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Abstract

Maximum weight independent set (MWIS) admits a 1
k -approximation in inductively k-independent

graphs [2, 40] and a 1
2k -approximation in k-perfectly orientable graphs [34]. These are a parameterized

class of graphs that generalize k-degenerate graphs, chordal graphs, and intersection graphs of
various geometric shapes such as intervals, pseudo-disks, and several others [40, 34]. We consider a
generalization of MWIS to a submodular objective. Given a graph G = (V, E) and a non-negative
submodular function f : 2V æ R+, the goal is to approximately solve maxSœIG

f(S) where IG is
the set of independent sets of G. We obtain an �( 1

k )-approximation for this problem in the two
mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple
contention resolution scheme, and this results in a randomized algorithm with approximation ratio
at least 1

e(k+1) . This approach also yields parallel (or low-adaptivity) approximations.
Motivated by the goal of designing e�cient and deterministic algorithms, we describe two other

algorithms for inductively k-independent graphs that are inspired by work on streaming algorithms:
a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster,
these algorithms, in the monotone submodular case, yield the first deterministic constant factor
approximations for various special cases that have been previously considered such as intersection
graphs of intervals, disks and pseudo-disks.
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1 Introduction

Given a graph G = (V, E) a set S ™ V of vertices is an independent set (also referred to as a
stable set) if there is no edge between any two vertices in S. Let –(G) denote the cardinality of
a maximum independent set in G. Finding –(G) is a classical problem with many applications;
we refer to the search problem of finding a maximum cardinality independent set as MIS.
We also consider the weighted version where the input consists of G and a vertex weight
function w : V æ Z+ and the goal is to find a maximum weight independent set; we refer
to the weighted problem as MWIS. MIS is NP-Hard, and moreover it is also NP-Hard to
approximate –(G) to within a 1

n1≠‘ -factor for any fixed ‘ > 0 [32, 41]. For this reason, MIS
and MWIS are studied in various special classes of graphs that capture interesting problems
while also being tractable. It is easy to see that graphs with maximum degree k admit a
1

k -approximation. In fact, the same approximation ratio holds for k-degenerate graphs – a
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24:2 Independent Sets in Elimination Graphs with a Submodular Objective

graph G = (V, E) is a k-degenerate if there is an ordering of the vertices V = {v1, . . . , vn}
such that for each vi, |N(vi) fl {vi, . . . , vn}| Æ k. A canonical example is the class of planar
graphs which are 5-degenerate.

In this paper we are interested in two parameterized classes of graphs called inductively
k-independent graphs [40] and k-perfectly orientable graphs [34]. These graphs are motivated
by the well-known class of chordal graphs, and capture several other interesting classes such
as intersection graphs of intervals, disks (and hence planar graphs), low-treewidth graphs,
t-interval graphs, and many others. A more recent example is the intersection graph of a
collection of pseudo-disks which were shown to be inductively 156-independent [38]. Graphs
in these classes can be dense and have large cliques. We formally define the classes.

Given a graph G = (V, E) and a vertex v we let N(v) denote the set of neighbors of v
(excluding v). A graph G = (V, E) with n vertices has a perfect elimination ordering if there is
an ordering of vertices V = {v1, . . . , vn} such that for each vi, –(G[N(vi) fl {vi, . . . , vn}]) = 1;
in other words N(vi) fl {vi, . . . , vn} is a clique. It is well-known that these graphs are the
same as chordal graphs.1 For example, the intersection graph of a given set of intervals is
chordal. One can generalize the perfect elimination property ordering of chordal graphs.

I Definition 1 ([34]). For a fixed integer k Ø 1, G = (V, E) is k-simplicial if there is an
ordering of vertices V = {v1, . . . , vn} such that for each vi, G[N(vi) fl {vi, . . . , vn}] can be
covered by k cliques.

Note that if G[N(vi) fl {vi, . . . , vn}] is covered by k cliques then –(G[N(vi) fl
{vi, . . . , vn}]) Æ k. Hence one can define a class based on this weaker property.

I Definition 2 ([2, 40]). For a fixed integer k Ø 1, G = (V, E) is inductively k-independent
if there is an ordering of vertices V = {v1, . . . , vn} such that for each vi, –(G[N(vi) fl
{vi, . . . , vn}]) Æ k. The inductive independence number of G is the minimum k for which G
is inductively k-independent.

Although inductively k-independent graphs generalize k-simplicial graphs there is no
known natural class of graphs that di�erentiates the two; typically one establishes inductive
k-independence via k-simpliciality. The ordering-based definition can be further relaxed
based on orientations of G.

I Definition 3 ([34]). For a fixed integer k Ø 1, G = (V, E) is k-perfectly orientable if there
is an orientation H = (V, A) of G such that for each vertex v œ V, G[Sv] can be covered by k
cliques, where Sv = N+

H (v) is the out-neighborhood of v in H.

I Remark 4. In this paper we will use the term k-perfectly orientable for the following
class of graphs: there is an orientation H = (V, A) of G such that for each vertex v œ V,
–(G[Sv]) Æ k where Sv = N+

H(v) is the out-neighborhood of v in H. This is more general
than the preceding definition. We observe that the algorithm in [34] for MWIS works also for
this larger class, although there are no known natural examples that di�erentiate the two.

