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Abstract
Graph sparsification has been an important topic with many structural and algorithmic consequences.

Recently hypergraph sparsification has come to the fore and has seen exciting progress. In this paper we take a

fresh perspective and show that they can be both be derived as corollaries of a general theorem on sparsifying

matroids and monotone submodular functions.

Quotients of matroids and monotone submodular functions generalize k-cuts in graphs and hypergraphs. We

show that a weighted ground set of a monotone submodular function f can be sparsified while approximately

preserving the weight of every quotient of f with high probability in randomized polynomial time.

This theorem conceptually unifies cut sparsifiers for undirected graphs [7] with other interesting applications.

One basic application is to reduce the number of elements in a matroid while preserving the weight of every

quotient of the matroid. For hypergraphs, the theorem gives an alternative approach to the hypergraph cut

sparsifiers obtained recently in [12], that also preserves all k-cuts. Another application is to reduce the number

of points in a set system while preserving the weight of the union of every collection of sets. We also present

algorithms that sparsify hypergraphs and set systems in nearly linear time, and sparsify matroids in nearly

linear time and queries in the rank oracle model.

1 Introduction
Graph sparsification has been an important topic with many structural and algorithmic consequences. Recently
hypergraph sparsification has come to the fore and has seen exciting progress. In this paper we take a fresh
perspective and show that they can be both be derived as corollaries of a general theorem on sparsifying matroids
and monotone submodular functions.

To formalize these ideas we require some preliminary definitions. A matroid is a set system M = (N , I) where
N is a ground set of elements, and I ™ 2N is the family of independent sets satisfying the following properties:

(a) ÿ œ I.
(b) If J œ I, and I ™ J , then I œ I.
(c) If I, J œ I, and |I| < |J |, then there exists an element e œ J \ I such that I + e œ I.

The rank of a set S is the maximum cardinality of any independent subset of S, and denoted rank(S). The rank
of M is defined as the maximum cardinality of any independent set. The span of a set S, denoted span(S), is the
set of elements e such that rank(S + e) = rank(S) (including those in S). A set S is closed if S = span(S).

An illustrative example of a matroid is the graphic matroid. Given an undirected graph G = (V, E), the
graphic matroid is the matroid with ground set N = E, and independent sets consisting of all edge sets F ™ E
that form a forest in G (or equivalently, that contain no cycles). For F ™ E, span(F ) is the set of all edges {u, v}
where u and v are in the same connected component in the graph induced by G. If G is connected and has n
vertices, the rank of the graphic matroid is n ≠ 1.

Our work is centered on the notion of quotients of matroids and submodular functions. We first illustrate the
notion for the graphic matroid. Consider a set of edges F ™ E, which induces n ≠ rank(F ) connected components
in G. The edges spanned by F are the edges with both endpoints in the same connected component of F . The
remaining edges, E \ span(F ), are the edges cut by the connected components of F .

E \ span(F ) is an example of a quotient in the graphic matroid. In general, for a matroid M, a quotient is any
set that is the complement of a closed set. Equivalently, Q ™ N is a quotient i� Q = N \ span(S) for some set S.
In the graphic matroid, the quotients are exactly the sets of edges cut by partitions (U1, . . . , Uk) of V (for arbitrary
k), i.e., the k-cuts of G. This includes, but is not limited to, the edge cuts of G in the standard sense where k = 2.

This work extends beyond matroid quotients to quotients of monotone submodular function. To introduce
the latter, let f : 2N æ R be a real-valued set function over N . f is monotone if f(S) is nondecreasing in S; i.e.,
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f(S) Æ f(T ) for S ™ T . f is submodular if

f(S) + f(T ) Ø f(S fi T ) + f(S fl T )

for all S, T ™ N . Equivalently, f is submodular if it expresses decreasing marginal values. This means that
f(S | T ) def= f(S fi T ) ≠ f(T ) is nonincreasing in T , for all S, T ™ N .

One example of a monotone submodular function is the rank function. Another is the coverage function with
nonnegative weights. Here we have a family of n sets S1, . . . , Sn ™ U and a weight function w : U æ RØ0. We
define a set function f over [n] by f(I) = w

!t
iœI Si

"
for I ™ [n]; i.e., the weight of all the elements covered by

some set indexed by I.
The matroid terminology above extends to set functions f : 2N æ R as follows. For a set S ™ N , the span of

S (with respect to f) is defined as the set of elements with marginal value 0 with respect to S:

span(S) def= {e : f(e | S) = 0}.

If f is monotone and submodular, then span(S) is monotonically increasing. A set S is closed if S = span(S). A
quotient of f is defined as any set that is the complement of a closed set. Equivalently, a set Q ™ N is a quotient
i� Q = N \ span(S) for some set S. This generalizes quotients in matroids by taking f to be the rank function.
We call f(N ) the rank of f .

Cut-preserving sparsification of graphs has been an important topic of study with many applications. The
random sampling work of Karger culminated in the influential work of Benczúr and Karger [7]. They proved the
following. Given any fixed ‘ œ (0, 1), an undirected graph can be randomly sparsified to O(n log(n)/‘2) reweighted
edges while approximately preserving the weight of every (2-)cut up to a (1 + ‘)-factor with high probability. Since
every k-cut can be expressed as the sum of the 2-cuts of each component (divided by 2), this also preserves the
weight of every k-cut of G. In the language of matroid theory, then, [7] takes as input a weighted graphic matroid
of rank r, and produces a randomly reweighted subset of O

!
r log(r)/‘2"

elements that preserves the weight of
every quotient of the graphic matroid up to a (1 + ‘)-factor.

We show a more general result for the quotients of a monotone submodular function f . Henceforth, let f be a
monotone submodular function and w a set of nonnegative weights over a ground set N of n elements. We assume
f is normalized so that f(ÿ) = 0 and all nonzero marginal values are at least 1. (The latter holds automatically
for integral f .) The rank function of a matroid is one example of a function f satisfying these properties. Let
‘ œ (0, 1) be a fixed input parameter. Let r

def= f(N ) be the maximum value of f . The main theorem is as follows.

Theorem 1.1. Let f : 2N æ R be a monotone submodular function with f(ÿ) = 0 and where all nonzero marginal
values are at least 1. Let r = f(N ). Let w : N æ RØ0 be a set of nonnegative weights. There exists a set of
weights w̃ : N æ RØ0 such that:

(a) The support of w̃ has size O
!
r log(nr)/‘2"

.
(b) The weight of every quotient of f is preserved up to a (1 + ‘)-factor; i.e., |w(Q) ≠ w̃(Q)| Æ ‘w(Q) for all

quotients Q.
These weights w̃ can be computed with high probability in randomized polynomial time assuming oracle access to f .

Theorem 1.1 was motivated by matroid sparsification as a natural generalization of graph sparsification. For
matroids, theorem 1.1 translates to the following by taking f to be the rank function. We let Qrank denote the
running time of a rank query. Õ(· · ·) hides logarithmic factors.

Theorem 1.2. For any weighted matroid with n elements and rank r, and ‘ œ (0, 1), there exists a set of weights
supported by O

!
r ln(n)/‘2"

elements that preserves the weight of every quotient up to a (1 + ‘)-factor. These
weights can be computed with high probability in Õ(nQrank) randomized time assuming oracle access to the rank
function.

One application of theorems 1.1 and 1.2 of recent interest is to hypergraph cuts. A hypergraph is a generalization
of a graph where the edges (called hyperedges) may have any number of endpoints. A cut is defined as the set
of edges properly crossing a set of vertices S. [12] recently gave a randomized polynomial time algorithm that,
given an n-vertex hypergraph H = (V, E), with high probability, computes a reweighted subgraph of H with
O

!
n log(n)/‘2"

edges that preserves the weight of every cut up to a (1 + ‘)-factor. Their algorithm runs in
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Õ
!
p + n10/‘7"

time, where p =
q

eœE |e| is the total size of the hypergraph. We note that while several follow up
works have improved on [12] in various dimensions (discussed further below), none of these produce a cut sparsifier
with O

!
n log(n)/‘2"

edges in nearly linear time.
Meanwhile, given a hypergraph H = (V, E), one can define a matroid over the edge set E called the hypergraphic

matroid, where cuts in the hypergraph map to quotients in this matroid [43]. For algorithmic reasons we introduce
a submodular function di�erent from the rank function of the hypergraphic matroid, which we call the hypergraphic
polymatroid function. This monotone submodular set function takes as input a set of hyperedges S and returns n
minus the number of the connected components in the subgraph induced by S. The quotients of the hypergraphic
polymatroid function consists of all k-cuts of the hypergraph (for all k). Similar to graphs, a k-cut is defined by a
partition (U1, . . . , Uk) of V , and consists of all hyperedges e properly crossing (U1, . . . , Uk) (i.e., e is not contained
in any single Ui). Thus hypergraph cuts (as first introduced above) are 2-cuts. Unlike for (normal) graphs, a
hypergraph sparsifier preserving all (2-)cuts does not necessarily preserve all k-cuts.

Along these lines we re-derive the O
!
n log(n)/‘2"

-edge hypergraph cut sparsifiers of [12], and also strengthen
the sparsifiers to preserve all k-cuts. We present a new algorithm that is the first to run in nearly linear time in
the input size among those producing cut-preserving hypergraphs with O

!
n log(n)/‘2"

edges.

Theorem 1.3. For any hypergraph with n vertices, there is a reweighted sub-hypergraph with at most O
!
n ln(n)/‘2"

edges that preserves the weight of every k-cut up to a (1 + ‘)-factor (for all k). This sub-hypergraph can be computed
with high probability in randomized Õ(p) time, where p is the total size of the hypergraph.

Another example of a matroid is the linear matroid. Here, the ground set consists of a set of vectors in a fixed
vector space, and a set of vectors is independent i� they are linearly independent. The Gram-Schmidt process
gives a polynomial time rank function for this matroid, and the rank of the matroid is at most the dimension of
the vector space. Via the linear matroid, theorem 1.2 leads to the following theorem for weighted collections of
vectors in a fixed vector space.

Corollary 1.1. Let X be a finite set of m weighted vectors in a vector space of dimension n. There exists a
reweighted subset of O

!
n log(m)/‘2"

vectors that, for every subspace S, preserves the total weight of all vectors
lying outside S up to a (1 + ‘)-factor. This reweighted subset of vectors can be computed with high probability in
randomized polynomial time.

There are other monotone submodular functions f of interest besides matroid rank functions. One example
is coverage, where the ground set is a collection of sets over a weighted universe of points, and f takes as input
a collection of sets and evaluates the weight of their union. Previous work by [2] proved the following. Given
a family of n over a finite universe of weighted points, one can randomly sample a reweighted subset of O

!
n2"

points that, for every subcollection of sets, preserves the total weight of their union up to a (1 + ‘)-factor. Their
algorithm runs in nearly linear time. Below, the total size of a set system is the sum of cardinalities of all the sets
in the set system, and represents the input size.

Theorem 1.4. Given a family of n sets over a finite universe of m weighted points, there exists a reweighted
subset of at most O

!
n log(n)/‘2"

points that, for every subcollection of sets, preserves the total weight of their
union up to a (1 + ‘)-factor. This reweighted subset of points can be computed with high probability in randomized
O

!
N log2(m + n)

"
time, where N is the total size of the set system.

Another example of a monotone submodular function arises in SAT. Given a boolean formula Ï(x1, . . . , xn)
in conjunction normal form (CNF), let the ground set N consist of the literals x1, x̄1, . . . , xn, x̄n. We have a
monotone submodular function f : 2N æ RØ0 that returns the number of clauses satisfied by setting a collection
of literals to be true.

Corollary 1.2. Given a boolean formula Ï(x1, . . . , xn) in CNF with n variables and m weighted clauses, one can
compute a reweighted subset of at most O

!
n log(n)/‘2"

clauses that, for every assignment of variables, preserves
the total weight of the number of satisfied clauses up to a (1 + ‘)-factor. This reweighted subset of clauses can be
computed in randomized O

!
N log2(m + n)

"
time, where N is the total size of the formula Ï.

Theorem 1.4 and corollary 1.2 are closely related and we present two di�erent ways to obtain then. One way
is to directly apply theorem 1.1 to a dual hitting set function. A second way is via a reduction from CNF-SAT
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sparsification to hypergraph sparsification described by [39]. Via this reduction, the bound on the number of
clauses in corollary 1.2 is implied by [39, 12]; the remaining contribution is the running time. The reduction from
[39] can be extended to coverage. The direct approach based on the hitting set function yields a faster and simpler
algorithm, but the second approach via hypergraph sparsification is conceptually simpler if we take hypergraph
sparsification for granted.

Joint entropy defines a monotone submodular function over random variables of a fixed probability space.
For n random variables X1, . . . , Xn in a fixed probability space, and a subset of random variables S, the quotient
Q induced by S is the set of variables that are not determined by S. Therefore, applying theorem 1.1 to joint
entropy gives the following.

Corollary 1.3. Let X1, . . . , Xn be random variables. Let – > 0 be the minimum nonzero marginal value of the
joint entropy function over X1, . . . , Xn, and let — > 0 be the total joint entropy of X1, . . . , Xn. Given weights
over X1, . . . , Xn, there is a reweighted subset of at most O

!
— log(n—/–)/–‘2"

variables that, for every subset S of
X1, . . . , Xn, preserves the total weight of all variables that are not determined by S up to a (1 + ‘)-factor. This
reweighted subset of variables can be computed with high probability in randomized polynomial time assuming oracle
access to the joint entropy of any subset of random variables.

These applications give just a few concrete examples of theorem 1.1. Given the generality of submodular
functions and matroids, and their important roles both in theory (e.g., [16, 50]) and practice (e.g., [8]), one hopes
that further interesting applications will emerge.

High-level overview of techniques. The techniques in this work are most directly inspired by previous work
on cut sparsifiers for undirected graphs, particularly [32, 7]. We highlight the most technically relevant aspects of
these works. [32] introduced the randomized contraction algorithm for undirected minimum cut and critically
observed that there is only a polynomial number of minimum cuts and near-minimum cuts. In particular, [32]
implies that randomly rounding all the edge capacities uniformly relative to the weight of the minimum cut
approximately preserves the minimum cut in the graph with high probability. However, this random sample is not
necessarily sparse. For example, any edge with capacity larger than the minimum cut is automatically retained.
The uniform sample is not sensitive to the fact that edges that are only contained in large cuts can be randomly
sampled with greater variance.

[7] gave a hierarchical decomposition of a weighted graph into a sequence of induced subgraphs (called “strong
components”) with the following structural property: if one randomly rounds each edge capacity in proportion to
the minimum cut of the last subgraph/strong component containing that edge, then all cuts in the input graph are
approximately preserved with high probability. This decomposition e�ectively identifies which edges are contained
in small cuts, and have to be sampled conservatively, and which edges are only contained in stronger cuts, which
can tolerate the greater variance of a sparser sample. With this decomposition guiding the sampling, [7] can
preserve all cuts up to a (1 + ‘)-factor with high probability with a random sample of O

!
n log(n)/‘2"

reweighted
edges.

Moreover, [7] showed how to approximate the strong component decomposition in nearly linear time. Their
algorithm is based on an algorithm of [44] that iteratively removes spanning forests from the graph. This process
reflects the cut structure of the graph; for example, if two vertices s, t are still connected after removing (say) x
forests, then the minimum (s, t)-cut is at least x. [7] shows that a careful application of this fast iterative process
leads to a good enough approximation of the strong component decomposition.

As mentioned above, graph cuts are quotients of the rank function of the graphic matroid. We would like to
generalize the high-level approach of [32, 7] to quotients of matroids and more generally of monotone submodular
functions. A first step is provided by [34] for unweighted matroids. For a quotient Q = N \ S, let us define the
ratio of Q as the quantity |Q|/(rank(N ) ≠ rank(S)). Analogous to [32] for graph cuts, [34] gave a randomized
contraction argument to bound the number of near-minimum ratio quotients. Similar to minimum cuts, this shows
that random sampling relative to the weight of the minimum quotient ratio approximately preserves the size of all
quotients (up to scaling). This leads to some speedups for matroid packing problems in [34], but does not imply a
sparse set of (reweighted) elements that preserves all quotients of a weighted matroid.

In this work, we generalize the contraction argument further to the quotients of a monotone submodular
function, and then take the next step, analogous to [7], of hierarchically decomposing the elements to produce
nonuniform sampling probabilities that lead to quotient-preserving sparsifiers. While we are guided by [32, 7] at a
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high-level, several components did not transfer at a more technical level to matroids and submodular functions,
and here we try to motivate and explain the di�erences.

The decomposition of [7] classifies the edges {u, v} of an undirected graph based on the weight of the minimum
(u, v)-cut. For matroids and submodular function, the analogous approach would classify each element e based
on the weight of the minimum quotient Q containing e. We failed to make this approach work; for starters, the
sampling techniques in [34] are based on the ratio of Q, and not just the weight / cardinality of Q.

We describe our alternative approach by first describing it in undirected graphs as a concrete example that
a broader audience can relate to. We first recall the Tutte–Nash-Williams tree packing theorem. For a k-cut
C = ”(S1, . . . , Sk) with total edge weight W = w(C), let us define the “ratio” of the k-cut as the quantity W/(k≠1).
One can interpret the ratio of a k-cut as the average capacity removed per additional component generated by the
k-cut. The Tutte–Nash-Williams theorem states that the maximum number of fractional spanning trees that can
be packed in a graph is equal to the minimum ratio over all k-cuts in the graph (over all k). This quantity is
called the network strength of the graph.

To be clear, the notion of “strength” in [7], which is based on edge connectivity, is di�erent from network
strength. That said, it happens that the network strength is always within a factor of 2 of the minimum cut in the
graph. (This connection is exploited, for example, in the nearly linear time minimum cut algorithm of [33].) One
can now try to (liberally) reinterpret [32, 7] in terms of the Tutte–Nash-Williams theorem [55, 45]. [32] implies
that randomly rounding edge weights in proportion to the network strength preserves the ratio (hence the weight)
of every k-cut. The decomposition in [7] can be interpreted as loosely approximating a di�erent decomposition
based on recursively removing the minimum ratio k-cut. The iterative process of removing spanning trees can
be interpreted as a greedy tree packing algorithm that, in the dual, is also a greedy (inexact) algorithm for the
minimum ratio k-cut.

