
Adaptive Out-Orientations with Applications∗

Chandra Chekuri � † Aleksander Bjørn Christiansen‡ Jacob Holm �§

Ivor van der Hoog � ‡ Kent Quanrud¶ Eva Rotenberg � ‡ Chris Schwiegelshohn�

October 2023

Abstract

We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the
maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-
degree is proportional to the arboricity ↵ of the graph, in, either, an amortised update time of O(log2 n log↵),
or a worst-case update time of O(log3 n log↵). On the other hand, motivated by applications including
dynamic maximal matching, we obtain a di↵erent trade-o↵. Namely, the improved update time of either
O(log n log↵), amortised, or O(log2 n log↵), worst-case, for the problem of maintaining an edge-orientation
with at most O(↵ + log n) out-edges per vertex. Finally, all of our algorithms naturally limit the recourse
to be polylogarithmic in n and ↵. Our algorithms adapt to the current arboricity of the graph, and yield
improvements over previous work:

Firstly, we obtain deterministic algorithms for maintaining a (1 + ") approximation of the maximum
subgraph density, ⇢, of the dynamic graph. Our algorithms have update times of O("�6 log3 n log ⇢) worst-
case, and O("�4 log2 n log ⇢) amortised, respectively. We may output a subgraph H of the input graph where
its density is a (1 + ") approximation of the maximum subgraph density in time linear in the size of the
subgraph. These algorithms have improved update time compared to the O("�6 log4 n) algorithm by Sawlani
and Wang from STOC 2020.

Secondly, we obtain an O("�6 log3 n log↵) worst-case update time algorithm for maintaining a
(1 + ")OPT + 2 approximation of the optimal out-orientation of a graph with adaptive arboricity ↵, im-
proving the O("�6

↵
2 log3 n) algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first

worst-case polylogarithmic dynamic algorithm for decomposing into O(↵) forests.
Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems

including maximal matching, � + 1 colouring, and matrix vector multiplication. All update times are worst-
case O(↵ + log2 n log↵), where ↵ is the current arboricity of the graph. For the maximal matching problem,
the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP
2014 runs in time O(↵2 + log2 n), and by Neiman and Solomon from STOC 2013 runs in time O(

p
m). We

give improved running times whenever the arboricity ↵ 2 !(log n
p
log log n).

Acknowledgements. This research was supported by Independent Research Fund Denmark grant 2020-
2023 (9131-00044B) “Dynamic Network Analysis” and the VILLUM Foundation grant (VIL37507) “E�cient
Recomputations for Changeful Problems”. This project has additionally received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No
899987. Jacob Holm is part of BARC, supported by the VILLUM Foundation grant 16582. Chris Schwiegelshohn
is partially supported by an Independent Research Fund Denmark (DFF) Sapere Aude Research Leader grant No
1051-00106B. Chandra Chekuri is supported by NSF grant CCF-1910149. Kent Quanrud is supported in part by
NSF grant CCF-2129816.

∗
The full versionof the paper can be accessed at https://arxiv.org/abs/2310.18146

†
Dept. of Computer Science, University of Illinois, Urbana, IL 61801. chekuri@illinois.edu

‡
Technical University of Denmark, Kongens Lyngby, Denmark abgch@dtu.dk, vanderhoog@gmail.com, erot@dtu.dk

§
BARC, University of Copenhagen, Denmark jaho@di.ku.dk

¶
Dept. of Computer Science, Purdue University, West Lafayette, IN. krq@purdue.edu

�
Aarhus University, Aarhus, Denmark. cschwiegelshohn@gmail.com

Copyright © 2024
This paper is available under the CC-BY 4.0 license3062

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://orcid.org/0000-0003-3035-1699
https://orcid.org/0000-0001-6997-9251
https://orcid.org/0009-0006-2624-0231
https://orcid.org/0000-0001-5853-7909
https://arxiv.org/abs/2310.18146

1 Introduction

In dynamic graphs, one wishes to update a data structure over a graph G(V,E) (or an answer to a specified graph
problem) as the graph undergoes local updates such as edge insertions and deletions. One of the fundamental
problems is to maintain an orientation of the edges such that the maximum out-degree over all vertices is
minimised. While the problem is interesting in its own right, bounded out-degree orientations have a number of
applications. First, the problem is closely related to the task of finding the densest subgraph; indeed if the edges
can be fractionally oriented, the optimal maximal fractional out-degree is equal to the density ⇢ := |E\(S⇥S)|

|S|
of the densest subgraph S ✓ V . Secondly, bounded out-degree orientations appear frequently as subroutines
for other problems. In particular, there exist a large body of work parameterising the update time of dynamic
algorithms for many fundamental problems such as shortest paths [24, 38], vertex cover [43, 47], graph colouring
[31, 48], independent set [41], and, most prominently, maximum matching [10, 11, 28, 29, 40, 43, 47] in terms of

the arboricity ↵ := maxS✓V,|S|�2

⌃ |E\(S⇥S)|
|S|�1

⌥
.

In light of their widespread applicability, maintaining an edge orientation minimising the maximum outdegree
is extremely well motivated. In particular, we are interested in algorithms with worst-case deterministic update
times, as these can be immediately used as black-box subroutines. In a recent breakthrough result, [45] showed that
it is possible to maintain an estimate for the smallest maximum outdegree in polylog(n) worst case deterministic
time by maintaining an estimate for the density of the densest subgraph. Nevertheless, all known results for
maintaining an orientation require at least update time ⌦(⇢) = ⌦(↵) worst case update time, regardless of
whether the algorithm is randomised or not [34]. For dense graphs, this bound may be arbitrarily close to n.
Thus, it raises the following question:

Question 1. Is it possible to maintain an (approximate) minimum out-degree orientation in sublinear determin-

istic worst case update time?

1.1 Our Contribution In this paper, we answer the aforementioned question in the a�rmative. Specifically,
we provide a framework for maintaining approximate out-orientations with various trade-o↵s between the quality
of the out-degree orientation and update time. For the problem of maintaining an out-orientation we obtain:

1. An orientation with maximum out-degree O(↵) in update time O(log3 n log↵).
2. An orientation with maximum out-degree (1 + ")↵+ 2 in update time O("�6 log3 n log↵).
3. An orientation with maximum out-degree O(↵+ log n) in update time O(log2 n log↵).

The above running times are deterministic and worst-case. Contrary to the previous state-of-the-art result
by Sawlani and Wang [45], the recourse of our algorithm, i.e. the number of re-orientations of edges, is
polylogarithmic in n (specifically, a log n factor lower than the running time).

When allowing amortisation, we get even better bounds:

4. An orientation with maximum out-degree O(↵) in amortised update time O(log2 n log↵).
5. An orientation with maximum out-degree O(↵+ log n) in amortised update time O(log n log↵).

Table 1 gives an overview of our results, and their implications when applied to a selection of algorithmic
problems. The latter we briefly discuss in the following.

Densest Subgraph Using the duality between out-degree orientations and maximum subgraph density,
we obtain a (1 + ") approximate estimate for maximum subgraph density ⇢ in worst-case update time of
O("�6 log3 n log ⇢). Additionally, we may output a subgraph H with a density greater than ⇢/(1 + ") in time
linear in the size of H (Lemma 7.1). This recovers (and moderately improves) the recent worst-case algorithm by
[45] that has an update time of O("�6 log4 n). When allowing amortised analysis, we improve the running time
to O("�4 log2 n log ⇢) amortised.

Arboricity Decomposition An arboricity decomposition partitions the edge set into a minimum number
of forests. The best dynamic algorithms for maintaining an O(↵) arboricity decomposition has an amortised
deterministic update time of O(log2 n) due to [31] and an O(

p
m log n) worst case deterministic update time due

to [6]. Distinguishing between arboricities 1 and 2 requires ⌦(log n) time [42, 6]. We substantially improve the
worst case update time to O(log3 n log↵).

Copyright © 2024
This paper is available under the CC-BY 4.0 license3063

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Dynamic Matrix Vector Multiplication In the Dynamic Matrix Vector Multiplication problem, we are
given an n ⇥ n matrix A and an n-vector x. Our goal is to quickly maintain y = Ax in the sense that we can
quickly query any entry yi = (Ax)i, subject to additive updates to the entries of x and A. Interpreting A as
the adjacency matrix of a graph with arboricity ↵, [34] presented an algorithm supporting updates to A in time
O(↵2 + log2 n) and updates to x in time O(↵+ log n). We may update A in time O(↵+ log2 n log↵), improving
when ↵ 2 !(log n

p
log log n).

Maximal Matching A matching is a set of vertex-disjoint edges. A matching M is maximal if no edge of
the graph can be added to it without violating the matching property. More so than perhaps any other problem,
there exists a large gap between the performance of the state of the art deterministic algorithms vs the state of the
art randomised algorithms. Using randomisation, one can achieve a O(1) amortised [46] and a polylog(n) worst
case update time [9]. Deterministic algorithms so far have only achieved a O(

p
m) update time for arbitrary

graphs [40], or O(↵2 + log2 n) update time where ↵ is the current arboricity of the graph [34]. Because our
result explicitly maintains an (approximately) optimal orientation, we improve on known deterministic algorithms
whenever ↵ 2 !(log n

p
log log n) by achieving an update time of O(↵+ log2 n log↵).

� + 1 Colouring A fundamental question in many models of computation is how to e�ciently compute a
�+1 colouring where � is the maximum degree of the graph. We present a deterministic algorithm that maintains
a �+1 colouring in O(↵+log2 n log↵) worst case update time. To the best of our knowledge, this is the first such
algorithm that beats the trivial O(�) update time for uniformly sparse graphs. All other results [13, 32, 12, 48]
(discussed in more detail in the appendix) require randomisation, amortisation, or do not yield a �+1 colouring.

Dynamic

Problem
Guarantee

Worst case

Amortised
Thm. State-of-the-art comparison

out-orient
/density

O(↵)
O(log3 n log↵)
O(log2 n log↵)

Thm. 5.1
Thm. 6.1

O(↵max) in O(↵max + log n) [16]
O(↵) in O(log2 n log↵) [31]
O(↵) in O(log4 n) [45]

out-orient
/density

O(↵+ log n)
O(log2 n log↵)
O(log n log↵)

Thm. 5.2
Thm. 6.2

O(↵max + log n) in O(log n) [8]
O(↵+ log n) in O(↵2 + log2 n) [34]
O(↵) in O(log4 n) [45]

density (1 + ")⇢
O
�
"�6 log3 n log ⇢

�

O
�
"�4 log2 n log ⇢

� Cor. 7.1 (1 + ")⇢ in O("�6 log4 n) [45]

out-orient (2 + ")↵
O
�
"�6 log3 n log↵

�

O
�
"�4 log2 n log↵

� Obs. 2 (2 + ")↵ in O("�6 log4 n) [45]

out-orient (1 + ")↵+ 2 O("�6 log3 n log↵) Thm. 7.1 O("�6↵2 log3 n) [18]

matching maximal O(↵+ log2 n log↵) Cor. 8.1
O(
p
m) [40]

O(↵2 + log2 n) [34]

coloring � + 1 colors O(↵+ log2 n log↵) Cor. 8.2 O(�) (folklore)

arboricity
decomp

O(↵) O(log3 n log↵) Cor. 8.5
O(↵) in O(log2 n) [31]
O(
p
m log n) [6]

maintain
A ·
�!x

–
O(log2 n log↵) upd. A
O(↵+ log n) upd. �!x
O(↵+ log n) query

Cor. 8.3
O(↵2 + log2 n) updating A
O(↵+ log n) query+upd �!x [34]

Table 1: An abbreviated overview of our results, where we compare to state-of-the-art deterministic results.
Our results are adaptive to the arboricity ↵ and the maximal subgraph density ⇢, and explicitly maintain the
out-orientation with low recourse. For out-orientations, note that [45] does not explicitly re-orient edges between
updates, but allow for the orientations of edges to be computed upon query time (hence, we marked their result
blue).

Copyright © 2024
This paper is available under the CC-BY 4.0 license3064

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Related work on dynamic orientations Dynamic out-orientations have been widely studied [16, 29, 37,
18, 17, 8] since they were introduced by Brodal and Fagerberg [16], for maintaining an O(↵max) out-orientation1 in
O(↵max+log n) amortised time. Brodal and Berglin [8] improve the time guarantee to worst-case O(↵max+log n)
time, albeit maintaining an O(↵max+log n) out-orientation. The best adaptive algorithms, adapting to a changing
arboricity, are by Henzinger, Neumann, and Wiese [31] achieving an out-degree of O(↵) and an amortised update
time O(log2 n), and by Kopelowitz, Krauthgamer, Porat, and Solomon [34], maintaining an O(↵ + log n) out-
orientation with a worst-case update time of O(↵2 + log2 n). Christiansen and Rotenberg [17, 18] lowered the
maximum out-degree to (1 + ")↵+ 2 incurring a worse update time of O("�6↵2 log3 n).