We observe that if G is inductively k-independent then it is also k-perfectly orientable
according to our relaxed definition. Indeed, if v1, v2, . . . , vn is an ordering that certifies induc-
tive k-independence we simply orient the edges of G according to this ordering which yields
a DAG. The advantage of the k-perfect orientability is that it allows arbitrary orientations.
Note that a cycle is 1-perfectly orientable while it is 2-inductively independent. This factor

1 A graph is chordal i� there is no induced cycle of length more than 3.
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of 2 gap shows up in the known approximation bounds for MWIS in these two classes of
graphs. It is known that for arbitrarily large n there are 2-perfectly orientable graphs on
n vertices such that the graphs are not inductively

Ô
n-independent [5]. These come from

the intersection graphs of so-called 2-interval graphs. Thus, k-perfect orientability can add
substantial modeling power.

Akcoglu et al. [2] described a 1

k -approximation for the MWIS problem in graphs that
are inductively k-independent. They used the local-ratio technique, and subsequently [40]
derived it using a stack-based algorithm. Both algorithms require as input an ordering of
the vertices that certifies the inductive k-independent property. For k-perfectly orientable
graphs [34] described a 1

2k -approximation for the MWIS problem following the ideas in [5]
for a special case. Given a graph G = (V, E) and integer k there is an nO(k)-time algorithm
to check if G is inductively k-independent [40]. Typically, the proof that a specific class of
graphs is inductively k-independent for some fixed value of k, yields an e�cient algorithm
that also computes a corresponding ordering. This is also true for k-perfect orientability.
We refer the reader to [30] for additional discussion on computational aspects of computing
orderings. In this paper we will assume that we are given both G and the ordering that
certifies inductive k-independence, or an orientation that certifies k-perfect orientability.

1.1 Independent sets with a submodular objective

We consider an extension of MWIS to submodular objectives. A real-valued set function
f : 2V æ R is modular i� f(A)+f(B) = f(AfiB)+f(AflB) for all A, B ™ V . It is easy to show
that f is modular i� there a weight function w : V æ R where f(A) = w(A) =

q
vœA w(v).

A real-valued set function f : 2V æ R is submodular if f(A) + f(B) Ø f(A fi B) + f(A fl B)
for all A, B ™ V . An equivalent definition is via decreasing marginal value property: for any
A µ B µ V and v œ V ≠ B, f(A + v) ≠ f(A) Ø f(B + v) ≠ f(B). Here A + v is a convenient
notation for A fi {v}. f is monotone if f(A) Æ f(B) for all A ™ B. We will confine our
attention in this paper to non-negative submodular functions and we will also assume that
f(ÿ) = 0. Given a graph G = (V, E) and a non-negative submodular function f : 2V æ R+,
we consider the problem maxS™IG

f(S) where IG is the collection of independent sets in G.
This problem generalizes MWIS since a modular function is also submodular. We assume
throughout that f is available through a value oracle that returns f(S) on query S. Our
focus is on developing approximation algorithms for this problem in the preceding graph
classes, since even very simple special cases are NP-Hard.

Motivation and related work. Submodular function maximization subject to various
“independence” constraints has been a very active area of research in the last two decades.
There have been several important theoretical developments, and a variety of applications
ranging from algorithmic game theory, machine learning and artificial intelligence, data
analysis, and network analysis; see [10, 6, 22] for some pointers. We are motivated to consider
this objective in inductive k-independent graphs and k-perfectly orientable graphs for several
reasons. First, it is a natural generalization of MWIS. Second, various special cases of this
problem have been previously studied: Feldman [24] considered the case of interval graphs,
and Chan and Har-Peled considered the case of intersection graphs of disks and pseudo-disks
[16]. Third, previous algorithms have relied on the multilinear relaxation based approach
combined with contention resolution schemes for rounding. This is a computationally
expensive approach and also requires randomization. The known approximation algorithms
for MWIS in inductive k-independent graphs are based on simple combinatorial methods such
as local-ratio, and this raises the question of developing similar combinatorial algorithms for
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24:4 Independent Sets in Elimination Graphs with a Submodular Objective

submodular objectives. In particular, we are inspired by the connection to preemptive greedy
algorithms for submodular function maximization that have been developed in the context of
streaming algorithms [15, 3, 17]. Although a natural greedy algorithm has been extensively
studied for submodular function maximization [36, 28], the utility of the preemptive version
for o�ine approximation has not been explored as far as we are aware of. This is partly
due to the fact that the standard greedy algorithm works well for matroid like constraints.
More recently [35] developed a primal-dual based algorithm for submodular streaming
under b-matching constraints which is inspired by the stack based algorithm of [37] for the
modular setting; the latter has close connections to stack based algorithms for inductive
k-independent graphs [40]. The algorithm in [35] was generalized to matroid intersection
in [29]. Finally, at a meta-level, we are also interested in understanding the relationship in
approximability between optimizing with modular objectives and submodular objectives. For
many “independence” constraints the approximability of the problem with a submodular
objective is often within a constant factor of the approximability with a modular objective,
but there are also settings in which the submodular objective is provably harder (see [7]).
A substantial amount of research on submodular function optimization is for constraints
defined by exchange systems such as (intersections of) matroids and their generalizations
such as k-exchange systems [27] and k-systems [33, 14]. Independent sets in the graph classes
we consider provide a di�erent parameterized family of constraints.

1.2 Results

We obtain an �( 1

k )-approximation for maxS™I f(S) in inductively k-independent graphs and
in k-perfectly orientable graphs. We explore di�erent techniques to achieve these results
since they have di�erent algorithmic benefits.