For us, the advantage of the Tutte–Nash-Williams perspective is that it classically extends to matroids. Let
us extend the notion of quotient ratios to weighted matroids in the natural way by replacing the cardinality
of the quotient in the numerator with the weight of the quotient. Edmonds [14] showed that the maximum
quantity of fractional bases that can be packed in a weighted/capacitated matroid is equal to the minimum
quotient-ratio over all quotients Q. We call this quantity the strength of the matroid. We can now try to generalize
the Tutte–Nash-Williams interpretation of the [7] algorithm to matroids as follows. First, decompose the ground
set by repeatedly computing and removing minimum ratio quotients. This gives a hierarchical decomposition of
the elements of the matroid. Then, randomly round each element based on the ratio of the quotient that removed
the element from the matroid. One can now prove that randomly rounding based on this decomposition preserves
all quotients of the matroid. This approach and analysis for matroids generalizes (with technical care) to quotients
of monotone submodular functions. (The generalization from matroids to monotone submodular functions is
perhaps not surprising given, for example, the classical theory of polymatroids).

The decomposition based on minimum ratio quotients can be computed in polynomial time via submodular
minimization. However, we are also interested in fast running times akin to [7] for matroids and concrete special
cases such as hypergraphs. The analog to [7]’s use of [44] would be to iteratively remove bases from the matroid.
Unfortunately, it seems that the [7] argument leverages graph structure in a non-generalizable way, as we could
not make this algorithm work for matroids. Instead, we develop new algorithms that simultaneously compute
approximately maximum base packings and (in the dual) approximately minimum ratio quotients. These algorithms
are based on the push-relabel framework proposed in [17] and further developed more recently in [46]. Let us call
this the “matroid push-relabel” framework to distinguish it from push-relabel for flow. Similar to push-relabel for
flow, matroid push-relabel assigns labels to the elements, and uses these labels to guide exchanges that gradually
transform an arbitrary collection of bases into a feasible packing (respecting the capacities). Similar to the labels
inducing a min cut in flow, the labels in the matroid push-relabel algorithm induce quotients that produce dual
certificates of optimality. As observed in [46], this framework is also conducive to fast approximation algorithms.

Fast approximations for base packing and minimum ratio quotients are insu�cient for a nearly linear time
hierarchical decomposition of the entire matroid. In the worst case, each minimum ratio quotient only reduces the
rank by 1, and overall we make r passes over the input where r is the rank of the matroid. To remove this factor
of r, we leverage a feature of the matroid push-relabel framework analogous to the use of max-flow push-relabel
for parametric flow (e.g., [20]). We first describe the context. At a generic point in the decomposition process,
we have fixed parameters k œ N and ‘ œ (0, 1), and we want to either pack (1 ≠ ‘)k bases or find a quotient with
ratio at most (1 + ‘)k. The decomposition algorithm repeatedly extracts such quotients until it certifies that the
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matroid strength is at least (1 ≠ ‘)k by computing such a packing; then it increases k by a constant factor.
Naively, one reruns the static algorithm from scratch for each quotient. With the push-relabel framework one

can instead do the following. For a fixed value of k, after running the push-relabel algorithm once to extract a
quotient with ratio at most (1 + ‘)k, one can retain the labels and collection of bases for the remaining elements of
the matroid, and continue the matroid push-relabel algorithm from this configuration. Continuing in this fashion,
we can repeatedly extract approximately minimum ratio quotients until arriving at an approximate base packing,
allowing us to increase k, all in the running time of a single instance of push-relabel. Conceptually, this removes
the overhead of r and brings the overall running time (or query complexity) down to nearly linear. We note that
to be able to reuse the push-relabel configurations as described above, we need the approximately minimum ratio
quotients to correspond to upper level sets of elements with respect to the labels. This leads to an algorithm with
invariants that appear “backwards” compared to [17, 46].

There are additional technical hurdles that had to be overcome to transfer the [7] approach to matroids. For
example, existing matroid push-relabel approximation algorithms only have truly fast running times for integer
weights and small values of k. To adapt this to weighted matroids, we use uniform sparsification to discretize
the weights and reduce k to a logarithmic factor of the input size. Here we can apply uniform sparsification
because the randomized rounding is only based on the current estimate of the matroid strength k. The uniform
sparsification guarantees had to be strengthened beyond preserving quotients to ensure that the output from
running the push-relabel algorithm on the sampled weights is still useful for decomposing he matroid with respect
to the input weights.

To bring everything back to graphs, the more general algorithm for matroids gives a di�erent algorithm from
[7] for sparsifying undirected graphs. Instead of decomposing the graph along greedy tree/forest packings á la
[44], we repeatedly compute approximately maximum tree packings and approximately minimum ratio k-cuts via
push-relabel. This gives a decomposition in nearly linear time that is directly based on network strength instead
of edge connectivity. Randomly sampling based on this decomposition gives a cut-preserving sparsifier with the
same number of edges as [7]. Of course the algorithmic end result for graphs is not new, but we are also interested
in the explicit conceptual connection between [7] and the Tutte–Nash-Williams theorem and, more broadly, to
classical matroid theory.
Related work. Randomized graph sparsification has had a profound impact on randomized algorithm design.
Besides its direct applications to graph problems, the general idea of applying random sampling to reduce the
input size while approximately preserving key complex structures has been adapted to many other domains. Due
to space constraints we limit our literature review to the most directly relevant developments.
Graph sparsification. The well-known randomized contraction algorithm of [32] showed that there is only a
polynomial number of minimum cuts, and more generally, nO(–) –-approximate minimum cuts for – Ø 1. This
allows one to apply random sampling to reduce the graph to O

!
n log(n)/‘2"

edges while preserving the value
of the minimum cut up to a (1 + ‘)-factor. This more limited notion of sparsification su�ced to obtain faster
algorithms for several flow and cut problems [37, 36, 6, 35, 33, 38]. In 2002, [7] obtained the first (1 + ‘)-cut
sparsifiers (preserving all cuts up to a (1 + ‘)-factor) with O

!
n log(n)/‘2"

edges; their algorithm runs in nearly
linear time. [19] developed variations of the [7] approach that also sparsify graphs while approximately preserving
all cuts. [32, 7] are important inspirations for this paper. Some parts of section 3 generalize ideas in [32, 7].

Cut sparsifiers have been generalized to spectral sparsifiers that more generally preserve the Laplacian of a
graph [53, 54, 52, 5]. [5] showed that there are (1 + ‘)-spectral sparsifiers with O

!
n/‘2"

edges; moreover they can
be computed in nearly linear time [42].
Hypergraph sparsification. There has been a wave of recent interest in sparsification for hypergraphs [39, 11, 12,
51, 4, 30, 31, 41, 29]. [12] was the first to obtain a (1 + ‘)-cut sparsifier with O

!
n ln(n)/‘2"

edges, where n is
the number of vertices in the graph. Their algorithm was also inspired by [7] and runs in Õ

!
p + n10/‘7"

time,
where p is the total input size. Several of the papers above develop sparsifiers that preserve spectral-inspired
properties of hypergraphs that generalize hypergraph (2-)cuts. Very recently, [29] obtained a nearly linear time
algorithm producing spectral hypergraph sparsifiers with O

!
n log(n) log(¸)/‘2"

edges, where ¸ is the maximum
number of vertices in any hyperedge. (Note the extra factor of log(¸).) Independent follow up work [28] generalizes
the spectral direction further to sums of semi-norms.
Matroid and submodular sparsification. Towards faster algorithms for packing disjoint bases in a matroid, [34]
developed techniques for quotients of matroids analogous to the techniques developed in [32, 37] for cuts. In
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particular, [34] obtained polynomial bounds on the number of quotients with minimum or approximately minimum
quotient-ratio (defined in section 2), and showed how to sparsify the ground set while preserving the strength of
the matroid up to a (1 + ‘)-factor. This lead to faster running times for packing bases. [34] is also an important
inspiration for this paper. Theorem 1.2 is to [34] as the results of [7] are to [32]. Some parts of section 3 generalize
ideas from [34].

An alternative approach to submodular sparsification is explored in [48], which sparsifies sums of submodular
functions. [48] shows, among other results, that (specifically) for the problem of maximizing the union of k sets (out
of m total sets), one can reduce the point set to O

!
mk/‘2"

while losing only a (1 + ‘)-factor in the approximation
guarantee. For sums of symmetric submodular functions over n elements, the very recent work [28] mentioned
above produces sparsified sums of O

!
n log2.5(n) log(n/‘)/‘2"

functions.

Hypergraph k-cut. As mentioned above, our hypergraph sparsifier has the interesting property of approximately
preserving all k-cuts in addition to 2-cuts. There are several results, including many recent developments, on
minimum k-cut in hypergraphs and related problems [40, 56, 18, 15, 9, 10, 3]. Our k-cut preserving sparsifier can
accelerate a minimum k-cut algorithm by reducing the number of edges as a preprocessing step in exchange for a
(1 + ‘)-approximation factor.

Organization. Section 2 contains preliminaries including notation and definitions. Section 3 proves the main
result, theorem 1.1. Section 4 proves the sparsification result for matroids. Section 5 proves the sparsification
result for hypergraphs, theorem 1.3. Section 6 proves the sparsification results for set systems and for CNF-SAT,
theorem 1.4 and corollary 1.2. (We do not expand on the other results as they are immediate.) To help separate
the structural aspects (i.e., the existence of sparse quotient sparsifiers) from the algorithmic (with emphasis on
fast running times), we have placed the most involved algorithmic discussions in the appendix. Appendices A–C
describe essential subroutines for decomposing matroids, hypergraphs, and set systems, respectively. In sections 4–6,
we only describe the sparsification algorithms for polynomially bounded weights. Appendix D explains how to
reduce from general weights to polynomially bounded weights in a black box manner.

Acknowledgements. We thank Chandra Chekuri for his feedback and encouragement. We thank Yuichi Yoshida
for highlighting that the hypergraph sparsifier preserves all k-cuts (and not just 2-cuts), and pointing out the
reduction from coverage sparsification to hypergraph sparsification. We thank the reviewers for their valuable
feedback.

2 Preliminaries
Henceforth, f : 2N æ RØ0 denotes a fixed set function satisfying the assumptions of theorem 1.1. w œ RN

Ø0 is
always a fixed set of nonnegative weights over N . We always have r = f(N ).

Notation. For an element e œ N , we let e also denote the singleton set {e}. We write S + e and S ≠ e to
abbreviate S fi {e} and S \ {e}, respectively. S̄ denotes the complement of the set S. For a probabilistic event
E, Ē denotes the complementary event. For a vector x : N æ R, and a set S, we write x(S) to denote the sumq

eœS x(e). Õ(· · ·) hides logarithmic factors. A nearly linear running time refers to a running time of the form
Õ(N) = O

1
N logO(1)N

2
where N is the input size of the problem.

Definitions. The following quantities play a central role in the analysis. For a set S, the strength-ratio of S,
denoted Ï(S), is the value

Ï(S) def= w(N ) ≠ w(S)
f(N ) ≠ f(S) ,

with the convention that 0/0 = +Œ. For a quotient Q = S̄, the quotient-ratio of Q, denoted Â(Q), is the value

Â(Q) def= w(Q)
f(N ) ≠ f(S) = w(N ) ≠ w(S)

f(N ) ≠ f(S) = Ï(S).

The strength of f , denoted Ÿf , is defined as the minimum strength-ratio over all sets S:

Ÿf
def= min

S™N
Ï(S).
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Since Ï(S) Ø Ï(span(S)) = Â(N \ span(S)) for all S, Ÿf is also the minimum Â(Q) over all quotients Q of f . The
strength of a matroid is defined as the strength with respect to its rank function.

For a set S ™ N , the restriction of f to S is another set function satisfying all the properties assumed of f .
We refer to “quotients in S”, the “span in S”, and so forth, as the corresponding objects for the restriction of f to
S. For a subset T of S, we let

Ï(T | S) def= w(S) ≠ w(T )
f(S) ≠ f(T )

denote the strength-ratio of T in S. For a quotient Q in S, we let

Â(Q | S) def= w(Q)
f(S) ≠ f(S \ Q)

denote the quotient-ratio of Q as a quotient in S. The strength of S is the strength of the restriction of f to S,
and denoted ŸS .

For a set S ™ N , the contraction of S is the function fS defined by

fS(T ) def= f(T | S) = f(S fi T ) ≠ f(S).

If f is monotone, submodular, normalized, and has marginal values at least 1, then so does fS . We let spanS

denote the span function with respect to fS . For a matroid M over N , and S ™ N , the matroid contracting S,
denoted M/S, is the matroid over N \ S with rank function rankS(T ) = rank(T | S) for T ™ N \ S.

For additional background on submodular functions and matroids, see [50, 16].

Restricting quotients. The following lemma shows that restricting the ground set preserves quotients.

Lemma 2.1. Let Q be a quotient, and let S ™ N be a set. Then Q fl S is a quotient in S.

Proof. Let A = S \ (Q fl S) = S fl Q̄; we need to show that A is closed in S. We have

span(A)
(a)
™ span(Q̄) (b)= Q̄

where (a) is by monotonicity of span(· · ·) and (b) is because Q̄ is closed. Therefore

span(A) fl S ™ Q̄ fl S = A,

as desired.

Elements with weight 0. We generally allow the input to contain elements with weight 0. When it comes
to preserving the weight of quotients, these elements of course do not contribute any weight, and the sampling
algorithms described later never assign positive weight to any such element. That said, we cannot necessarily
dismiss these zero weight elements as they still play a role in defining the family of all quotients that have to be
preserved. The following lemma addresses this latter concern and shows that one can drop all weight 0 elements
as a preprocessing step to sparsification.

Lemma 2.2. Let ‘ > 0 and let w : N æ RØ0. Let N1 ™ N be the support of w. Let w̃1 : N1 æ RØ0 preserve the
w-weight of every quotient in N1 up to a (1 + ‘)-factor. Let w̃ extend w̃1 to N be setting w̃(e) = w(e) = 0 for all
e œ N \ N1. Then w̃ preserves the w-weight of all quotients up to a (1 + ‘)-factor.

Proof. Let Q be a quotient of f . By lemma 2.1, QflN1 is a quotient in N1, so w̃1(Q fl NB) is within a (1 + ‘)-factor
of w(Q fl NB). We also have w̃(Q) = w̃1(Q fl NB) and w(Q) = w(Q fl NB), hence w̃(Q) is within a (1 + ‘)-factor
of w(Q).

3 Quotient sparsification for submodular f : proof of theorem 1.1
Given f and w, the goal is to compute a set of nonnegative weights wÕ œ N R

Ø0 with O
!
n ln(nr)/‘2"

nonzero entries
and that preserves the weight of every quotient of f up to a (1 + ‘)-factor. To describe the algorithm we need to
introduce the following.
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Strength decompositions. For – Ø 1, an –-approximate strength decomposition is a descending sequence of
sets S0 ´ S1 ´ · · · ´ Sk such that:

(a) S0 = N .
(b) Sk = ÿ.
(c) For i œ [k], Ï(Si | Si≠1) Æ –ŸSi≠1 .
(d) The strength ratios Ï(Si | Si≠1) are nondecreasing in i.

An exact strength-decomposition is a 1-approximate strength decomposition.
Given a sequence satisfying the first three properties (a)–(c), it is not di�cult to obtain a subsequence satisfying

all four properties (a)–(d). Let S0 ´ · · · ´ Sk satisfy the first three properties of a strength decomposition. We
want a subsequence that satisfies the fourth property as well. To this end, consider the following process:
while there is an index i œ {1, . . . , k ≠ 1} such that Ï(Si | Si≠1) > Ï(Si+1 | Si), remove Si from the sequence.
Clearly this preserves properties (a) and (b) and terminates with property (d) satisfied as well. We need to
verify that property (c) is preserved. The following lemma implies that when we remove a set Si≠1, we have
Ï(Si+1 | Si≠1) Æ Ï(Si | Si≠1) Æ –ŸSi≠1 , as desired.

Lemma 3.1. Let S0, S1, . . . , Sk ™ N with Si ™ Si≠1 for all i. Then

Ï(Sk | S0) Æ max
iœ[k]

Ï(Si | Si≠1).

Proof. We have

w(S0) ≠ w(Sk) =
kÿ

i=1
w(Si≠1) ≠ w(Si) =

kÿ

i=1
Ï(Si | Si≠1)(f(Si≠1) ≠ f(Si))

Æ max
i

Ï(Si | Si≠1)(f(S0) ≠ f(Sk))

by telescoping series, as desired.

The algorithm. At a high-level, the quotient sparsification algorithm computes an approximate strength
decomposition S0, S1, . . . , Sk and then non-uniformly samples the weights based on the decomposition. An
exact strength decomposition can be computed in polynomial time as computing each Si reduces to submodular
minimization [24, 27, 49] via the Newton method for fractional combinatorial optimization [13] (cf. [47]). There are
faster and more direct algorithms for computing approximate strength decompositions in more concrete settings,
some of which are presented later.

We associate each element e with the strength-ratio Ï(Si | Si≠1) of the unique set Si such that e œ Si≠1 \ Si.
The algorithm randomly rounds each w(e) non-uniformly where elements e are prioritized by their strength-ratios.
For example, in the special case of uniform weights, the algorithm randomly samples each element e œ Si≠1 \ Si

with probability inversely proportional to Ï(Si | Si≠1) and (when e is sampled) assigns weight proportional to
Ï(Si | Si≠1). Intuitively, smaller values of Ï(Si | Si≠1) implies that Si≠1 has low strength and that quotients of
Si≠1 are more sensitive to fluctuations in weight. This suggests that the sampling should prioritize (i.e., be more
conservative for) these elements. Larger values of Ï(Si | Si≠1) reflect a stronger set Si≠1 that can tolerate sparser
samples and higher variance.

