering, there is
a base covering of k bases i� there are k bases whose union has size n. The dual solutions given by the k-fold
matroid union algorithm certify infeasibility for base packing or covering when no packing or covering is found.

One might expect the approximation algorithms for k-fold matroid union to also be an approximation
algorithms for packing and covering, but this is not the case. Consider, for example, uncapacitated packing of k

bases. The approximation algorithm for k-fold matroid union will output k bases whose union has (1 ≠ ‘)-times
the maximum size of any union. If there exists k disjoint bases, then in particular the union has size at least
(1 ≠ ‘)kr total elements. However this is not the same as (1 ≠ ‘)k disjoint bases. A union of size (1 ≠ ‘)kr neither
confirms that there are at least (1 ≠ ‘)k disjoint bases, nor denies that there exist k disjoint bases.

Similar disparities arise for capacitated packing, and capacitated and uncapacitated covering. For all of these
problems, we give a slightly stronger analysis to obtain the desired form of approximation. The main di�erence
here is that height necessary to obtain (1 ± ‘)-approximations increases by a logarithmic factor. Consequently all
the running times for approximating packing and covering are a logarithmic greater than for approximating k-fold
matroid union.

4.1 Packing We first consider approximations for integer base packing, for which theorem 4.1 claimed a running
time of O(n log(1/‘) + n log(kr/‘)) independence queries. Below we prove that height O(log(n)/‘) height implies a
(1 ≠ ‘)-approximation. The running time in theorem 4.1 then follows from running the integer matroid push-relabel
algorithm for height O(log(n)/‘), by theorem 3.1.
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Lemma 4.1. Let ‘ œ (0, 1) and k œ N. Let B1, . . . , Bk be a family of k bases and ¸ : N æ ZØ0 an assignment of
levels satisfying the matroid push-relabel invariants (I)–(III) with height h = O(log(n)/‘). Then either (a) the
bases B1, . . . , Bk forms a feasible packing of k bases, or (b) (M, u) has no feasible packing of (1 + ‘)k bases.

Proof. Suppose that B1, . . . , Bk is not a proper packing. By invariant (I), this implies that N0 ”= ÿ. Now, u(NÆj)
is nondecreasing in j œ {0, . . . , h}, bounded below by 1 for j = 0 (as noted above) and at most n for j = h.
Consequently there must be a level j œ {1, . . . , h ≠ 1} such that u(Nj) < (‘/(1 + ‘))u(NÆj). Fix j as such. By
choice of j we have

u(NÆj) + (1 + ‘)k rank(N>j) < (1 + ‘)(u(NÆj) + k rank(N>j)) ≠ (1 + ‘)u(Nj)(4.4)

By invariant (III), all elements in NÆj are covered, hence

u(NÆj) Æ (1 + ‘)u(N<j) Æ (1 + ‘)x(NÆj).

By invariant (II), each Bi,Øj covers N>j , and none of the elements in NØj are overpacked, hence

k rank(N>j) Æ
kÿ

i=1
|Bi,Øj | = x(NØj).

Altogether we have

u(NÆj) + (1 + ‘)k rank(N>j) Æ (1 + ‘)x(N ) Æ (1 + ‘)kr.

Rearranging, we have

u(NÆj) Æ (1 + ‘)k(r ≠ rank(N>j)),

hence N>j certifies that the strength is at most (1 + ‘)k.

Applying the matroid push-relabel algorithm (theorem 3.1) with the height parameter h = O(log(n)/‘), per
lemma 4.1, gives the following (1 ≠ ‘)-approximation algorithm for base packing.

Theorem 4.1. For integer capacities, a (1 ≠ ‘)-approximate base packing, or a (1 + ‘)-approximate certificate of
infeasibility, can be computed in running time bounded by O(n + kr log(n) log(kr)/‘) independence queries.

4.2 Covering We now move on to covering problems, starting with integer covering. Here we show that
O(log(r)/‘) height su�ces to obtain a (1 + ‘)-approximation; note that this bound is (slightly) better than for
approximating integer packing above.

Lemma 4.2. Let k œ N and ‘ œ (0, 1). Let B1, . . . , Bk œ B be a collection of k bases and ¸ : N æ ZØ0 a set of
levels that satisfy the push-relabel invariants (I)–(III) with height h = O(log(r)/‘). Then either:

1. B1, . . . , Bk is a covering, or

2. For some index j, N>j certifies that more than (1 ≠ ‘)k bases are required in any covering.

Proof. Suppose B1, . . . , Bk is not a covering. Then there is at least one uncovered element; moreover, any uncovered
element is in NØh by invariant (III). As a function of j œ {0, . . . , h}, rank(NØj) is nonincreasing, bounded above
by r at j = 0, and bounded below by 1 at j = h because NØh is nonempty. Since h is at least O(log(r)/‘), there
must be a level j œ {0, . . . , h} such that rank(N>j) Ø (1 ≠ ‘) rank(NØj). Fix j as such. We have

u(N ) >

ÿ

eœN
min{u(e), x(e)}(4.5)

because B1, . . . , Bk is not a covering. Since elements in NØj are not overpacked, we have

ÿ

eœNØj

min{u(e), x(e)} =
ÿ

eœNØj

x(e) =
kÿ

i=1
|Bi,Øj |.
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By invariant (II) each Bi,Øj spans N>j hence

kÿ

i=1
|Bi,Øj | Ø k rank(N>j).

On the other hand, since all elements in N<j are covered, we have
ÿ

eœN<j

min{u(e), x(e)} = u(N<j).

Plugging back into (4.5) we now have

u(N ) > k rank(N>j) + u(N<j).

Finally, since rank(N>j) Ø (1 ≠ ‘) rank(NØj) by choice of j, we obtain

u(N ) > (1 ≠ ‘)k rank(NØj) + |N<j |.

Rearranging we have that (1 ≠ ‘)k rank(NØj) < |NØj |, which by the dual characterization above implies that more
than (1 ≠ ‘)k bases are required in any covering.

Plugging in h = O(log(r)/‘) to the matroid push-relabel algorithm (theorem 3.1), we obtain the following
approximation algorithm for base covering. (When plugging into theorem 3.1, we note that OPT = n, and n Æ kr.)

Theorem 4.2. For integer capacities, one can compute either a covering of (1 + ‘)k bases or a certificate of
infeasibility for any covering of (1 ≠ ‘)k bases in time bounded by O(n log(n) log(kr)/‘) independence queries.

5 Graphic Matroid Push-Relabel

In this section, we consider the matroid push-relabel framework for the special case of the graphical matroid; i.e.,
forests of an undirected graphs. This leads to algorithms for the several graph problems mentioned in section 1.1.

For a given graph G = (V, E), we denote m = |E| and n = |V |.

Theorem 5.1. Given a graph with integer capacities and integers k and h, in
O(m–(n) + OPT h(log(n) + log(k)–(n))) time, one can compute a sequence of k spanning trees T1, . . . , Tk and
levels ¸ : E æ ZØ0 satisfying the push-label invariants (I)–(III) with height h.

Proof. We implement the matroid push-relabel algorithm with the following data structures. We maintain, for
each spanning tree Ti, a link-cut tree [61], with edges labeled by their levels. Given an edge e, a tree Ti, we can
query for the biggest level j such that Ti,Øj spans e by querying for the minimum level edge on the cycle induced
by e. This also allows us to retrieve an edge d to exchange out in O(log n) time. We make a total of O(OPT h)
such exchanges.