2 Notation and overview of techniques

Let G = (V,E) be a graph with n vertices and m edges. For any subgraph H of G, we denote by V (H) and

E(H) the corresponding vertex and edge set. The density of subgraph H is ⇢(H) := |E[G]|
|V (G)| . The maximum

subgraph density of G is then the maximum over all H of ⇢(H). A closely related measure of uniform sparsity is
the arboricity of a graph, defined as:

↵ := max
H✓G,|V (H)|�2

⇠
|E(H)|

|V (H)|� 1

⇡

A fractional orientation
�!
G of a graph G assigns for every edge (u, v) two weights d(u! v) and d(v ! u) such

that d(u! v) + d(u! v) = 1. The out-degree of a vertex u is subsequently defined as d+(u) =
P

v2V
d(u! v).

The maximum out-degree of
�!
G is �(

�!
G) := maxv2V d+(v). Picard & Queyranne [44] show that d⇢e = min�!

G
�(
�!
G),

and so it follows that ⇢  �(
�!
G).

An orientation is a fractional orientation where d(u ! v) is either 0 or 1. For brevity, we say that an
orientation includes �!uv when d(u! v) = 1.

For any vertex u 2 V , we subsequently denote by N+(u) (resp. N�(u)) all vertices w with d(u ! w) = 1
(resp. d(w ! u) = 1). In an orientation, d+(u) is the number of edges directed from u (the out-degree). Whenever
G is not simple, d+(u) can be larger than |N+(u)|.

For any integer b � 1, we denote by Gb the graph G where every edge is duplicated b times. Throughout
this paper we maintain for a suitable choice of b, an orientation over Gb. Note that any orientation in Gb induces
a fractional orientation on G. We may convert any such fractional orientation in G to an orientation on G by
‘rounding’ every edge (i.e., d(u ! v) = 1 if d(u ! v) > d(v ! u), breaking ties arbitrarily). Observe that if
the maximum out-degree of an orientation in Gb is some value �, then the maximum out-degree of the rounded
orientation in G is at most �/d b2e  2�/b. An important theoretical insight for this work are the following linear
programs. These dual programs respectively maximise the subgraph density, or minimise the largest fractional
out-degree of an edge orientation of G:

Densest Subgraph (DS)

maximise
X

uv2E

yu,v s.t.

xu, xv � yu,v 8u, v 2 V, uv 2 E
X

v2V

xv  1

x, y � 0

Fractional Orientation (FO)

minimise ⇢ s.t.

d(u! v) + d(v ! u) = 1 8uv 2 E

⇢ � d+(u) =
X

v2V

d(u! v) 8u 2 V

⇢, d(u! v), d(v ! u) � 0

Duality and previous work. The duality between these programs allows for approximating the maximum
subgraph density by computing a fractional orientation that aims to minimise ⇢. Thus, in an algorithmic sense,
we focus on maintaining a fractional orientation of G. This is then achieved by maintaining an integral orientation
in a graph with an appropriate number of edge duplicates.

1
Here ↵max denotes the maximum arboricity seen over the whole sequence of operations.

Copyright © 2024
This paper is available under the CC-BY 4.0 license3065

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

These integral orientations are typically maintained using the following simple, but e�cient idea: If one takes
a directed path from a high-out-degree vertex to a low-out-degree vertex, then reorienting every edge along this
path lowers the out-degree of the high-out-degree vertex while only increasing the out-degree of some vertex of
low out-degree. To make this idea constructive, one needs a way to e�ciently locate a suitable directed path or
chain to reorient.

Kopelowitz et al.[34] showed how to locate such chains by maintaining a local condition, namely that
d(u ! v) > 0 implies that d+(u)  d+(v) + 1. When the maximum out-degree is small, this local condition can
be used to identify short chains. However, when the out-degree becomes large (in dense graphs) this procedure
becomes slow. In particular, one can never hope to get a better bound on the chain length than ⌦(⇢). This in
turn means that their update times are ⌦(⇢) = ⌦(n). In fact, all of their algorithms have update times that
depend on ⇢2. One ⇢ stems from the chain lengths and the other from the fact that changes in degrees need to
be reported to all out-neighbours in order to e�ciently locate the chains.

Sawlani and Wang [45] removed the latter ⇢-factor by informing neighbours via a round robin scheme. They
then removed the former ⇢-factor by instead requiring that d(u ! v) > 0 implies that d+(u)  d+(v) + f(⇢̃) for
some function f and some very precise estimate ⇢̃ of the current maximum subgraph density. By making the
local condition depend on ⇢̃, they were able to get chains of much shorter length, namely of length O("�2 log n).
However, for this local condition to yield a small out-degree, one requires that ⇢̃ very precisely estimates the
current density. To enforce this, Sawlani and Wang [45] maintain O(logn

"
) di↵erent copies of the graph – each

with a di↵erent estimate ⇢̃. They maintain a pointer to the copy which currently estimates ⇢ the best.
While this allows Sawlani and Wang [45] to estimate the current maximum subgraph density very well, their

approach has several drawbacks. First of all, their algorithm only maintains an implicit orientation of the graph
in the sense that the algorithm often switches between di↵erent copies of the graph each endowed with possibly
very di↵erent orientations. While this does not matter in the context of density estimation, it matters in the
context of using the out-orientation as an algorithmic tool. Firstly, any application run on such an orientation
only maintains an implicit representation of the desired outcome, since one continually changes between di↵erent
copies as updates arrive. Secondly, one has to update the applications across all copies meaning that the guarantee
on the out-degree is no better than O(n) in the top-most copy – even if the maximum subgraph density is low.
The use of copies also makes the algorithm significantly more complicated.

Our key idea. We show that maintaining a multiplicative local condition, namely that d+(u)  (1+a)·d+(v)
for some chosen value a < 1, allows one to get both short chains of length O("�2 log n log ⇢) whilst maintaining
a very precise approximation of the maximum subgraph density. Furthermore, this can be achieved completely
explicitly with low recourse and using only one copy of the graph. This allows us to apply our result to problems
that benefit from having an explicit low out-degree orientation such as dynamic maximal matchings and (� + 1)
colouring.

Since this multiplicative local condition removes the need for scheduling updates to di↵erent copies, the
algorithms also become simpler. However, the analysis become significantly more delicate. Sawlani and Wang [45]
work with an additive local condition, where the added quantity depends on a very precise estimate ⇢̃ of the current
density. This allows them, in many places, to essentially reduce the problem-complexity to the case where: a)
one has to basically only consider vertices with very large out-degree and b) one can essentially assume that
these out-degrees are unchanged, since one is working with a quantity depending on ⇢̃. Working with our local
condition, however, allows for neither simplification. The local condition is equally ”tight” for every vertex, and
it is very sensitive to changes in degrees at both endpoints of an edge. This means that one has to be very careful,
when analysing the algorithms – especially when the vertices have low degree.

Multiplicative local conditions We consider two local conditions that we want to maintain for an integral
orientation. The first has both an additive and multiplicative term. The second has only a multiplicative term.
In the first case, we require that d(u! v) > 0 implies that d+(u)  (1+a) ·d+(v)+ c. The benefit of the additive
term is that for any new edge (u, v), we may always orient the edge towards either u or v without violating this
local condition between u and v. The downside of this approach is that it leads to less accurate estimations of ↵
and ⇢. In the second case, we require that d(u! v) > 0 implies that d+(u)  (1 + a) · d+(v). If both d+(u) and
d+(v) are small, it may be that d+(u) + 1 > (1 + a) · d+(v) and d+(v) + 1 > (1 + a) · d+(u). Thus, when adding
an edge (u, v) we cannot orient the edge without violating our local condition. This significantly complicates the
analysis.

Indeed, this complication means that we can only guarantee the multiplicative condition holds between updates

Copyright © 2024
This paper is available under the CC-BY 4.0 license3066

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

toG, and is not maintained as an invariant as we perform updates toGb. Hence, to get a simple recursive algorithm
to work, we have to instead work with a thresholded local condition, where we allow edges between vertices of
small enough degree to get a direction in order to handle the above problem. We show that maintaining such
a thresholded local condition is actually equivalent to maintaining the multiplicative condition between updates
to G. However, working with this thresholded condition requires one to be careful. To illustrate this, we briefly
sketch how the algorithms work: suppose first that every vertex has perfect information about the degrees of
all other vertices. Then, it can immediately identify if incrementing/decrementing its degree causes the local
condition to be violated. If so, it can then reorient a violated edge, thus restoring its degree. This solves the
problem for this vertex, but might move the problem to some other vertex. The key property however is that
this vertex has a (significantly) smaller degree in the incremental case, or (significantly) higher degree in the
decremental case. Hence, this cascade cannot continue many times, thus yielding a short chain. Every vertex,
however, does not necessarily have access to the degree of all of its neighbours. Thus the algorithm has to supply
this information somehow. We do so in 3 di↵erent ways: by naively informing and checking all out-neighbours
of degree changes (reminiscent of the approach of Kopelowitz et al. [35]), by updating and checking estimates
lazily in a round robin fashion (similar to Sawlani and Wang [45]) and in an amortised fashion by only checking
every time a degree has changed substantially. The two last schemes demand that we at all times work with
degree estimates that are not precise. Doing so is quite straightforward with a purely additive local condition,
due to the simplifications mentioned earlier, but it is significantly more involved in the multiplicative case: here
the conditions are very sensitive to degree changes, and so to make the analysis work, we have to be very precise
about at what time a certain condition on the degree holds. Particularly so, when the degrees are small. This is
further complicated by the fact that we now work with a thresholded local condition and thusly have to ensure
that our analysis can handle all paradigms of the condition.

In Section 3, we analyse the e↵ect of maintaining an integral orientation that satisfies our local condition (that
for all (u, v), d(u! v) > 0 implies d+(u)  (1+a) ·d+(v)+ c). We present a general theorem showing the impact
of our local condition, parametrized by a and c. Let � be the maximal out-degree in our graph. We immediately
apply this theorem to show that for a�1

2 O(log n): � 2 O(⇢ + log n) (for c 2 O(1)) or � 2 O(⇢) (for c = 0).
In Section 7, we show that choosing c = 0 and a�1

2 O("�2 log n) allows us to maintain a factional orientation
of the graph where the maximal out-degree �  (1 + ")⇢. By naively rounding the fractional out-degrees, this
implies that we can maintain an integral orientation where the out-degree �  (2 + ")↵.

2.1 Parameterisation of the Algorithm We now introduce several components of the algorithm and analysis
that can be specified to obtain various trade-o↵s between quality of the out-orientation and update time. Our
algorithms have the two main parameters: ⌘ and a positive integer b. We maintain a graph Gb and an orientation
�!
G b where one of the following invariants holds:

Invariant 0. We maintain an orientation
�!
G b

where for every directed edge
�!uv in

�!
G b

:

d+(u)  (1 + ⌘ · b�1) · d+(v).

Invariant 1. We maintain an orientation
�!
G b

where for every directed edge
�!uv in

�!
G b

:

d+(u)  (1 + ⌘ · b�1) · d+(v) + 2.

Throughout the paper, we denote ✓ = 0 if we are maintaining Invariant 0 and ✓ = 1 otherwise. This way, we
maintain Invariant ✓ by maintaining d+(u)  (1+ ⌘ · b�1) · d+(v)+ 2✓. The tighter the inequalities are, the closer
the maximum out-degree of the maintained out-orientation is to the maximum subgraph density. Hence, setting
✓ = 0 will give a better approximation than ✓ = 1.

Note that regardless of the choice of parameters, not all graphs have an orientation that satisfies Invariant 0.
E.g. any orientation of the graph consisting of a single edge has a directed edge �!uv with 1 = d+(u) >�
1 + ⌘ · b�1

�
· d+(v) = 0. For convenience we will therefore need the following slightly relaxed invariant, which we

show in Section 4 is satisfiable for ✓ = 0 (and therefore for all ✓ � 0) as long as 0 < b

⌘
 b

b

2c, i.e. when b � 2 is

even and ⌘ � 2 or when b � 3 and ⌘ � 3 (or more precisely ⌘ � 2b
b�1).

Copyright © 2024
This paper is available under the CC-BY 4.0 license3067

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Invariant ✓0. We maintain an orientation
�!
G b

where for every directed edge
�!uv in

�!
G b

:

d+(u)  max

⇢�
1 + ⌘ · b�1

�
· d+(v) + 2✓,

�
b

2

⌫�
.

The point is that for each update to G this lets us do updates to
�!
G b one edge at a time, all the while satisfying

Invariant ✓0, and when we are done the resulting graph satisfies Invariant ✓ because of the following Lemma.

Lemma 2.1. Let Gb
be a graph that can be obtained from a graph G by replacing each edge with b copies. For all

✓ � 0, any orientation
�!
G b

of Gb
that satisfies Invariant ✓0 also satisfies Invariant ✓.

Proof. Suppose
�!
G b satisfies Invariant ✓0 and let �!uv be any edge in

�!
G b. If d+(v) < d

b

2e then (because
each edge in Gb is duplicated b times) d+(u) � b � d+(v) > b

b

2c. So by Invariant ✓0 we have d+(u) �
1 + ⌘ · b�1

�
· d+(v) + 2✓ and Invariant ✓ is satisfied for �!uv. Otherwise d+(v) � d b2e and by Invariant ✓0,

d+(u)  max
��

1 + ⌘ · b�1
�
· d+(v) + 2✓,

⌅
b

2

⇧
=

�
1 + ⌘ · b�1

�
· d+(v) + 2✓ thus Invariant ✓ is satisfied for �!uv.