Pseudocode for the algorithm, called quotient-sparsification, is presented in fig. 1 on the following page.
For the rest of this section we let w̃ denote the randomized weights returned by quotient-sparsification. Observe
that w̃ satisfies E[w̃(S)] = w(S) for all sets S. We want to show that w̃(Q) is concentrated at w(Q) for all
quotients Q.
Counting quotients. The first step of the analysis observes that there are only polynomially many quotients
with weight close to Ÿf . Recall that r = f(N ), and we assume that all nonzero marginal values of f are at least 1.

Lemma 3.2. For each integer t œ N, there are at most nt+1rt quotients of f with weight at most tŸf .

Proof.1 Let ¸ = ÂrÊ ≠ t ≠ 1. Consider the following randomized process that returns a family of quotients of f .
Initially, let R = ÿ. While f(R) < ¸, we add to R an element e œ N \ span(R) randomly sampled in proportion to

1
The special case where the elements are unweighted and f is the rank function of a matroid was proven in [34]. This proof extends

the ideas to weighted elements and submodular functions.
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quotient-sparsification(f,w,‘)

1. Compute an –-approximate strength decomposition (S0 = N ) ´ S1 ´ · · · ´ (Sk = ÿ) for a parameter
– = O(1).

2. For each element e:
A. Let ·e = c‘2Ï(Si | Si≠1)

– ln(nr) , where e œ Si≠1 \ Si, for a su�ciently small constant c > 0.
B. Randomly (and independently) set

w̃(e) =
I

Áw(e)/·eË·e with probability pe
def= w(e)/·e ≠ Âw(e)/·eÊ,

Âw(e)/·eÊ·e with probability 1 ≠ pe.

3. Return w̃.

Figure 1: Computing a sparse set of weights that preserves the weight of all quotients of f .

its weight w(e). This produces a randomized set R with f(R) Ø ¸. The random process then outputs the set of all
quotients disjoint from R with total weight at most tŸf .

To bound the number of quotients that are output, consider any quotient Q = S̄ disjoint from R. Then
span(R) ™ span(S) = S because span(· · ·) is monotonically increasing, R ™ S, and S is closed. One can repeatedly
add elements from S \ span(R) to R as long as span(R) ( S. Each element increases f(R) by at least 1, and
f(R) is bounded above by r, so at most t + 1 elements are added before f(R) = f(S), span(R) = span(S) and
Q = N \ span(R). Conversely, a set S of at most t + 1 elements induces a quotient Q = N \ span(R fi S) disjoint
from R. This shows that there at most

t+1ÿ

i=0

3
n

i

4
Æ nt+1

quotients disjoint from R.
We claim that any quotient Q with weight at most tŸf is output with probability at least 1/

!ÂrÊ
t

"
. If so, then

since the sum of output probabilities over all quotients Q is at most nt+1, there are at most
3

ÂrÊ
t

4
nt+1 Æ nt+1rt

quotients of weight at most tŸf , as desired.
To prove the claim, fix a quotient Q with weight at most tŸf . It su�ces to show that the iteratively sampled

set R is disjoint from Q with probability at least 1/
!ÂrÊ

t

"
.

Recall that the process generating R terminates as soon as f(R) Ø ¸, which occurs within ¸ iterations because
each additional element increase f(R) by at least 1. We reframe this as an ¸-iteration process in which the
iterations where f(R) Ø ¸ simply hold R constant. For i œ {0, . . . , ¸}, let R(¸) be the value of R after i iterations.

For i œ [¸], Ei be the event that the ith iteration does not sample an element from Q (including the scenario
where there is no sample because f(R(i≠1)) Ø ¸). Let Xi œ {0, 1} be the indicator variable for Ei. Consider
E[Xi | R(i≠1)] = P[Ei | R(i≠1)] with R(i≠1) fixed. If f(R(i≠1)) Ø ¸, then we do not sample any element, so

E[Xi | f(R(i≠1))] = 1.

If f(R(i≠1)) < ¸, then the probability of sampling from Q is bounded above by

w(Q)
w(N ) ≠ w(span(R(i≠1))) Æ tŸf

w(N ) ≠ w(span(R(i≠1)))
(a)
Æ tŸf

Ÿf (r ≠ f(R(i≠1)))

= t

r ≠ f(R(i≠1)) Æ t

ÂrÊ ≠ Áf(R(i≠1))Ë .

Copyright © 2024
Copyright for this paper is retained by authors5218

D
ow

nl
oa

de
d 

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Here (a) is because f has strength Ÿf , hence Ï(span(R(i≠1))) Ø Ÿf . Thus, when f(R(i≠1)) < ¸, we have

E[Xi | f(R(i≠1))] Ø 1 ≠ t

ÂrÊ ≠ Áf(R(i≠1))Ë = ÂrÊ ≠ t ≠ Áf(R(i≠1))Ë
ÂrÊ ≠ Áf(R(i≠1))Ë .(3.1)

We claim that for all i œ {1, . . . , ¸}, and all fixed R(i≠1),

E

S

U
Ÿ̧

j=i

Xj

------
R(i≠1)

T

V Ø
I

1 if f(R(i≠1)) > ¸
!ÂrÊ≠Áf(R(i≠1))Ë

t

"≠1
otherwise.

(3.2)

If the claim holds, then we have

P[R(¸) fl Q = ÿ] = E
C

Ÿ̧

i=1
Xi

D
Ø

3
ÂrÊ
t

4≠1

because R(0) = ÿ, as desired.
We prove the claim by induction (on ¸ ≠ i). The base case is where i = ¸. If f(R(¸≠1)) Ø ¸, then

E[X¸ | R(¸≠1)] = 1,

as desired. Otherwise, we have

E[Xi | f(R(¸≠1))]
(b)
Ø ÂrÊ ≠ Áf(R(¸≠1))Ë ≠ t

ÂrÊ ≠ Áf(R(¸≠1))Ë Ø
Ÿ̧

j=Áf(R(¸≠1))Ë

ÂrÊ ≠ t ≠ j

ÂrÊ ≠ j
=

3
ÂrÊ ≠ Áf(R(¸≠1))Ë

t

4≠1
,

as desired, where (b) is by eq. (3.1).
Now suppose 1 Æ i < ¸. If f(R(i≠1)) Ø ¸ then we have

E[Xi | R(i≠1)] = 1,

as desired. Otherwise, f(R(i≠1)) < ¸. By induction (on ¸ ≠ i), we have

E

S

U
Ÿ̧

j=i

Xj

------
R(i≠1)

T

V = E

S

UXi E

S

U
Ÿ̧

j=i+1
Xj

------
R(i)

T

V

------
R(i≠1)

T

V Ø E[XiY | R(i≠1)],

where

Y
def=

I
1 if f(R(i)) > ¸,
!ÂrÊ≠Áf(R(i))Ë

t

"≠1
otherwise.

Since Áf(R(i))Ë Ø Áf(R(i≠1)) + 1Ë = Áf(R(i≠1))Ë + 1, we have

E[XiY | R(i≠1)] Ø E[XiZ | R(i≠1)] = E[Xi | R(i≠1)]Z

where

Z
def=

I
1 if f(R(i≠1)) > ¸ ≠ 1,
!ÂrÊ≠(Áf(R(i≠1))Ë+1)

t

"≠1
otherwise.

Finally, by eq. (3.1), we have

E[Xi | R(i≠1)]Z Ø
3

ÂrÊ ≠ t ≠ Áf(R(i≠1))Ë
ÂrÊ ≠ Áf(R(i≠1))Ë

4
Z Ø

3
ÂrÊ ≠ ÁR(i≠1)Ë

t

4≠1
.

This establishes eq. (3.2) for all i œ [¸] and all R(i≠1) and completes the proof.
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Uniform sampling. Let ·0
def= c0‘2Ÿf / log n where c0 > 0 is a su�ciently small constant. We first consider a

special case of the quotient sparsification algorithm where ·e Æ ·0 for all e. This would be the case if k = 1. In this
setting, lemma 3.2 allows us to prove that all quotients are preserved (in the uniform setting) via a straightforward
union bound.

Lemma 3.3. If ·e Æ ·0 for all e œ N , then with high probability, we have

|w̃(Q) ≠ w(Q)| Æ ‘w(Q)(3.3)

for all quotients Q.

Proof.2 Call a quotient Q bad if w̃(Q) fails (3.3).
For t œ N, let Qt be the family of quotients of f with total weight between [(t ≠ 1)Ÿ, tŸ). Fix t œ N. By

lemma 3.2, we have |Qt| Æ (nr)t+1. For each quotient Q œ Qt, by the multiplicative Cherno� bound (scaled by
·0),

P[Q is bad] Æ 2e≠‘2w(Q)/3·0 Æ 2e≠c1t ln(nr) = 2(nr)≠c1t

for a su�ciently large constant c1.3 Taking the union bound over Qt, we have

P[some quotient in Qt is bad] Æ 2(nr)≠c1t(nr)t+1 Æ 2(nr)≠c2t

for a su�cient large constant c2. Finally, taking the union bound over all t œ N,

P[some quotient is bad] Æ
ÿ

tœN

2(nr)≠c2t Æ (nr)≠c3

for a su�ciently large constant c3, as desired.

Nonuniform sampling for the general case. We now consider the general case of the quotient sparsification
algorithm where k > 1. The high-level idea of the analysis is to apply lemma 3.3 to each Si in the strength
decomposition with the weights appropriately rescaled.

Lemma 3.4. With high probability, we have |w̃(Q) ≠ w(Q)| Æ ‘w(Q) for all quotients Q.

Proof. Let wÏ, w̃Ï : N æ RØ0 be the weights defined by

wÏ(e) = w(e)
Ï(Si | Si≠1) and w̃Ï(e) = w̃(e)

Ï(Si | Si≠1) for e œ Si≠1 \ Si.

We claim that with high probability,

|w̃Ï(Q fl Si) ≠ wÏ(Q fl Si)| Æ ‘wÏ(Q fl Si)(3.4)

for all quotients Q of f and all sets Si in the strength decomposition. We prove the claim momentarily. First we
show how the claim implies that |w̃(Q) ≠ w(Q)| Æ ‘w(Q) for all quotients Q.

Fix a quotient Q and suppose (3.4) holds for all Si. For each element e œ Q, if e œ Si≠1 \ Si, we have

w(e) = Ï(Si | Si≠1)wÏ(e) = Ï(S1)wÏ(e) +
iÿ

j=2
(Ï(Sj | Sj≠1) ≠ Ï(Sj≠1 | Sj≠2))wÏ(e)

by telescoping series. Similarly we have

w̃(e) = Ï(S1)w̃Ï(e) +
iÿ

j=2
(Ï(Sj | Sj≠1) ≠ Ï(Sj≠1 | Sj≠2))w̃Ï(e).

2
For the special case of matroid rank functions, [34] proved the claim for the unweighted setting as well as the weighted setting

under a similar but di�erent rounding process based on the Poisson distribution.
3
By which we mean that c1 can be made arbitrarily large by making the input constant c0 arbitrarily small.
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Consequently we have

w(Q) = Ï(S1)wÏ(Q) +
kÿ

i=2
(Ï(Si | Si≠1) ≠ Ï(Si≠1 | Si≠2))wÏ(Q fl Si≠1),

w̃(Q) = Ï(S1)w̃Ï(Q) +
kÿ

i=2
(Ï(Si | Si≠1) ≠ Ï(Si≠1 | Si≠2))w̃Ï(Q fl Si≠1).

Finally, by (a) the triangle inequality and (b) inequality (3.4), we have

|w̃(Q) ≠ w(Q)|
(a)
Æ Ï(S1)|wÏ(Q) ≠ w̃Ï(Q)|

+
kÿ

i=2
(Ï(Si | Si≠1) ≠ Ï(Si≠1 | Si≠2))|wÏ(Q fl Si≠1) ≠ w̃Ï(Q fl Si≠1)|

(b)
Æ ‘Ï(S1)wÏ(Q) + ‘

kÿ

i=2
(Ï(Si | Si≠1) ≠ Ï(Si≠1 | Si≠2))wÏ(Q fl Si≠1)

= ‘w(Q),

as desired.
It remains to prove the claim. It su�ces to prove that (3.4) holds for fixed Si and all Q with high probability.

The claim then follows from the union bound over all (up to n) choices of Si.
Fix Si. We claim that Si has strength between 1/– and 1 with respect to the rescaled weights wÏ. First, we

have
wÏ(Si) ≠ wÏ(Si+1)

f(Si) ≠ f(Si+1) = Ï(Si+1 | Si)
Ï(Si+1 | Si)

= 1

To show that Si has strength at least 1/– with respect to wÏ, let T be any subset of Si. We need to show
that Ï(T | Si) Ø 1/–. We have

wÏ(Si) ≠ wÏ(T ) =
k≠1ÿ

j=i

wÏ(Sj \ Sj+1) ≠ wÏ(T fl (Sj \ Sj+1))

=
k≠1ÿ

j=i

w(Sj \ Sj+1) ≠ w(T fl (Sj \ Sj+1))
Ï(Sj+1 | Sj) .(3.5)

For each j œ {i, . . . , k ≠ 1}, the restriction of f to Sj has strength at least Ï(Sj+1 | Sj)/–. Contracting Sj+1 does
not decrease the strength. Thus

w(Sj \ Sj+1) ≠ w(T fl (Sj \ Sj+1)) Ø
3

Ï(Sj+1 | Sj)
–

4
(f(Sj | Sj+1) ≠ f(T fl Sj | Sj+1))

for each j œ {i, . . . , k ≠ 1}. Substituting into (3.5) gives

wÏ(Si) ≠ wÏ(T ) Ø 1
–

k≠iÿ

j=i

f(Sj | Sj+1) ≠ f(T fl Sj | Sj+1).(3.6)

For each j œ {i, . . . , k ≠ 1}, we have f(T fl Sj | Sj+1) Æ f(T fl Sj | T fl Sj+1) by submodularity. This gives

wÏ(Si) ≠ wÏ(T ) Ø 1
–

kÿ

j=i

f(Sj | Sj+1) ≠ f(T fl Sj | T fl Sj+1) = 1
–

(f(Si) ≠ f(T ))

by telescoping series. Thus Ï(T | Si) Ø 1/–, and taken over all subsets T of Si, we conclude that Si has strength
at least 1/–.
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The randomized weights w̃Ï are randomly rounding wÏ with respect to the thresholds

·e

Ï(Si | Si≠1) Æ c‘2

– ln(nr)

for all e œ Si≠1 \Si. Applying lemma 3.3 to Si≠1 with weights wÏ and strength (at least) 1/–, with high probability,
w̃Ï preserves the weight wÏ(Q) of every quotient Q in Si≠1 up to a (1 + ‘)-factor. By lemma 2.1, each intersection
Q fl Si, where Q is a quotient of f , is a quotient in Si. Thus w̃Ï preserves the weight of every intersection Q fl Si

per the claimed inequality (3.4), over all quotients Q of f , with high probability. This completes the proof.

Completing the proof of theorem 1.1. Let w̃ be the corresponding randomized set of weights output by
quotient-sparsification. By lemma 3.4, with high probability, w̃ preserves the weight of every quotient up to a
(1 + ‘)-factor. It remains to bound the number of nonzeroes in w̃.

We claim that each element e has w̃(e) > 0 with probability at most w(e)/·e. Of course this holds if w(e) Ø ·e.
If w(e) < ·e, then w̃(e) is nonzero with probability pe = w(e)/·e.

By linearity of expectation, the expected number of nonzeroes is bounded above by

ÿ

e

w(e)
·e

= O
!
ln(nr)/‘2" kÿ

i=1

w(Si) ≠ w(Si≠1)
Ï(Si≠1 | Si)

Æ O
!
ln(nr)/‘2" kÿ

i=1
f(Si) ≠ f(Si≠1) = O

!
r ln(nr)/‘2"

.

By the Cherno� inequality, the actual number is at most a constant factor greater than the expected value with
high probability. This completes the proof of theorem 1.1.

4 Sparsifying matroids in the rank oracle model: proof of theorem 1.2
Let M = (N , I) be a matroid with n elements and rank r, and let w : N æ RØ0 be a set of nonnegative weights.
Theorem 1.2 claims that M can be sparsified to O

!
n log(n)/‘2"

elements while preserving the weight of every
quotient up to a (1 + ‘)-factor, in nearly linear time and queries to a rank oracle. A polynomial running time and
oracle complexity already follows from theorem 1.1.

We follow the general framework from section 3 where we first compute an approximate strength decomposition
and assign sampling probabilities based on the decomposition. To compute a decomposition we repeatedly extract
sets that are both strong and have low strength-ratio relative to the previous set in the decomposition.
Extracting strong and low strength-ratio sets with small integer weights. The following lemma describes
a subroutine for extracting one such set at a time, that is e�cient for small integer weights and strength.

Lemma 4.1. Let w be integral. For k œ N and ‘ œ (0, 1), in O(n(k + log(n)) log(nk)Qrank/‘) time, one can
compute a closed set S ™ N such that:

(a) Ÿ(S) Ø k.
(b) If S ”= N , then Ï(S) Æ (1 + ‘)k.

The proof of lemma 4.1 is placed in appendix A as it is easier to discuss separately. We mention in passing
that the algorithm implementing lemma 4.1 tries to pack k bases to certify that Ÿ(M) Ø k. The case where S ”= N
arises in the dual when such a packing is not found.