We also maintain, for each base Bi and each level j œ {1, . . . , h}, a disjoint union data structure representing
the connected components of Bi,Øj . This allows us to query if an edge e is spanned by a forest Bi,Øj in –(n) time.
We make O(OPT h) total insertions into thee disjoint union data structures over all i and j. We make at most
O(m + OPT h log(k)) such queries.

Theorem 5.1, combined with the optimality conditions given by lemmas 3.1, 3.2, 4.1 and 4.2 for k-fold matroid
union, base packing, and base covering, both exact and approximate, give the follow running times for the graphic
matroid.

We start with the k-fold matroid union problem. For graphs it is more natural to state this as computing a
packing of forests F1, . . . , Fk of maximum total capacity.2 We have the following exact and approximate running
times.

2
As with trees, a set of forests is a packing if no element e appears in more than u(e) of the forests.
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Theorem 5.2. A maximum capacity packing of k forests, and the dual minimization problem, can be solved in
O(m–(n) + n OPT(log(n) + log(k)–(n))) time, where OPT denotes the optimum size.

Theorem 5.3. An (1 ≠ ‘)-approximately maximum capacity packing of k forests, and an (1 + ‘)-approximately
minimum dual solution, can be computed in O(m–(n) + OPT log(n)(log(n) + log(k)–(n))/‘) time.

For packing and covering spanning trees, in addition to the exact algorithms implied by theorem 5.2, we have
the following approximation algorithms.

Theorem 5.4. For integer-capacitated graphs, there is an algorithm that, in
O(m–(n) + nk(log(n) + log(k)–(n))/‘) time, outputs either a packing of k spanning trees, or a certificate
that the network strength is less than (1 + ‘)k.

Theorem 5.5. In integer-capacitated graphs, there is an algorithm that, in
O(m–(n) + nk log(n)(log(n) + log(k)–(n))/‘) time, outputs either a covering by k spanning trees, or a
certificate that the strength is less than (1 + ‘)k.

6 Minimum Cost Reinforcement

In this section we consider the minimum cost reinforcement problem, introduced in section 1.1. We primarily
discuss the more general matroid setting; the graphic setting follows as a special case.

Let M = (N , I) be a matroid with n elements and rank r, let u : N æ ZØ0 be a set of integer capacities, let
c : N æ R>0 be a set of real-valued costs, and let k œ N. The cost c(e) represents the cost of augmenting u(e) by
1. The goal is to compute the minimum cost augmentation of u to obtain strength k.

Our argument is closely tied to Cunningham’s algorithm [16], which was the first strongly polynomial time
algorithm for this problem. Cunningham focused on network strength for undirected graphs and here we describe
a straightforward generalization of his algorithm to matroids.

1. Compute a maximum point y œ kPI subject to y Æ u, via k-fold matroid union.

2. Greedily extend y to an integral point y + z in kPI , where z œ ZN
Ø0 is computed as follows. Initially, we set

z(e) = 0 for all elements e. Then for each element e in increasing order of costs, set z(e) as large as possible
subject to y + z œ kPI . The maximum value for z(e) can be obtained by binary search, where each probe
invokes a k-fold matroid union algorithm to see if the candidate value for z(e) is feasible.

We refer to [16] for the full justification of this algorithm. Note that the algorithm requires many calls to a matroid
partition algorithm; first to compute the initial point y, and then logarithmically many times for every element e

to obtain the right z(e).
In what is perhaps a surprising coincidence, the k-fold matroid union algorithm developed in section 3 actually

solves the reinforcement problem in one shot (so to speak). There is just one minor adjustment: the initial bases
(which was allowed to be arbitrary in section 3) must all be set to the minimum cost base which we denote B0.
Recall that the push-relabel algorithm applied to a set of integer capacities u and a parameter k produces a set of
k bases B1, . . . , Bk that maximizes

ÿ

eœN
min{u(e), x(e)},

where x(e) denotes the number of bases Bi containing e. The vector y defined by y(e) = min{u(e), x(e)} (for all e)
fulfills step 1 of Cunningham’s algorithm. The key claim, proven below, is that if the bases in the k-fold matroid
union algorithm are all initially set to the minimum cost base B0, then at the end of the algorithm, x describes
y + z for an optimum reinforcement solution z. Thus z can be read o� directly from x and y. This gives an overall
running time that is exactly the same as for k-fold matroid union. Here we have two speed-ups compared to [16] –
one from a faster k-fold matroid union algorithm, and the second from omitting the second stage altogether. The
following lemma formalizes the key claim.

Lemma 6.1. Let B0 be the minimum cost base w/r/t c, and consider the exact push-relabel k-fold matroid union
algorithm adjusted so that the initial bases are all set to B0. Let B1, . . . , Bk be the k bases output by the push-relabel
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matroid-partition algorithm, and let x œ ZN
Ø0 be the vector where x(e) is the number of bases Bi containing e for

each e œ N . Define z œ RN
Ø0 by

z(e) = min{0, x(e) ≠ u(e)} for e œ N .

Then z is a minimum cost reinforcement.

Proof. In addition to B1, . . . , Bk and x as described above, let ¸ be the set of levels produced by the capacitated
k-fold matroid union algorithm. Then B1, . . . , Bk, x, and ¸ satisfy invariants (I)–(III) from section 3.1. Let
C = {e : x(e) > u(e)}. We have ¸(e) = 0 for all e œ C by invariant (I).

Claim 1. C ™ B0.

To this end, observe that initially we have x(e) > u(e) only for elements in the initial base, e œ B0. Thereafter, a
coordinate x(e) is only increased if x(e) < u(e), and never exceeding u(e).

Claim 2. For any element e œ B0, and any base Bi œ {B1, . . . , Bk}, we have either e œ Bi, or e œ span(Bi \ C).

Fix any element e œ B0 and a base Bi from B1, . . . , Bk. If e /œ Bi, then it was exchanged out by an element d

with ¸(d) = 1, such that Bi,Ø1 = Bi,>0 spans e. That is, if e /œ Bi, then e œ span(Bi,>0). Since C ™ N0, we have
Bi,>0 ™ Bi \ C, hence e œ span(Bi \ C).

Now, let y be the pointwise minimum of x and u; y is maximum in kPI subject to y Æ u. Recall that a
minimum cost base can be produced by a greedy algorithm adding feasible elements in nondecreasing order of cost.
Number the elements N = {e1, e2, . . .} in nondecreasing order of cost, breaking ties so that a greedy algorithm
processing elements in this order produces B0. In Cunningham’s greedy augmentation algorithm, a minimum cost
reinforcement z is obtained by processing the ei’s in order, taking setting z(ei) to the maximum quantity subject
to y + z œ kPI . (This equals the minimum quantity subject to (y + z)/k spanning ei in the independent set
polytope PI , and in Cunningham’s algorithm it is identified via binary search and a call to k-fold matroid union
for each probe). Cunningham has already shown that this algorithm produces an optimum solution. Therefore it
su�ces to prove the following claim.

Claim 3. Cunningham’s greedy augmentation selects z(e) = max{x(e) ≠ u(e), 0} for all e œ N .