First, we obtain a randomized algorithm via the multilinear relaxation framework [21]
by considering a natural polyhedral relaxation and developing simple contention resolution
schemes (CRS). The CRS schemes are useful since one can combine the rounding with other
side constraints in various applications.

I Theorem 5. There is a randomized algorithm that given a k-perfectly orientable graph G
(along with its orientation) and a monotone submodular function f , outputs an independent
set SÕ such that with high probability f(SÕ) Ø ( 1

k+1
· 1

(1+1/k)k ) maxAœIG
f(A). For non-

negative functions there is an algorithm that outputs an independent set SÕ such that with
high probability f(SÕ) Ø 1

e(k+1)
maxAœIG

f(A).

The multilinear relaxation based approach yields parallel (or low-adaptivity) algorithms
with essentially similar approximation ratios, following ideas in [20, 23]. Although the
multilinear approach is general and powerful, there are two drawbacks; algorithmic complexity
and randomization which are inherent to the approach. An interesting question in the
submodular maximization literature is whether one can obtain deterministic algorithms via
alternate methods, or by derandomizing the multilinear relaxation approach. There have
been several results along these lines [9, 11, 31], and several open problems.

Motivated by these considerations we develop simple and e�cient approximation algo-
rithms for inductively k-independent graphs. We show that a preemptive greedy algorithm,
inspired by the streaming algorithm in [17], yields a deterministic �( 1

k )-approximation
when f is monotone. This can be combined with a simple randomized approach when f
is non-monotone. Inspired by [35], we describe a primal-dual algorithm that also yields
a �( 1

k )-approximation; the primal-dual approach yields better constants and we state the
result below.
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I Theorem 6. There is a deterministic combinatorial algorithm that given an inductively
k-independent graph G (along with its orientation) and a monotone submodular function f ,
outputs an independent set SÕ such that f(SÕ) Ø 1

k+1+2
Ô

k
maxAœIG

f(A). For non-negative
functions there is a randomized algorithm that outputs an independent set SÕ such that
E[f(SÕ)] Ø 1

2k+1+
Ô

8k
maxAœIG

f(A). Both algorithms use O(|V (G)|) value oracle calls to f
and in addition take linear time in the size of G.

I Remark 7. We obtain deterministic 1/4-approximation for monotone submodular function
maximization for independent sets in chordal graphs, and hence also for interval graphs. This
matches the best ratio known via the multilinear relaxation approach [24], and is the first
deterministic algorithm as far as we know. Similarly, this is the first deterministic algorithm
for disks and pseudo-disks that were previously handled via the multilinear relaxation
approach [16]. Are there deterministic algorithms for k-perfectly orientable graphs? See
Section 5.
I Remark 8. Matchings in a graph G, when viewed as independent sets in the line graph H of
G, form an inductively 2-independent graph. In fact any ordering of the edges of G forms a
valid 2-inductive ordering of H. Thus our algorithm is also a semi-streaming algorithm. Our
approximation bound for monotone functions matches the approximation achieved in [35]
for matchings although we use a di�erent LP relaxation and view the problem from a more
general viewpoint. However, for non-monotone functions, our ratio is slightly weaker, and
highlights some di�erences.

The primal-dual algorithm is a two-phase algorithm. The preemptive greedy algorithm is a
single phase algorithm. It gives slightly weaker approximation bounds when compared to the
primal-dual algorithm, but has the advantage that it can be viewed as an online preemptive
algorithm. Algorithms in such a model for submodular maximization were developed in
[12, 25]. Streaming algorithms for submodular function maximization in [15, 17] can be
viewed as online preemptive algorithms. Our work shows that there is an online preemptive
algorithm for independent sets of inductive k-independent graphs if the vertices arrive in the
proper order. There are interesting examples where any ordering of the vertices is a valid
k-inductive ordering.

Our main contribution in this paper is conceptual. We study the problem to unify and
generalize existing results, understand the limits of existing techniques, and raise some
directions for future research (see Section 5). As we mentioned, our techniques are inspired
by past and recent work on submodular function maximization [21, 24, 17, 35].

Organization

Section 2 sets up the relevant technical background on submodular functions. Section 3
describes the multilinear relaxation approach and proves Theorem 5. Section 4 describes
the primal-dual approach and proves Theorem 6. Section 5 concludes with a discussion of
some open problems. The description and analysis of the preemptive greedy algorithm can
be found in Appendix A.

2 Preliminaries

Let f : 2N æ RØ0 be a real-valued nonnegative set function defined over a finite ground
set N . The function f is monotone if f(S) Æ f(T ) for any nested sets S ™ T ™ N , and
submodular if it has decreasing marginal returns: if S ™ T ™ N are two nested sets and
e œ N \ T is an element, then f(S + e) ≠ f(S) Ø f(T + e) ≠ f(T ). For two sets A, B ™ N ,
we denote the marginal value of adding B to A by fA(B) def= f(A fi B) ≠ f(A).

APPROX/RANDOM 2023



24:6 Independent Sets in Elimination Graphs with a Submodular Objective

Incremental values

In this paper, there is always an implicit ordering < over the ground set N . For a set S ™ N
and an element e œ N , the incremental value of e in S, denoted ‹(f, S, e), is defined as

‹(f, S, e) = fSÕ(e), where SÕ = {s œ S : s < e}.