Lemma 4.1 is only useful when the weights are integral and the strength paramter k is small. We want to
extend lemma 4.1 to general weights and strength. The high-level idea is to apply uniform sampling (lemma 3.3)
to reduce the weights and strength parameter to small integers, and then apply lemma 4.1 to the sparsified set.
The issue is that the output set of elements S is only guaranteed to have the desired strength with respect to the
randomized weights generated from the random sample, instead of the input weights w. To ensure that S has the
desired strength and strength-ratio with respect to w as well, we need to strengthen lemma 3.3.
Stronger uniform sampling. The following lemma strengthens lemma 3.3 to show that uniform sparsification
also preserves the strength of closed sets S with low strength-ratio Ï(S). The setup is the same as in lemma 3.3
except the hidden constant c1 should be smaller. The lemma is for all normalized monotone submodular functions
f .

Copyright © 2024
Copyright for this paper is retained by authors5222

D
ow

nl
oa

de
d 

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Lemma 4.2. Let ·0
def= c1‘2Ÿf / log(nr) for a su�ciently small constant c1. Let · : N æ R be a set of element

thresholds values such that 0 Æ ·e Æ ·0 for all e œ N . Let w̃ : N æ RØ0 be a randomized set of weights such that
for each element e œ N , we randomly and independently set

w̃(e) =
I

Áw(e)/·eË·e with probability pe
def= w(e)/·e ≠ Âw(e)/·eÊ,

Âw(e)/·eÊ·e with probability 1 ≠ pe.

For a set S, let Ÿ̃S denote the strength of S with respect to w̃.
With high probability, w̃ satisfies all of the following:

(i) For all quotients Q, |w̃(Q) ≠ w(Q)| Æ ‘w̃(Q).
(ii) For all closed sets S with Ï(S) Æ 2Ÿf , Ÿ(S) Ø (1 ≠ ‘)Ÿ̃(S) ≠ ‘Ÿf .

Proof. We have already established, in lemma 3.3, that w̃ ‘-approximates the weight of all quotients with high
probability (result (i)). We need to show that result (ii) holds with high probability. Then both results (i) and (ii)
hold simultaneously with high probability by the union bound.

For a closed set S, because S is closed, a set T ™ S is closed in (the restriction to) S i� it is closed in N .
(Equivalently, span(T ) ™ S for all T ™ S i� S is closed.) Call a set Q a subquotient if it is of the form S \ T , where
S ™ N and T ™ S are both closed. We identify two types of subquotients of interest:

• Type 1: A subquotient Q = S \ T is type 1 if Ï(S) Æ 2Ÿf and Ÿ(S) Ø Ÿf .
• Type 2: A subquotient Q = S \ T is type 2 if Ï(S) Æ 2Ÿf and Ï(T ) Æ 2Ÿf .

We claim that with high probability, we approximately preserve the weight of both types of subquotients in the
following sense:

• For all quotients Q = S \ T of type 1, we have

|w(Q) ≠ w̃(Q)| Æ ‘w(Q).(4.7)

• For all quotients Q = S \ T of type 2, we have

|w(Q) ≠ w̃(Q)| Æ ‘w(Q) + ‘Ÿf .(4.8)

We defer the proof of the claim that eqs. (4.7) and (4.8) hold with high probability to the end. We first assume
they hold and show how they imply result (ii) of the lemma.

Let S be a closed set with Ï(S) Æ 2Ÿf . We want to show that Ÿ(S) Ø (1 ≠ ‘)Ÿ̃(S) ≠ ‘Ÿf . We have two cases.

Case 1: Ÿ(S) Ø Ÿf . Then all quotients of S are quotients of type 1. We have

ŸS = min
T ™S

T closed

w(S) ≠ w(T )
f(S) ≠ f(T )

(a)
Ø min

T ™S
T closed

(1 ≠ ‘) w̃(S) ≠ w̃(T )
f(S) ≠ f(T ) = (1 ≠ ‘)Ÿ̃S ,

where (a) invokes (4.7).

Case 2: Ÿ(S) Æ Ÿf . Then there is a closed subset T ( S such that

Ï(T | S) = w(S) ≠ w(T )
f(S) ≠ f(T ) Æ Ÿf .

Observe that

Ï(T ) Æ max{Ï(S | N ), Ï(T | S)} Æ 2Ÿf .

This makes S \ T is a subquotient of type 2.
Now we have

Ÿ̃(S) Æ w̃(S) ≠ w̃(T )
f(S) ≠ f(T )

(b)
Æ (1 + ‘)Ï(T | S) + ‘Ÿf

f(S) ≠ f(T )
(c)
Æ (1 + ‘)ŸS + ‘Ÿf ,

as desired. Here (b) applies (4.8) and (c) is because f(S) Ø f(T ) + 1 by assumption.
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This proves the lemma, assuming the claimed eqs. (4.7) and (4.8) hold with high probability. It remains to
prove these claims. We first prove that eq. (4.7) holds with high probability for all quotients of type 1.

Suppose a closed set S has ŸS Ø Ÿf . Then ·0 is also small enough relative to ŸS that, by lemma 3.3, w̃
‘-approximations the weight of quotients of S with high probability. That is, we have eq. (4.7) for all subquotients
of type 1 with fixed S with high probability. By lemma 3.2, there are poly(rn) closed sets S with Ï(S) Æ 2Ÿf .
Taking the union bound over all c;psed S with Ÿf Æ Ï(S) Æ 2Ÿf , we have eq. (4.7) for all subquotients of type 1
with high probability.

Next we consider subquotients of type 2. For any particular subquotient Q = S \ T , eq. (4.8) holds with
high probability by Cherno� bounds.4 Meanwhile, there are at most poly(rn) subquotients of type 2, because by
lemma 3.2, there are at most poly(rn) closed sets S (or T ) with Ï(S) Æ 2Ÿf . Taking the union bound, (4.8) holds
for all subquotients of type 2 with high probability.

Strong and low strength-ratio sets with general weights. Now we extend lemma 4.1 to general weights
and strengths via uniform sampling, leveraging the stronger guarantees of lemma 4.2.

Lemma 4.3. Let ⁄ > 0 and let ‘ > 0 be su�ciently small. Suppose M has strength at least �(⁄). In
O

!
n log2(n)Qrank/‘3"

randomized time and with high probability, one can either:
(i) Declare (correctly) that M has strength at least ⁄.

(ii) Compute a set S ™ N such that:
(a) S has strength-ratio Ï(S) Æ (1 + ‘)⁄.
(b) If S is nonempty, then S has strength ŸS Ø ⁄.

Proof. For ease of notation, we relax the guarantee (ii).(a) to have Ï(S) Æ (1 + ‘)4⁄ instead of Ï(S) Æ (1 + ‘)⁄.
The claimed upper bound of Ï(S) Æ (1 + ‘)⁄ then follows from decreasing ‘ by a constant factor as a preprocessing
step.

Let · = c‘2⁄/ log(n) for a su�ciently small constant c > 0. Let k = (1 + ‘)3⁄/· = O
!
log(n)/‘2"

. Decreasing
c by a constant factor as needed, we assume that k is an integer.

For each element e, we independently sample a random weight w̃(e) where

w̃(e) =
I

Áw(e)/·Ë· with probability pe = w(e)/· ≠ Âw(e)/·Ê,

Âw(e)/·Ê· with probability 1 ≠ pe.

All weights in w̃ are integer multiples of · . We apply lemma 4.1 to M with the integer weights w̃/· and parameters
k and ‘, returning a closed set S. By lemma 4.1 (for k = O

!
log(n)/‘2"

), the running time is O
!
n log2(n)Qrank/‘3"

.
Since (M, w) has strength �(⁄), w̃ satisfies the conditions of lemma 4.2 for error parameter ‘. With high

probability, w̃ satisfies the properties (i) and (ii) of lemma 4.2 with error parameter ‘. Henceforth we assume this
is the case.

If S = N , then this certifies that (M, w̃/·) has strength at least k, hence (M, w̃) has strength at
least k· = (1 + ‘)3⁄. Since w̃ preserves all quotients up to a (1 ± ‘)-factor, M has strength at least
(1 ≠ ‘)k· = (1 ≠ ‘)(1 + ‘)3⁄ Ø ⁄ with respect to w. So in this case we declare that M has strength at least ⁄.

Otherwise S ( N . By lemma 4.1, S has strength at least k· = (1 + ‘)3⁄ and strength-ratio at most
(1 + ‘)k· = (1 + ‘)4⁄ with respect to w̃. Since w̃ ‘-approximates all quotients, and S is closed, we have

Ï(S) = w(N ) ≠ w(S)
f(N ) ≠ f(S) Æ (1 + ‘) w̃(N ) ≠ w̃(S)

f(N ) ≠ f(S) Æ (1 + ‘)5⁄,

as desired. Additionally, by lemma 4.2.(ii), we have

ŸS Ø (1 ≠ ‘)(1 + ‘)3⁄ ≠ ‘⁄ Ø ⁄,

as desired.

4
Here we invoke the following “mixed multiplicative-additive” form which also follows from standard proofs of the Cherno� bound:

Let X1, . . . , Xn œ [0, 1] be independent random variables, ‘ œ (0, 1), and — > 0. Let µ =

qn

i=1 E[Xi] be the expected sum. Then
P[|X1 + · · · + Xn ≠ µ| Ø ‘(µ + —)] Æ 2e≠‘2— .
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matroid-sparsification(M = (N , I), w : N æ RØ0, ‘ œ (0, 1))
/* We assume the total weight is W for some W = poly(n). Wlog we assume the minimum element weight is

r. */

1. Let ‘0 > 0 be a su�ciently small constant. Let S0 = N , ⁄0 = 1 + ‘0, and k = 0.
2. While Sk ”= ÿ:

A. Apply lemma 4.3 with groundset Sk, strength parameter ⁄k, and error parameter ‘0.
1. If this certifies that Sk has strength at least ⁄k, then set ⁄k = (1 + ‘0)⁄k.
2. Otherwise the subroutine returns a set S. Set Sk+1 = S, ⁄k+1 = (1 + ‘0)⁄k, and k = k + 1.

3. Let (T1 = N ), . . . , (T¸ = ÿ) be the subsequence of S1, . . . , Sk obtained by repeatedly removing any set Si

where Ï(Si | Si≠1) > Ï(Si+1 | Si) with respect to w.
4. For each element e œ N :

A. Let ·e = c‘2

ln(n) Ï(Ti | Ti≠1), where e œ Ti≠1 \ Ti, for a su�ciently small constant c > 0.
B. Randomly (and independently) sample

w̃(e) =
I

Áw(e)/·eË·e with probability pe
def= w(e)/·e ≠ Âw(e)/·eÊ,

Âw(e)/·eÊ·e with probability 1 ≠ pe.

5. Return w̃.

Figure 2: Sparsifying a matroid with polynomially bounded weights.

4.1 Proof of theorem 1.2 We are now prepared to prove theorem 1.2. For ease of notation we fix ‘ œ (0, 1)
and show how to preserve the weight of all quotients up to a (1 + ‘)3-factor. The claimed (1 + ‘)-factor follows
from decreasing ‘ by a constant factor. We assume that the weights are polynomially bounded. The extension to
general weights is described in appendix D.

Without loss of generality we may assume that all elements have strictly positive weight (lemma 2.2). By
scaling, we may assume the minimum weight element is r, and the total weight is W for some W = poly(n). Then
M has strength at least 1, and any strength ratio Ï(S | T ) that may arise is bounded between 1 and nW .

Given the quotient-sparsification algorithm from section 3, and the guarantees of theorem 1.2, it su�ces
to compute a O(1)-approximate strength decomposition of the rank function of M in the claimed running time.

To compute the approximate strength decomposition, we apply lemma 4.3 to N with ⁄ = 1 and constant error
parameter, and then repeatedly apply lemma 4.3 to its own output with ⁄ increasing by a constant factor, until we are
left with an empty set. This produces a decreasing chain of closed sets (S0 = N ) ) S1 ) · · · ) (Sk = ÿ) that, with
high probability, satisfies Ï(Si+1 | Si) Æ O(1)Ÿ(Si) for all i. That is, S0, . . . , Sk satisfies properties (a)–(c) of a O(1)-
approximation strength decomposition with high probability. As discuss in section 3, we obtain a O(1)-approximate
strength decomposition as a subsequence by iteratively removing any Si such that Ÿ(Si | Si≠1) > Ÿ(Si+1 | Si).

We use this subroutine to compute the O(1)-approximate strength decomposition in quotient-sparsification.
(See fig. 2 for pseudocode of the entire algorithm.) By theorem 1.1, with high probability, this gives a randomized
set of weights supported by O

!
r log(n)/‘2"

elements and which preserves the weight of every quotient up to a
(1 + ‘)-factor. As for the running time, we have three steps to account for: (a) repeatedly invoking lemma 4.3 to
compute the chain of closed sets S0, . . . , Sk; (b) pruning the chain to a proper strength decomposition, and (c)
sampling the elements.

For step (a), each time we invoke lemma 4.3 increases ⁄ by a constant factor. ⁄ starts at 1, and is
bounded above by nW as that is the maximum possible strength of any closed subset. Thus ⁄ takes on at
most O(log(nW )) = O(log n) distinct values, and this bounds the number of times we invoke lemma 4.3. Each
invocation takes O

!
n log2(n)Qrank

"
time. This gives O

!
n log3(n)Qrank

"
total time spend on step (a).

To extract a proper strength decomposition in O(nQrank) time, we first compute w(Si) and rank(Si) for all i.
We then iterate through the Si’s in increasing order of i starting from i = 1. Whenever Ï(Si | Si≠1) > Ï(Si+1 | Si),
we drop Si and, if i > 1, decrement i. Each iteration either advances i, or else decreases i by at most 1 while also
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decreasing the length of the sequence by 1. Thus, the total number of iterations is at most twice the length of the
original sequence.

The final step, (c), is easy to implement in O(n) time. This gives the claimed O
!
n log3(n)Qrank

"
running time

overall.

Remark 4.1. The only point where the matroid structure is leveraged (beyond the fact that the rank function
is normalized monotone submodular) is in lemma 4.1. For general normalized monotone submodular f , given a
subroutine implementing the interface of lemma 4.1, one can follow the same generic steps as described above
and obtain a O

!
n log(nr)/‘2"

-size sparsifier with running time a logarithmic factor over the running time of the
subroutine with strength parameter k = O(log(nr)) and constant error parameter ‘ = �(1). This is the case for
hypergraphs in section 5.

5 Hypergraph sparsification: proof of theorem 1.3
Let H = (V, E) be a hypergraph with positive edge weights w : E æ R>0. Let m denote the number of edges,
n the number of vertices, and p =

q
eœE |e| the total size of H. Let ‘ œ (0, 1) be fixed. The goal is to compute,

with high probability and in Õ(p) time, a reweighted sub-hypergraph with O
!
n log(n)/‘2"

edges that preserves
the weight of every k-cut up to a (1 + ‘)-factor.

For each hyperedge e œ E, let Ae be any set of |e| ≠ 1 pairs of endpoints of e, interpreted as normal edges,
that form a spanning tree of the endpoints of e. We call Ae the auxiliary edges of e. Let A

def=
t

eœE Ae denote the
multiset of auxiliary edges, where we distinguish auxiliary edges from di�erent hyperedges even if they have the
same endpoints. For a set of hyperedges S, we let AS

def=
t

eœS Ae denote the combined sets of auxiliary edges
from S.

Let rank(· · ·) be the rank function of the graphic matroid over A. We define a set function f over E by

f(S) = rank(AS).

Equivalently, f(S) is n minus the number of connected components in the hypergraph induced by S. Note that
the choice of spanning tree Ae for each hyperedge e does not e�ect f(S). (In fact, any set of edges spanning
the endpoints of e would have the same e�ect.) It is easy to that f is monotone, submodular, normalized, and
integer-valued, because the rank function also has these properties. f has rank r Æ n≠1. We call f the hypergraphic
polymatroid function as it defines a natural polymatroid over E.

A convenient property of f is that the marginal values of f have a clean connection to contracting edges in
H.5 For a set of edges S, consider the function f(· | S) of marginal values with respect to S. We claim this defines
the corresponding function for the hypergraph H/S obtained by contracting all the edges in S. Indeed, for a set of
hyperedges T ,

f(T | S) = f(T fi S) ≠ f(S) = rank(AT fi AS) ≠ rank(AS)

is the same as the rank of AT in the graph obtained by contracting AS .
We first identify k-cuts of H with quotients of f .

Lemma 5.1. The quotients in f are the k-cuts of H.

Proof. For a set of vertices U , let EU be the set of hyperedges with all endpoints in U .
Consider a k-cut consisting of the edges crossing a partition (U1, . . . , Uk) of V . We claim that for

S = EU1 fi · · · fi EUk , Q = E \ span(S) defines a quotient equal to k-cut induced by (U1, . . . , Uk). First, if
an edge e œ E does not cross (U1, . . . , Uk), then it is contained in some Ui, hence e /œ Q. Conversely, if e crosses
(U1, . . . , Uk), then there is an auxiliary edge a œ Ae cut by some Ui. This auxiliary edge is not spanned by AS in
the graphic matroid, hence

f(S + e) Ø rank(AS + a) > rank(AS) = f(S).

Thus e /œ span(S), hence e œ Q. We conclude that Q equals the k-cut induced by (U1, . . . , Uk).

5
This is the main reason we prefer this polymatroidal model for hypergraph cuts over one based on the hypergraphic matroid.
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Conversely let Q = E \ S be a quotient, where S ™ E is closed. Let U1, . . . , Uk be the connected components
of AS . We claim that Q equals the k-cut induced by (U1, . . . , Uk). First we show that Q is a subset of the k-cut.
If e œ Q, then there is an auxiliary edge a œ e that is not spanned by AS in the graphic matroid. This implies e
properly crosses (U1, . . . , Uk). Conversely, if a hyperedge e properly crosses (U1, . . . , Uk), then there is an auxiliary
edge a œ A with endpoints in distinct parts Ui. This auxiliary edge a is not spanned by AS , hence e is not spanned
by S, and e œ Q. We conclude that Q equals the k-cut induced by U1, . . . , Uk.