3 A Structural Theorem

In this section, we formally establish the relationship between maintaining Invariant ✓ for a graph
�!
G b, and the

corresponding estimate of the density and arboricity of the graph G. The following theorem is our result in its
most general form: allowing for (1 + ")-approximations of ⇢ and more. Skip ahead to Corollaries 3.1+3.2 for a
comprehensible application of the variables.

Theorem 3.1. Let G be a graph and let Gb
be G with each edge duplicated b times. Let ⇢b be the maximum

subgraph density of Gb
. Let

�!
G b

be any orientation of Gb
which has the following invariant: for some c � 0, every

directed edge
�!uv satisfies d+(u)  (1 + ⌘ · b�1) · d+(v) + c.

Then for any � > 0 there exists a value kmax  log1+�
n for which:

(1 + ⌘ · b�1)�kmax�(
�!
G b)  (1 + �)⇢b + c(⌘�1

· b+ 1).

Proof. Let Gb = (V,Eb). We define for non-negative integers i the sets:

Ti :=

8
<

:v 2 V

������
d+(v) � �(

�!
G b) ·

�
1 + ⌘ · b�1

��i

� c
iX

j=1

�
1 + ⌘ · b�1

��j

9
=

;

Observe that for all non-negative integers 0  i < j, Ti ✓ Tj . Moreover, observe that T0 contains at least one

element (the element of
�!
G b with maximum out-degree), and each Ti at most n elements (since they can contain

at most all vertices of G). Let k be the smallest integer such that |Tk+1| < (1 + �)|Tk|. It follows that k is upper
bounded by the value kmax = log(1+�) n.

In order to bound the maximum out-degree of
�!
G b, we want to show that no edges can be oriented from Tk to

a vertex not in Tk+1. To do so, we assume two such candidates u 2 Tk and v 62 Tk+1, and show that �!uv violates:
d+(u)  (1 + ⌘ · b�1) · d+(v) + c. Per assumption we have

d+(u) � (1 + ⌘ · b�1)�k�(
�!
G b)� c

kX

j=1

(1 + ⌘ · b�1)�j (Since u 2 Tk)

and

d+(v) < (1 + ⌘ · b�1)�1(1 + ⌘ · b�1)�k�(
�!
G b)� c

k+1X

j=1

(1 + ⌘ · b�1)�j . (Since v 62 Tk+1)

Copyright © 2024
This paper is available under the CC-BY 4.0 license3068

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

It follows that

(1 + ⌘ · b�1)d+(v) + c < (1 + ⌘ · b�1)�k�(
�!
G b)� c

kX

j=0

(1 + ⌘ · b�1)�j + c

= (1 + ⌘ · b�1)�k�(
�!
G b)� c

kX

j=1

(1 + ⌘ · b�1)�j
 d+(u).

This would violate the assumed invariant of
�!
G b. Hence for any u 2 Tk and any edge �!uv, we have v 2 Tk+1

and thus:
P

u2Tk
d+(u)  |Eb[Tk+1]|. Finally, we can bound the density ⇢b as:

⇢b = max
;⇢S✓V

|Eb[S]|

|S|
�

|Eb[Tk+1]|

|Tk+1|
�

P
u2Tk

d+(u)

(1 + �)|Tk|

�

|Tk| ·

⇣�
1 + ⌘ · b�1

��k

�
⇣
�!
G b

⌘
� c

P
k

j=1

�
1 + ⌘ · b�1

��j
⌘

(1 + �)|Tk|
.

We find (1 + �)⇢b +
c

1� 1
1+⌘·b�1

�
�
1 + ⌘ · b�1

��kmax�
⇣
�!
G b

⌘
, which concludes the proof.

The parameter � is needed to get a (1 + ")-approximation later on, where we will require that � = ⇥("). For
now, one can just think of � as being a constant. In fact in the following corollaries, we will choose � so 1+� = e.

Corollary 3.1. Denote by ⇢ the density of G. For any ⌘ and b such that ⌘b�1
2 O(1

logn
), we have that

Invariant 0 for the graph Gb
implies: �(

�!
G b) 2 O(b⇢) and �(

�!
G) 2 O(⇢).

Proof. Set � = e� 1, let kmax  log(1+�) n = log
e
n be as in Theorem 3.1. By our choice of ⌘ and b there exists a

constant s > 0 such that ⌘b�1


s

loge n
for all n � 1, thus by Theorem 3.1 (with c = 0) we now have

�(
�!
G b)  (1 + ⌘ · b�1)kmax(1 + �)⇢b  e⌘·b

�1·kmax(1 + �)⇢b  es+1⇢b 2 O(⇢b).

Finally, we note that per definition of subgraph density, ⇢b = b · ⇢. For all �!uv in
�!
G , there must be at least d b2e

edges in
�!
G b from u to v (else,

�!
G would include the edge �!vu instead). It immediately follows that the out-degree

of u in
�!
G is at most d+(u) · d b2e

�1
2 O(b�1

· ⇢b) = O(⇢).

Corollary 3.2. Denote by ⇢ the density of G. Let b = 1 and ⌘ = 1
loge(n)

.

Whenever Invariant 1 holds for the graph
�!
G =

�!
G b

, it must be that: �(
�!
G) 2 O(⇢+ log n).

Proof. Set � = e� 1, let kmax be as in Theorem 3.1. By our choice of ⌘ and b, ⌘ · b�1 = 1
loge n

= 1
log(1+�) n

. Thus

by Theorem 3.1 (with c = 2) we now have

�(
�!
G) = �(

�!
G b)  (1 + ⌘ · b�1)kmax

�
(1 + �)⇢b + c(⌘�1

· b+ 1)
�

 e⌘·b
�1·kmax

�
(1 + �)⇢b + c(⌘�1

· b+ 1)
�

 e
�
e · ⇢b + c(⌘�1

· b+ 1)
�

2 O(⇢+ log n)

4 A Simple Algorithm for Maintaining the Invariants

We first provide a simple worst-case O(⇢ log ⇢ ·polylog(n)) algorithm (where ⇢ is the maximum subgraph density)

to maintain Invariant ✓ in
�!
G b (i.e. we maintain one chosen invariant). Our data structure is purposefully more

Copyright © 2024
This paper is available under the CC-BY 4.0 license3069

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

complicated than necessary here, to illustrate its use in future sections. Subsequent sections slightly adjust the
algorithms. Crucially, the bound on the recursive depth of our functions applies throughout the paper. Recall
that Gb is the graph G with edges duplicated b times. For convenience, we set � = ⌘b�1/64 in the rest of the
paper, and note that (1 + �)5  1 + ⌘b�1

 2. We maintain Invariant ✓ using a data structure storing for all
vertices u:

(a) The value d+(u) of the current orientation
�!
G b,

(b) The set N+(u) in arbitrary order, and
(c) The set N�(u) in a sorted doubly linked list of buckets Bj(u). Each bucket Bj(u) contains, as a doubly

linked list in arbitrary order, all w 2 N�(u) where j = blog(1+�) d
+(w)c. The vertex u has a pointer to the

bucket Bi(u) with i =
j
log(1+�) max

�
(1 + �)d+(u),

⌅
b

4

⇧ k
.

We run Algorithms 1+2 on the graph G. These invoke Algorithms 3+4, which in turn add directed edges to and
remove them from to Gb (Algorithms 5+6). In our recursive algorithm calls, we may assume that for any edge
insertion (u, v) in Gb, we call Insert(�!uv) whenever d+(u)  d+(v). Recall that ✓, ⌘ and b are parameters that are
set beforehand:

Algorithm 1: Insert(edge (u, v) in G)

for i 2 [b] do

if d+(u)  d+(v)
Insert(�!uv)

else

Insert(�!vu)

Algorithm 2: Delete(edge (u, v) in G)

for i 2 [b] do

if u 2 N�(v)
Delete(�!vu)

else

Delete(�!uv)

Algorithm 3: Insert(�!uv), where d
+(u)  d

+(v)

Add(�!uv)
x argmin{d+(w) | w 2 N+(u)}
if d+(u) > max

�
(1 + �) · d+(x) + ✓,

⌅
b

4

⇧

Remove(�!ux) {restores d+(u)}
Insert(

�!xu)
else

for all w 2 N+(u) do
Update d+(u) in Buckets(N�(w))

Algorithm 4: Delete(�!uv)

Remove(�!uv)
x First(Max(Buckets(N�(u))))
if d+(x) > max

�
(1 + �) · d+(u) + ✓,

⌅
b

4

⇧

Add(�!ux) {restores d+(u)}
Delete(

�!xu)
else

for all w 2 N+(u) do
Update d+(u) in Buckets(N�(w))

Algorithm 5: Add(�!uv)

d+(u) = d+(u) + 1

if @�!uv 2 �!G b

Add u to N�(v) and v to N+(u)

Add one edge �!uv to
�!
G b.

Algorithm 6: Remove(�!uv)

d+(u) = d+(u)� 1

Remove one edge �!uv from
�!
G b.

if @�!uv 2 �!G b

Remove u from N�(v), v from N+(u)

Definition 1. We count time in discrete steps. A new time step starts just before Algorithm 1 calls Insert or

Algorithm 2 calls Delete. For a time t, we denote for any variable � in our code by �t its value before the invoking

insertions (or deletions) at time t. E.g., for a vertex w, d+(w)t is the out-degree before invoking insertions at

time t, and d+(w)t+1 is the out-degree just after.

4.1 Maintaining Invariant 1. We show that by setting ✓ = 1 (and choosing ⌘ and b carefully) we maintain
Invariant 1:

Theorem 4.1. Let G be a dynamic graph and ⇢ be the density of G at time t. We can choose our variables ✓ = 1,

b = 1 and ⌘ 2 ⇥(log n) to maintain an out-orientation
�!
G b =

�!
G in O((⇢+ log n) · log n · log ⇢) time per update in

G such that Invariant 1 holds for
�!
G . Moreover:

• 8u, the out-degree d+(u)t+1 in
�!
G is at most O(⇢+ log n), (i.e. �(

�!
G) 2 O(⇢+ log n))

Copyright © 2024
This paper is available under the CC-BY 4.0 license3070

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. Invariant 1 demands that 8�!uv we maintain d+(u) < (1 + ⌘b�1)d+(v) + 2. Corollary 3.2 implies that if
after time t we maintain Invariant 1, then we obtain the desired upper bound on all d+(u)t+1. What remains is
to show that our algorithms maintain Invariant 1 in the desired runtime. We do this in three steps as we show:

Correctness: Our algorithms maintain Invariant 1 in Gb,
Recursive depth: Algorithms 3+4 have a recursive depth of O

�
��1

· log ⇢
�
, and

Time: Algorithms 3+4 spend O(⇢+ log n) time before entering the recursion.

We prove these three properties for deletions only. Invoking Delete(�!x0v) may cause us to recursively invoke
Delete(����!xi+1xi): flipping a backward chain in Gb from x0. Only the final vertex xf in this chain decreases its
out-degree once we terminate. For insertions we flip a forward chain ����!xixi+1, which is handled symmetrically.

Correctness. We show that we maintain Invariant 1. Suppose that we terminate at a vertex xf . Then
after our sequence of flips, the vertex xf is the only vertex that changed its out-degree (i.e. only for xf :
d+(xf)t+1 = d+(xf)t�1). Because our algorithm terminated and b = 1, for x First(Max(Buckets(N�(xf)))),
d+(x)t  max{(1 + �)(d+(xf)t � 1) + ✓, b b4c}. For all w 2 N�(xf): d+(w)t+1  (1 + �)d+(x)t+1. It follows
d+(w)t+1  max{(1 + �)2d+(xf)t+1 + 2, b b2c}. We may apply Lemma 2.1 to conclude that, once terminated, we
satisfy Invariant 1.

Recursive depth. What remains is to upper bound the recursive depth of our algorithm, proving
termination. Our code implies that for all i: d+(xi+1)t > (1+�)(d+(xi)t� 1)+ ✓. Thus d+(xi+1)t � d+(xi)t +1.
Let xs be the last vertex in the chain where d+(s)t 2 O(log n). The fact that out-degrees are integer and strictly
increasing along the backward chain, implies that there are O(log n) vertices preceding s. If f = s, the recursive
depth is O(log n) = O(��1) per definition.

Otherwise, we note that before this sequence of updates, we satisfied Invariant 1 and thus (by Corollary 3.2)
know that for all i: d+(xi)t 2 O(⇢ + log n). If there exist vertices xi with i > s, then ⇢ 2 ⌦(log n) and thus
O(⇢ + log n) = O(⇢). Now we consider all i > s. We know that d+(xi+1)t > (1 + �)(d+(xi)t � 1). Thus,
(using d+(xi)t � d+(xi�1)t + 1) we get that: d+(xi+1)t > (1 + �)d+(xi�1)t. It follows that there are at most
log(1+�) O(⇢) = O(��1 log ⇢) vertices in the chain of flipped edges: which upper bounds our recursive depth.