Incremental value has some simple but very useful properties, proved in [17, Lemmas 1–3]
and summarized in the following.

I Lemma 9. Let N be an ordered set and f : 2N æ R a set function.
(a) For any set S ™ N , we have f(S) =

ÿ

eœS

‹(f, S, e).

(b) Let S ™ T ™ N be two nested subsets of N and e œ N an element. If f is submodular,
then ‹(f, T, e) Æ ‹(f, S, e).

(c) Let S, Z ™ N be two sets, and e œ S. If f is submodular, then ‹(fZ , S, e) Æ ‹(f, Z fi S, e).

Multilinear Extension and Relaxation

I Definition 10. Given a set function f : 2N æ R, the multilinear extension of f , denoted F ,
extends f to the product space [0, 1]N by interpreting each point x œ [0, 1]N as an independent
sample S ™ N with sampling probabilities given by x, and taking the expectation of f(S).
Equivalently,

F (x) =
ÿ

S™N

Q

a
Ÿ

iœS

xi

Ÿ

i ”œS

(1 ≠ xi)

R

b.

An independence family I over a ground set N is a subset of 2N that is downward
closed, that is, if A œ I and B µ A then B œ I. A polyhedral/convex relaxation P for a
given independence family I over N is a polyhedra/convex subset of [0, 1]N such that for
each A œ I, ‰A œ P where ‰A is the characteristic vector of A (a vector in {0, 1}N with
a 1 in coordinate i i� i œ A). We say that P is a solvable relaxation for I if there is a
polynomial time algorithm to optimize a linear objective over P . Given a ground set N , and
a non-negative submodular function f over N , and an independence family I ™ 2N ,2 we are
interested in the problem maxSœI f(S). For this general problem the multilinear relaxation
approach is to approximately solve the multilinear relaxation maxxœP F (x) followed by
rounding – see [14, 21, 10]. For monotone f there is a randomized (1 ≠ 1/e)-approximation
to the multilinear relaxation when P is solvable [14]. For general non-negative functions
there is a 0.385-approximation [11].

Concave closure and relaxation

I Definition 11. Given a set function f : 2N æ R, the concave closure of f , denoted f+,
extends f to the product space [0, 1]N as follows. For x œ [0, 1]N we let

f+(x) = max

I
ÿ

S™N

–Sf(S) :
ÿ

S–i

–S = xi for all i œ N ,
ÿ

S

–S = 1, –S Ø 0 for all S ™ N

J
.

2 We assume that an independence family is specified implicitly via an independence oracle that returns
whether a given A ™ N belongs to I.
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As the name suggests, f+ is a concave function over [0, 1]N for any set function f . The
definition of f+(x) involves the solution of an exponential sized linear program. The concave
closure of a submodular set function is in general NP-Hard to evaluate. Nevertheless, the
concave closure is useful indirectly in several ways. One can relate the concave closure
to the multilinear extension via the notion of correlation gap [1, 13, 39, 19]. We can
consider a relaxation based on the concave closure for the problem of maxSœI f(S), namely,
maxxœP f+(x) where P is a polyhedral or convex relaxation for the constraint set I. Although
we may not be able to solve this relaxation directly, it provides an upper bound on the
optimum solution and moreover, unlike the multilinear relaxation, the relaxation can be
rewritten as a large linear program when P is polyhedral.

Contention Resolution Schemes

Contention resolution schemes are a way to round fractional solutions for relaxations to
packing problems and they are a powerful and useful tool in submodular function maxi-
mization [21]. For a polyhedral relaxation P for I and a real b œ [0, 1], bP refers to the
polyhedron {bx | x œ P}.

I Definition 12. Let b, c œ [0, 1]. A (b, c)-balanced CR scheme fi for a polyhedral relaxation
P for I is a procedure that for every bx œ bP and A ™ N , returns a random set fix(A) ™
A fl support(x) and satisfies the following properties:
(a) fix(A) œ I with probability 1 ’A ™ N, x œ bP , and
(b) for all i œ support(x), P[i œ fix(R(x)) | i œ R(x)] Ø c ’x œ bP .
The scheme is said to be monotone if P[i œ fix(A1)] Ø P[i œ fix(A2)] whenever i œ A1 ™ A2. A
(1, c)-balanced CR scheme is also called a c-balanced CR scheme. The scheme is deterministic
if fi is a deterministic algorithm (hence fix(A) is a single set instead of a distribution). It is
oblivious if fi is deterministic and fix(A) = fiy(A) for all x, y and A, that is, the output is
independent of x and only depends on A. The scheme is e�ciently implementable if fi is a
polynomial-time algorithm that given x, A outputs fix(A).

3 Approximating via Contention Resolution Schemes

Let G = (V, E) be an inductively k-independent graph and let V = {v1, v2, . . . , vn} be
the corresponding order. Let I denote the set of independent sets of G. We consider the
following simple polyhedral relaxation for I where there is a variable xi for each vertex vi.
For notational simplicity we let Ai denote the set N(vi) fl {vi+1, . . . , vn} which is the set of
neighbors of vi that come after vi in the ordering.

xi +
ÿ

vjœAi

xj Æ k for all i œ [n]

xi œ [0, 1] for all i œ [n]

This is a valid polyhedral relaxation for I. Indeed, consider an independent set S ™ V , and
let x be the indicator vector of S. Fix a vertex vi and consider the first inequality. If vi œ S,
then since Ai ™ N(vi), we have Ai fl S = ÿ, and the left hand side (LHS) is 1. Otherwiseq

vjœAi
xj = |Ai fl S| Æ –(Ai) Æ k, so the LHS is at most k.