5.1 A refined count on the number of quotients If we apply theorem 1.1 to the hypergraphic polymatroid
function, then we obtain a sparsifier with O

!
n log(mn)/‘2"

edges. Our next goal is to replace the log(mn)-factor
with log(n).

The log(mn)-factor originates in lemma 3.2, which (in this context) states that there are at most (mn)O(t)

quotients of weight at most tŸf , for t œ N. The following lemma refines the argument in lemma 3.2 and replaces
the (mn)-term with n.

Lemma 5.2. For each integer t œ N, there are at most nO(t) quotients of f with weight at most tŸf .

Proof. We recall the ideas of the proof of lemma 3.2, with variables renamed for our setting.
Consider a randomized collection of quotients of f generated as follows. Initially let R = ÿ. While

f(R) < r ≠ t ≠ 1, we add to R an edge e œ E \ span(R) randomly sampled in proportion to its weight w(e). This
produces a randomized set R with f(R) Ø r ≠ t ≠ 1. We return all quotients disjoint from R with total weight at
most tŸf .

The argument in lemma 3.2 has two parts. The first part argues that there are at most mt+1 quotients disjoint
from R. The second part argues that for any fixed quotient Q with weight at most tŸf , Q is disjoint from R with
probability at least 1/

!r
t

"
. Together this shows that there are at most mt+1!r

t

"
quotients of weight at most tŸf .

We modify the first part of the argument to show that there are at most n2(t+1) quotients disjoint from R.
Again, we recall the argument from lemma 3.2 that obtained the bounded of mt+1. Fix R with f(R) Ø r ≠ t ≠ 1.
For a quotient Q = X̄ disjoint from R, there is a set S of at most t + 1 edges from X such that span(R fi S) = X.
Conversely for any set S of at most t + 1 edges disjoint from R, span(R fi S) is the complement of a quotient
disjoint from R. This shows that there are at most

qt+1
i=0

!m
i

"
Æ mt+1 quotients disjoint from R.

We modify this argument by focusing on the underlying graphic matroid. It is still the case that for a quotient
Q = X̄ disjoint from R, there is a set S of at most t + 1 edges from X such that span(R fi S) = X. We modify
the argument for the converse direction.

Fix a spanning forest FR of AR. For each set S ™ N \ R, let FS be a spanning forest of ARfiS extending FR.
Call two edge sets S1, S2 ™ R̄ equivalent if FS1 and FS2 span the same subset of A. If S1 and S2 are equivalent,
then span(S1 fi R) = span(S2 fi R), and S1 and S2 induce the same quotient.

This shows that the number of quotients disjoint from R is bounded above by the number of equivalence
classes of sets S ™ R̄. The equivalence class of a set S is defined by any spanning forest of AS fi AR extending FR.
This spanning forest extends FR with at most t edges from A. When choosing these edges, parallel edges in A are
equivalent, so each choice is from at most

!n
2
"

possibilities. This shows that there are at most

t+1ÿ

i=0

3
n2

i

4
Æ n2(t+1)

equivalence classes, hence at most n2(t+1) quotients disjoint from R.
The rest of the proof of lemma 3.2, replacing mt+1 with n2t+1 as an upper bound for the number of quotients

disjoint from R, leads to the conclusion that there are at most nO(t) quotients of weight at most tŸf .

Replacing lemma 3.2 with lemma 5.2 in the proof of theorem 1.1 decreases the number of output edges from
O

!
n log(mn)/‘2"

to O
!
n log(n)/‘2"

.

5.2 Nearly linear time strength decompositions in hypergraphs It remains to show that an approximate
strength decomposition of a hypergraph can be computed in nearly linear time.

While a sparsification based on the hypergraphic polymatroid function f is not exactly a case of matroid
sparsification, we still follow the same general framework. Recall that the first ingredient of the matroid sparsification
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algorithm was a subroutine (described in lemma 4.1) that extract subsets with strength k and strength-ratio close
to k for small integer weights and strength parameter k. The following lemma describes the substitute for the
hypergraphic polymatroid function.

Lemma 5.3. Let H = (V, E) be a hypergraph with integer edge weights, and let k œ N and ‘ > 0 be parameters. In
Õ(pk/‘) time, one can either:

(i) Certify that f has strength Ÿf Ø k.
(ii) Compute a closed set S ( E with strength ŸS Ø k and strength-ratio Ï(S) Æ (1 + ‘)⁄.

The proof of lemma 5.3 is placed in appendix B. Similar to the case for matroids, it is a combinatorial algorithm
that is easier to discuss separately.

Given lemma 5.3, we obtain a sparsification algorithm for hypergraphs and polynomially bounded weighted
by taking the matroid sparsification algorithm and replacing the use of lemma 4.1 with lemma 5.3. We omit the
proof as it is exactly the same beyond updating variable names and terminology in a straightforward manner. (See
also remark 4.1.) Similar to the matroid case, the overall running time is a logarithmic factor over the running
time of lemma 5.3 with strength parameter k = O(log(mn)) and constant error, hence Õ(p) overall. General edges
weights reduce to polynomial weights in the same way as for matroid sparsification, as discussed in appendix D.

6 Coverage and SAT sparsification: proofs of theorem 1.4 and corollary 1.2
In this section, we prove the sparsification results for set systems and for SAT.

For set systems the setup is as follows. Let U be a finite set of m points with positive weights w œ RU
>0, and

let F be a collection of n subsets of U . Let ‘ œ (0, 1). The goal is to compute a subset of O
!
n log(n)/‘2"

points
(Ũ , w̃), where Ũ ™ U and w̃ œ RŨ

>0, such that
-----w

A
€

SœF Õ

S

B
≠ w̃

A
Ũ fl

€

SœF Õ

S

B----- Æ ‘w

A
€

SœF Õ

S

B
.(6.9)

for all subcollections F Õ ™ F .
For SAT we have the following setup. Let Ï(x1, . . . , xn) be a CNF formula over n variables. Let

C = {C1, . . . , Cm} be the m clauses of Ï, and let w : C æ R>0 be a set of weights on the clauses. The
goal is to compute a reweighted subset of O

!
n log(n)/‘2"

clauses (C̃, w̃), where C̃ ™ C and w̃ œ RCÕ , such that for
any assignment of x1, . . . , xn œ {True, False} satisfying the clauses S ™ C,

--w(S) ≠ w̃
!
S fl C̃

"-- Æ ‘w(S).(6.10)

We briefly describe a reduction from SAT sparsification to coverage sparsification. At a high level, given a
SAT formula Ï(x1, . . . , xn) with weighted clauses (C, w), we create a set system where each clause is a point, and
each literal assignment (xj = true or xj = false) maps to the set of all clauses satisfied by the assignment. More
formally, for each clause Ci, we create a point pi with the same weight, w(pi) = w(Ci). For each variable xj , we
have two sets: a set Sj consisting of all points pi corresponding to clauses Ci satisfied by setting xj = true, and a
set Tj consisting of all points pi corresponding to clauses Ci satisfied by setting xj = false. It is easy to see that
a reweighted subset of points satisfying (6.9) for all subcollections of sets F Õ gives a reweighted subset of clauses
satisfying (6.10) for all possible assignments of x1, . . . , xn.

Thus corollary 1.2 reduces to theorem 1.4. As mentioned in section 1, there are two ways to prove theorem 1.4.
The first way is a direct approach that yields a faster and simpler algorithm. The second way is by a reduction to
hypergraph sparsification essentially due to [39]. We present the direct approach first, and sketch the reduction to
hypergraph sparsification at the end of the section for the sake of completeness.

The direct proof of theorem 1.4 consists of three parts. The first is the structural aspect regarding the
existence of a sparsified set of points (Ũ , w̃) as described above (up to log-factors). We address this by reducing to
submodular quotient sparsification. The second part refines part of the proof of theorem 1.1 to reduce

--Ũ
-- from

O
!
n log(nm)/‘2"

to O
!
n log(n)/‘2"

. The third part shows how to compute (Ũ , w̃) in nearly linear time with high
probability.
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6.1 From unions to quotients Consider the “hitting set” function f defined by

f(X) = |{S œ F : X fl S ”= ÿ}| for X ™ U .

It is easy to see that f is normalized, monotone, submodular, and integer-valued. We also have f(U) = n.
The following lemma connects the quotients of f with unions of subcollections of F .

Lemma 6.1. A set Q ™ U is a quotient i� it is the union Q =
t

SœF Õ of some F Õ ™ F .

Proof. Suppose Q =
t

SœF Õ for some F Õ ™ F . Let X = Q̄; we need to show that X is closed. By definition, X is
the set of points that don’t hit any set in F Õ. If y œ span(X), then all sets hit by y are hit by X. In particular, y
does not hit any set in F Õ, so y œ X. Thus Q is a quotient.

Conversely, suppose Q = X̄ is a quotient. Let FX be the collection of sets hit by X, and let F Õ = F \ FX . By
definition the sets in F Õ are contained in Q. On the other hand, for all p œ Q, since p /œ span(X), we have

|{S œ F Õ : p œ S}| = f(p | X) > 0,

hence p is in some set of F Õ. Thus Q equals the union of F Õ.

6.2 A refined count on the number of unions By lemma 6.1, the quotients of f are exactly the unions of
subcollections of sets. By theorem 1.1, there exists a set of weights w̃ with at most O

!
n log(mn)/‘2"

nonzeroes
that preserves the weight of every quotient of f , hence the weight of every union of sets, up to a (1 + ‘)-factor.
The next step is to reduce the log(mn)-factor to log(n).

The log(mn)-factor comes from lemma 3.2, which states that there are at most (mn)t+1 unions of weight at
most tŸf , for t œ N. The following lemma refines the argument in lemma 3.2 and reduces the base of the exponent
from mn to 2n.

Lemma 6.2. For all t œ N, there are at most (2n)t quotients of weight at most tŸf .

Proof. Let R ™ U with f(R) Ø r ≠ t ≠ 1. The proof of lemma 3.2 argues that there are at most mt+1 quotients
disjoint from R. We claim that there are at most 2t+1 quotients disjoint from R. Plugging this new bound into
the rest of the proof of lemma 3.2 shows that there are 2t+1!r

t

"
Æ (2r)t+1 = (2n)t+1 quotients of weight at most

tŸf , as desired.
For a quotient Q to be disjoint from R, all of the sets hit by Q must be disjoint by R. Moreover, by lemma 6.1,

every quotient Q is the union of the subfamily of sets hit by Q. Thus every quotient Q disjoint from R is a union
of sets disjoint by R. There are at most t + 1 sets in R, hence at most 2t+1 quotients disjoint from R.

Replacing lemma 3.2 with lemma 6.2 in the proof of theorem 1.1 leads to a reweighted subset of O
!
n ln(n)/‘2"

points preserving the weight of every union up to a (1 + ‘)-approximate factor.

6.3 A nearly linear time algorithm Lastly, we consider the algorithmic aspect of theorem 1.4, which claims
that a set system can be sparsified in nearly linear time. The bottleneck is in computing an approximate strength
decomposition. We let N =

q
SœF |S| denote the total size of the set system. In the sequel, the “strength”,

“strength-ratio”, and so forth of a set system refers to that of the associated hitting set function f . Without loss of
generality, we may assume all points have nonzero weight (cf. lemma 2.2).

We build an approximate strength decomposition by iteratively computing sets that are strong and have low
strength-ratio relative to the previous set in the decomposition. The following lemma describes a subroutine for
extracting one such set at a time. It is the most important and involved part of the overall algorithm.

Lemma 6.3. Let (U , F) be a set system of total size N . Let U be weighted with minimum weight 1 and the total
weight W . Let ‘ œ (0, 1) and ⁄ > 0 be parameters. In O

!
N log2(W )/‘2"

time, one can compute a set of points
U Õ ™ U such that:

(a) U Õ has strength ŸU Õ Ø ⁄.
(b) If U Õ ”= U , then U Õ has strength ratio Ï(U Õ) < (1 + ‘)⁄.
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The proof of lemma 6.3 is placed in appendix C as it is easier to understand separately. We mention in passing
that the subroutine is based on the push-relabel flow algorithm applied to a fractional matching problem between
sets and points where a set can only be matched to points in the set.

Next we use lemma 6.3 to construct an approximate strength decomposition for polynomially bounded weights.

Lemma 6.4. For polynomially-bounded weights, a O(1)-approximate strength decomposition can be computed in
O

!
N log3(m + n)

"
time.

Proof. By rescaling, we may assume the minimum weight is at least m. Consequently, any strength-ratio is at
least 1. Since the maximum weight is poly(m, n), the maximum possible finite strength-ratio is bounded above by
poly(m, n).

The algorithm is as follows. Let U0 = U , ⁄0 = 1, and k = 0. We maintain the invariant that Uk has strength
at least ⁄k. While Uk ”= ÿ, we apply lemma 6.3 with strength parameter 2⁄k and error parameter ‘ = 1 to Uk,
returning a set U Õ. If U Õ = Uk then we replace ⁄k with 2⁄k and repeat with the same index k. Otherwise we set
Uk+1 = U Õ, ⁄k+1 = 2⁄k, and k = k + 1.

This produces a nested sequence of sets (U0 = U) ) U1 ) · · · ) (Uk = ÿ). For i œ {0, . . . , k}, Ui has strength
⁄i. This implies that k = O(log(m + n)) because 2k Æ ⁄k≠1 Æ ŸUk≠1 Æ poly(m, n).

For i œ [k], Ui has strength-ratio Ï(Ui | Ui≠1) Æ 4⁄i≠1 Æ 4ŸUi≠1 . Thus U1, . . . , Uk satisfies the first three
properties of a O(1)-approximate strength decomposition. We obtain a O(1)-approximate strength decomposition
as a subsequence by removing any Ui where Ï(Ui | Ui≠1) > Ï(Ui+1 | Ui).

As for the running time, we have O(log(m + n)) iterations invoking lemma 6.3, each of which takes
O

!
N log2(m + n)

"
time. Extracting the strength decomposition as a subsequence can be done in linear time (by

the same method as for matroids; see page 17). Overall we obtain a O
!
N log3(m + n)

"
running time.

The only nontrivial step in the algorithm quotient-sparsification (fig. 1 on on page 10) is to compute
an approximate strength decomposition. By lemma 6.4, this step can be implemented in nearly linear time for
polynomially bounded weights. This gives a nearly linear time sparsification algorithm for polynomially bounded
weights. One can reduce general weights to polynomially bounded weights without increasing the running time, as
described in appendix D.

This completes the proof of the algorithmic component of theorem 1.4.

Remark 6.1. The running time can be improved by a logarithmic factor by opening up the black box underlying
lemma 6.3. We sketch the ideas. As mentioned above, the algorithm underlying lemma 6.3 is a push-relabel flow
algorithm. At a high-level, the vertices of this flow problem correspond to the sets F and the points U , where each
set S œ F is a source of capacity ⁄ and each point p œ U is a sink of capacity w(p). From one instance of lemma 6.3
to the next, instead of starting a new instance of the push-relabel algorithm, one can keep the configuration from
the previous instance, and update it by increasing the source capacity of each set to the next (larger) value of ⁄. We
then run the push-relabel algorithm from this updated configuration to solve the next instance of lemma 6.3. In this
manner, the total running time over all instances of lemma 6.3 is that of a single instance, O

!
N log2(m + n)

"
.

6.4 Reduction to hypergraphs An alternative proof of theorem 1.4 leverages the hypergraph sparsifier from
section 5. [39] described a reduction from SAT sparsification to hypergraph sparsification. The reduction from
coverage sparsification to hypergraph sparsification described below is based on essentially the same idea and is
included for the sake of completeness.

Given points U , sets F , and weights w, we construct a weighted hypergraph H = (V, E) as follows.
• For each set S œ F , we have a vertex vS .
• We have an additional auxiliary vertex vı.
• For each point p, we have a hyperedge ep consisting of vı and vS for each set S containing p. The weight of

ep is w(p).
We claim that each union of sets in F corresponds to a cut of hyperedges. Consequently, a cut-preserving

sparsifier for H gives a coverage preserving sparsifier for (F , U).
Let F Õ ™ F be a collection of sets, and let Q =

t
SœF Õ S be their union. Consider the cut in H induced by the

set of vertices corresponding to F Õ, W = {vS : S œ F Õ}. If an ep in the cut, then to be incident to a vertex in W ,
p must lie in some set in F Õ. Thus p œ Q for every edge ep in the cut. Conversely, if p œ Q, then ep is incident to
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some vertex in W . Since ep is also incident to vı, and vı /œ W , the edge ep is cut by W . Thus the edges cut by W
are exactly the edges corresponding to points in Q.

Observe that the number of vertices of H, is one more than the number of sets in F . Thus hypergraph
sparsifier yields O

!
|F| log(|F|)/‘2"

edges, which implies the same number of points in the corresponding coverage
sparsifier, as desired.

Finally, for the sake of running time, we observe that H takes linear time to create, and the total size
of H matches the total size of the set system up to constant factors. Thus the nearly linear time algorithm
for hypergraph sparsification yields a nearly linear running time for sparsifying set systems. We note that the
hypergraph sparsification algorithm is slower than the direct algorithm presented above by logarithmic factors,
and more involved sparsifier for H gives a coverage preserving sparsifier for (F , U).

Let F Õ ™ F be a collection of sets, and let Q =
t

SœF Õ S be their union. Consider the cut in H induced by the
set of vertices corresponding to F Õ, W = {vS : S œ F Õ}. If an ep in the cut, then to be incident to a vertex in W ,
p must lie in some set in F Õ. Thus p œ Q for every edge ep in the cut. Conversely, if p œ Q, then ep is incident to
some vertex in W . Since ep is also incident to vı, and vı /œ W , the edge ep is cut by W . Thus the edges cut by W
are exactly the edges corresponding to points in Q.

Observe that the number of vertices of H is one more than the number of sets in F . Thus the hypergraph
sparsifier yields O

!
|F| log(|F|)/‘2"

edges, which implies the same number of points in the corresponding coverage
sparsifier, as desired.