We analyze each element in the greedy order. Consider the ith iteration (where i œ [n]), in which the greedy
algorithm processes ei. We assume by induction that (y + z)/k spans {e1, . . . , ei≠1} (in PI). (The base case, where
i = 1, holds vacuously.) If ei /œ B0, then ei œ span({ej œ B0 : j < i}), so ei is spanned by (y + z)/k.

Now suppose ei œ B0. We claim that the greedy augmentation algorithm sets z(ei) = x(ei) ≠ u(ei). To see
this, let z

Õ be the vector obtained from z by setting z
Õ(ei) = x(ei) ≠ u(ei). We know that y + z

Õ is feasible because
y + z

Õ Æ x and x œ kPI . To show that (y + z
Õ)/k spans ei, we first observe that one can pack into y + z

Õ the k

independent sets

B
Õ
j

def= Bj \ (C ≠ ei) for j = 1, . . . , k.

We claim that B
Õ
j

spans ei for each j which shows that (y + z
Õ)/k spans ei. We have two cases. In the first case, if

ei œ B
Õ
j
, then of course ei œ span

!
B

Õ
j

"
. In the second case, if ei /œ B

Õ
j
, then ei /œ Bj . By claim 2, ei œ span(Bj \ C).

Since B
Õ
j

™ Bj \ C, ei œ B
Õ
j
.

This shows that the Cunningham’s greedy augmentation algorithm takes z(ei) = x(ei)≠u(ei). This establishes
the claim, and completes the proof.

7 Approximations for problems with general capacities

This section develops fast approximation algorithms for matroid problems for general capacities. All of the
algorithms in the section is based on using randomized rounding to reduce problems with real-valued capacities and
a real-valued parameter k to problems with integer capacities and an integer parameter k on the order of ln(n)/‘

2,
with high probability. We then apply the approximate push-relabel algorithms developed in prior sections which
are particularly well suited to the reduced setting.

One cost of this convenience is that we will no longer obtain primal solutions for the original input. However
we will still be able to obtain dual solutions which at least provide a certificate for one side of the corresponding
decision problem.
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7.1 Randomized rounding of real-valued capacities Let M = (N , I) be a matroid with n vertices and
rank r, and let u : N æ R>0 be a set of capacities. Let k > 0 be a parameter specified by the context. Let · > 0
also be a given parameter with · Æ ck‘

2
/ ln(n) for a su�ciently small constant c. Decreasing c as needed, we may

assume that k/· is an integer without loss of generality. Let ũ œ ZN
Ø0 be the a randomized set of integral capacities

by randomly rounding u/· to an integral vector. That is, for each element e œ N , we independently set

ũ(e) =
I

Áu(e)/·Ë with probability u(e)/· ≠ Âu(e)/·Ê,

Âu(e)/·Ê with (remaining) probability Áu(e)/·Ë ≠ u(e)/·.

The scaled down capacitated matroid (M, u) have some immediately appealing properties. First we have
E[ũ(e)] = u(e)/· for all e œ N . By linearity of expectation we also have E[ũ(S)] = u(S)/· for all sets S. Second,
(M, ũ) has an integer capacities, that are (in expectation) a Õ(k)-factor smaller than (M, u). We are interested in
applying this randomized rounding for problems such as maximizing the total capacity covered by a packing of k

independent sets, packing k bases, or covering by k bases, and these problem-specific values of k are used for the
value of k in randomly rounding to ũ. Therefor it is helpful that k/· is an integer for the corresponding scaled
down problems over (M, ũ). Additionally, for all these problems, k is a natural upper bound or near-upper bound
on the capacities, hence ũ will have relatively small capacities bounded above by O

!
ln(n)/‘

2"
in expectation (and

with high probability).
We would like to show that the (M, ũ) is (with high probability) a good representative sample of (M, u)

for these problems. Now, while ũ reflects u/· in expectation, in general the values ũ(e) for e œ N and ũ(S) for
S ™ N are too numerous to assume they are all concentrated at their expectation in expectation. (In fact, a value
ũ(S) will never be close to its expectation, multiplicatively speaking, when u(S) is significantly smaller than · .)
Nonetheless we have the following theorem which leverages the dual characterizations of these problems to show
that (M, ũ) is a good (problem-specific) representation of (M, u) with high probability.

Theorem 7.1. Given the setup described above, the following all hold with high probability.

(i) Letting M denote the maximum total capacity of any fractional packing of k independent sets in (M, u), and
M̃ denote the maximum total capacity of any fractional packing of k/· independent sets in (M, ũ), we have--M̃ ≠ M/·

-- Æ ‘M/·.

(ii) If (M, u) can fractionally pack k bases, then (M, ũ) can pack at least (1 ≠ ‘)k/· bases.

(iii) If (M, u) cannot fractionally pack k bases, then (M, ũ) cannot pack (1 + ‘)k/· bases.

(iv) If (M, u) can be covered by k bases, then (M, ũ) can be covered by (1 + ‘)k/· bases.

(v) If (M, u) cannot be covered by k bases, then (M, ũ) cannot be covered by (1 ≠ ‘)k/· bases.

Proof. Recall that a set S ™ N is closed if S = span(S). We claim that with high probability, we have

|u(S) ≠ · ũ(S)| Æ ‘

2(u(S) + k rank(S)) and |u(S̄) ≠ · ũ(S̄)| Æ ‘

2(u(S̄) + k rank(S))(7.6)

for all closed sets S (simultaneously).
For ease of notation, call a closed set S bad if ũ(S) or ũ(S̄) violates the inequalities above. We want to prove

that there are no bad closed sets with high probability.
First, fix a closed set S with rank(S) = q. Consider the first (leftmost) of the inequalities we seek. By standard

Cherno� inequalities, we have

P

Ë
|ũ(S) ≠ u(S)/· | >

‘

2(u(S)/· + kq/·)
È

Æ 2e
≠‘

2
kq/4· = 2n

≠q/4c
.

Likewise the second inequality (for ũ(S̄)) has probability of error is at most 2n
≠q/4c. Taking the union bound,

P[S is bad] Æ 4n
≠q/4c Æ n

≠c1q
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for a su�ciently large constant c1.3
Now, fix q. Each closed set S is defined by any base of S, which consists of q elements. Therefore, there are at

most n
q closed sets of rank q. Taking the union bound over all sets S of rank q,

P[any closed set of rank q is bad] Æ 2n
q
n

≠c1q Æ n
≠c2q

for a su�ciently large constant c2.
Finally, taking the union bound over all ranks q œ [r], we have

P[any closed set is bad] Æ
rÿ

q=1
n

≠c2q Æ n
≠c3q

for a su�ciently large constant c3. This proves the claim.
For the rest of the proof we assume the high probability event where the inequalities in (7.6) hold for all closed

S. We will use these inequalities to prove each of results (i)–(v).
Consider first result (i). Recall that M equals the minimum of u(S̄) + k rank(S) over all sets S, and similarly

for M
Õ except with respect to ũ and k/· . Since replacing S with its closure span(S) can only decrease this quantity,

it su�ces to consider only the closed sets.
For all closed sets S

ũ(S̄) + k

·
rank(S) Ø 1 ≠ ‘

·
u(S̄) ≠ ‘k

·
rank(S) + k

·
rank(S)

= 1 ≠ ‘

·
(u(S̄) + k rank(S)) Ø (1 ≠ ‘)M

·

for all closed sets S. Thus M
Õ Ø (1 ≠ ‘)M/· with high probability.