In fact, the 1

k -approximation for MWIS in [2, 40] are implicitly based on this relaxation.
Moreover, the relaxation has a polynomial number of constraints and hence is solvable. We
refer to this relaxation as QG and omit G when clear from the context. The multilinear
relaxation is to solve maxxœQG

F (x).

APPROX/RANDOM 2023



24:8 Independent Sets in Elimination Graphs with a Submodular Objective

Now we consider the case when G = (V, E) is a k-perfectly orientable graph. Let
H = (V, A) be an orientation of G. For a given v œ V we let N+

H(v) = {u œ V | (v, u) œ A}
denote the out-neighbors of v in H. We can write a simple polyhedral relaxation for
independent sets in G where we have a variable xv for each v œ V as follows:

xv +
ÿ

uœN+
H

(v)

xu Æ k for all v œ V

xv œ [0, 1] for all v œ V

To avoid notational overhead we will use QG to refer to the preceding relaxation for a
k-perfectly orientable graph G. In [34] a stronger relaxation than the preceding relaxation is
used to obtain a 1

2k -approximation for MWIS. It is not hard to see, however, that the proof
in [34] can be applied to the simpler relaxation above.

We will only consider k-perfectly orientable graphs in the rest of this section since the CR
scheme applies for this more general class and we do not have a better scheme for inductively
k-independent graphs. We consider two simple CR schemes for Q. The first is an oblivious
deterministic one. Given a set R it outputs S where S = {v œ R | N+

H (v) fl R = ÿ}. In other
words it discards from R any vertex v which has an out-neighbor in R. We claim that S is
an independent set. To see this suppose uv œ E(G). In H, uv is oriented as (u, v) or (v, u).
Thus, both u and v cannot be in S even if they are both are picked in R. It is also easy to
see that the scheme is monotone.

We now describe a randomized non-oblivious scheme which yields slightly better constants
and is essentially the same as the one from [24] where interval graphs were considered (a
special case of k = 1). This scheme works as follows. Given R and x it creates a subsample
RÕ ™ R by sampling each v œ R independently with probability (1 ≠ e≠xv )/xv (Note that
1 ≠ e≠y Æ y for all y œ [0, 1].). Equivalently RÕ is obtained from x by sampling each v with
probability 1 ≠ e≠xv . It then applies the preceding deterministic scheme to RÕ. Note that
this scheme is randomized and non-oblivious since it uses x in the sub-sampling step. It is
also easy to see that it is monotone.

We analyze the two schemes.

I Theorem 13. For each b œ [0, 1] there is a deterministic, oblivious, monotone (b/k, 1 ≠ b)
CR scheme for Q. There is a randomized monotone (b/k, e≠b) CR scheme for Q.

Proof. Let x œ b
k Q and Let R be a random set obtained by picking each v œ V independently

with probability xv. We first analyze the deterministic CR scheme. Fix a vertex v œ
support(x) and condition on v œ R. The vertex v is included in the final output i�
N+

H (v) fl R = ÿ. Since x œ b
k Q we have

q
uœN+(v)

xu Æ b ≠ xv Æ b.

P[v œ S | v œ R] = P[N+(v) fl R = ÿ] =
Ÿ

uœN+(v)

(1 ≠ xu) Ø 1 ≠
ÿ

uœN+(v)

xu Ø 1 ≠ b.

This shows that the scheme is a (b/k, 1 ≠ b) CR scheme.
Now we analyze the randomized scheme which follows [24]. Consider v œ R(x). We see

that v œ S conditioned on v œ R, if v œ RÕ and RÕ fl N+(v) = ÿ. Since the vertices are picked
independently,

P[v œ S | v œ R] = P[v œ RÕ | v œ R] · P[N+(v) fl RÕ = ÿ] = (1 ≠ e≠xv )
xv

Ÿ

uœN+(v)

e≠xu

Ø (1 ≠ e≠xv )
xv

e≠(b≠xv) Ø (exv ≠ 1)
xv

e≠b Ø e≠b.

This finishes the proof. J
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One can apply the preceding CR schemes for QG along with the known framework via the
multilinear relaxation to approximate maxSœI f(S). Let OPT be the value of an optimum
solution. For monotone functions the Continuous Greedy algorithm [14] can be used to find
a point x œ b

k Q such that F (x) Ø (1 ≠ e≠b/k) OPT. When combined with the (b/k, 1 ≠ b)
CR scheme this yields a (1 ≠ e≠b/k)(1 ≠ b)-approximation. The randomized CR scheme
yields a (1 ≠ e≠b/k)e≠b-approximation; this bound is maximized when b = k ln(1 + 1/k)
and the ratio is 1

k+1
· 1

(1+1/k)k Ø 1

e(k+1)
. For non-negative functions one can use Measured

Continuous Greedy [26, 24] to obtain x œ b
k Q such that F (x) Ø b

k e≠b/k OPT. Combined
with the CR scheme this yields a ( b

k e≠b(1+/k))-approximation. Setting b = k/(k + 1) yields a
1

e(k+1)
-approximation.