Finally, for the sake of running time, we observe that H takes linear time to create, and the total size
of H matches the total size of the set system up to constant factors. Thus the nearly linear time algorithm
for hypergraph sparsification yields a nearly linear running time for sparsifying set systems. We note that the
hypergraph sparsification algorithm is more complicated, and slower by logarithmic factors, than the direct
algorithm presented above.
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A Computing strong and low strength-ratio sets in the rank oracle model: proof of lemma 4.1
This section describes and analyzes an algorithm fulfilling the requirements of lemma 4.1. The input consists of a
matroid M = (N , I), integer weights w : N æ N, and parameters k œ N and ‘ œ (0, 1). We assume oracle access
to the rank function, and let Qrank denote the time to query the oracle when discussing running times. The goal
is to either (a) certify that (M, w) has strength k, or (b) output a closed subset S that has strength at least k and
strength-ratio at most (1 + ‘)k.

Preprocessing. For technical reasons we prefer the weights to be bounded above by k. The following lemma
shows that we can obtain this by contracting all elements with weight greater than k.

Lemma A.1. Let H be the set of elements of weight Ø k. Let S ™ N \ H.
(i) If S has strength at least k in M/H, then S fi H has strength at least k in M.

(ii) The strength-ratio of S in M/H equals the strength-ratio of S fi H in M.
(iii) If S is closed in M/H, then S fi H is closed in M.
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Proof. For the first claim, for any set A ™ S fi H, we have

w(S fi H) ≠ w(A) = w(S) ≠ w(A fl S) + w(H \ A)
(a)
Ø k(rank(S | H) ≠ rank(A fl S | H)) + w(H \ A)
= k(rank(S fi H) ≠ rank(A fi H)) + w(H \ A)
= k(rank(S fi H) ≠ rank(A)) + w(H \ A) ≠ k rank(H | A)
(b)
Ø k(rank(S fi H) ≠ rank(A)) + w(H \ A) ≠ k|H \ A|
(c)
Ø k(rank(S fi H) ≠ rank(A)).

Here (a) is by the strength of S in M/H. (b) is because rank(H | A) Æ |H \ A|. (c) is because each element in H
has weight at least k. That is, Ï(A | S fi H) Ø k.

For the second claim, let ⁄ be the strength-ratio of S in M/H. We have

w(N ) ≠ w(S fi H) = w(N \ H) ≠ w(S) = ⁄(rank(N | H) ≠ rank(S | H)) = ⁄(r ≠ rank(S fi H)),

so S fi H also has strength-ratio ⁄.
For the third claim, let e œ span(S fi H). We want to show that e œ S fi H. If e /œ H, then have

rank(S + e | H) ≠ rank(S | H) = rank(S fi H + e) ≠ rank(S fi H) (d)= 0

where (d) is because e œ span(S fi H). Thus e œ spanH(S). Since S is closed in M/H, e œ S.

We use lemma A.1 to reduce the maximum weight to k as follows. Let H be the set of elements of weight Ø k.
As a preliminary step, we contract H in O(nQrank) time. We run the algorithm (described below) in M/H. If the
algorithm certifies that M/H has strength k, then by lemma A.1, M has strength k. If the algorithm produces
a set S ™ N \ H with strength k and strength-ratio at most (1 + ‘)k in M/H, then by lemma A.1, S fi H has
strength k and strength-ratio at most (1 + ‘)k in M.

Henceforth we assume that all weights are bounded above by k.
Components of a push-relabel algorithm. The algorithm here is based on the matroid partition push-relabel
algorithm of [17]. The algorithm maintains a family of k bases B1, . . . , Bk and integer labels ¸ : N æ ZØ0.

An element e is active if it appears in more than w(e) bases. If there are no active elements, then B1, . . . , Bk

is a feasible packing of k bases and certifies that N has strength k.
The labels are initially set to 0 and are bounded above by a parameter h = O(log(nk)/‘) called the height

(with one minor exception explained below). For each label j, and set of elements X ™ N , we let Xj
def= X fl ¸≠1(j)

denote the subset of elements with label j. We let XÆj
def=

t
iÆj Xi and XØj

def=
t

iØj Xi be the subsets of elements
with labels at most and at least j, respectively.
Invariants. B1, . . . , Bk and ¸ obey the following invariants.

(I) ¸(e) = 0 for any element e appearing in fewer than w(e) bases.
(II) Bi,Æj spans NÆj≠1 for all j.

Basic operations. The high-level goal is to increase the label of all active elements to h. Each iteration the
algorithm selects an active element e with label ¸(e) = j < h and executes one of two operations:

1. Push: Exchange e out of Bi for some d œ Nj≠1 such that Bi ≠ e + d œ I.
2. Relabel: Increase ¸(e) by 1.

One can push e out of Bi i� Bi ≠ e does not span NÆj≠1. Therefore, to preserve invariant (II), e can be relabeled
i� e cannot be pushed.

In addition we have the following operation to remove elements from the system.
3. Delete: Remove e from N .

To delete an element e while preserving invariants (I) and (II), we take the following steps. We first set w(e) = 0,
which excludes e from consideration from invariant (I). Henceforth we focus only on invariant (II). While e is
active and has label ¸(e) < h + 2, we try to push or (otherwise) relabel e. (We briefly allow ¸(e) to exceed h.)
Eventually either e is no longer active (and not in any Bi) or ¸(e) = h + 2. If e is not active, then we can remove e
from the system without violating invariant (II). If e is active, then it has ¸(e) = h + 2, while all other elements
have label at most h. By invariant (II), Bi,Æh+1 = Bi ≠ e spans N ≠ e for all Bi containing e. We can now remove
e from N and all Bi while preserving invariant (II).
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Counting the basic operations. We first give upper bounds on the total number of push, relabel, and delete
operations (including push and relabel operations induced by deletion). There are at most O(nh) relabel operations
since each element gets relabeled at most O(h) times.

To account for the push operations, we define a potential � by � =
qk

i=1
q

eœBi
¸(e). � is initially 0, and

always nonnegative. Each relabel increases � by at most k, and removing an element can only decrease �. Each
push decreases � by 1. As the total increase to � is O(nkh), there are at most O(nkh) push operations.

For deletions, of course, each element can be deleted at most once.
Implementation details and running time bounds. We now give more specific implementation details and
derive upper bounds on the running time assuming oracle access to the rank function.

Recall that the algorithm repeatedly selects an active element e with label ¸(e) < h and tries to either push e
out of some Bi containing e, or otherwise relabels e. It is easy to keep track of the active elements with label less
than h so that we can identify the next active element in O(1) time.

Given an active element e with label ¸(e) = j, and a base Bi containing e, the first step is to decide if e can
be pushed out of Bi. Such a push is possible i� Bi,Æj ≠ e does not span NÆj≠1, which holds i�

rank((Bi,Æj fi NÆj≠1) ≠ e) = rank(Bi,Æj fi NÆj≠1) = |Bi,Æj |.

Thus a single query to the rank oracle determines whether e can be pushed out of Bi.6 If e can be pushed out of
Bi, then the next step is to identify an element d œ Nj≠1 to exchange with e. To identify such an element d, we
maintain Nj≠1 in a list {d1, . . . , dm}, and binary search for the last index ¸ such that

rank((Bi,Æj fi {d1, . . . , d¸}) ≠ e) = |Bi,Æj |.

Then d¸ is the desired element d. Here the binary search has O(log n) iterations and each iteration makes 1 query
to the rank oracle.

In summary, it takes 1 query to decide if e can be pushed out of a base Bi, and O(log n) queries to identify an
element d that can be exchanged with d. Given an active element e, we test if e can be exchanged out of at most
k bases before deciding to either (a) push e out of some Bi or (b) relabel e. We charge the O(k) oracle queries
to the ensuing push or relabel. Each push also costs an additional O(log n) queries. All put together, we spend
O(nk(k + log(n))hQ) time on push and relabel operations.

Lastly, each deletion reduces to push and relabel operations already accounted for plus O(1) time. An element
can only be deleted once, so this adds up to O(n) time which is negligible.
When the push-relabel algorithm halts. Recall that our overall goal is to either certify that M has strength
k, or identify a subset S with strength k and strength-ratio Ï(S) Æ (1 + ‘)k. Now, the push-relabel algorithm
halts when all active elements have label h. If there are no active elements then this certifies that N has strength
k, as desired. The following lemma is about the alternative case where there are still active elements, and shows
that there is a set of the form NÆj that has the desired strength-ratio (1 + ‘)k.

Lemma A.2. Suppose all active elements have label h = O(log(nk)/‘). Then either:
(i) There are no active elements, and B1, . . . , Bk certifies that the (remaining) ground set has strength k.

(ii) There exists an index j œ {1, . . . , h ≠ 1} such that w(NØj) Æ (1 + ‘)w(NØj+1). We have rank(NÆj≠1) <
rank(N ) and Ï(NÆj≠1) Æ (1 + ‘)k.

Proof. Suppose there is at least one active element. Then Nh ”= ÿ, and w(Nh) Ø 1.
Since h Ø c log(nk)/‘ for a su�ciently large constant c, w(Nh) Ø 1, and w(N ) Æ nk, there exists

an index j œ {1, . . . , h ≠ 1} such that w(NØj) Æ (1 + ‘)w(NØj+1). For this index j, and each Bi, we have
|Bi,Æj | Ø rank(NÆj≠1) because Bi,Æj spans NÆj≠1 (invariant (II)). We also have w(NØj+1) Æ

qk
i=1|Bi,Øj+1|

because each e œ NØj+1 appears in at least w(e) bases Bi (invariant (I)). Altogether, we have

(1 + ‘)k rank(NÆj≠1) + w(NØj) Æ (1 + ‘)(k rank(NÆj≠1) + w(NØj+1))

Æ (1 + ‘)
kÿ

i=1
|Bi| = (1 + ‘)k rank(N ).

6
Here we count the time spent assembling the query as part of the query.
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Rearranging, we have

w(NØj) Æ (1 + ‘)k(rank(N ) ≠ rank(NÆj≠1)).

Since w(NØj) > 0, this implies that rank(NÆj≠1) < rank(N ). Dividing both sides by rank(N ) ≠ rank(NÆj≠1)
gives Ï(NÆj≠1) Æ (1 + ‘)k, as desired.

A.1 Putting it altogether: proof of lemma 4.1 Lemma A.2 shows that after running the push-relabel
algorithm, if we do not certify M to have strength k, we instead have a set S = NÆj with strength-ratio
Ï(S) Æ (1 + ‘)k. A natural idea is to recurse on S, either certifying that S has strength k or recursing on a smaller
subset with the desired strength ratio. (In the base case, S = ÿ, and ÿ has strength +Œ.)

The only issue with the recursive approach is the e�ciency. It is possible that rank(S) = rank(N ) ≠ 1 in each
recursive call, resulting in a depth of recursion of r. To remove the r-factor overhead, we do not re-initialize the
push-relabel algorithm on S. Instead we delete all of the elements outside of S, and continue the push-relabel
algorithm from there. This way all of the push-relabel computation over all subproblems can be accounted for as
parts of a single instance of the push-relabel algorithm. See fig. 3 below for pseudocode.

Let Sout be the set of elements returned by the algorithm. B1, . . . , Bk is a feasible packing of k bases in Sout,
so by lemma A.2, B1, . . . , Bk certifies that Sout has strength at least k. (This includes the case where Sout = ÿ and
B1, . . . , Bk = ÿ.) Now suppose Sout ”= N . Then the algorithm has ¸ iterations for some ¸ > 1. For i œ {0, . . . , ¸},
let Si be the remaining set of elements after i iterations. (E.g., S0 = N and Sout = span(S¸).) By lemma A.2, for
each index i œ ¸, we have Ï(Si | Si≠1) Æ (1 + ‘)k. Thus

w(N ) ≠ w(Sout) =
ÿ̧

i=1
w(Si≠1) ≠ w(Si)

Æ (1 + ‘)k
ÿ̧

i=1
rank(Si≠1) ≠ rank(Si)

= (1 + ‘)k(rank(N ) ≠ rank(S¸))
= (1 + ‘)k(rank(N ) ≠ rank(Sout))

by telescoping series, hence Ï(Sout | N ) Æ (1 + ‘)k.
Lastly we bounded the running time. As discussed above, all the work spent within the push-relabel framework

takes O(nk(k + log(n)) log(nk)Qrank/‘) time. We also need to account for the work identifying the index j in
step (2.C). It is easy to maintain w(NØj) for all j in O(1) time per relabel and O(h) time per delete. It is also
easy to track the set of indices satisfying the conditions of (2.C) with constant overhead. Thus the total time
spent on (2.C) is bounded above by O(nkh) = O(nk log(nk)/‘), and negligible. Lastly, computing the span of the
final set S¸ takes O(nQrank) time.

This concludes the proof of lemma 4.1.

1. Initialize the push-relabel algorithm.
2. Repeatedly:

A. Continue the push-relabel algorithm until all active elements have label h = O(log(nk)/‘).
B. If B1, . . . , Bk is a feasible packing, then return the span of all the remaining elements.
C. Otherwise let j œ {1, . . . , h ≠ 1} be such w(NØj) Æ (1 + ‘)w(NØj+1). Delete each element in NØj+1.

Figure 3: Computing a subset with strength k and strength-ratio at most (1 + ‘)k.

Copyright © 2024
Copyright for this paper is retained by authors5237

D
ow

nl
oa

de
d 

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



B Computing strong and low strength-ratio sets in hypergraphs: proof of lemma 5.3
This section presents an algorithm which fulfills the requirements of lemma 5.3. The input consists of a hypergraph
H = (V, E) (with m edges, n vertices, and total size p), integer weights w œ ZE

Ø0, and parameters k œ N and ‘ > 0.
Let f be the hypergraphic polymatroid function for H (defined in section 5). The goal is to either certify that the
hypergraph has strength at least k, or compute a closed set of edges S ( E with strength-ratio at most (1 + ‘)k
and strength at least k.

Contracting heavy edges. For technical reasons we prefer the weight of each edge e to be bounded above by
kf(e). The following lemma allows us to contract edges with weight exceeding this bound.

Lemma B.1. Let D be a set of hyperedges e with weight w(e) > kf(e). Let H Õ = (V Õ, EÕ) be the hypergraph
obtained by contracting and removing D. Let S ™ EÕ.

(i) If S has strength at least k in H Õ, then S fi D has strength at least k in H.
(ii) If S has strength-ratio ÏHÕ(S) = ⁄ in H Õ, then S fi D has strength-ratio Ï(S fi D) = ⁄ in H.

(iii) If S is closed in H Õ, then S fi D is closed in H.

Proof. For the first claim, for any set A ™ S fi D, we have

w(S fi D) ≠ w(A) Ø w(S) ≠ w(A fl S) + w(D \ A)
Ø k(f(S | D) ≠ f(A fl S | D)) + w(D \ A)
= k(f(S fi D) ≠ f(A fi D)) + w(D \ A)
= k(f(S fi D) ≠ f(A)) + w(D \ A) ≠ kf(D | A)
(a)
Ø k(f(S fi D) ≠ f(A)),

hence, Ï(A | S fi D) Ø k. Here (a) is because

kf(D | A)
(b)
Æ k

ÿ

eœD\A

f(e) Æ w(D \ A),

where (b) is by submodularity.
For the second claim, we have

w(E) ≠ w(S fi D) = w(E \ D) ≠ w(S) (c)= ⁄(f(E | D) ≠ f(S | D)) = ⁄(f(E) ≠ f(S fi D)),

where (c) is because ⁄ is the strength-ratio of S in H Õ. Thus S fi D also has strength-ratio ⁄.
For the third claim, let e be a hyperedge in H spanned by S fi D in H. We want to show that e œ S fi D.

Suppose e /œ D. Recall that the marginal values fD coincide with the hypergraphic polymatroid function of H Õ.
We have

fD(S + e) ≠ fD(S) = f(S fi D + e) ≠ f(S fi D) (d)= 0

where (d) is because e œ spanH(S fi D). This means that e œ spanHÕ(S). Since S is closed in H Õ, this means that
e œ S, as desired.

Henceforth we assume that the total weight is at most k
q

e f(e) Æ kp.

Tree packing certificates Let T (1), . . . , T (k) ™ A. We say that T (1), . . . , T (k) is a packing if they collectively
include at most w(e) auxiliary edges from each hyperedge e. The algorithm is motivated by the following lemma.

Lemma B.2. Let T (1), . . . , T (k) be a packing of k spanning forests of A. Then f has strength at least k.

Proof. Fix a set of hyperedges S. Since T (1), . . . , T (k) is a packing, we have

kÿ

i=1
|T (i) \ span(AS)| Æ

kÿ

i=1
|T (i) \ AS | Æ w(E) ≠ w(S).
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Each T (i), as a spanning forest, has f(E) edges, and at most f(S) auxiliary edges spanned by AS . Thus

|T (i) \ span(AS)| Ø f(E) ≠ f(S)

for each i. All put together we have

w(E) ≠ w(S) Ø
kÿ

i=1
|T (i) \ span(AS)| Ø k(f(E) ≠ f(S)).

Taken over all S, this shows that f has strength at least k.

From packing bases to matroid intersection. The algorithm tries to compute a packing of k spanning
forests of A to certify the strength of f . However, rather than pack k forests directly, we reframe the problem as a
matroid intersection problem.

For a hyperedge e, let Ae ◊ k denote a set consisting of k copies of each auxiliary edge a œ A, denoted
a(1), . . . , a(k). Let A ◊ k

def=
g

eœE Ae ◊ k denote the disjoint union of all these copies. We have |A ◊ k| Æ pk. For
i œ [k], let A(i) def= {a(i) : a œ A} and A(i)

e
def= {a(i) : a œ A}. For a set S ™ A ◊ k, let S(i) def= S fl A(i) denote the

subset of auxiliary edges with index i.
We define one matroid over A ◊ k that is essentially the k-fold disjoint union of a graphic matroid over each

A(i). More formally, the independent sets are the sets T ™ A ◊ k such that for each i œ [k], T (i) ™ A(i) forms a
forest. The second matroid is the partition matroid over A ◊ k allowing at most w(e) total auxiliary edges from e
(over all i) for all hyperedges e. We let rankg and rankp denote the rank function and let spang and spanp denote
the span function for these graphic and partition matroids, respectively.