Next we upper bound M
Õ. There exists a set S be a closed set such that M = u(S̄ + k rank(S)). We have

M
Õ Æ ũ(S̄) + k

·
rank(S) Æ 1 + ‘

·
u(S̄) + ‘k

·
rank(S) + k

·
rank(S)

= 1 + ‘

·
(u(S̄) + k rank(S)) Æ (1 + ‘)M

·
,

as desired. This proves result (i).
Consider now results (ii) and (iii). By the matroid base packing theorem, the packing number of (M, u) is at

least k i� for all sets S ™ N ,

u(S̄) Ø k(r ≠ rank(S)).

Thus the packing number is exactly k if the inequality holds for all S, and is tight for some set S with rank(S) < r.
Now consider (M, ũ). By theorem 7.1, with high probability, we have

ũ(S̄) Ø 1 ≠ ‘/2
·

u(S) ≠ ‘k

2·
rank(S) Ø (1 ≠ ‘/2)k

·
(r ≠ rank(S)) ≠ ‘k

2·
rank(S)

Ø (1 ≠ ‘)k
·

(r ≠ rank(S)),

so the packing number is at least (1 ≠ ‘)k/· . This proves result (ii).
For the opposite direction in result (iii), we know there exists a closed set S with rank(S) < r and

u(S̄) = k(r ≠ rank(S)). Note that u(S̄) Ø k. By the Cherno� inequality we have

P[ũ(S̄) Ø (1 + ‘)u(S̄)/· ] Æ e
≠‘

2
u(S̄)/3· Æ e

≠‘
2
k/3· = n

≠1/3c
.

(We point out that 1/3c represents an arbitrarily large constant.) Thus with high probability we have

ũ(S̄) Æ (1 + ‘)u(S̄)/· = (1 + ‘)k
·

(r ≠ rank(S))

3
By which we mean that c1 can be made an arbitrarily large constant by making c su�ciently small.
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and so the packing number of (M, ũ) is at most (1 + ‘)k/· . This proves result (iii).
Lastly we prove results (iv) and (v). Recall that (M, u) can be fractionally covered by k bases i� for all sets

S ™ N , u(S) Æ k rank(S). Since the capacities are nonnegative, it su�ces to verify the inequality u(S) Æ k rank(S)
for all closed sets.

Suppose (M, u) can be fractionally covered by k bases. We have

ũ(S) Æ
1

1 + ‘

2

2
u(S)

·
+ ‘k rank(S)

2·
Æ (1 + ‘)k

·
rank(S)

for all closed sets S. Thus (M, ũ) can be fractionally covered by (1 + ‘)k/· bases. This proves result (iv).
For result (v), suppose (M, u) cannot be fractionally covered by less than k bases. Then there is a closed set

S such that u(S) Ø k rank(S). We have

ũ(S) Ø 1 ≠ ‘/2
·

u(S) ≠ ‘k

2·
rank(S) Ø (1 ≠ ‘)k

·
u(S).

Thus (M, ũ) cannot be fractionally covered by (1 ≠ ‘)k/· bases. This establishes result (v) and completes the
proof.

Remark 7.1. As mentioned above, for approximating the base packing problem specifically, [51] already provides a
lemma that allows us to reduce real-valued capacities to small integer capacities. The construction in [51] is slightly
di�erent; in [51], each random capacity ũ(e) is sampled independently from a Poisson distribution of mean p · u(e),
for a parameter p > 0 with p Ø c‘

2
/k ln(n) for a su�ciently large constant c. Overall the net e�ect is the same as

the rounding-based construction for ũ that we analyze here. Despite the overlap with [51] we include the proofs
of results (ii) and (iii) as we find them interesting for the following reasons. First, the proof techniques here are
unified with the proofs for the other matroid problems in results (i), (iv) and (v). (Conversely, the proof techniques
in [51] did not seem as useful for these other problems.) Second, the proofs here are di�erent and arguably simpler
than in [51] as it does not depend on the random contraction algorithm.

7.2 Maximum capacity packings of independent sets and forests

Theorem 7.2. For real-valued capacities, a (1 ≠ ‘)-approximation to the value of the maximum (fractional) k-fold
matroid union, along with an (1 + ‘)-approximately minimum dual solution, can be computed with high probability
in O

!
n + (OPT /k) log(n) log

!
r log(n)/‘

2"
/‘

3"
randomized time. (Note that OPT /k Æ r.)

Proof. We apply theorem 7.1 to reduce the problem to integer capacities and optimum value (OPT /k) log(n)/‘
2

with high probability. We then apply the (1 ≠ ‘)-approximation algorithm for integer capacities from theorem 3.3.
The running time follows from theorem 3.3.

The same reduction but for graphic matroids gives the following.

Theorem 7.3. In an undirected graph with real-valued edge capacities, an (1 ± ‘)-approximation to the
maximum total capacity that can be covered by a fractional packing of k forests can be computed in
O

!
m–(n) + (OPT /k) log2(n)(log(n) + log(k)–(n))/‘

3"
randomized time. (Note that OPT /k Æ n ≠ 1.)

7.3 Matroid base packing, matroid membership, and network strength

Theorem 7.4. For real-valued capacities, an (1 ± ‘)-approximation to deciding if the matroid strength
is (greater or less than) k can be computed with high probability in randomized time bounded by
O

!
n + r log2(n)(log log(n) + log(1/‘))/‘

3"
independence queries.

Proof. By either theorem 7.1 or the techniques in [51], we can reduce the problem to packing k/· bases into integer
capacities, with high probability. We then apply the (1 ± ‘)-approximation algorithm for packing k/· = O

!
ln(n)/‘

2"

bases with integer capacities given by theorem 4.1. The running time follows from theorem 4.1.

The approximate algorithm for deciding matroid strength can be extended to an approximation algorithm
for approximating the matroid strength via binary search. Here we present a modified algorithm that carefully
modifies the error parameters to reduce the standard logarithmic overhead.
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Theorem 7.5. For real-valued capacities between 1 and U , an (1 ± ‘)-approximation to the matroid strength can
be computed in time bounded by O

!
(n + r log(n) log(r)) log(nU/r) + r ln(n) ln(r/‘)/‘

3"
independence queries.

Proof. At the outset, we know that the matroid strength is between 1 and nU/r.
Now, for i œ ZØ0, let ‘i = 2≠i. A (1 + ‘0)-approximation to the strength can be obtained with high probability

by combining a binary search of depth O(log(nU/r)) with the approximate decision algorithm in theorem 7.4 with
error parameter a constant factor small than ‘0. For i Ø 1, given a (1 + ‘i≠1)-approximation for the strength, we
can compute a (1 + ‘i)-approximation via a binary search of constant depth, with each probe making a call to
theorem 7.4 with error parameter �(‘i). Eventually we obtain a (1 + ‘i)-approximation where ‘i = 2≠i is at most
the input error parameter ‘, as desired.