I Theorem 14. There is a randomized algorithm that given a k-perfectly orientable graph G
(along with its orientation) and a monotone submodular function f , outputs an independent
set SÕ such that with high probability f(SÕ) Ø ( 1

k+1
· 1

(1+1/k)k ) maxAœI f(A). For non-negative
functions there is an algorithm that outputs an independent set SÕ such that with high
probability f(SÕ) Ø 1

e(k+1)
maxAœI f(A).

E�ciency and Parallelism

Approximately solving the multilinear relaxation is typically a bottleneck. [18] develops
faster algorithms via the multiplicative-weight update (MWU) based method. We refer the
reader to [18] for concrete running times that one can obtain in terms of the number of oracle
calls to f or F . Once the relaxation is solved, rounding via the CR scheme above is simple
and e�cient. Another aspect is the design of parallel algorithms, or algorithms with low
adaptivity – we refer the reader to [4] for the motivation and set up. Via results in [20, 23],
and the CR scheme above, we can obtain algorithms with adaptivity O( log

2 n
‘2 ) while only

losing a (1 ≠ ‘)-factor in the approximation compared to the sequential approximation ratios.
We defer details.

4 Primal-Dual Approach for Inductively k-Independent Graphs

We now consider a primal-dual algorithm. This is inspired by previous algorithms for MWIS
in inductively k-independent graphs, and the work of Levin and Wajc [35] who considered a
primal-dual based semi-streaming algorithm for submodular function maximization under
matching constraints.

The stack based algorithm in [40] for MWIS is essentially a primal-dual algorithm. It is
instructive to explicitly consider the LP relaxation and the analysis for MWIS before seeing
the algorithm and analysis for the submodular setting. An interested reader can find this
exposition in the full version.

Following [35] we consider an LP relaxation based on the concave closure of f . For indepen-
dent sets in an inductively k-independent graph, we consider the relaxation maxxœQG

f+(x).
We write this as an explicit LP and describe its dual. See Fig 1. The primal has a variable xi

for each vi œ V as we saw in the relaxation for MWIS. In addition to these variables, we have
variables –L, L ™ V to model the objective f+(x). The dual has three types of variables. µ
is for the equality constraint

q
L –L = 1, yi is corresponds to the primal packing constraint

for xi coming from the independence constraint, and zi is for the equality constraint coming
from modeling f+(x).

APPROX/RANDOM 2023



24:10 Independent Sets in Elimination Graphs with a Submodular Objective

max
ÿ

S™V

–Lf(L)

ÿ

L™V

–L = 1

ÿ

L–vi

–L = xi i œ [n]

xi +
ÿ

vjœAi

xj Æ k i œ [n]

xi Ø 0 i œ [n]

min µ + k
nÿ

i=1

yi

µ +
ÿ

viœL

zi Ø f(L) L ™ V

yi +
ÿ

vjœBi

yj Ø zi i œ [n]

yi Ø 0 i œ [n]

Figure 1 Primal and Dual LPs via the concave closure relaxation for an inductively k-independent
graph G = (V, E) with a given ordering {v1, v2, . . . , vn}.

4.1 Algorithm for monotone submodular functions

We describe a deterministic primal-dual algorithm for the monotone case. The algorithm
and analysis are inspired by [35] and we note that the algorithm has some similarities to the
preemptive greedy algorithm. The primal-dual algorithm takes a two phase approach similar
to algorithm for the modular case. In the first phase it processes the vertices in the given
order and creates a set S ™ V . In the second phase it process the vertices in the reverse order
of insertion and creates a maximal independent set. Unlike the modular case, the decision to
add a vertex vi to S in the first phase is based on an inflation factor (1 + —). The formal
algorithm is described in Fig 2. The algorithm creates a feasible dual as it goes along – the
variables y, z, µ are from the dual LP. It also maintains and uses auxiliary weight variables
wi, 1 Æ i Æ n that will be useful in the analysis.

primal-dual-monotone-submod(f : 2V æ RØ0,k œ N,— œ R>0).
1. Initialize an empty stack S. Let V = {v1, . . . , vn} be a k-independence ordering of V.

Set w, z, y Ω 0n.
2. For i = 1, . . . , n:

A. Let Ci = N(vi) fl S = {u œ S : uvi œ E}
B. If (fS(vi) > (1 + —)

q
vjœCi

wj) then
1. Call S.push(vi) and set xi Ω 1.
2. Set wi Ω fS(vi) ≠

q
vjœCi

wj and yi Ω (1 + —)wi.
C. Otherwise set zi Ω fS(vi)

3. Let µ Ω f(S) and Ŝ Ω ÿ
4. While S is not empty:

A. v Ω S.pop()
B. If Ŝ + vi is independent in G then set Ŝ Ω Ŝ + vi.

5. Return Ŝ

Figure 2 Primal-dual algorithm for monotone submodular maximization. The algorithm creates
a feasible dual solution in the first phase along with a set Send. In the second phase it processes
Send in reverse order of insertion and creates a maximal independent set.
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Let Send be the set of vertices in the stack S at the end of the first phase. S is a
monotonically increasing set during the algorithm. Note that µ = f(Send) at the end of the
algorithm. We observe that for each i, the algorithm sets the variables wi, yi, zi exactly once
when vi is processed, and does not alter the values after they are set.

I Lemma 15. The algorithm primal-dual-monotone-submod creates a feasible dual solution
µ, ȳ, z̄ when f is monotone.