Components of a push-relabel algorithm. We develop a push-relabel algorithm for this intersection problem
based on the more abstract push-relabel framework described by [17]. The algorithm maintains a base T ™ A ◊ k
in the graphic matroid, a base B ™ A ◊ k in the partition matroid, and integer labels ¸ : A ◊ k æ ZØ0 for all
auxiliary edges. T being a base means that T (i) is a spanning forest of A(i) for all i. B being a base means that
for every hyperedge e, B contains exactly w(e) edges from Ae ◊ k. T and B are initialized as arbitrary bases.

We call an auxiliary edge a(i) active if a(i) œ T (i) \ B. If there are no active auxiliary edges, then each
hyperedge e has at most w(e) auxiliary edges in T . By lemma B.2, this certifies that f has strength at least k.

We now expand on the integer labels. The integer labels are initially set to 0 and bounded above by a
parameter h = O(log(pk)/‘) called the height. For a set of auxiliary edges X ™ A, and label j, let Xj

def= X fl ¸≠1(j)
denote the subset of auxiliary edges with label j. We let XÆj

def=
t

iØj Xi and XÆj
def=

t
iÆj Xi denote the subsets

of auxiliary edges with label at most and at least j, respectively. We associate each hyperedge with the maximum
label over all its auxiliary edges. For j œ ZØ0, let Ej denote the set of hyperedges e where the maximum label
over Ae ◊ k is j. Let EÆj

def=
t

iÆj Ei denote the set of hyperedges where all auxiliary edges have label Æ j, and let
EØj

def=
t

iØj Ei denote the set of hyperedges with at least one auxiliary edge of label Ø j.

Invariants. T , B, and ¸ are bound together by the following invariants.
(I) ¸(a(i)) = 0 for any auxiliary edge a(i) œ B \ T (i).

(II) T (i)
Æj spans A(i)

Æj≠1 for all j.
(III) BØj spans AØj+1 in the partition matroid for all j.

Basic operations. The high-level goal is to either eliminate all active auxiliary edges or increase their label
to h, for a given parameter h œ N. We do so by iteratively executing one of three operations. Given an active
auxiliary edge a(i) œ Ae ◊ k with label ¸(a(i)) = j < h, these operations are:

1. Push: Exchange a(i) into B for some b œ Bj≠1 fl (Ae ◊ k).
2. Pull: Exchange a(i) out of T (i) for some b(i) œ A(i)

j≠1 \ T (i) such that T (i) ≠ a + b is a forest.
3. Relabel: Increase ¸(a) by 1.

One can push an active a(i) into B i� a(i) /œ spanp(BØj). One can pull a(i) out of T (i) i� T (i)
Æj ≠ a(i) does not span

A(i)
Æj≠1. To preserve invariants (II) and (III), one can relabel a(i) i� no push or pull operation is available.

In addition to the operations above, we periodically remove hyperedges from the hypergraph. For this we
introduce one more operation.

4. Delete: Remove a hyperedge e from the hypergraph and Ae ◊ k from the push-relabel system.
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We now describe how to remove a hyperedge e without violating invariants (I)–(III). We first set w(e) = 0, and
remove any arcs from Ae ◊ k from B. This excludes e and its auxiliary edges from consideration for invariants (I)
and (III), and we focus on invariant (II). We repeatedly try to pull or (otherwise) relabel any active a(i) œ Ae ◊ k
until ¸(a(i)) = h + 2 for all active a(i) œ Ae ◊ k. (We briefly allow labels to exceed h, and only for Ae ◊ k.) The
pull and relabel operations preserve invariant (II). The auxiliary edges not in any T (i) can be removed from the
system without any violation. Since there are no auxiliary edges with label h + 1, the remaining auxiliary edges
with label h + 2 can now be removed from the system without any violation of invariant (II).

Counting the basic operations. We account for the total number of push, relabel, and pull operations
including those prompted by deletion.

There are at most O(pkh) relabel operations since each auxiliary edge a(i) can be relabeled O(h) times. There
are at most O(pkh) push operations because each push increases |BÆj | for some index j Æ O(h), and each |BÆj | is
monotonically increasing from 0 to at most pk. To bound the number of pull operations, we define a potential � by

� =
kÿ

i=1

ÿ

a(i)œT (i)

¸(a(i)).

� is nonnegative and initially � is 0. Each relabel increases � by at most 1. Pushing does not e�ect �. Removing
an auxiliary edge (at the end of a deletion) does not increase �. Pulling decreases � by 1. Since the total
increase to � is O(pkh), the total number of pulls is O(pkh). In summary, we have O(pkh) push, pull, and relabel
operations.

As for deletions, of course, each hyperedge can be deleted at most once.

Implementation details and running time bounds. Now we specify more concrete implementation details
and obtain real running time bounds. The algorithm repeatedly selects an active auxiliary edge a(i) œ Ae ◊ k and
tries to either push a(i) into B or pull a(i) out of T (i). If a(i) cannot be pushed or pulled, then we relabel a(i).
It is important that we try to push an auxiliary edge a(i) before pulling. It does not matter which active a(i) is
selected as long as ¸(a(i)) < h. The algorithm stops when ¸(a(i)) = h for all active a(i).

It is easy to keep track of the active auxiliary edges a(i) with label ¸(a(i)) < h, so that we can either select
such an a or decide that none are available in O(1) time. For each hyperedge e, it is easy to track which of its
auxiliary edges are in B and at which label, so that given an active a(i), we can check for and execute a push in
O(1) time. These are also easy to maintain as a(i)’s are relabeled. The remaining challenge is the pull operation.
Given a(i) œ T (i), we need to quickly decide if it is possible to pull a(i) out of T (i) for some b(i), and if so, execute
the exchange.

We facilitate these operations by maintaining each T (i) in a data structure that maintains the minimum weight
spanning forest (MSF) in a dynamic graph. We appeal to the following bounds from [25].

Fact B.1. A minimum weight spanning forest can be maintained in a dynamically changing graph in O
!
log4 n

"

amortized time per edge insertion or deletion.

Fix i œ [k]. At a high-level, each T (i) is maintained as an MSF over A(i) where the edge weights are generally
set to the labels of the auxiliary edges.7 The only exception is that edges in the MSF have their weight reduced to
≠1, which forces the edge to stay in the tree until we decide to remove it at a later point. (An edge weight update
translates to a deletion and an insertion.)

Initially all the labels, hence all the weights, are 0. As T (i) acquires edges initially, we set the weight of each
added edge to ≠1. When an auxiliary edge a(i) is relabeled from j to j + 1, since a(i) is active, we have a(i) œ T (i),
and the edge weight of a(i) does not need to be updated.

Given an active hyperedge a(i) œ T (i)
j , to test if a(i) can be pulled out of T (i) for some b œ T (i)

j≠1, we increase
the weight of a(i) from ≠1 to j ≠ 1/2. If a(i) is replaced by another edge b, then that edge b is necessarily at label
j ≠ 1 because ¸(b) Æ j ≠ 1/2 and T (i)

j ≠ a(i) spans A(i)
Æj≠2. We pull a(i) out of T (i) in exchange for b by setting the

weight of b to ≠1 and the weight of a to j. If a(i) is not replaced by another edge, then a(i) cannot be pulled out
for any b œ A(i)

j≠1. We restore the weight of a(i) to ≠1.

7
These edge weights over A(i)

, for the data structure maintaining T (i)
, should not to be confused with the input weights w(e) for

each hyperedge e.
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Recall that each edge update takes O
!
log4 n

"
amortized time. It takes O(pk) edge updates to initialize all

T (i)’s. It takes O(1) edge updates to test if we can pull an a(i) out of T (i), and also to execute the pull. If we end
up pulling a(i), we can charge this edge update to the subsequent pull. If not, then the algorithm will promptly
relabel a(i), and the edge updates from testing the pull can be charged to the relabel. Altogether, given the
upper bounds for pull and relabel operations above, we have a total of O(pkh) edge updates, and spend a total of
O

!
pkh log4 n

"
time, managing the T (i)’s over pull and relabel operations.

In summary, the total running time is O
!
pkh log4 n

"
.

Certifying strength k or extracting a low-strength-ratio set. As mentioned above, we run the push-relabel
algorithm until all active auxiliary edges have label h. The following lemma states that when the push-relabel
algorithm stops, we will have either certified that the hypergraph has strength k, or identified a smaller set of
edges of the form EÆj that we can restrict our attention to.

Lemma B.3. Suppose all active auxiliary edges have label h = O(log(n)/‘). Either:
(i) There are no active auxiliary edges and T certifies that the current hypergraph has strength k.

(ii) There exists an index j œ {2, . . . , h ≠ 1} such that w(EØj+1) Æ (1 + ‘)w(EØj≠1), in which case f(EÆj) <
f(E) and Ï(E>j) Æ (1 + ‘)k.

Proof. We have already discussed how the lack of active auxiliary edges implies that T certifies that H has strength
k. Suppose there is at least one active auxiliary edge. This implies that Eh is nonempty, and w(Eh) Ø 1.

Let j Ø 1, and consider any hyperedge e œ EØj . Then there is some a(i) œ Ae ◊ k with label ¸(a(i)) Ø j. When
a(i) was previously relabeled from j ≠ 1 to j, since no push was available, Bj≠2 had no other auxiliary edges from e,
and all w(e) of the auxiliary edges from e in B were in BØj≠1. Since |BØj≠1 fl (Ae ◊ k)| never decreases over time,
BØj≠1 currently has w(e) auxiliary edges from e as well. Summing over all e œ EØj , we have w(EØj) Æ |BØj≠1|.

We also have, for all indices j œ ZØ0 and i œ [k],

f(EÆj) = rankg

Q

a
€

eœEÆj

A(i)
e

R

b (a)
Æ rankg

!
A(i)

Æj

" (b)
Æ

--T (i)
Æj+1

--.

Here (a) is because all auxiliary edges of any e œ EÆj have label at most j (by definition of EÆj). (b) is because
T (i)

Æj+1 spans A(i)
Æj (by invariant (II)).

Now, since h Ø c log(pk)/‘ Ø c log(w(E))/‘ for a su�ciently large constant c, and w(Eh) Ø 1, there exists an
index j with 2 Æ j Æ h ≠ 1 such that

w(EØj+1) Æ (1 + ‘)w(EÆj≠1).

For this choice of index j, we have

(1 + ‘)kf(EÆj) + w(EØj+1) Æ (1 + ‘)(kf(EÆj) + w(EØj≠1))

Æ (1 + ‘)
A

kÿ

i=1

--T (i)
Æj+1

-- + |BØj |
B

= (1 + ‘)
A

kÿ

i=1
|T (i) fl B|

B

Æ (1 + ‘)kf(E).

Rearranging, we have

w(E) ≠ w(EÆj) = w(EØj+1) Æ (1 + ‘)k(f(E) ≠ f(EÆj)).

Since the LHS is nonzero, this first implies that f(EÆj) < f(E). Dividing both sides by f(E) ≠ f(EÆj) gives
Ï(EÆj) Æ (1 + ‘)k, as desired.
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1. Initialize the push-relabel algorithm.
2. Repeatedly:

A. Continue the push-relabel algorithm until all active auxiliary edges have label h = O(log(m)/‘).
B. If there are no active auxiliary edges, then return the span of the set of all remaining hyperedges.
C. Otherwise let j Æ h ≠ 2 be an index such that w(EØj+1) Æ (1 + ‘)w(EØj≠1). Remove all hyperedges in

E>j from the system.

Figure 4: Computing a subset of hyperedges with strength k (from the proof of lemma 5.3).

Completing the proof of lemma 5.3. We are now prepared to complete the proof of lemma 5.3. The algorithm
we analyze is given in fig. 4 and we first give a high-level description. Recall that one goal is to find a subset of
edges with strength at least k. To this end, we initialize the push-relabel algorithm and run it until all active
auxiliary edges have label h. If there are no active edges, then we have certified the hypergraph has strength k, as
desired. Otherwise, by lemma B.3 we identify an index j such that EÆj has Ï(EÆj) Æ (1 + ‘)k. We restrict out
attention to these edges by deleting EØj+1. Then we continue the push-relabel algorithm and repeat the above
steps, until arriving at a subset of hyperedges with strength k. (This includes the empty set, which has strength
+Œ.)

Let Sout be the set output by the algorithm and suppose the algorithm runs for ¸ + 1 iterations. Let
(S0 = E) ) S1 ) · · · ) S¸ be the descending sequence of sets S at the beginning of each iteration. As mentioned
above, the algorithm certifies Sout = span(S¸) has strength k before returning it. Now suppose Sout ”= E. We
need to show that Sout has strength-ratio Ï(Sout | E) Æ (1 + ‘)k.

For each i œ [¸], by lemma B.3, we have

Ï(Si | Si≠1) = w(Si) ≠ w(Si≠1)
f(Si) ≠ f(Si≠1) Æ (1 + ‘)k.

Consequently

w(E) ≠ w(Sout) =
ÿ̧

i=1
w(Si≠1) ≠ w(Si) Æ (1 + ‘)k

ÿ̧

i=1
f(Si≠1) ≠ f(Si)

= (1 + ‘)k(f(E) ≠ f(S¸))
= (1 + ‘)k(f(E) ≠ f(Sout)),

hence Ï(Sout | E) Æ (1 + ‘)¸.
Finally we discuss the running time. The total time spent on the push-relabel algorithm is O

!
pkh log4 n

"
=

O
!
pk log(pk) log4(n)/‘

"
. It is easy to track each di�erence w(EØj+1) ≠ (1 + ‘)w(EØj≠1) for all j with O(1)

overhead per relabel. Consequently we can also identify the index j in step (2.C) in O(1) time.
Lastly, computing the span Sout = span(S¸) of the final set of edges S¸ can be done in nearly time as follows.

First, we build a disjoint union data structure over V labeling the connected components of S¸. For every other
edge e, e œ span(S¸) i� all endpoints of e are in the same component. This can be realized by querying the disjoint
union data structure |e| ≠ 1 pairs of endpoints of e. Altogether, computing the span takes O(p–(n)) time, where
–(· · · ) is the inverse Ackerman function.

Overall we have a running time of O
!
pk log(pk) log4(n)/‘

"
. This completes the proof of lemma 5.3.

C Computing strong and low strength-ratio sets for coverage: proof of lemma 6.3
In this section we describe and analyze an algorithm which fulfills the requirements of lemma 6.3. The input
consists of a set system (U , F), positive weights w : U æ R>0 over the points, and parameters k œ N and ‘ œ (0, 1).
Let

f(X) = |{S œ F : S fl X ”= ÿ}|,
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for X ™ U , be the hitting set function of (U , F). We may assume without loss of generality that every set is
nonempty. Then f has rank r = f(U) = |F|.

The goal of lemma 6.3 is to either certify that U has strength (at least) k (with respect to f), or compute a
subset U Õ ( U with strength k and strength-ratio Ï(U Õ | U) Æ (1 + ‘)k. Letting N =

q
SœF |S| denote the total

size of the set system, and W =
q

pœU w(p), we seek a O
!
N log2(W )/‘2"

running time.
The algorithm is motivated by the following connection between the strength of the hitting set system and

matchings between the points and sets.

Lemma C.1. The hitting set system (U , F) has strength at least ⁄ i� there is a fractional matching between points
U and sets S œ F such that:

(a) Points p œ U are only matched to sets S œ F where p œ S.
(b) Each point p œ U is matched at most w(p) times.
(c) Each set S œ F is matched exactly ⁄ times.

Proof. Hall’s matching theorem states that a matching satisfying properties (a)–(c) exists i� for all F Õ ™ F , letting
Q denote the set of points hitting F Õ, we have

⁄|F Õ| Æ w(Q).

By lemma 6.1, this condition is equivalent to the inequality above holding for all quotients Q of f . Since
|F Õ| = |F| ≠ f(Q̄), this is also the definition of U having strength Ø ⁄.

The high-level approach is to apply push-relabel flow techniques (from [22, 23, 21]) to the matching problem
described in lemma C.1. We first describe the general setup.

We have a directed bipartite graph with vertices V = F fi U and edges E directed from each set to the points
in the set:

E = {(S, p) : S œ F , p œ S}.

Note that |V |/2 Æ |E| = N where N is the total size of the set system. Each edge e œ E has infinite capacity.
Each set S œ F is a source of size ⁄, and each point p œ U is a sink of size w(p). We let x : E æ RØ0 denote the
flow vector; x can also be interpreted as a fractional bipartite matching. We let Ex denote the set of edges (with
positive capacity) in the residual graph of x. The excess at a set S is defined as ⁄ minus the total flow leaving S.
The excess at a point p is defined as the total flow entering p minus w(p). A vertex v is active if it has positive
excess. We say x is a feasible matching if there are no active vertices.

Labels and invariants. In addition to a flow x, the push-relabel framework maintains integer vertex labels
¸ : V æ ZØ0 subject to the following invariants:

(I) For all v œ V , if excess(v) < 0, then ¸(v) = 0.
(II) For all (u, v) œ Ex, ¸(v) Ø ¸(u) ≠ 1.

A typical push-relabel algorithm works to ensure that ¸(v) Ø |V |. (Then there is an empty label that induces a
certifying cut.) Instead we introduce a parameter h œ N, called the height, and stop the algorithm whenever all
active vertices have label Ø h.

Push-relabel operations. The generic push-relabel algorithm iteratively selects an active vertex v and executes
one of the following operations:

1. Push: Push flow down from u to v along an edge (u, v) œ Ex such that ¸(u) = ¸(v) + 1.
2. Relabel: Increase the label ¸(v) by 1.

In order to maintain invariant (II), a vertex v can only be relabeled if it is impossible to push from v.