Time spent. Whenever we insert a vertex v 2 N�(u), it is either because we added the edge (u, v) to G
(occurring once) or, because we flipped an edge �!uv. In the first case, we may a↵ord spending O(log(1+�) d

+(v)) =

O(��1 log(b⇢+log n)) = O(��1 log n) time searching through all buckets for the bucket containing v. In the latter
case, for Insert we have max

�
(1 + �)d+(u)t, b

b

4c

< d+(v)t+1  max

�
(1 + �)d+(u)t, b

b

4c

+1, and for Delete we

have max
�
(1 + �)(d+(u)t � 1), b b4c

< d+(v)t < (1 + �)max

�
(1 + �)(d+(u)t � 1), b b4c

. Using the pointer from

u to the bucket Bi(u) where i =
j
log(1+�) max

�
(1 + �)d+(u),

⌅
b

4

⇧ k
, we may insert v into the correct bucket in

O(1) time. For each call of Delete(����!xi+1xi), we spend O(1) time retrieving the vertex x before we recurse. For the
vertex xf at the end of the recursion, we consider all O(⇢ + log n) vertices w 2 N+(xf). We update the bucket
that xf is in. Denote by r(xf)t+1 = blog(1+�) d

+(xf)tc the rank of f (i.e., the index of each bucket contained xf

at time t). The rank of xf changes by at most 1, hence we may update our data structure in O(d+(f)t+1) time.
For each call of Insert(����!xi+1xi), we spend O(d+(xi+1)t) = O(⇢+ log n) time retrieving the vertex xi+2 before

we recurse. Updating the data structure again takes O(1) time per updated element. It follows that the total
time spent adding or removing an arc in Gb is O((⇢+ log n) · ��1 log ⇢) = O((⇢+ log n) log n log ⇢). Since b = 1,
the theorem follows.

4.2 Maintaining Invariant 0. We show that by setting ✓ = 0 (and choosing ⌘ and b carefully) we maintain
Invariant 0:

Theorem 4.2. Let G be a dynamic graph and ⇢ be the density of G at time t. We can choose our variables ✓ = 0,

⌘ = 3, and b 2 ⇥(log n), b � 2 to maintain an out-orientation
�!
G b

in O
�
b · ⇢ · ��1

· log ⇢
�
= O(⇢ · log2 n log ⇢) time

per update in G, maintaining Invariant 0 for
�!
G b

with:

• 8v, the out-degree d+(v)t+1 in
�!
G b

is at most O(b · ⇢), and

• 8u, the out-degree of u in
�!
G is at most O(⇢).

Proof. We show that at all times we maintain Invariant ✓0 for ✓ = 0. Corollary 3.1, and our choice of variables,
implies the desired upper bound on the out-degree of each vertex. We again consider:

Copyright © 2024
This paper is available under the CC-BY 4.0 license3071

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Correctness: Our algorithms maintain Invariant ✓0 in Gb,
Recursive depth: Algorithms 3+4 have a recursive depth of O

�
��1

· log ⇢
�
, and

Time: Algorithms 3+4 spend O(⇢) time before entering the recursion.

We show the proof for deletions. Again, the proof for insertions is symmetrical (flipping a forward chain).
Invoking Delete(�!x0v) may cause us to recursively invoke Delete(����!xi+1xi): flipping a backward chain in Gb from
x0. Only the last vertex xf in this chain decreases its out-degree once we terminate.

Correctness. Suppose that we terminate at a vertex xf . Then after our sequence of flips, only the vertex
xf changed its out-degree (i.e. only for xf : d+(xf)t+1 = d+(xf)t � 1). Because our algorithm terminated, for
x First(Max(Buckets(N�(xf)))) it must be that: d+(x)t  max{(1 + �)(d+(xf)t � 1) + ✓, b b4c}. It follows
that for all vertices w 2 N�(xf) : d+(w)t  (1 + �)max{(1 + �)(d+(xf)t � 1) + ✓, b b4c}. Substituting d+(xf)t for
d+(xf)t+1 and using that by our choice of parameters, (1+�)2  1+⌘b�1

 2 now gives that for all w 2 N�(xf) :
d+(w)t  max{(1 + ⌘b�1)d+(xf)t+1 + 2✓, b b2c}. By Lemma 2.1, this implies that we maintain Invariant 0.

Recursive depth. What remains is to upper bound the recursive depth of our algorithm. Let xs be the
first vertex in the chain where d+(xs)t � b

b

4c+ 2. Note that per definition of our algorithm, d+(x1)t � b
b

4c+ 1.
Thus, for all i � 1: d+(xi+1)t � d+(xi)t + 1 and s  2. We now make a case distinction. If f 2 O(��1) then per
definition, the recursive depth is O(��1).

Otherwise, for all i > 2 it must be that d+(xi+1)t > (1 + �)(d+(xi) � 1) � (1 + �)d+(xi�1). Before this
sequence of updates, we satisfied Invariant 0. Thus, by Corollary 3.1, for all i, d+(xi)t 2 O(⇢), and thus the
recursive depth is O(log1+�

d+(x1)t) = O(��1 log ⇢).
Time spent. The proof upper bounding the time spent is identical to that of Theorem 4.2. The one

exception being, that the out-degree d+(u) for all vertices u is at most ⇢. Thus, the running time per update in
Gb is O(⇢ · ��1 log ⇢) = O(⇢ log n log ⇢). Each update in G triggers ⇥(log n) updates in Gb and so the runtime
follows.

5 Improved worst case algorithms

We adapt the algorithm of Section 4, replacing the algorithms for inserting and deleting directed edges in Gb to
update our running time. We store u 2 N�(v) in buckets determined not by the actual out-degrees d+(u) but

rather by an approximation of what we call the out-rank r(u) =
j
log(1+�) d

+(u)
k
.

Definition 2. For each vertex v, for all vertices u 2 N�(v), we define the perceived out-rank rv(u) as some

integer stored in v for u 2 N�(v) (which we show is at most 1 removed from r(u)).

In this section, We maintain for all u:

(a) The exact value d+(u) of the current orientation
�!
G b,

(b) The set N+(u) in a linked list and a pointer some current ‘position’ in the linked list.
(c) The set N�(u) in a doubly linked list of buckets Bj(u) sorted by j from high to low. Each bucket Bj(u)

contains, as a doubly linked list in arbitrary order, all w 2 N�(u) where ru(w) = j. The vertex u has a

pointer to the bucket Bi(u) with i =
j
log(1+�) max

�
(1 + �)d+(u),

⌅
b

4

⇧ k
.

Any update in G invokes Algorithms 1+2. These algorithms now invoke Algorithm 7 or 8 (instead of 3 or
4). These two in turn invoke the normal add and remove functions (Algorithm 5+6). Whenever we add a vertex
w to a set N�(u), we set ru(w) = r(w). And when we add a vertex v to a set N+(u), we do so in the position
immediately before the current position, so it becomes the last one we visit when we round-robin over N+(u).

Copyright © 2024
This paper is available under the CC-BY 4.0 license3072

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 7: Insert(�!uv)

Add(�!uv)
for x in next d 2

�
e neighbours in N+(u) do

if d+(u) > max
�
(1 + �) · d+(x) + ✓,

⌅
b

4

⇧

Remove(�!ux)
Insert(

�!xu)
Break

for all x visited in the previous loop do

rx(u) = r(u)
Move u to bucket Brx(u) in N�(x)

Algorithm 8: Delete(�!uv)

Remove(�!uv)
x First(Max(Bucket(N�(u))))
if d+(x) > max

�
(1 + �) · d+(u) + ✓,

⌅
b

4

⇧

Add(�!ux)
Delete(

�!xu)
else

for w in next d 2
�
e neighbors in N+(u) do

rw(u) = r(u)
Move u to bucket Brw(u) in N�(w)

Overview of techniques. Note that after incrementing (or decrementing) d+(u), we flip an edge �!ux (or
�!xu) whenever the following conditions hold:

d+(u) > max

⇢
(1 + �) · d+(x) + ✓,

�
b

4

⌫�
(for Insert)

d+(x) > max

⇢
(1 + �) · d+(u) + ✓,

�
b

4

⌫�
(for Delete).

These checks are the same as in Section 4 (and Section 6 for deletions). As a result, the recursive depth of our
algorithm is identical to that of Section 4.

The big di↵erence with Section 4, is that during insertions we do not loop over all x 2 N+(u) each time (as
that would be too expensive). Instead, we do a round robin scheme where we rely on the fact that if we recently
checked the condition for edge �!ux without flipping it, then we need to add many more outgoing edges from u
before it violates the actual Invariant ✓0. By checking d 2

�
e edges each time in round-robin order we are guaranteed

to revisit �!ux before that happens.
The second di↵erence with Section 4, is that for each vertex u we cannot store a data structure on the in-

neighbors of u that uses their actual out-degree. Instead, we bucket the vertices x 2 N�(u) using their out-degree
at the time of adding the arc �!xu. The location of x in this data structure is thereby its perceived rank ru(x).
Whenever we insert or delete an arc in Gb, we get a recursive call to our insertion and deletion functions that
flips a chain of edges. Only the final vertex xf on this chain changes their actual out-degree. Hence, for this final
vertex xf , we perform round robin over the

⌃
2
�

⌥
next w 2 N+(xf) to update the perceived rank of xf in N�(w).

Again, we can not a↵ord to update all of them.
Recall that we parametrized time according to Definition 1. We show:

Lemma 5.1. Let rv(u) get updated by an Insert or Delete at time s. Let the next update to rv(u) occur during an

Insert or Delete at time t. Then |d+(u)t � d+(u)s| 
�

2 d
+(u)s and |r(u)t � r(u)s|  1.

Proof. Only out-neighbours to u that exist at time s can be visited by the round-robin procedure before rv(u)
is updated again. Since we visit d 2

�
e of them per Insert or Delete that changes d+(u), we can do at most

d+(u)s/d
2
�
e 

�

2 d
+(u)s Inserts or Deletes changing d+(u) before time t. Thus, since 0 < � < 1:

d+(u)t �
�
1� �

2

�
d+(u)s > (1 + �)�1d+(u)s =) r(u)t � r(u)s � 1

d+(u)t 
�
1 + �

2

�
d+(u)s < (1 + �)d+(u)s =) r(u)t  r(u)s + 1

Lemma 5.2. For all edges
�!uv at all steps during Insert or Delete, |rv(u)� r(u)|  1.

Proof. Follows trivially from Lemma 5.1 by the fact that each time it gets updated the true value has changed
by at most 1.

We now apply an argument that we have applied in previous sections, introducing a bit more slack than
previously:

Copyright © 2024
This paper is available under the CC-BY 4.0 license3073

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Lemma 5.3. During a Delete(�!uv) at time t, let x First(Max(N�(u))) and

d+(x)t  max

⇢
(1 + �)(d+(u)t � 1) + ✓,

�
b

4

⌫�
.

Then for all w 2 N�(u) it must be that:

d+(w)t  (1 + �)3 ·max

⇢
(1 + �)(d+(u)t � 1) + ✓,

�
b

4

⌫�

 max

⇢�
1 + ⌘b�1

�
(d+(u)t � 1) + 2✓,

�
b

2

⌫�
.

Proof. The vertex x First(Max(N�(u))) has the largest perceived rank of all vertices in N�(u). Thus, the
perceived rank ru(w)t is at most ru(x)t. By Lemma 5.2, we now get:

r(x)t � ru(x)t � 1 � ru(w)t � 1 � r(w)t � 2 =) d+(x)t � (1 + �)r(x)t � (1 + �)r(w)t�2
� (1 + �)�3d+(w)t.

It follows that d+(w)t  (1 + �)3 ·max
�
(1 + �)(d+(u)t � 1) + ✓,

⌅
b

4

⇧
. By noting that (1 + �)5  (1 + ⌘b�1)  2

we recover the lemma.

Lemma 5.4. If during an Insert at time s, the out-neighbour x 2 N+(u)s is verified to satisfy d+(u)s + 1 
max

�
(1 + �)d+(x)s + ✓, b b4c

, then at any time t up to and including the next time that we check the constraint

we have that:

d+(u)t  (1 + �)4 ·max

⇢
(1 + �)d+(x)t + ✓,

�
b

4

⌫�

 max

⇢
(1 + ⌘b�1)d+(x)t + 2✓,

�
b

2

⌫�
.

Proof. If there are no Deletes changing d+(x) between times s and t, we have d+(x)s  d+(x)t and

d+(u)t  (1 + �) · d+(u)s (By Lemma 5.1)

 (1 + �) · (d+(u)s + 1)

 (1 + �) ·max

⇢
(1 + �)d+(x)s + ✓,

�
b

4

⌫�
(By our assumption)

 (1 + �) ·max

⇢
(1 + �)d+(x)t + ✓,

�
b

4

⌫�
(Since d+(x)s  d+(x)t)

 max

⇢
(1 + ⌘b�1)d+(x)t + 2✓,

�
b

2

⌫�
.