We now bound the running time. The first set of log(n) calls to theorem 7.4 with constant error parameter
takes

O(n log(nU/r) + r log(n) log(r) log(nU/r))-query(7.7)

time. Thereafter we have a constant number of calls to theorem 7.4 for each ‘i between 1 and ‘/2. For the leading
O(n) term, all these calls add up to O(n log(1/‘)) work which is dominated by O(n log(n)) above. For the second
term of the form r ln(n) ln(r/‘)/‘

3, the sum over all ‘i’s is dominated by the smallest ‘i which is �(‘), given

O
!
r ln(n) ln(r/‘)/‘

3"
(7.8)

work in total. Summing together eqs. (7.7) and (7.8) gives the claimed running time.

7.4 Matroid base covering, matroid membership, and arboricity Fractional base covering can be posed
as a decision problem where, given a capacitated matroid and an additional parameter k, the goal is to decide if the
lower capacities can be fractionally covered by k bases. The important special case of k = 1 is equivalent to testing
if a fractional point x œ RN

Ø0 lies in the independent set polytope. This problem is called matroid membership.
For deciding fractional base covering, we may assume that k = 1 without loss of generality. For a fixed error

parameter ‘ œ (0, 1), a (1 ± ‘)-approximation to the matroid membership problem is defined as a correct output
that either (a) the matroid can be covered by 1 + ‘ bases, or (b) the matroid can be covered by 1 ≠ ‘ bases. Note
that either option is allowed when the fractional covering number is between 1 ≠ ‘ and 1 + ‘. We obtain the
following running time for approximating matroid membership.

Theorem 7.6. An (1 ± ‘)-approximation to the matroid membership problem can be computed with high probability
in O

!
n + r ln(n) ln(r/‘)/‘

3"
randomized time.

Proof. [Proof sketch] By theorem 7.1, we can reduce (1 ± ‘) matroid membership (with real capacities) to (1 + ‘)-
approximate integral base covering with k = O

!
ln(n)/‘

2"
bases. The running time now follows from theorem 4.2.

For graphic matroids, recall that the fractional covering number is called the arboricity. The following matches
the theorem for matroid membership above except for graphic matroids. The reduction is the same except now we
apply the corresponding algorithm for the graphic matroid.

Theorem 7.7. An (1 ± ‘)-approximation to deciding if a point is in the forest polytope can be computed with high
probability in O

!
m–(n) + n ln(n)(log(n) + log(log(n)/‘)–(n))/‘

3"
randomized time.

One may also want to find the maximum value k for which a capacitated matroid can be covered by k fractional
bases. The following uses theorem 7.6 as a black box and is slightly faster than one obtains by directly plugging
into a straightforward binary search.

Theorem 7.8. For real-valued capacities, an (1 ± ‘)-approximation to the minimum k by which a matroid
can be covered by k fractional bases can be computed with high probability in running time bounded by
O

!
(n + r ln(r)) ln(n) + r ln(n) ln(r/‘)/‘

3"
independence queries.
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Proof. At the outset, we know that the arboricity is between the maximum capacity of any element and the sum
of capacities over all elements, which are within a factor n of each other.

Similar to theorem 7.5, for i œ ZØ0, let ‘i = 2≠i. A (1 + ‘0)-approximation to the strength can be obtained
with high probability by combining a binary search of depth O(log(n)) with the approximate decision algorithm in
theorem 7.6 with constant error parameter. For i Ø 1, given a (1 + ‘i≠1)-approximation for the strength, we can
compute a (1 + ‘i)-approximation with a binary search of constant depth. Each probe making a call to theorem 7.6
with error parameter �(‘i). Eventually we obtain a (1 + ‘i)-approximation where ‘i = 2≠i is at most the input
error parameter ‘, as desired.

We now bound the running time. The first set of log(n) calls to theorem 7.6 with constant error parameter
take

O(n log(n) + r log(n) log(r))(7.9)

time. Thereafter we have a constant number of calls to theorem 7.6 for each ‘i between 1 and ‘/2. For the leading
O(n) term, all these calls add up to O(n log(1/‘)) work which is dominated by O(n log(n)) above. For the second
term of the form r ln(n) ln(r/‘)/‘

3, the sum over all ‘i’s is dominated by the smallest ‘i which is �(‘), hence

O
!
r ln(n) ln(r/‘)/‘

3"
(7.10)

work in total. Adding together eqs. (7.9) and (7.10) gives the claimed running time.

Applying the same modified binary search to the graphic matroid gives the following randomized algorithm
for estimating the arboricity of a graph.

Theorem 7.9. An (1 ± ‘)-approximation to the strength of a graph can be computed with high probability in
O

!
m log(n)–(n) + n log(n)(log(n) + (log log(n) + log(1/‘))–(n))/‘

3"
randomized time.

8 Faster exact algorithms via augmentation

In this final section, we describe an augmenting path subroutine for k-fold matroid union and use it obtain a faster
exact algorithms when r Ø k

1+o(1).

Lemma 8.1. A packing of k independent sets produced by the (1 ≠ ‘)-approximate k-fold matroid union data
structure can be extended to an optimum solution in time bounded by O(min{n + OPT log(r), rk log(kr)}) queries
per additional element.

Combining lemma 8.1 with the (1 ≠ ‘)-approximation algorithm, for appropriate choice of ‘, leads to the
following running time which is faster in the regime where r Ø k

1+o(1). In particular, in the unweighted setting
where OPT Æ kr Æ n, we have a subquadratic upper bound of Õ

!
n

3/2"
independence queries.

Theorem 8.1. A maximum capacity packing of k independent sets can be computed in time bounded by
O

1
n + OPT


nÕ log(kr)

2
independence queries, where n

Õ = min{n + OPT log(r), rk log(kr)}.

Proof. Let ‘ > 0 be a parameter to be determined. A (1 ≠ ‘) OPT-capacity packing can be computed in
O(n + OPT log(kr)/‘) independence queries. This can be augmented to an optimal solution in O(nÕ + OPT log(r))
time per augmentation. Thus the total running time is

O(n + OPT log(kr)/‘ + ‘ OPT(nÕ + OPT log(r))).

The last two terms are balanced by taking ‘ =


(nÕ + OPT log(r))/ log(kr) gives the claimed running time. Here
we note that a constant factor approximation for OPT can be obtained by running the approximation matroid
union algorithm with constant ‘, and this su�ces to balance the terms up to constant factors.

It remains to prove lemma 8.1.
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8.1 Initialization from matroid push-relabel We need to initialize our algorithm with a packing of k

independent sets I1, . . . , Ik, whereas the k-fold matroid union algorithm from section 3 directly produces k bases
B1, . . . , Bk. Such a packing I1, . . . , Ik with the same total capacity can be easily obtained from B1, . . . , Bk by
dropping overpacked elements from some of the bases until there are no overpacked elements. However to preserve
certain useful structures of B1, . . . , Bk we carefully remove overpacked elements from the bases in the following
greedy fashion.

Initially, we set I1 = B1, . . . , Ik = Bk. While there is an overpacked element e (with respect to I1, . . . , Ik), we
remove e from then independent set Ij of maximum index j. It is easy to see that at termination there are no
overpacked elements while the objective value is preserved. By removing overpacked elements in such a fashion we
also gain the following critical properties which we now define.

Definition 2. Let I1, . . . , Ik be a packing of k independent sets. We say that I1, . . . , Ik is maximal if for all
uncovered elements e and all independent sets Ii we have e œ Ii. We say that I1, . . . , Ik are in decreasing order if
their spans are; that is, Ii+1 ™ span(Ii) for i = 1, . . . , k ≠ 1.