Proof. We observe that zi = 0 if vi œ Send and zi = ‹
!
f, S≠

vi
, vi

"
otherwise. By submodularity

it follows that if vi ”œ Send, zi Ø fSend(vi) since S≠
vi

™ Send.
Consider the first set of constraints in the dual of the form µ +

q
viœL zi Ø f(L) for

L ™ V . We have

µ +
ÿ

viœL

zi Ø f(Send) +
ÿ

viœL\Send

fSend(vi) Ø f(Send fi L) Ø f(L).

We used submodularity in the second inequality and monotonicity of f in the last inequality.
Now consider the second set of constraints in the dual of the form yi +

q
vjœBi

yj Ø zi for
each i. If vi œ Send then zi = 0 and the constraint is trivially satisfied since the y variables
are non-negative. Assume vi ”œ Send. The algorithm did not add vi to S because

zi = ‹
!
f, S≠

vi
, vi

"
Æ (1 + —)

ÿ

vjœCi

wj =
ÿ

vjœCi

yj

which implies that the constraint for vi is satisfied. J

Feasibility of the dual solution implies an upper bound on the optimal value.

I Corollary 16. OPT Æ f(Send) + k(1 + —)
qn

i=1
wi.

We now lower bound the value of f(Ŝ).

I Lemma 17. f(Ŝ) Ø
qn

i=1
wi.

Proof. A vertex vi is added to Send since ‹
!
f, S≠

vi
, vi

"
> (1 + —)

q
vjœCi

wj . Moreover, we
have wi +

q
vjœCi

wj = ‹
!
f, S≠

vi
, vi

"
via the algorithm. Therefore,

f(Ŝ) =
ÿ

viœŜ

‹
1

f, Ŝ, vi

2
Ø

ÿ

viœŜ

‹
!
f, S≠

vi
, vi

"
=

ÿ

viœŜ

(wi +
ÿ

jœCi

wj).

We see that for every iÕ such that viÕ œ Send the term wiÕ appears at least once in
q

viœŜ(wi +
q

jœCi
wj); either viÕ œ Ŝ or if it is not then it was removed in the second phase since viÕ œ Ci

for some vi œ Ŝ. In the latter case wiÕ appears in the
q

jœCi
wj . Thus f(Ŝ) Ø

qn
i=1

wi

(recall that wi = 0 if vi ”œ Send). J

We now upper bound f(Send) via the weights.

I Lemma 18. f(Send) Æ 1+—
—

qn
i=1

wi.

Proof. Let vi œ Send. Recall that ‹
!
f, S≠

vi
, vi

"
Ø (1 + —)

q
jœCi

wj and wi = ‹
!
f, S≠

vi
, vi

"
≠

q
jœCi

wj . This implies that wi Ø —
1+— ‹

!
f, S≠

vi
, vi

"
. Therefore

f(Send) =
ÿ

viœSend

‹(f, Send, vi) =
ÿ

viœSend

‹
!
f, S≠

vi
, vi

"
Æ 1 + —

—

ÿ

viœSend

wi,

as desired. J
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I Theorem 19. OPT Æ (1 + —)(1/— + k)f(Ŝ). In particular, for — = 1Ô
k
, OPT Æ (k + 1 +

2
Ô

k)f(Ŝ).

Proof. From Corollary 16 and Lemma 18 and Lemma 17,

OPT Æ f(Send) + k(1 + —)
nÿ

i=1

wi Æ 1 + —

—

nÿ

i=1

wi + k(1 + —)
nÿ

i=1

wi

Æ (1 + —)( 1
—

+ k)
nÿ

i=1

wi Æ (1 + —)( 1
—

+ k)f(Ŝ),

as desired. J

I Remark 20. For k = 1 we obtain a 1/4-approximation which yields a deterministic 1/4-
approximation for chordal graphs and interval graphs. For k = 2 we obtain a bound of
3 + 2

Ô
2 which is the same as what [35] obtain for matchings. Note that matchings can be

interpreted, via the line graph, as inductive 2-independent and in fact any ordering of the
edges is an inductive 2-independent order. This explains why the ordering does not matter.
[35] use a di�erent LP relaxation for matchings, and hence it is a bit surprising that we
obtain the same bound for all 2-independent graphs. For the non-monotone case we obtain a
weaker bound for 2-independent graphs than what [35] obtain for matchings.

4.2 Non-monotone submodular maximization

We now consider the case of non-negative submodular function which may not be necessarily
monotone. This class of functions requires some additional technical care and a key lemma
that is useful in handling non-monotone function is the following.

I Lemma 21 ([8]). Let f : 2V æ R+ be a non-negative submodular function. Fix a set
T ™ V . Let S be a random subset of V such that for any v œ V the probability of v œ S is at
most p for some p < 1. Then E[f(S fi T )] Ø (1 ≠ p)f(T ).

We describe a randomized primal-dual algorithm which is adapted from the one form [35].
It di�ers from the monotone algorithm in one simple but crucial way; even when a vertex v
has good value compared to its conflict set it adds it to the stack only with probability p
which is a parameter that is chosen later.

As in the monotone case let Send be the set of vertices in the stack at the end of the
first phase (note that Send is now a random set). The analysis of the randomized version
of the algorithm is technically more involved. The sets Send, Ŝ and the dual variables are
now random variables. Since very high-value vertices can be discarded probabilistically, the
dual values constructed by the algorithm may not satisfy the dual constraints for each run of
the algorithm. Levin and Wajc [35] analyze their algorithm for matchings via an “expected”
dual solution. We do a more direct analysis via weak duality.