Suppose now that there was a Delete between times s and t that changed d+(x). Denote by s0 the time just after
the last such delete finished. It must be that s < s0  t. Then d+(x)s0�1 � 1 = d+(x)s0 . Since after s0, there was
no deletion decreasing d+(x) it must be that d+(x)s0  d+(x)t and by Lemma 5.3, for all w 2 N�(x)s0 :

d+(w)s0  (1 + �)3 ·max

⇢
(1 + �)d+(x)s0 + ✓,

�
b

4

⌫�

In particular, u 2 N�(x)s0 and

d+(u)t  (1 + �) · d+(u)s0 (By Lemma 5.1)

 (1 + �)4 ·max

⇢
(1 + �)d+(x)s0 + ✓,

�
b

4

⌫�
(By Lemma 5.3)

 (1 + �)4 ·max

⇢
(1 + �)d+(x)t + ✓,

�
b

4

⌫�
(Since d+(x)s0  d+(x)t)

 max

⇢�
1 + ⌘b�1

�
d+(x)t + 2✓,

�
b

2

⌫�

Copyright © 2024
This paper is available under the CC-BY 4.0 license3074

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Lemma 5.5. (Maintaining Invariant ✓0) Whenever Algorithms 7 and 8 terminate, they maintain an orienta-

tion
�!
G b

where for each edge
�!uv in

�!
G b

, d+(u)  max
�
(1 + ⌘b�1) · d+(v) + 2✓,

⌅
b

2

⇧
.

Proof. By construction, when calling Insert(�!uv) at time t we always have d+(u)t  d+(v)t. As argued in
Theorems 4.2+ 4.1s, this new edge may never invalidate Invariant ✓0 between u and v. Now consider the chain of
edges that get recursively flipped until we reach the final vertex xf . The vertex xf is the only vertex for which
d+(xf)t+1 = d+(xf)t + 1. Thus, for all other vertex pairs not including xf , Invariant ✓0 is maintained. Since
the algorithm terminated at xf it must be that for all x 2 N+(xf)t where the constraint was checked at time t:
d+(xf)t+1 = d+(xf)t + 1  max

�
(1 + �)d+(x)t + ✓, b b4c

= max

�
(1 + �)d+(x)t+1 + ✓, b b4c

. By Lemma 5.4, it

follows that Invariant ✓0 is maintained between xf and all vertices in N+(xf)t+1.
The argument for Delete(�!uv) is symmetrical, applying Lemma 5.3 instead.

Lemma 5.6. Algorithms 7+8 spend O(��1) time before recursing, except for the outermost call which spends

O(��1 log n) time.

Proof. Whenever we insert a vertex v 2 N�(u), it is either because we added the edge (u, v) to G (occurring once)
or, because we flipped an edge �!uv. In the first case, we may a↵ord spending O(log(1+�) d

+(v)) = O(��1 log(b⇢+

log n)) = O(��1 log n) time searching through all buckets for the bucket containing v. In the latter case, for
Insert we have max

�
(1 + �)d+(u)t, b

b

4c

< d+(v)t+1  (1+�)4 max

�
(1 + �)d+(u)t, b

b

4c

+1 by Lemma 5.4, and

similarly for Delete we have max
�
(1 + �)(d+(u)t � 1), b b4c

< d+(v)t  (1 + �)3 max

�
(1 + �)(d+(u)t � 1), b b4c

by Lemma 5.3. Using the pointer from u to the bucket Bi(u) where i =
j
log(1+�) max

�
(1 + �)d+(u),

⌅
b

4

⇧ k
, we

may insert v into the correct bucket in O(1) time.
During Insert(�!uv) or Delete(�!uv) we loop over at most O(��1) elements to change their bucket. By Lemma 5.1,

each element changes their position in the data structure by at most 1, which can be done in O(1) time.

Concluding our argument. By Lemma 5.5, our algorithms maintain Invariant ✓0 at all times. By
Lemma 5.6, our algorithms spend O(��1) time before recursing (except for the outermost call, which uses
O(��1 log n) time). We now make a case distinction. Either we set (✓ = 1, b = 1, ⌘ 2 ⇥(log n)), or, we set
(✓ = 0, b 2 ⇥(log n), ⌘ = 3). Because our recursive condition in Algorithms 7+8 is the same as in Algorithms 3+4,
we may immediately apply the proofs of Theorem 4.1+4.2 to upper bound the recursive depth of our algorithms

by O(��1 log ⇢). Thus, the total time for inserting or deleting a single edge in
�!
G b is O(��1 log n + ��2 log ⇢) =

O(��2 log ⇢) For every update in G, we do ⇥(b) updates in Gb. Thus, for both choices of our variables, our
algorithms run in time O(b · ��2 log ⇢), and they maintain Invariant ✓0 for the chosen ✓ 2 {0, 1}. Thus, we
conclude:

Theorem 5.1. Let G be a dynamic graph and ⇢ be the density of G at update time. We can choose our variables

✓ = 0, ⌘ = 3, and b 2 ⇥(log n), b � 2 to maintain an out-orientation
�!
G b

in worst case O(log3 n log ⇢) time per

operation in G, maintaining Invariant 0 for
�!
G b

with:

• 8v, the out-degree d+(v) in
�!
G b

is at most O(b · ⇢), and

• 8u, the out-degree of u in
�!
G is at most O(⇢).

Theorem 5.2. Let G be a dynamic graph and ⇢ be the density of G at time t. We can choose our variables ✓ = 1,

b = 1 and ⌘ 2 ⇥(log n) to maintain an out-orientation
�!
G b =

�!
G in worst case O

�
log2 n log ⇢

�
time per update in

G such that Invariant 1 holds for
�!
G . Moreover:

• 8u, the out-degree d+(u) in
�!
G is at most O(⇢+ log n), (i.e. �(

�!
G) 2 O(⇢+ log n))

6 Improved amortised algorithms

Previously, we relied upon the fact that vertices in v 2 N�(u) were put in buckets based on their exact out-degree
d+(v). Maintaining these exact values requires ⌦(⇢) update time, and is thus not a suitable option when we aim
for polylogarithmic update time. To this end, we store for all edges �!uv a single integer �(u, v) which we will call
their threshold value. Note that �(u, v) 6= �(v, u). We base our algorithmic logic and analysis on the threshold
value instead. We maintain for all u:

Copyright © 2024
This paper is available under the CC-BY 4.0 license3075

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(a) The value d+(u) of the current orientation
�!
G b,

(b) The set N+(u) as a sorted doubly linked list of linked lists Lj(u). Each Lj(u) contains all w 2 N+(u) with
�(u,w) = j as a linked list in arbitrary order. The linked lists Lj(u) are stored in a linked list sorted by j.
We maintain a pointer to the location j = d+(u).

(c) The set N�(u) in a sorted doubly linked list of buckets Bj(u). Each bucket Bj(u) contains, as a doubly
linked list in arbitrary order, all w 2 N�(u) where j = blog(1+�) d

+(w)c. The vertex u has a pointer to the

bucket Bi(u) with i =
j
log(1+�) max

�
(1 + �)d+(u),

⌅
b

4

⇧ k
.

Any update in G, invokes Algorithms 1+2. These algorithms now invoke Algorithm 9 or 10 (instead of 3 or 4).
These two in turn invoke the normal add and remove functions (Algorithm 5+6).

Algorithm 9: Insert(�!uv), where d
+(u)  d

+(v)

Add(�!uv)
while 9x 2 N+(u) with
d+(u) � max{(1 + �) · �(u, x), b b4c } do

if d+(x) + 1 < d+(u)
Remove(�!ux)
Insert(�!xu)
return

else

�(u, x) = d+(u)
Update x in N+(u) and u in N�(x)

Algorithm 10: Delete(�!uv)

Remove(�!uv)
for i in decreasing order do
for all x 2 Bi(u) do

if d+(x) > max{(1 + �)d+(u) + ✓, b b4c}
Add(�!ux)
Delete(�!xu)
return

else if �(x, u) > (1 + �)d+(x)
�(x, u) = d+(x)
Update x in N�(u) and u in N+(x)

else

return

Lemma 6.1. Suppose that the graph Gb
contains

�!ux. Then d+(u)  max{(1 + �) · �(u, x), b b4c}.

Proof. Fix some arc �!ux. Whenever the value �(u, x) is set, it is set to d+(u). Thus, we satisfy the inequality.
The only risk to the desired inequality is increasing d+(u), whilst it is bigger than b b4c.

Suppose d+(u) is momentarily increased after adding some arc �!uv. If the inequality for �!ux is violated, then
x is eligible for the while loop.

If the while loop processes x, then it will either flip �!ux or resets �(u, x). If it flips �!ux, then �!ux is removed
from the orientation so there is no inequality to satisfy. Otherwise, we reset �(u, x) to d+(u), which satisfies the
inequality.

If the while loop doesn’t process x, then it must have selected another vertex y 2 N+(u) and flipped �!uy
before processing x. In this case, d+(u) is restored to its previous value when the inequality for �!ux was satisfied.

Lemma 6.2. Suppose that Gb
contains an edge

�!uz. Then: �(u, z)  max{(1 + �)3(d+(z) + ✓), b b4c}.

Proof. Fix an arc �!uz. When the value �(u, z) is set, it is set to d+(u) at a point in time where d+(u) 
max{(1 + �)d+(z) + ✓, b b4c}. This satisfies the desired inequality. The only risk to the desired inequality is when
d+(z) decreases. Now we perform a case distinction. If b b4c � (1 + �)d+(z) + ✓, then decreasing d+(z) did not
change the fact that previously �(u, z)  b b4c.

Suppose d+(z) � b

4 , and that it momentarily decreases after deleting �!zy for some y. We know that u 2 N�(z),
so u 2 Bj(z) for some integer j. In the loop of Delete(�!zy), we consider three cases:

(a): we encounter the vertex u 2 N+(z), without hitting any of the two returns. We know that
�(u, z) > (1 + �)d+(u) and we set �(u, z) to be d+(u). This decreases �(u, z), which means that we continue
satisfying the inequality.

(b): we flip an arc
�!
tz and return, restoring d+(z) to its original (inequality-satisfying) value.

(c): before reaching case (a), we encounter an arc
�!
tz for t 2 N�(z) which causes us to hit return (the else in

our code). Because we reached this point in the code before case (a) we know that:

Copyright © 2024
This paper is available under the CC-BY 4.0 license3076

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

1. �(u, z)  (1+�)�(t, z) (we loop over all buckets Bi(z) in decreasing order and did not encounter the vertex
u. Thus, u is either in the same bucket as t or in a lower bucket).

2. �(t, z) < (1 + �)d+(t).

3. d+(t)  max{(1 + �)d+(z) + ✓, b b4c} = (1 + �)d+(z) + ✓.

Combining these inequalities, we have

�(u, z)  (1 + �)�(t, z)  (1 + �)2d+(t)  (1 + �)2 · ((1 + �)d+(z) + ✓)

Hence, we recover that �(u, z)  (1 + �)3(d+(z) + ✓).

Corollary 6.1. Our amortised algorithms maintain Invariant ✓0.

Proof. We combine Lemma 6.1 and 6.2 to get that for all z 2 N�(u):
d+(u)  max{(1 + �)max{(1 + �)3(d+(z) + ✓), b b4c}, b

b

4c}  max
�
(1 + ⌘b�1)d+(z) + 2✓, b b2c

.

6.1 Running time analysis We now move on to the amortised analysis of the algorithm. At a high level, the
idea is as follows. Recall that for each arc �!ux we have a label �(u, x) equal to d+(u) at some point in time. The
labels �(u, x) guide the data structure by suggesting arcs to flip. When we operate on an arc �!ux based on �(u, x),
if �!ux is not in fact a good arc to work with, then d+(u) must have deviated substantially from �(u, x), and we
reset �(u, x) to d+(u). Loosely speaking, we amortised the e↵ort to relabel �!ux against the change to d+(u).

Lemma 6.3. Adding an arc to Gb
takes O(��1) amortised time.

Proof. We note that the recursive depth of Insert(�!uv) may be O(⇢). However, we show that the amortised cost
of each edge that we process is not too bad.

Observe that the net e↵ect of adding an arc, after all flips, is to increase the out-degree d+(u) of a single
vertex u by 1.

Now, the running time of adding an arc is proportional to the number of arcs �!ux processed in the while loop
over all recursive calls to Insert(�!uv). Each such edge �!ux has d+(u) � (1 + �)�(u, x) + 2✓, where �(u, x) was set
to d+(u) at a previous point in time. Consequently d+(u) has increased by at least a (1 + �)-factor since �(u, x)
was set.

We amortise the time spent processing arcs �!ux for fixed u against the increase to d+(u). Each time an edge
insertion results in increase d+(u), we pay for O(1/�) units of work distributed uniformly over N+(u). That is,
each x 2 N+(u) receives ⌦(1/d+(u)) fractional credits. By the time an arc �!ux is processed in the while loop of
insertion, �!ux has acquired at least one unit of credit, which pays for the time to process it.

Lemma 6.4. Removing an arc from Gb
takes O(��1 log ⇢) amortised time.

Proof. The total running time for a deletion is proportional to the total number of arcs processed in the while
loop of Delete(�!uv), over all recursive calls to Delete. Each arc (x, u) processed in the loop (except for the very
last one) has one of two outcomes: either it is flipped and we make a recursive call to Delete, or we reset �(x, u).

Since our recursive condition is the same as in Algorithm 4, we may immediately apply the proofs for
upper bounding the recursive depth for deletions from Theorem 4.2 and 4.1; showing that the recursive depth is
O(��1 log ⇢).

Next we address the number of arcs �!xu where we reset �(x, u). We note that �(x, u) is only updated when
it exceeds d+(x) by a (1 + �)-factor. In other words, consider the time start when �(x, u) was set. At the time
end when it is reset to d+(x), the out-degree of d+(x) has decreased (by at least a 1 + � factor). We consider
the approximate rank of d+(x) at two time steps: a lower bound on the rank when �(x, u) was set, and an upper
bound for when it is reset during a deletion. Formally, we write: s = blog1+�

�(x, u)c and t = dlog1+�
d+(x)e.