Removing points. For our setting, we also remove (vertices corresponding to) points p œ U from the flow
network. For this we introduce a third operation:

3. Remove: Remove a point p œ U from the set system and the flow network, along with any set S that becomes
empty.

We remove a point p œ U from the flow network by the following steps. First, we set the flow along any edge
incident to p to 0. Then we remove p and all edges incident to p from the graph. Removing a point may increase
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the excess of sets containing p. This does not violate either invariant. Once p is removed from the flow network,
any set S that was previously of the form S = {p} is now an isolated vertex that can an also be removed without
violating either invariant.

By removing any set that becomes empty, we maintain the property that all sets are nonempty.

The push-relabel algorithm. There are several di�erent variations of the push-relabel algorithm, all following
the general format of repeatedly selecting an active vertex v and either pushing from or relabeling v. For our
task, the algorithm is allowed to select any active vertex v with label ¸(v) < h. When pushing flow from an active
vertex v to a vertex w, the algorithm always pushes as much flow as possible, which is the minimum of the excess
at v and the residual capacity of the edge (v, w). The push is called a saturating push if it uses all the capacity of
the edge and removes the edge from the residual graph. Otherwise the push is called a non-saturating push. When
there are no active vertices v with label ¸(v) < h, the algorithm stops.

Counting the basic operations. Observe that the vertex labels never decrease, and the maximum label is h.
Therefore there are at most h relabel operations per vertex.

We claim there are at most h saturating pushes on each edge (v, w). Indeed, a saturating push on (v, w)
removes (v, w) from the residual graph, and (v, w) can only reappear after a push along the reverse edge (w, v).
Pushing along (v, w) requires ¸(v) = ¸(w) + 1 while pushing along (w, v) requires ¸(w) = ¸(v) + ¸(1), so for the
latter to occur, ¸(w) must have increased by at least 2. Thus a saturating push (v, w) can be charged to the
increase in ¸(w) by at least 2.

Thus, there are at most O(|V |h) relabel operations and O(|E|h) saturating pushes. It remains to account for
the non-saturating pushes. We define a potential function � summing the labels of all active vertices:

� def=
ÿ

active v

¸(v).

� is always nonnegative, and initially � = 0 because all vertices have label 0. Each saturating push increase �
by at most h, and each relabel increases � by 1. Removing a point p increases � by at most h for each set S
containing p. We charge each per-set increase to the deletion of the edge (S, p). Between these three operations,
the total increase to � is O

!
|E|h2"

. Meanwhile, each non-saturating push from (say) v to w decreases � by at
least 1 because the push makes v inactive, and ¸(w) = ¸(v) ≠ 1. Thus the total number of non-saturating pushes is
bounded by the total increase to �, O

!
|E|h2"

.

Running time bounds. Now we translate the operation bounds to proper running times. It is easy to maintain
a list of active vertices with label < h, with O(1) overhead as vertices are activated, deactivated, and deleted. For
each vertex v, and each label i, we maintain a doubly-linked list of residual edges (v, w) œ Ex with ¸(w) = i. With
reverse pointers, one can maintain this list in O(1) time whenever an edge is added to or removed from Ex, or as
the endpoint w has its label increase. With these data structures in place, we can identify an active vertex v, and
identify and execute a basic operation on v, in constant time. Altogether, the total running time is bounded by
the total number of non-saturating pushes: O

!
|E|h2"

.

Certifying strength k or extracting low strength-ratio sets. Suppose we run the push-relabel algorithm
until all active vertices have label h = O(log(m)/‘). The following lemma states that when the algorithm stops,
we will have either certified that the set system has strength k, or identified a set of points that we can discard.

For an index i œ {0, . . . , h}, we let Ui
def= U fl ¸≠1(i) denote the set of (remaining) points with label i. We let

UÆi
def=

t
jÆi Uj denote the set of points with label at most j, and similarly let UØj

def=
t

jØi Uj .

Lemma C.2. Let ‘ œ (0, 1), and suppose all active vertices have label h for h = O(log(m)/‘). Then either:
(i) x is a feasible matching, certifying that the hitting set system has strength at least ⁄.

(ii) There exists an index i Æ h ≠ 2 such that w(UØi+1) Æ (1 + ‘)w(UØi+3), in which case f(UÆi) < r and
Ï(UÆi) Æ (1 + ‘)⁄.

Proof. For a set of points U Õ ™ U , let

x̂(U Õ) def=
ÿ

pœU Õ

ÿ

SœF
pœS

x(S, p)
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denote the total fractional quantity of sets matched to points in U Õ.
Suppose x is not a feasible matching. We claim there is at least one point p with label Ø h ≠ 1.
To prove the claim, we first observe that there is at least one active vertex with label h because x is not

a feasible matching. If this active vertex is a point then this satisfies the claim. Otherwise the active vertex
corresponds to a set S. S is nonempty, and any point p œ S has label ¸(p) Ø ¸(S) ≠ 1 Ø ¸(h) ≠ 1, as claimed.

Since h Ø c log(W )/‘ for a su�ciently large constant c, w(UØh≠1) Ø 1, and w(UØ0) = w(U) Æ W , there must
be an index i Æ h ≠ 2 such that w(UØi+1) Æ (1 + ‘)w(UØi+3) Then

w(UØi+1) Æ (1 + ‘)w(UØi+3)
(a)
Æ (1 + ‘)x̂(UØi+3),

where (a) observes that any point p with nonzero label is fractionally matched by at least w(p) edges (invariant (I)).
We also have f(UÆi) Æ |FÆi+1| since all sets hit by UÆi have label at most i + 1 (invariant (II)). We then have

⁄|FÆi+1| Æ x̂(UÆi+2) because each set in FÆi+1 is inactive and fractionally matched ⁄ times to points in UÆi+2
(invariant (II)). Putting everything together, we have

w(UØi+1) + (1 + ‘)⁄f(UÆi) Æ (1 + ‘)(x̂(UØi+3) + x̂(UÆi+2)) = (1 + ‘)x̂(U) Æ (1 + ‘)⁄r.

Rearranging we have

w(UØi+1) Æ (1 + ‘)⁄(r ≠ f(UÆi)).

Since UØi+1 ”= 0, this first implies that f(UÆi) < r. Dividing both sides by r ≠ f(UÆi) gives Ï(UÆi) Æ (1 + ‘)⁄, as
desired.

Proof of lemma 6.3. We are now prepared to prove lemma 6.3. The high-level idea of the algorithm is as
follows. We initialize the push-relabel algorithm as described above and run the push-relabel algorithm until all
active vertices have label h. If x is a feasible matching, then this certifies that the hitting set system has strength ⁄.
If not, then by lemma C.2, we can identify an index i Æ h ≠ 2 such that Ï(UÆi) Æ (1 + ‘)⁄. We remove all points
in U>i, and then repeat, continuing the push-relabel algorithm from the current configuration. The algorithm
terminates when it obtains a feasible matching x for the remaining hitting set system. (This includes the empty
matching when U = ÿ.) See fig. 5 on the next page for pseudocode.

Let Uout be the set of points returned by the algorithm. The feasible matching x at termination certifies that
Uout has strength at least ⁄.

Suppose Uout ”= U . Then the algorithm runs for k + 1 iterations for some k œ ZØ0. Let (U0 = U) ´ U1 ´ U2 ´
· · · ´ (Uk = Uout) be the descending sequence of point sets that the set system is restricted to in each iteration.
For each i œ [k], we have

Ï(Ui | Ui≠1) = w(Ui≠1) ≠ w(Ui)
f(Ui≠1) ≠ f(Ui)

Æ (1 + ‘)⁄

by lemma C.2. Consequently

w(U) ≠ w(Uout) =
kÿ

i=1
w(Ui≠1) ≠ w(Ui) Æ (1 + ‘)⁄

kÿ

i=1
f(Ui≠1) ≠ f(Ui)

= (1 + ‘)⁄(f(U) ≠ f(Uout)),

hence Ï(Uout | U) Æ (1 + ‘)⁄.
It remains to address the running time. As mentioned above, the total time spent on push-relabel operations, and

on removing vertices, is O
!
|E|h2"

= O
!
N log2(W )/‘2"

. To identify the index i in step (2.C) e�ciently, it su�ces to
keep track of w(UÆi) as points are relabeled, and maintain a list of the indices i where w(UÆi+2)≠w(UÆi) Æ ‘w(U).
It is easy to do so with negligible overhead.

This completes the proof of lemma 6.3.

Remark C.1. The quadratic dependency on log(W )/‘ in lemma 6.3 can be reduced by adapting the scaling approach
of [1]. For ease of exposition we presented what we believed to be the simplest algorithm for the task. (Besides,
for the overall sparsification algorithm, this speedup is not compatible with the alternative speedup described in
remark 6.1.)
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1. Initialize the push-relabel algorithm.
2. Repeatedly:

A. Continue the push-relabel algorithm until all active vertices have label h.
B. If x is a feasible matching, then return the set of all remaining points.
C. Otherwise let i œ [h ≠ 2] such that w(UÆi+2) Æ w(UÆi) + ‘w(U). Remove all of U>i (and all sets

contained in U>i) from the flow network.

Figure 5: Computing a set with strength-ratio at most (1 + ‘)⁄ and strength at least ⁄ (from the proof of
lemma 6.3).

D Extending to general weights
Elsewhere in this article we have described nearly linear time algorithms sparsifying quotients of a function
f for polynomially bounded weights. Here we give a nearly black-box reduction from general weights to the
polynomially-bounded setting.

For fixed f : N æ RØ0, we assume that we can sparsify, for any disjoint S, T ™ N , the function fT |S obtained
by contracting T and restricting to S:

fT |S(A) = f(A fi T ) ≠ f(T ) for A ™ S.

We point out that for each of our concrete classes (matroids, hypergraphs, and coverage), fT |S gives another
instance of that class. We assume that, given fT |S , where the weights of S lie in a polynomially bounded range,
there is a randomized algorithm that produces, with high probability, a randomized set of weights w̃ : S æ RØ0
that:

(a) Preserves the weight of every quotient of fT |S up to a (1 + ‘)-factor.
(b) Has Nonzeroes(f(S | T )) nonzeroes for some function Nonzeroes(x).
(c) Takes Time(S) randomized time for some set function Time(X).

We assume that Nonzeroes is superadditive: Nonzeroes(x)+Nonzeroes(y) Æ Nonzeroes(x + y) for x, y > 0.
We also assume that Time is superadditive over disjoint sets: Time(A) + Time(B) Æ Time(A fi B) for disjoint
A, B ™ N . Below we define Nonzeroes and Time for the 4 main examples in this article.

• For normalized monotone submodular f , we have Nonzeroes(x) = O
!
x log(nr)/‘2"

and Time(S) =
O

1
|S|O(1)

2
.

• For matroids, we have Nonzeroes(x) = O
!
x log(n)/‘2"

and Time(S) = Õ(|S|Qrank).
• For hypergraphs with n vertices, we have Nonzeroes(x) = O

!
x log(n)/‘2"

and Time(S) = Õ(pS), where
pS =

ÿ

eœS

|e|.

• For coverage with n sets, we have Nonzeroes(x) = O
!
x log(n)/‘2"

and Time(S) = Õ(NS) where
NS =

ÿ

eœS

f(e).

Given this setup, we describe a randomized algorithm that produces randomized weights w̃ : N æ RØ0 that
with high probability, (a) preserve the weight of every quotient of f up to a (1 + ‘)-factor, (b) has Nonzeroes(r)
nonzeroes, and (c) takes Time(N ) randomized time (aside from some simple preprocessing that is unlikely to be a
bottleneck for most applications).

The high-level idea is very simple. We partition the elements by weight, so that the weights within each
group of elements lie within a polynomial factor, while the ranges of the weights of the groups are disjoint and a
polynomial factor apart from each other. We run the polynomially bounded sparsification routine on each group
separately and combine the randomized weights for each group.

The algorithm. For ease of notation, we fix ‘ > 0 and describe an algorithm that preserves all quotients up to a
(1 + c‘)-factor for a constant c > 0; a proper (1 + ‘)-approximation follows from decreasing ‘ by a constant factor.

For each element e, let We
def= [w(e), w(e)n/‘] be an interval representing an (n/‘)-factor window starting at
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w(e). Let W
def=

t
e We be the union of these windows, and let W1, . . . , Wh be the maximal closed intervals of W

listed in increasing order. That is, W is the disjoint union of W1, . . . , Wh. Each Wi is contained in a O
!
n2/‘

"
-factor

range.
For each i œ [h], let Ni

def= {e : w(e) œ Wi} be the set of elements whose weight falls in the window Wi. For
i < j,

max
eœNi

w(e) Æ ‘

n
min
eœNj

w(e),

so the weights of elements in di�erent windows are an (n/‘)-factor apart. We denote NÆi
def=

t
jÆi Nj for i œ ZØ0.

Let ni
def= |Ni| for i œ [h].

For i œ [h], let fi
def= fNØi+1|Ni

be the function obtained by contracting NØi+1 and restricting to Ni. fi has a
ground set of ni elements and rank f(Ni | NØi+1).

For each fi, we run the sparsification algorithm on fi, producing a randomized set of weights w̃i : Ni æ RØ0.
Let ŵ combine the w̃i’s into a set of weights over N ; i.e.,

ŵ(e) def= w̃i(e) for e œ Ni.

We return ŵ.
Correctness. For each i, with high probability, w̃i has Nonzeroes(Ni) nonzeroes, and preserves all quotients
of fi up to a (1 + ‘)-factor. By the union bound (and noting that h Æ n), this holds for all i œ [h] with high
probability. Henceforth we assume that this is the case.

We first bound the size of the support of ŵ. We have
hÿ

i=1
Nonzeroes(f(Ni | NØi+1))

(a)
Æ Nonzeroes

A
hÿ

i=1
f(Ni | NØi+1)

B
(b)
Æ Nonzeroes(r)

by (a) superadditivity and (b) telescoping series.
Next we verify that ŵ approximates the weight of all quotients. Consider any quotient Q of f . We want to

show that ŵ(Q) approximates w(Q). Let e be the maximum weight element in Q, and suppose e œ Ni. Observe
that

w(NÆi≠1) Æ
3

‘w(e)
n

4
· n = ‘w(e) Æ ‘w(Q).

In particular,

w(Q fl Ni) Ø w(Q) ≠ w(NÆi) Ø (1 ≠ ‘)w(Q),

so Q fl Ni represents almost all of the weight of Q.
By lemma 2.1, Q fl NØi = Q fl Ni is a quotient in (the function restricted to) NØi. Since Q fl NØi is disjoint

from NØi+1, Q fl Ni is a quotient of fi (i.e., upon contracting NØi). Since w̃i is an (1 + ‘)-approximation of w for
the quotients of fi, we have

(1 ≠ ‘)w(Q fl Ni) Æ (ŵ(Q fl Ni) = w̃i(Q fl Ni)) Æ (1 + ‘)w(Q fl Ni).

Now we have

ŵ(Q) Ø ŵ(Q fl Ni) = w̃i(Q fl Ni) Ø (1 ≠ ‘)w(Q fl Ni) Ø (1 ≠ ‘)2w(Q).

We also have

ŵ(Q) Æ w̃i(Q fl Ni) +
ÿ

j<i

w̃j(Nj)
(c)
Æ (1 + ‘)w(Q fl Ni) + (1 + ‘)

ÿ

j<i

w(Nj)

Æ (1 + ‘)w(Q) + ‘(1 + ‘)w(Q) = (1 + ‘)2w(Q),

where (c) observes that Nj is a quotient in fj , hence w̃j(Nj) Æ (1 + ‘)wj(Nj), for all j. Thus (1 ≠ ‘)2w(Q) Æ
ŵ(Q) Æ (1 + ‘)2ŵ(Q), as desired.
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Running times. For each fi, the sparsification routine takes Time(Ni) randomized time, where we point out that a
query to fi translates to two queries of f in the oracle model. Over all i, this adds up to

q
i Time(Ni) Æ Time(N )

randomized time by superadditivity, as desired.
For actual instances of f , we must also address the running time of setting up each fi. We address the three

applications discussed in this article.
For matroids, we have Time(S) = Õ(|S|Qrank), hence Time(N ) = Õ(nQrank). Each fi is the rank function

of the matroid Mi obtained by contracting NØi+1 and restricting to Ni. It is easy to assemble all the matroids in
nearly linear time since their ground sets are disjoint. So the overall running time is again Õ(nQrank).

For hypergraphs, let p =
q

eœN |e|, and for each i, let pi =
q

eœNi
|e|. Each fi corresponds to the hypergraph

Hi obtained by restricting to the edges in NØi and then contracting all edges in Ni. We have Time(Ni) = Õ(pi)
for all i, and Time(N ) = Õ(p). We now bound the time to construct all the hypergraphs. The first hypergraph H1
is obtained from the input hypergraph H by contracting all the edges in NØ2, in linear time. Given Hi, one obtains
Hi+1 in O(pi + pi+1) time by removing all the edges in Ni and uncontracting all the edges in Ni+1. Altogether we
spend O(p) time constructing the Hi’s, which is negligible.

Lastly we discuss coverage. Recall that N =
q

eœN f(e) denotes the total size of the set system. For each i, let
Ni =

q
eœNi

f(e) denote the total size of the set system restricted to the points in Ni. We have Time(Ni) = Õ(Ni)
for all i, and Time(N ) = Õ(N). Each fi corresponds to the system obtained by first restricting to the points
in NØi and then contracting NØi+1. This leaves only the sets that are hit by Ni and not hit by NØi+1. The
first set system is obtained from the input set system by removing all points in NØi+1 and all sets hit by NØi+1.
The (i + 1)th set system is obtained from the ith set system by removing the points Ni, reintroducing Ni+1,
and updating the relevant sets accordingly. It is easy to do this in O(Ni + Ni+1) time. Altogether we spend
O(N) +

q
i O(Ni + Ni+1) = O(N) time constructing the set systems (in succession), which is negligible.
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