Lemma 8.2. Let I1, . . . , Ik be a packing of k independent set obtained from the bases B1, . . . , Bk output by the
k-fold matroid union push-relabel algorithm in the greedy fashion described above. Then:

(a) I1, . . . , Ik is a maximal packing.

(b) I1, . . . , Ik are in decreasing order.

Proof. Fix the configuration of B1, . . . , Bk and ¸ : N æ ZØ0 at the end of the matroid push-relabel algorithm.
We first claim that any overpacked element e has ¸(e) = 0. Indeed, initially all elements have ¸(e) = 0, and

elements can only be relabeled when they are uncovered. Meanwhile, an element can only be overpacked by the
initial configuration, so an element that is overpacked at termination was overpacked – and never uncovered – all
along.

Now, each Ii will contain all elements from Bi that are not overpacked. Since overpacked elements have level
0, we have Bi,Ø1 ™ Ii ™ Bi for all i. Meanwhile, any uncovered element has level > 1. By invariant (II), for all
uncovered elements e we have

e œ N>1 ™ span(Bi,Ø1) ™ span(Ii)

This establishes property (a).
Next we show property (b), which claims that the independent sets are in decreasing order. For each

independent set Ii, we can express Ii as the disjoint union of Bi,Ø1 and Ii,0
def= Ii fl Bi,0. For each index i œ [k ≠ 1],

we have Bi+1,Ø1 ™ span(Bi,Ø1) by the decreasing order of bases (see defintion 1) and Ii+1,0 ™ Ii,0 because
overpacked elements are removed from the independent sets of maximum index. Thus

Ii+1 = Bi+1,Ø1 fi Ii+1,0 ™ span(Bi,Ø1) fi Ii,0 ™ span(Ii),

as desired.

8.2 Greedy sparsification Before proceeding to describe the augmenting path algorithm, we point out that
by techniques by [51], one can assume n Æ O(kr ln(r)).

Lemma 8.3. Let I1, . . . , I¸ be a maximal packing of ¸ Ø k(1 + ln(r)) sets. Then the size of the maximum k-fold in
the (smaller) capacitated matroid induced by I1, . . . , I¸ is the same as in the input matroid.

Proof. [Proof sketch] The proof is essentially the same as [51] which focused on base packing instead. In the proof,
one replaces the role of dual characterization for base packing [18] with the dual characterization for matroid union
[55].

[51] described how to construct such a packing greedily in O(n + kr ln(r)) independence queries. The same
construction extends here except we start with the maximal packing I1, . . . , Ik given by the push-relabel algorithm
and then extend it greedily. Thus we have the following.

Lemma 8.4. With a running time overhead of O(min{n, kr ln(r)}) independence queries, we may assume that
n Æ O(kr ln(r)).
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8.3 Setting up the auxiliary graph At a high-level, we have a packing of independent sets I1, . . . , Ik, and
the immediate goal is to increase their total size. However it is not as simple as finding an uncovered element
e to add to a set Ik — all the uncovered elements are spanned by all the independent sets because I1, . . . , Ik is
maximal. To extend the total size of I1, . . . , Ik we may have to shu�e many of the elements from among the
I1, . . . , Ik to make room for one more element.

As is well-known, such an augmentation can be found be searching for a path in a directed auxiliary graph
where each arc encodes a local exchange such as replacing one element with another in an independent set Ii, or
moving an element from one Ii to another. Here we describe the auxiliary graph which is standard [39, 52].4 We
have two auxiliary vertices s and t which will act as the beginning and end of our search. For each element e, we
have k auxiliary vertices e

(1)
, . . . , e

(k). Each e
(i) represents e in relation to Bi as will be made clear by the arcs

which we now describe. We have four types of arcs.

1. (s, e
(i)) where e is uncovered and e

(i)
/œ Bi. This arc represents trying to exchange e

(i) into Bi.

2. (e(i)
, d

(i)) where d œ Bi, e /œ Bi, and Bi ≠ d + e is independent. This arc represents exchanging e for d in Bi.

3. (d(i)
, d

(j)) where d œ Bi, d œ span(Bj) \ Bj , and d is covered. This arc represents removing d from Bi and
using the freed up capacity to initiate an exchange for d into Bj .

4. (e(i)
, t) where e is not spanned by Bi. This arc represents inserting e into Bi.

In total, the auxiliary graph has O(nk) vertices, and at most O(nrk) arcs.
Paths from s to t in this graph have a very specific graph. Between s and t, the path consists of auxiliary

vertices of the form e
(i) that alternate between those where e /œ Bi and where e œ Bi. There are always an odd

number of such internal vertices, with one more of the former type. Arc-wise, the first arc is of type 1, the last
arc is of type 4, and in-between the arcs alternate between type 2 and type 3, starting with type 2 and ending
with type 2. All put together, an (s, t)-path in the auxiliary graph above corresponds to a sequence of exchanges,
plus one final insertion, where the net e�ect is to increase the total size of I1, . . . , Ik by 1. We call such a path an
augmenting path if it maintains feasibility. That is, the sets I1, . . . , Ik remain independent, and we do not overpack
elements.

(s, t)-paths are not necessarily augmenting paths. On one hand, it is easy to see that these operations will not
violate any capacity constraints, since any time a covered element is inserted into a set, it is preceded by removing
the same element from another set. As per the feasibility of the I1, . . . , Ik, while each exchange (encoded by an
arc of type 2) would individually maintain the independence of each set, all the exchanges taken together do not
necessarily maintain independence. However, the following criteria outlines conditions in which a sequence of
exchanges to the same independent set does maintain independence. This criteria is standard and have long been
used to justify matroid intersection and partition algorithms. (Here the wording is from [17]).

Fact 8.1. Given a matroid M = (N , I), let I œ I, and let e1, . . . , /œ I, d1, . . . , dp œ I, and optionally ep+1 /œ I be
distinct elements such that:

(a) For i = 0, . . . , p, I ≠ di + ei œ I.

(b) For 0 Æ j < i Æ p, I ≠ di + ej /œ I.

(c) I + ep+1 œ I (when including ep+1).

Then I
Õ = I ≠ d1 ≠ · · · ≠ dp + e1 + · · · + ep+1 œ I.

The exchanges corresponding to an (s, t)-path in the auxiliary graph can only violate property (b) out of
the three properties in fact 8.1. Below, we design a subroutine that, given an (s, t)-path in the auxiliary graph,
extracts a subpath that is an augmenting path, by e�ciently identifying and removing violations to property (b),
as follows.

Lemma 8.5. Given an (s, t)-path of length ¸ in the auxiliary graph, one can compute an augmenting subpath in
running time bounded by O(¸ log(r)) independence queries.