Finally we denote � = s� t. Note that to update our data structure on N�(u), we need to move �(x, u) by ⇥(�)
buckets. We make a case distinction based on whether � < 3 or � � 3.

Case 1: � < 3. In this case when setting �(x, u) = d+(x) we need to move x O(1) buckets in the data

structure on N�(u). By the time �(u, x) is reset, d+(x) has decreased by at least (1 + �)s � (1 + �)s�1
�

��(u,x)
(1+�)

Copyright © 2024
This paper is available under the CC-BY 4.0 license3077

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

since �(u, x) was set. The net e↵ect of each deletion (after all flips and recursive calls) is to decrease the degree
of a single vertex x by 1. When this occurs, we pay for 4/� units of work that are distributed uniformly over
N+(x). Consequently, by the time we reset �(u, x) in a call to Delete(�!uv) (for some v), x has already acquired
one fractional unit of work to pay for the O(1) work.

Case 2: � � 3. In this case, the rank of d+(x) decreased by at least ⇥(�) and at least three levels. The
net e↵ect of each deletion (after all flips and recursive calls) is to decrease the degree of a single vertex x by 1,
at which point we distribute 4/� credits over N�(x). Between time start and end, the out-degree d+(x) may
arbitrarily increase and decrease. However, we can always find a sequence of (not necessarily consecutive) edge
deletions S = {(↵,�)i} such that after deletion (↵,�)i in Gb, the out-degree d+(x) decremented by one, and for
any pair of consecutive edge deletions (↵,�)i (↵0,�0)i+1 in S, the out-degree of x at the end of deleting (↵,�)i
equals the out-degree of x at the start of deleting (↵0,�0)i+1. Denote by Si

⇢ S all deletions in S where after the
deletion, the vertex x has a rank t+ i + 1 for 0 < i < s � t. For every deletion in Si, we distribute 4/� of units
of work over N+(x).

For all i 2 (0, s�t�1), decreasing the rank of x from t+i+1 to t+i requires exactly (1+�)t+i+1
�(1+�)t+i =

�(1 + �)t+i deletions. Thus, Si has exactly (1 + �)t+i+1
� (1 + �)t+i = �(1 + �)t+i. Per definition of Si, after

each deletion, N+(x) has at most (1 + �)t+i+2 out-edges. Thus, whenever we distribute after each deletion 4/�
credits over all N+(x), the number of credits per edge C is at least:

C �
��2X

i=0

4��1 # of deletions in Si

out-degree of x during deletions in Si
=

��2X

i=0

4��1 �(1 + �)t+i

(1 + �)t+i+2
=

��2X

i=0

4�

�(1 + �)2
� � � 2

Here, the second-to-last inequality follows from the fact that �  1 and thus 4
(1+�)2 � 1. Hence, for � � 3 we

have acquired O(�) credits on every edge in N+(x), which we may use to pay for relocating x by �-buckets.

We may now apply Corollary 3.1 and Corollary 3.2. These set ⌘ and b such that ��1
2 O(log n). We note

that for every insertion in G, we insert b edges in Gb. Thus, we conclude:

Theorem 6.1. Let G be a dynamic graph and ⇢ be the density of G at update time. We can choose our variables

✓ = 0, ⌘ = 3, and b 2 ⇥(log n), b � 2 to maintain an out-orientation
�!
G b

in O(log2 n log ⇢) amortized time per

operation in the original graph G, maintaining Invariant 0 for
�!
G b

with:

• 8u, the out-degree d+(u) in
�!
G is at most O(⇢+ log n), (i.e. �(

�!
G) 2 O(⇢+ log n))

Theorem 6.2. Let G be a dynamic graph and ⇢ be the density of G at time t. We can choose our variables ✓ = 1,

b = 1 and ⌘ 2 ⇥(log n) to maintain an out-orientation
�!
G b =

�!
G in amortized O(log n log ⇢) time per update in G

such that Invariant 1 holds for
�!
G . Moreover:

• 8v, the out-degree d+(v) in
�!
G b

is at most O(b · ⇢), and

• 8u, the out-degree of u in
�!
G is at most O(⇢).

7 Obtaining (1 + ") Approximations

Finally, we note that we can choose our variables carefully to obtain a (1 + ") approximations of the maximum
subgraph density or minimum out-degree. Theorem 5.1 implies that, for suitable choices of ⌘ and b, we can for any

graph G maintain a directed graph
�!
G b (where Gb is the graph G with every edge duplicated b times) such that

�!
G b maintains Invariant 0. By Theorem 3.1,

�!
G b approximates the densest subgraph of G and the minimum out-

orientation of Gb (where the approximation factor is dependent on � and ⌘). The running time of the algorithm
is O(b3 · log↵) where ↵ is the arboricity of the graph. In this section we show that for any 0 < " < 1, we can

choose an ⌘ > 0 and a b 2 O("�2 log n) to ensure that
�!
G b maintains a:

• (1 + ")-approx. of the maximum densest subgraph of G in O("�6 log3 n log↵) time.

• (1 + ")-approx. of the minimum out-orientation of Gb. This implies an explicit (2 + ")-approximation of

the minimum out-orientation of G in O("�6 log3 n log↵) time.

Copyright © 2024
This paper is available under the CC-BY 4.0 license3078

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

• (1 + ")-approx. of the minimum out-orientation of Gb. Through applying clever rounding introduced
by Christiansen and Rotenberg [18] we obtain an explicit (1 + ")-approximation of the minimum out-

orientation of G. By slightly opening their black-box algorithm, we can show that applying their technique
does not increase our running time. Thus, our total running time is thus O("�6 log3 n log↵).

Obtaining a (1 + ") Approximation for Densest Subgraph

Corollary 7.1. Let G be a dynamic graph subject to edge insertions and deletions with adaptive maximum

subgraph density ⇢. Let Gb
be G where every edge is duplicated b times. Let 0  ✏ < 1. We can maintain an

orientation
�!
G b

such that

⇢  b�1
· �(
�!
G b)  (1 + ")⇢

with update time O("�6 log3(n) log ⇢) per operation in G.

Proof. We apply Theorem 5.1 in order to maintain an out-orientation satisfying Invariant 0, which by Theorem 3.1

satisfies ⇢(Gb)  �(
�!
G b)  (1 + �)(1 + ⌘ · b�1)kmax⇢(Gb). By setting � = "

2 , ⌘ = 3, b = d��1⌘ log(1+�) ne 2

O("�2⌘ log n), we satisfy the conditions of the Theorem. Since kmax  log1+�
n, we find that

(1 + ⌘ · b�1)kmax  e⌘b
�1·kmax  e�  1 + 2� = 1 + "

where the last inequality comes from the fact that for 0  x  1, we have ex  1 + 2x.

Observation 1. The algorithm of Corollary 7.1 can in O(1) time per operation, maintain the integers: b�1
,

�(
�!
G b) and thus a (1 + ") approximation of the value of the density of G.

However, to actually output any such realizing subgraph, a bit more of a data structure is needed:

Lemma 7.1. For a fully-dynamic graph G, there is an algorithm that explicitly maintains a (1+") approximation

of the maximum subgraph density in O("�6 log3 n log↵) total time per operation, and that can output a subgraph

realizing this density in O(occ) time where occ is the size of the output.

Proof. We use Corollary 7.1 to dynamically maintain an orientation
�!
G b in O("�6 log3(n) log ⇢) per operation in

G. Recall (Theorem 3.1) that we defined for non-negative integers i the sets:

Ti :=
n
v 2 V

��� d+(v) � �
⇣
�!
G b

⌘
·
�
1 + ⌘ · b�1

��i
o

(note that since we maintain Invariant 0, the constant c in the previous definition is zero).
Let k be the smallest integer such that |Tk+1| < (1 + �)|Tk|). Moreover, we showed in Corollary 7.1 that

k is upper bounded by O("�1 log n). We show in Section 3 that (the induced subgraph of the vertex set)

Tk+1 is an approximation of the densest subgraph of
�!
G b (and therefore of G). We store the vertices of

�!
G b

as leaves in a balanced binary tree, sorted on their out-degree. Since every change in G, changes at most

O(b log n log ⇢) = O("�2 log2 n log ⇢) out-degrees in
�!
G , we can maintain this binary tree in O("�2 log3 n log ⇢)

additional time per operation in G.
Each internal node of the balanced binary tree stores the size of the subtree rooted at that node. Moreover,

we store the maximum out-degree �(
�!
Gb) as a separate integer, and a doubly linked list amongst the leaves.

After each operation in G, for each integer i 2 [0, "�1 log n], we determine how many elements there are in

Ti as follows: first, we compute the value Vi = �(
�!
G b) · (1 + ⌘ · b�1)�i. Then, we identify in O(log n) time how

many vertices have out-degree at least Vi (thus, we determine the size of Ti). It follows that we identify Tk in
O("�1 log2 n) additional time. We store a pointer to the first leaf that is in Tk. If we subsequently want to output
the densest subgraph of G, we traverse the occ elements of Tk in O(occ) total time by traversing the doubly
linked list of our leaves.

Related Work While results for densest subgraph [5, 14, 22] can be used to estimate maximum degree of
the best possible out-orientation, it is also interesting in its own right. Sawlani and Wang [45] maintain a (1� ")-
approximate densest subgraph in worst-case time O("�6 log4 n) per update where they maintain an implicit

representation of the approximately-densest subgraph. They write that they can, in O(log n) time, identify the
subset S ✓ V where G[S] is the approximately-densest subgraph and they can report it in O(|S|)

Copyright © 2024
This paper is available under the CC-BY 4.0 license3079

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Obtaining an almost (1 + ") Approximation for Minimum Out-orientation By Corollary 7.1, we can

dynamically maintain for every graph G, a directed graph
�!
G b (where each edge in G is duplicated b times) such

that the maximum out-degree in
�!
G b is at most a factor (1 + ") larger than the minimum out-orientation of Gb.

For every edge (u, v) in G, we can now store a counter indicating how many edges point (in Gb) from u to v, or
the other way around. The naive rounding scheme, states that the edge (u, v) is directed as �!uv whenever there
are more edges directed from u to v. For any edge, we can decide its rounding in O(1) time, thus we conclude:

Observation 2. We can maintain for a graph G an orientation
�!
G where each vertex has an out-degree of at

most (2 + ")↵ with update time O("�6 log3(n) log ⇢) per operation.

Obtaining a (1 + ")-approximation of the minimum out-orientation of G is somewhat more work. Christiansen
and Rotenberg [18] show how to dynamically maintain an explicit out-orientation on G of at most (1 + ")↵ + 2
out-edges. In their proofs, Christiansen and Rotenberg [18] rely upon the algorithm by Kopelowitz, Krauthgamer,
Porat and Solomon [34]. By replacing the KKPS [34] algorithm by ours in a black-box like manner, we obtain
the following:

Theorem 7.1. Let G be a dynamic graph subject to edge insertions and deletions. We can maintain an

orientation
�!
G where each vertex has an out-degree of at most (1 + ")↵ + 2 with update time O("�6 log3 n log↵)

per operation in G, where ↵ is the arboricity at the time of the update.

The proof follows immediately from the proof Theorem 26 by Christiansen and Rotenberg [18] (using Corollary 7.1
as opposed to [34]). For the reader’s convenience, we will briefly elaborate on how this result is obtained and how
we can apply Corollary 7.1. For the full technical details, we refer to the proof of Theorem 26 in [18].

1. Christiansen and Rotenberg consider a graph G with arboricity ↵. Moreover, they construct a directed graph
�!
G b which is the graph G where every edge in G is duplicated b 2 O("�2 log n) times.2 Every operation in

G triggers O(b) operations in
�!
G b.

2. On the graph Gb, they run the algorithm by [34] to maintain an orientation of
�!
G b where each vertex has

an out-degree of at most �(
�!
G b) = (1+ "0)↵ · b+ log(1+"0) n for "0 = ✓(") (for instance "0 = "/4 works). The

KKPS [34] algorithm uses per operation in Gb:3

• O

✓⇣
�(
�!
G b)

⌘2
◆

= O
�
(1 + ")2↵2b2 + "�4 log2 n

�
= O("�4↵2 log2 n) time, and

• O

⇣
�(
�!
G b)

⌘
= O

�
(1 + ")↵b+ "�2 log n

�
= O("�2↵ log n) combinatorial changes in

�!
G b. (here, a

combinatorial change either adds, removes, or flips an edge in
�!
G b).

3. Finally, they deploy a clever rounding scheme to transform the orientation
�!
G b into an orientation of G

where the out-degree of each vertex in
�!
G is at most a factor 1

b
the out-orientation of

�!
G b, plus two. Thus,

they ensure that each vertex has an out-degree of at most:

(1 + "0)↵+ b�1 log1+"0 n+ 2  (1 + "0)↵+
"02

log n
·
2 log n

"0
+ 2 = (1 + ")↵+ 2

since ↵ � 1 if the graph has at least one edge (otherwise the claim is vacant). They achieve this in O(log n)

additional time per combinatorial change in
�!
G b. Specifically:

• They consider for every edge (u, v) in G its partial orientation (i.e. how many edges in Gb point from
u to v or vice versa). If the partial orientation contains su�ciently many edges directed from u to v,
the edge in G gets rounded (directed from u to v).

2
In [18], Christiansen and Rotenberg choose the duplication constant to be � and write G�

.

3
Christiansen and Rotenberg deliberately use the adaptive variant of KKPS [34].

Copyright © 2024
This paper is available under the CC-BY 4.0 license3080

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

• Let H be a (not necessarily maximal) set of edges in G whose direction can be determined in this
fashion. They call H a refinement. Christiansen and Rotenberg choose H such that in the rounded,
directed graph G�H each vertex has an out-degree of at most (1 + ")↵.

• Christiansen and Rotenberg show that H always can be made into a forest. For all edges in H, they no

longer explicitly store the b copies in
�!
G b. Instead, they store for edges inH their (partial) orientation as

an integer in [0, b]. The forest H gets stored in a top tree where each interior node stores the minimum
and maximum partial orientation of all its children. For any path or cycle in H, they can increment or
decrement all orientation integers by 1 in O(log n) time by lazily updating these maxima and minima
in the top tree. For each edge in H, one can obtain the exact partial orientation in O(log n) additional
time by adding all lazy updates in the root-to-leaf path of the top tree.

• In addition, they show how to dynamically maintain a 2-orientation on the forest H in O(log n) update
time per insertion in the forest. Adding the directed edges from the forest to G ensures that each
vertex has an out-degree of at most (1 + ")↵+ 2.

• For each combinatorial change in
�!
G b, they spend O(log n) time. Specifically:

– each combinatorial change in
�!
G b may remove an edge from the forest. The edge can be rounded

in O(1) time and removed from the top tree in O(log n) time.

– each combinatorial change may force an edge in G into the refinement and thus possibly creating
a cycle.

– When creating a cycle, the authors augment the cycle such that at least one edge on the cycle may
be expelled from the refinement. They (implicitly) increment or decrement all orientation integers
along the cycle using the lazy top tree in O(log n) total time.

– Augmenting a cycle causes the out-degree to remain the same for all elements on the cycle. Hence,
the Invariants of KKPS [34] (and our Invariant 0) stay unchanged and the augmentation does not

trigger any further operations in
�!
G b. Note also that they specifically always leave at least one

duplicate edge in each direction, so that no additional data structures need be updated.

• The final edge along the augmented path may subsequently be rounded and added to G �H. Thus,

spending O(log n) time per combinatorial change in
�!
G b.

It follows through these three steps that the algorithm in [18] has a running time of:

O

✓
b ·

✓⇣
�(
�!
G b)

⌘2
+ �(

�!
G b) log n

◆◆
= O

�
"�6↵2 log3 n

�

Given the results in this paper, we can instead apply our results as follows:

1. We again choose b 2 O("�2 log n). Each operation in G triggers O(b) operations in
�!
G b.

2. We apply Theorem 5.1 (or conversely Corollary 7.1) to maintain
�!
G b such that each vertex has an out-degree

of at most �(
�!
G b) = (1 + ✓("))↵b. We proved that this algorithm takes:

• O(b2 log↵) time per operation in
�!
G b, but

• only triggers O(b log↵) combinatorial changes (edge flips) in
�!
G b.

3. Finally, we apply the rounding scheme by Christiansen and Rotenberg which requires O(log n) time per

combinatorial change in
�!
G b.

Our total running time is (our algorithm + rounding scheme per combinatorial change):

O(b · b · b log↵+ b · b log↵ · log n) = O
�
"�6 log3 n log↵

�
.

Copyright © 2024
This paper is available under the CC-BY 4.0 license3081

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Related Work Historically, four criteria are considered when designing dynamic out-orientation algorithms:
the maximum out-degree, the update time (or the recourse), amortised versus worst-case updates, and the
adaptability of the algorithm to the current arboricity.

Brodal and Fagerberg [16] were the first to consider the out-orientation problem in a dynamic setting. They
showed how to maintain an O(↵max) out-orientation with an amortised update time of O(↵max + log n), where
↵max is the maximum arboricity throughout the entire update sequence. Thus, their result is adaptive to the
current arboricity as long as it only increases. He, Tang, and Zeh [29] and Kowalik [37] provided di↵erent
analyses of Brodal and Fagerbergs algorithm resulting in faster update times at the cost of worse bounds on
the maximum out-degree of the orientations. Henzinger, Neumann, and Wiese [31] gave an algorithm able to
adapt to the current arboricity of the graph, achieving an out-degree of O(↵) and an amortised update time
independent of ↵, namely O(log2 n). Kopelowitz, Krauthgamer, Porat, and Solomon [34] showed how to maintain
an O(↵+ log n) out-orientation with a worst-case update time of O(↵2 + log2 n) fully adaptive to the arboricity.
Christiansen and Rotenberg [18, 17] lowered the maximum out-degree to (1 + ")↵ + 2 incurring a worse update
time of O("�6↵2 log3 n). Finally, Brodal and Berglin [8] gave an algorithm with a di↵erent trade-o↵; they show
how to maintain an O(↵max+log n) out-orientation with a worst-case update time of O(log n). This update time
is faster and independent of ↵, however the maximum out-degree does not adapt to the current value of ↵.

8 Applications

In this section, we show how to combine our two trade-o↵s for out-orientations (theorems 5.1, 5.2 with existing or
folklore reductions, obtaining improved algorithms for maximal matching, arboricity decomposition, and matrix-
vector product.

8.1 Maximal matchings For our application in maximal matchings, we first revisit the following result. The
authors have not seen this theorem stated in this exact generality in the literature, but similar statements appear
in [43], [40], and [8]

Lemma 8.1. (Folklore) Suppose one can maintain an edge-orientation of a dynamic graph, that has tu update

time, that for each update performs at most ru edge re-orientations (direction changes), and that maintains a

maximum out-degree of  no. Then there is a dynamic maximal matching algorithm
4
whose update time is

O(tu + ru + no).

Proof. [Proof of Lemma 8.1] Each vertex maintains two doubly-linked lists over its in-neighbors (one for the
matched, and one for the available in-neighbors) called in-lists and a doubly-linked list of its out-neighbors called
the out-list. When a vertex becomes available because of an edge deletion, it may match with the first available
in-vertex if one exists. If no such in-vertex exists, it may propose a matching to its  no out-neighbors in the
out-list, and then match with an arbitrary one of these if any is available. When a vertex v changes status between
matched and available, it notifies all vertices in its out-list, who move v between in-lists in O(1) time. Finally,
when an edge changes direction, each endpoint needs to move the other endpoint between in- and out-lists.

The bookkeeping of moving vertices between unordered lists takes constant time. For each edge insertion or
deletion, we may spend additionally O(no) time proposing to or notifying to out-neighbors to a vertex, for at
most two vertices for each deletion or insertion respectively.

With this application in mind, some desirable features of out-orientation algorithms become evident:

• we want the number of out-edges �(
�!
G) to be (asymptotically) low, and

• we want the update time to be e�cient, preferably deterministic and worst-case.
Here, a parameter for having the number of out-edges asymptotically as low as possible, can be sparseness
measures such as the maximum subgraph density or the arboricity of the graph. An interesting challenge for
dynamic graphs is that the density may vary through the course of dynamic updates, and we prefer not to have
the update time in our current sparse graph to be a↵ected by a brief occurrence of density in the past. In the
work of Henzinger, Neumann, and Wiese, they show how it is possible to adjust to the current graph sparseness
in the amortised setting [31]. In this paper, however, we are interested in the case where both the update time
is worst-case and the number of re-orientations is bounded. One previous approach to this challenge is to take

4
When the update time tu is worst-case, the number of re-orientations ru is upper bounded by tu.

Copyright © 2024
This paper is available under the CC-BY 4.0 license3082

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

a fixed upper bound on the sparseness as parameter to the algorithm, and then use log n data structures in
parallel [45]. Since we want the number of re-orientations to also be bounded, we cannot simply change between
two possibly very di↵erent out-orientations that result from di↵erent bounds on the sparseness. Any scheme for
deamortising the switch between structures would be less simple than the approach we see in this paper.

Corollary 8.1. There is a deterministic dynamic maximal matching algorithm with worst-case O(↵ +
log2 n log↵) update time, where ↵ is the current arboricity of the dynamic graph. The algorithm also implies

a 2-approximate vertex cover in the same update time.

Related Work Matchings have been widely studied in dynamic graph models. Under various plausible
conjectures, we know that a maximum matching cannot be maintained even in the incremental setting and even
for low arboricity graphs (such as planar graphs) substantially faster than ⌦(n) update time [1, 2, 30, 36, 20]. Given
this, we typically relax the requirement from maximum matching to maintaining matchings with other interesting
properties. One such relaxation is to require that the maintained matching is only maximal. The ability to retain
a maximal matching is frequently used by other algorithms, notably it immediately implies a 2-approximate
vertex cover. In incremental graphs, maintaining a maximal matching is trivially done with the aforementioned
greedy algorithm. For decremental5 or fully dynamic graphs, there exist a number of trade-o↵s (depending on
whether the algorithm is randomised or determinstic, and whether the update time is worst case or amortised).
Baswana, Gupta, and Sen [7] and Solomon [46] gave randomised algorithms maintaining a maximal matching with
O(log n) and O(1) amortised update time. These results were subsequently deamortised by Bernstein, Forster,
and Henzinger [9] with only a polylog n increase in the update time. For deterministic algorithms, maintaining
a maximal matching is substantially more di�cult. Ivkovic and Lloyd [33] gave a deterministic algorithm with

O((n+m)
p
2/2) worst case update time. This was subsequently improved to O(

p
m) worst case update time by

Neiman and Solomon [40], which remains the fastest deterministic algorithm for general graphs.
Nevertheless, there exist a number of results improving this result for low-arboricity graphs. Neiman and

Solomon [40] gave a deterministic algorithm that, assuming that the arboriticty of the graph is always bounded
by ↵max, maintains a maximal matching in amortised time O(min�>1{↵max ·�+log

�
n}), which can be improved

to O(log n/ log log n) if the arboricity is always upper bounded by a constant. Under the same assumptions, He,
Tang, and Zeh [29] improved this to O(↵max +

p
↵max log n) amortised update time. Without requiring that the

arboricity be bounded at all times, the work by Kopelowitz, Krauthgsamer, Porat, and Solomon [34] implies a
deterministic algorithm with O(↵2 + log2 n) worst case update time, where ↵ is the arboricity of the graph when
receiving an edge-update.

8.2 Dynamic � + 1 colouring

Lemma 8.2. Suppose one can maintain an edge-orientation of a dynamic graph, that has tu update time, that for

each update performs at most ru edge re-orientations (direction changes), and that maintains a maximal out-degree

of  no. Then there is a dynamic � + 1-colouring algorithm whose update time is O(tu + ru + no).

Proof. For a vertex v, say a colour is in-free if no in-neighbor of v has that colour. For a vertex of degree d, keep
a doubly linked list of in-free colours from the palette 0, 1, . . . , d. Keep an array taken of size d + 1 where the
i’th entry points to a doubly-linked list of in-neighbors of colour i, and an array free of size d+1 where the i’th
entry points to the i’th colour in the list of in-free colours if the i’th colour is in-free.

The colour of a vertex v is found by finding a colour that is both in-free and out-free: examine the  no

out-neighbors, and use the free-array to temporarily move the  no out-taken colours to a list out-taken. Give
v an arbitrary free colour from the remaining list, and undo the out-taken list. This takes O(no) time, and gives
v a colour between 0 and its degree.

When an edge changes direction, this incurs O(1) changes to linked lists and pointers. When an edge update
incurs ru edge re-orientations, we thus have O(ru) such changes. When an edge is inserted/deleted from a properly
coloured graph, at most one vertex needs to be recoloured, either because there is a colour conflict, or because its
colour number is larger than its degree. This vertex can be recoloured in O(no) time. Thus, the total time per
edge insertion or deletion is O(tu + ru + no).

5
Maintaining an approximate maximum matching decrementally is substantially easier than doing so for fully dynamic graphs.

Indeed, recently work by [4] matches the running times for approximate maximum matching in incremental graphs [27]. However, for

maximal matching, we are unaware of work on decremental graphs that improves over fully dynamic results.

Copyright © 2024
This paper is available under the CC-BY 4.0 license3083

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Corollary 8.2. There is a deterministic dynamic �+1 colouring algorithm with worst-case O(↵+log2 n log↵)
update time, where ↵ is the current arboricity of the dynamic graph.

Related Work Previous work presented randomised algorithms with constant amortised update time per
edge insertion/deletion [13, 32]. For deterministic algorithms, [12] showed that if one is willing to use (1+o(1)) ·�,
colours, a polylog(�) amortised update time is possible. Solomon and Wein [48] extended the algorithm by [12]
and further showed that it is possible to maintain an ↵ log2 n colouring in polylog(n) amortised update time.