4
This auxiliary graph can also be interpreted through the lens of matroid intersection with some modifications.
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Proof. Fix an independent set Ii. Suppose the path encodes inserting e1, . . . , ep /œ Ii in exchange for d1, . . . , dp œ Ii,
respectively and in sequence. This means that the auxiliary arcs (e(i)

j
, d

(i)
j

) for j = 1, . . . , p appear in the auxiliary
path in that order. If Ii ≠ d1 ≠ · · · ≠ dp + e1 + · · · + ep /œ I, then by fact 8.1, there must be indices 1 Æ j1 < j2 Æ p

such that Ii ≠ dj2 + ej1 œ I. This exchange implies
!
e

(i)
j1 , d

(i)
j2

"
is an arc in the auxiliary graph, and so we can

shorten our (s, t)-path by replacing all arcs between (and including) (e(i)
j1 , d

(i)
j1 ) and (e(i)

j2 , d
(i)
j2 ) with

!
e

(i)
j1 , d

(i)
j2

"
. Let

us call such a pair (ej1 , dj2) a chordal pair as it represents a chord with respect to our (s, t)-path. Our goal is to
repeatedly identify chordal pairs (j1, j2) and shorten the path until we arrive at a shorter sequence of exchange for
Ii that is feasible.

A pair of indices (j1, j2) as described above can be identified e�ciently as follows. For j1 = p down to 1, we
binary search for the first index j2 such that I ≠ d1 · · · ≠ dj1 ≠ dj2 + ej1 œ I. Then j2 is the first index such that
dj2 is in the circuit of I + ej1 . Now, if j1 = j2, then this verifies that I ≠ dj + ej2 /œ I for all j < j2, as desired.
Otherwise (j1, j2) represents a chord which can be used to shorten the (s, t)-path. We shortcut the path at (j1, j2).
We then decrease j1 and continue the search, short cutting or validating each ej1 until we have certified that there
are no chordal pairs remaining. The total running time to prune all chordal pairs for Ii is bounded above by
O(p log(r)), where p refers to the number of exchanges originally encoded in the path, before pruning.

The description above was for the case where the path encoded a sequence of exchanges and not an additional
insertion. However the discussion extends immediately to the case where the path encodes a sequence of p

exchanges plus an additional insertion. Again we can prune all chordal pairs for a fixed independent set Ii, and
guarantee that the remaining sequence of exchanges and insertion maintains the independence of Ii, in running
time bounded above by O(p log(r)) independence queries.

Overall the algorithm process each independent set Ii one at a time. For each Ii we prune chordal pairs and
shorten the (s, t)-path so that the remaining exchanges maintain the independence of Ii. The total running time
over all sets Ii is bounded above O(¸ log(r)) independence queries, since O(¸) counts the total number of exchanges
in the original path over all independent sets Ii.

8.4 E�ciently searching for (s, t)-paths in the auxiliary graph We have now set up an auxiliary graph
and shown that any (s, t)-path can be e�ciently converted to an augmenting path. It remains to design an e�cient
method to find an (s, t)-path. Of course one could construct the graph explicitly by testing for the presence for
every arc above, but as remarked above the size of the overall graph is bigger than the desired running time.

Recall that our goal is to find an (s, t)-path or conclude that no such paths exist. In particular we are not
strictly required to test and traverse all the arcs in the graph. Our goal is to develop a search our algorithm with
running time bounded by a number of independence queries proportional (up to logarithmic terms) to the total
number of vertices in the graph.

We will show how to modify BFS to this purpose.5 Recall that BFS marks vertices when they are first visited
before adding them to the queue of elements to be searched next. Of course, the marks record that a vertex has
been visited and prevents infinite loops. In the context of our implicit auxiliary graph we can also avoid testing for
the existence of an arc if the head of the arc is already marked.

For the sake of e�ciency we will impose the following invariant on the set of marked vertices. For each
independent set Ii in our packing, let Mi denote the set of auxiliary vertices e

(i), where e œ Ii, that have been
marked. We will strictly adhere to the invariant that the marked sets M1, . . . , Mk are in decreasing order (in the
same sense as I1, . . . , Ik, cf. definition 2). To maintain this invariant we introduce the following subroutine.

Predecessor search. Whenever we are about to mark an element e
(i) where e œ Bi, we need to ensure that

e œ span(Mj) for all j < i. In this case we launch a predecessor search, or pre-search for short, at ei, which
executes the following steps.

Pre-searching an auxiliary element e
(i): Let e œ Bi.

1. While e /œ span(Mi≠1):
A. For each element d œ Ii≠1 \ span(Mj) such that Ii≠1 ≠ d + e œ I.
B. Recursively pre-search dj .
C. Mark dj , and record the arc (ei, dj), and add dj to the (outer, BFS) search queue.

5
Other marking based search algorithms such as DFS could have been used instead.
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The steps above are described at a high-level and we will discuss concrete details and issues of e�ciency later.
First we establish why the (high-level) steps above maintain M1, . . . , Mk in decreasing order. (The reason we
order this fact before analyzing concrete implementation details is because we will use the decreasing order of the
M1, . . . , Mk to make the implementation more e�cient.)

Lemma 8.6. Suppose I1, . . . , Ik and M1, . . . , Mk are both in decreasing order, and let e œ Bi. Then pre-searching
e

(i) maintains the M1, . . . , Mk in decreasing order. If i > 1, we also have Mi + e ™ span(Mi≠1).

Proof. We prove the claim by induction on i. If i = 1 then there is nothing to do and the claim is vacuous. Now,
let i > 1 and assume the claim holds for i ≠ 1. Consider a pre-search to an auxiliary vertex e

(i) where e œ Ii.
Recall that Ii≠1 spans e because I1, . . . , Ik is in decreasing order. Consequently if Mi≠1 does not span e then
there are still other elements d in the circuit of Ii≠1 + e that are not in Mi≠1. As long as Mi≠1 does not span
e, the pre-search subroutine repeated selects such an element d and calls pre-search on d

(i≠1) before marking
d

(i≠1). By induction the pre-search on d
(i≠1) ensures that we can safely mark d

(i≠1) while preserving M1, . . . , Mk

in decreasing order. The pre-search at e ends with M1, . . . , Mk still in decreasing order, and with Mi≠1 spanning
e.

The implicit search algorithm. We now describe the search algorithm which employs pre-search as a black
box. Here the challenge is to search the auxiliary graph without knowing all the arcs explicitly. At a high-level, by
leveraging the decreasing order of both I1, . . . , Ik and M1, . . . , Mk, up to logarithmic factors, we are able to limit
our queries to those that produce arcs to as yet univisited vertices.

The search algorithm behaves di�erently depending on the type of auxiliary vertex we’re search. Here we have
three types. The first is at the source s. The second is at an at auxiliary vertices e

(i) where either e œ Ii or i = k.
In particular we do not call search directly on auxiliary vertices e

(i) where e /œ Ii and i < k, for e�ciency reasons
made clearer below.

We start with the search routine for s, which simply searches every uncovered element e.

Searching at the source s:

1. For each uncovered element e, if e
(k) is unmarked, then mark e

(k), record the arc (s, e
(k)), and

call search on e
(k).

Next we describe the search algorithm for elements of the form e
(i).

Searching at an auxiliary vertex e
(i):

1. If e /œ span(Ik):
(a) Let j be the first index such that e /œ span(Ij).
(b) Mark e

(j), mark t, and record the arcs (e(i)
, e

(j)) and (e(j)
, t). Signal that we have found an

(s, t)-path.
2. Otherwise, while e /œ span(Mk):

(a) Let d œ Ik \ Mk be such that I ≠ d + e œ I.
(b) Pre-search d

(k).
(c) Mark e

(k) and d
(k). Record the arc (e(i)

, e
(k)) and (e(k)

, d
(k)). Add d

(k) to the search queue.