8.3 Dynamic matrix vector product Suppose we have an n⇥n dynamic matrix A, and a dynamic n-vector
x, and we want to maintain a data structure that allows us to e�ciently query entries of Ax. The problem is
related to the Online Boolean Matrix-Vector Multiplication (OMV), which is commonly used to obtain conditional
lower bounds [19, 30, 39, 42]. If A is symmetric and sparse, in the sense that the undirected graph G with A
as adjacency matrix has low arboricity, then we can use an algorithm for bounded out-degree orientation as a
black-box to give an e�cient data structure as follows:

Lemma 8.3. (Implicit in Thm. A.3 in [34]) Suppose one can maintain an edge-orientation of a dynamic graph

with adjacency matrix A, that has tu update time, that for each update performs at most ru edge re-orientations

(direction changes), and that maintains a maximal out-degree of  no. Then there is a dynamic matrix-vector

product algorithm that supports entry-pair changes to A in O(tu + ru) time, entry changes to the vector x in

O(no) time, and queries to the an entry of product Ax in O(no) time.

Proof. Let each node i store the sum si =
P

j2N�(i) Aijxj , i.e. the sum of the terms of (Ax)i =
P

j2N(i) Aijxj

corresponding to incoming edges at i. Changing entry Aij = Aji in the matrix to or from 0 corresponds to deleting
or inserting an edge, which takes tu time and does at most ru edge re-orientations. Updating the O(1) a↵ected
sums after inserting, deleting, re-orienting, or re-weighting an edge takes worst case O(1) time. Any entry update
to the matrix A thus takes O(tu + ru) time. When a vector entry xj changes, we need to update the at most
no sums {si}i2N+(j), which can be done in worst case O(no) time. Finally, the query for (Ax)i is computed as
(Ax)i = si +

P
j2N+(i) Aijxj in worst case O(no) time.

This result is used in [34, Theorem A.3] to give an algorithm for dynamic matrix vector product with running
time O(↵2 + log2 n) for updating the matrix, and O(↵+ log n) for updating the vector and for queries.

Combining this theorem with our Theorem 5.2 gives us an algorithm for dynamic matrix vector product with
slightly improved time for updating the matrix:

Corollary 8.3. Let A be a symmetric n⇥ n matrix, and let G be the undirected graph whose adjacency matrix

is A. Let x be an n dimensional vector. Then we can support changes to A in O(log2 n log↵) worst case time,

changes to x in O(↵+ log n) worst case time, and for each i 2 {1, . . . , n} we can report
P

n

j=1 Aijxj in worst case

O(↵+ log n) time.

If we instead combine with our Theorem 5.1 we get an algorithm for dynamic matrix vector product with
slightly worse time for updating the matrix, but improved time for updating the vector and for queries:

Corollary 8.4. Let A be a symmetric n⇥ n matrix, and let G be the undirected graph whose adjacency matrix

is A. Let x be an n dimensional vector. Then we can support changes to A in O(log3 n log↵) worst case time,

changes to x in O(↵) worst case time, and for each i 2 {1, . . . , n} we can report
P

n

j=1 Aijxj in worst case O(↵)
time.

8.4 Dynamic arboricity decomposition

Lemma 8.4. ([31, 18]) Suppose one can maintain an edge-orientation of a dynamic graph, that has tu update

time, and that maintains a maximal out-degree of  no. Then there is an algorithm for maintaining a

decomposition into 2no forests whose update time is O(tu).

Proof. Firstly, as noted in [31, 18]: By assigning the i’th out-edge of a vertex u to subgraph Si, one obtains a
decomposition into no subgraphs, each of which is a pseudoforest. Every vertex has at most one out-edge in each

Copyright © 2024
This paper is available under the CC-BY 4.0 license3084

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

pseudoforest Si, and thus, the at most one cycle in each tree of the pseudoforest is a directed cycle according to
the orientation.

For maintaining this dynamic pseudoforest decomposition, there is only an O(1) overhead per edge-
reorientation, yielding an O(no)-time algorithm for maintaining no pseudoforests.

Then, as noted in [31], we may split each pseudoforest Si into two forests fi and f 0
i
by the following simple

algorithm: given a new edge e in fi, notice that there is at most one edge e0 in fi incident to its head. Now,
one can safely insert e in any of the two forests {fi, f 0

i
} that does not contain this at most one edge e0. Thus,

consequently, neither fi nor f 0
i
will contain a cycle.

Thus, by applying Theorem 5.1, we obtain the following:

Corollary 8.5. There is a deterministic algorithm for maintaining an arboricity decomposition into O(↵)
forests, whose worst-case update time is O(log3 n log↵), where ↵ is the current arboricity of the dynamic graph.

Related Work While an arboricity decomposition of a graph; a partition of its edges into as few forests as
possible; is conceptually easy to understand, computing an arboricity decomposition is surprisingly nontrivial.
Even computing it exactly has received much attention [25, 26, 21, 44]. The state-of-the-art for computing an
exact arboricity decomposition runs in Õ(m3/2) time [25, 26]. In terms of not-exact algorithms there is a 2-
approximation algorithm [3, 23] as well as an algorithm for computing an ↵ + 2 arboricity decomposition in
near-linear time [15].

For dynamic arboricity decomposition, Bannerjee et al. [6] give a dynamic algorithm for maintaining the
current arboricity. The algorithm has a near-linear update time. They also provide a lower bound of ⌦(log n).
Henzinger Neumann Wiese [31] provide an O(↵) arboricity decomposition in O(poly(log n,↵)) time; their
result also goes via out-orientation, and they provide a dynamic algorithm for maintaining a 2↵0 arboricity
decomposition, given access to any black box dynamic ↵0 out-degree orientation algorithm. Most recently, there
are algorithms for maintaining (↵ + 2) forests in O(poly(log(n),↵)) update-time [18], and (↵ + 1) forests in
Õ(n3/4 poly(↵)) time [17].

Copyright © 2024
This paper is available under the CC-BY 4.0 license3085

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

References

[1] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar graph algorithms. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 477–486, 2016.

[2] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 434–443, 2014.

[3] Srinivasa Rao Arikati, Anil Maheshwari, and Christos D. Zaroliagis. E�cient computation of implicit representations
of sparse graphs. Discret. Appl. Math., 78(1-3):1–16, 1997.

[4] Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja. Decremental matching in general graphs. In Mikolaj Bojanczyk,
Emanuela Merelli, and David P. Woodru↵, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 11:1–11:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022.

[5] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and mapreduce. Proc.
VLDB Endow., 5(5):454–465, 2012.

[6] Niranka Banerjee, Venkatesh Raman, and Saket Saurabh. Fully dynamic arboricity maintenance. Theor. Comput.
Sci., 822:1–14, 2020.

[7] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in o(log n) update time.
SIAM J. Comput., 44(1):88–113, 2015.

[8] Edvin Berglin and Gerth Stølting Brodal. A Simple Greedy Algorithm for Dynamic Graph Orientation. In
28th International Symposium on Algorithms and Computation (ISAAC 2017), volume 92 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–12:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[9] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for dynamic spanner and
dynamic maximal matching. ACM Trans. Algorithms, 17(4):29:1–29:51, 2021.

[10] Aaron Bernstein and Cli↵ Stein. Fully dynamic matching in bipartite graphs. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part
I, pages 167–179, 2015.

[11] Aaron Bernstein and Cli↵ Stein. Faster fully dynamic matchings with small approximation ratios. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 692–711, 2016.

[12] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai. Dynamic algorithms
for graph coloring. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1–20. SIAM, 2018.

[13] Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu, and Shay Solomon. Fully dynamic
(� +1)-coloring in O(1) update time. ACM Trans. Algorithms, 18(2):10:1–10:25, 2022.

[14] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsourakakis. Space- and time-
e�cient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 173–182. ACM, 2015.

[15] Markus Blumenstock and Frank Fischer. A constructive arboricity approximation scheme. In SOFSEM 2020: Theory
and Practice of Computer Science - 46th International Conference on Current Trends in Theory and Practice of
Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings, volume 12011 of Lecture Notes in
Computer Science, pages 51–63. Springer, 2020.

[16] Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In In Proc. 6th International
Workshop on Algorithms and Data Structures (WADS), pages 342–351. Springer-Verlag, 1999.

[17] Aleksander B. G. Christiansen, Jacob Holm, Eva Rotenberg, and Carsten Thomassen. On Dynamic ↵ + 1
Arboricity Decomposition and Out-Orientation. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[18] Aleksander B. G. Christiansen and Eva Rotenberg. Fully-Dynamic ↵ + 2 Arboricity Decompositions and Implicit
Colouring. In Miko laj Bojańczyk, Emanuela Merelli, and David P. Woodru↵, editors, 49th International Colloquium
on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 42:1–42:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[19] Raphaël Cli↵ord, Allan Grønlund, and Kasper Green Larsen. New unconditional hardness results for dynamic and

Copyright © 2024
This paper is available under the CC-BY 4.0 license3086

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

online problems. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1089–1107. IEEE Computer Society, 2015.

[20] Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to diameter. In 43rd
International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
pages 48:1–48:14, 2016.

[21] Jack Edmonds. Minimum partition of a matroid into independent subsets. Journal of Research of the National
Bureau of Standards Section B Mathematics and Mathematical Physics, page 67, 1965.

[22] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. E�cient densest subgraph computation in evolving graphs. In
Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International Conference
on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 300–310. ACM, 2015.

[23] David Eppstein. Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett., 51(4):207–211, August
1994.

[24] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic shortest paths in digraphs with
arbitrary arc weights. J. Algorithms, 49(1):86–113, 2003.

[25] Harold Gabow and Herbert Westermann. Forests, frames, and games: Algorithms for matroid sums and applications.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, page 407–421, New
York, NY, USA, 1988. Association for Computing Machinery.

[26] Harold N. Gabow. Algorithms for graphic polymatroids and parametric s-sets. In Proceedings of the Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, page 88–97, USA, 1995. Society for Industrial and Applied
Mathematics.

[27] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay Solomon. (1 + ✏)-approximate
incremental matching in constant deterministic amortized time. In Timothy M. Chan, editor, Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 1886–1898. SIAM, 2019.

[28] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Maintaining an EDCS in general
graphs: Simpler, density-sensitive and with worst-case time bounds. In Karl Bringmann and Timothy Chan, editors,
5th Symposium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022, pages
12–23. SIAM, 2022.

[29] Meng He, Ganggui Tang, and Norbert Zeh. Orienting dynamic graphs, with applications to maximal matchings and
adjacency queries. In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Computation - 25th International
Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, volume 8889 of Lecture Notes in
Computer Science, pages 128–140. Springer, 2014.

[30] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 21–30. ACM, 2015.

[31] Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic coloring of graphs with
bounded arboricity. CoRR, abs/2002.10142, 2020.

[32] Monika Henzinger and Pan Peng. Constant-time dynamic (� +1)-coloring. ACM Trans. Algorithms, 18(2):16:1–
16:21, 2022.

[33] Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In Graph-Theoretic Concepts in
Computer Science, 19th International Workshop, WG ’93, Utrecht, The Netherlands, June 16-18, 1993, Proceedings,
pages 99–111, 1993.

[34] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic graphs with worst-
case time bounds. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 532–543. Springer, 2014.

[35] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic graphs with worst-
case time bounds. In International Colloquium on Automata, Languages, and Programming, pages 532–543. Springer,
2014.

[36] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1272–1287, 2016.

[37] Lukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett., 102(5):191–195, May 2007.
[38] Lukasz Kowalik and Maciej Kurowski. Oracles for bounded-length shortest paths in planar graphs. ACM Trans.

Algorithms, 2(3):335–363, 2006.
[39] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication. In Philip N. Klein, editor,

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,

Copyright © 2024
This paper is available under the CC-BY 4.0 license3087

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Spain, Hotel Porta Fira, January 16-19, pages 2182–2189. SIAM, 2017.
[40] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal matching. ACM Trans.

Algorithms, 12(1):7:1–7:15, 2016.
[41] Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully dynamic MIS in uniformly sparse graphs.

ACM Trans. Algorithms, 16(2):26:1–26:19, 2020.
[42] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Leonard J. Schulman, editor, Proceedings

of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010,
pages 603–610. ACM, 2010.

[43] David Peleg and Shay Solomon. Dynamic (1 + ")-approximate matchings: A density-sensitive approach. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 712–729. SIAM, 2016.

[44] Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1 programming problems,
with applications to graph theory. Networks, 12(2):141–159, 1982.

[45] Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 181–193, 2020.

[46] Shay Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 325–334, 2016.

[47] Shay Solomon. Dynamic approximate matchings with an optimal recourse bound. CoRR, abs/1803.05825, 2018.
[48] Shay Solomon and Nicole Wein. Improved dynamic graph coloring. ACM Trans. Algorithms, 16(3):41:1–41:24, 2020.

Copyright © 2024
This paper is available under the CC-BY 4.0 license3088

D
ow

nl
oa

de
d

04
/1

4/
24

 to
 1

07
.2

01
.1

91
.2

14
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Our Contribution

	Notation and overview of techniques
	Parameterisation of the Algorithm

	A Structural Theorem
	A Simple Algorithm for Maintaining the Invariants
	Maintaining Invariant 1.
	Maintaining Invariant 0.

	Improved worst case algorithms
	Improved amortised algorithms
	Running time analysis

	Obtaining (1+ε) Approximations
	Applications
	Maximal matchings
	Dynamic ∆+1 colouring
	Dynamic matrix vector product
	Dynamic arboricity decomposition