Lemma 8.7. After searching an auxiliary vertex e
(i), where e œ Ii, we have the following:

1. If there is an index j such that e /œ span(Ij), then for the first such index j, the path (e(i)
, e

(j)
, t) is recorded

and the vertices e
(j) and t are marked.

2. If not, then we have e œ span(Mj) for all indices j.

Proof. The first case is straightforward from the code. In the second case, we have e œ span(Ii) for all i. The
search at e exits only when e œ span(Mk). Because M1, . . . , Mk are in decreasing order, we then have e œ span(Mi)
for all i.
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Lemma 8.8. After searching e
(k) for an uncovered element e, we have e œ span(Mi) for all i.

Proof. We know that ein span(Ik) because e is uncovered and I1, . . . , Ik is a maximal packing. The search exits
only when e œ span(Mk). Because M1, . . . , Mk are in decreasing order, we then have e œ span(Mi) for all i.

Lemma 8.9. The search finds a path from s to t if one exists.

Proof. The algorithm records arcs that jointly contain paths to all marked vertices. Thus the algorithm marks t

and signals that an (s, t)-paths is found, then the record arcs contain the desired arc. (Parent pointers, or a graph
search through the recorded arcs, will produce an (s, t)-path.)

Observe that if the search does not signal an (s, t)-path, it will still mark all reachable auxiliary vertices except
possibly for an auxiliary vertex e

(i) where e is uncovered and e /œ Ii. However the preceding lemma ensures that
e œ span(Mi), so any of the auxiliary vertices reachable from e

(i) have still been explored. Thus if t is reachable,
then it will be marked and an (s, t)-path will be found, as desired.

E�ciency of search and pre-search:

Lemma 8.10. A search from s takes running time bounded by O(n + OPT log(r) + log(k)) independence queries.

Proof. Let ¸ denote the total number of auxiliary vertices of the e
(i) that are marked. Note that ¸ Æ O(n + OPT)

because if we mark an auxiliary vertex e
(i) with e /œ Ii and i < k, then there is also an outgoing arc to some d

(j)

were d œ Ij . Each search or pre-search routine at an element e consists of a constant number of queries plus an
unspecified number of queries per auxiliary vertex that gets marked, in order to search for the element that is
marked. The constant number of queries per search add up to at most O(n + ¸) in total, because each auxiliary
vertex is pre-searched or searched at most once (before or after it is marked). Next we explain how to implement
the latter category of queries in a logarithmic number of queries per marked element. Here we have two types of
searches for the next marked element.

The first is to identify elements d œ Ii \ Mi such that I ≠ d + e œ I, given e and an index i. This can be done
by maintaining Ii in any order such that Mi comes first, and searching for the first prefix of this ordering that
spans e. The last element in this ordering gives an element d. The search requires O(log(r)) oracle queries. (Note
that it is easy to maintain this ordering as elements are added to Mi.)

The second type is to identify an index j, as small as possible, such that e /œ span(Ij). Since I1, . . . , Ik is in
decreasing order, we can binary search for the first index j with O(log k) probes. Each probe corresponds to 1
independence query. Additionally, this search also ends the search, so we only search for such an index j once.

Preserving I1, . . . , Ik in decreasing order. Next we address the fact that our particular choice of
augmentations keeps I1, . . . , Ik in decreasing order.

Lemma 8.11. An augmentation induced by the search algorithm keeps I1, . . . , Ik in decreasing order.

Proof. Suppose the end of the path encodes inserting an element e in Ii. We first note that the preceding exchanges
do not e�ect the span. Then, when inserting e into Ii, we know that e œ span(Ii≠1) for all j < i by choice of i.
Thus Ii + e œ span(Ii≠1) and we preserve the decreasing order.

Putting it all together. Together, lemmas 8.5 and 8.10 gives the overall running time to find an augmenting
path. (To apply lemma 8.5, we note that the length of any (s, t)-path is at most O(OPT).) This completes the
proof of lemma 8.1.

8.5 Graphic matroids We conclude the section by translating the oracle-based running time into concrete
running times for the graphic matroid. The ideas here are similar to those in section 5. By maintain
disjoint union data structures over Ii, we can maintain and implement independence queries for Ii with –(n)
overhead. By also managing each Ii in a link-cut trees, we can retrieve unmarked edges d œ Ik \ Mk for
exchanging in O(log n) time (bypassing the binary search from the oracle model). Retracing the proofs of
lemmas 8.5 and 8.10, and keeping in mind that the maximum length of a path is OPT, shows that it takes
O(mÕ

–(n) + OPT log(nk)) time per augmenting path for m
Õ = min{m, n log(nk)}. Balancing the choice of ‘ with

the O(m–(n) + OPT log(n)(log(n) + log(k)–(n))/‘) running time for the (1 ≠ ‘)-approximation, we obtain the
following.
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Theorem 8.2. For graphs with integer edge capacities, a forest packing of maximum total size can be computed in

O

1
m–(n) +


OPT(min{m, n log(nk)}–(n) + OPT log(nk)) log(n)(log(n) + log(k)–(n))

2

time.

A simplified running time for connected graphs, observing that OPT Ø �(n) for k Ø 1, is

O

1
m–(n) + OPT3/2 log2(nk)–2(n)

2
.
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A Additional background

In this section, we provide some additional background omitted from section 1.1 and not appearing elsewhere in
the paper.

Recall the problem of maximizing the size of a forest packing (i.e., k-fold matroid union problem in the graphic
matroid). There are several previous works on this problem [31, 32, 45, 58]. [32] obtained several running times
that are each optimal for some range of parameters, of which we highlighted the most comparable in section 1.1.

Packing spanning trees and network strength have important additional connections via the classical theorem
of Nash-Williams [54] and Tutte [64] which we now describe. Given a partition of (V1, . . . , Vk) of vertex set V , the
strength of the partition is defined as the ratio

|ˆ(V1, . . . , Vk)|/(k ≠ 1),

where ˆ(V1, . . . , Vk) denotes the set of edges cut by the partition V1, . . . , Vk. One interpretation of the strength
of a partition, given by Cunningham [16] in the context of network vulnerability, is that the strength reflects a
cost per additional connected component created by the cut. The (network) strength of a graph is defined as
the minimum strength over all partitions. Network strength was proposed as a measure of network vulnerability
by Gusfield [41]. The definitions extend naturally to positive edge capacities. [54, 64]’s theorem shows that the
network strength equals the maximum size of any (fractional) tree packing; the maximum size of any integral tree
packing is the floor of the network strength.

There are several works on packing spanning trees in capacitated and uncapacitated graphs [2, 17, 28,
30, 32, 45, 58, 62]. Besides the running times section 1.1, [30] obtains a strongly polynomial running time of
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. Beside via packing spanning trees, there is further work on computing the strength directly

[3, 11, 16, 29, 40] via flow or parametric flow, culminating in O
!
n

2
m log

!
n

2
/m

""
-time algorithms for computing

the strength via parametric flow (and related techniques) [11, 29]. For covering by trees, besides the running
times mentioned in section 1.1, [30] also obtains an O

!
n

3
m log

!
n

2
/m

""
running time for covering by trees in the

capacitated graphs, the same as for packing.
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