The following two lemmas are essentially the same as in the monotone case and they
relate the expected value of Ŝ and Send to the dual weight values.

I Lemma 22. For each run of the algorithm: f(Ŝ) Ø
qn

i=1
wi and hence E

Ë
f(Ŝ)

È
Ø

qn
i=1

E[wi].

I Lemma 23. For each run of the algorithm, f(Send) Æ 1+—
—

qn
i=1

wi and hence

E[f(Send)] Æ 1 + —

—

nÿ

i=1

E[wi].
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primal-dual-nonneg-submod(f : 2V æ RØ0,k œ N,— œ R>0).

1. Initialize an empty stack S. Let V = {v1, . . . , vn} be a k-independence ordering of V.
Let w, y, z = 0n.

2. For i = 1, . . . , n:
A. Let Ci = N(vi) fl S = {u œ S : uvi œ E}
B. If (fS(vi) > (1 + —)

q
vjœCi

wj), then with probability p:
1. Call S.push(vi) and xi Ω 1
2. Set wi Ω fS(vi) ≠

q
vjœCi

wj and yi Ω (1 + —)wi

C. Otherwise set zi Ω fS(vi).
3. Set µ Ω f(S) and Ŝ Ω ÿ
4. While S is not empty:

A. v Ω S.pop().
B. If Ŝ + vi is independent in G then set Ŝ Ω Ŝ + vi

5. Return Ŝ

Figure 3 Randomized primal-dual algorithm for non-negative submodular maximization.

The next two lemmas provide a way to upper bound the optimum value via the expected
dual objective value.

I Lemma 24. For each vertex vi, let 1vi /œSend indicate if vi is excluded from Send. Let
BÕ

i = Bi + vi. Then

E[f(vi | Si)1vi /œSend ] Æ max
;

1 ≠ p

p
, 1 + —

<
E[w(BÕ

i fl Send)].

Proof. Let Ei be the event that f(vi | Si) > (1 + —)w(Bi fl Si). Condition on Ēi, that is Ei

not occurring, in which case vi is not added to the stack. In this case we have

E
#
w(Bi)

-- Ēi

$
= E

#
w(BÕ

i fl Send)
-- Ēi

$
Ø 1

1 + —
E

#
f(vi | Si)

-- Ēi

$

= 1
1 + —

E
#
f(vi | Si)1vi /œSend

-- Ēi

$

On the other hand, condition on Ei, we have

E[w(BÕ
i fl Send) | Ei]

(a)
Ø p E[f(vi | Si) | Ei]

(b)= p

1 ≠ p
E[f(vi | Si)1vi /œSend | Ei].

(a) is because with probability p, we add v to the stack, in which case w(BÕ
i flSend) Ø f(vi | Si).

(b) is because conditional on Ei and f(vi | Si), vi /œ Send with probability 1 ≠ p. We combine
the two bounds by taking conditional expectations, as follows:

E
#
f(vi | Si)1vi /œSend

$
= E

#
f(vi | Si)1vi /œSend

-- Ei

$
P[Ei] + E

#
f(vi | Si)1vi /œSend

-- Ēi

$
P

#
Ēi

$

Æ 1 ≠ p
p

E
#
w(BÕ

i fl Send)
-- Ei

$
P[Ei] + (1 + —) E

#
w(BÕ

i fl Send)
-- Ēi

$
P

#
Ēi

$

Æ max
;

1 ≠ p
p

, 1 + —

<!
E

#
w(BÕ

i fl Send)
$

P[Ei] + E
#
w(BÕ

i fl Send)
$

P
#
Ēi

$"

= max
;

1 ≠ p
p

, 1 + —

<
E

#
w(BÕ

i fl Send)
$
,

as desired. J
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I Lemma 25. For any set T , E[f(Send fi T )] Æ E[f(S)] + k max
Ó

1≠p
p , 1 + —

Ô
E[w(Send)].

Proof. We have

E[f(T fi Send) ≠ f(Send)]
(c)
Æ E

S

U
ÿ

viœT \Send

f(vi | Send)

T

V (d)
Æ E

S

U
ÿ

viœT \Send

f(vi | Si)

T

V

=
ÿ

viœT

E[f(vi | Si)1vi /œSend ]

(e)
Æ max

;
1 ≠ p

p
, 1 + —

< ÿ

viœT

E[w(BÕ
i fl Send)]

(f)
Æ max

;
1 ≠ p

p
, 1 + —

<
k E[w(Send)],

as desired up to rearrangement of terms. Here (c,d) is by submodularity. (e) is by the
Lemma 24. (f) is by k-inductive independence. J

We now put the lemmas together to relate E

Ë
f(Ŝ)

È
to the optimum.

I Lemma 26. Let T ú be an optimum independent set with OPT = f(T ú). Then

OPT Æ
k max

Ó
1≠p

p , 1 + —
Ô

+
1

1+—
—

2

1 ≠ p
E

Ë
f

1
Ŝ

2È
.

Proof. Let T be any independent set, in particular T ú. We observe that the algorithm
ensures that for any vertex v, P[v œ Send] Æ p and hence P

Ë
v œ Ŝ

È
Æ p.

(1 ≠ p)f(T ) Æ E[f(T fi Send)] (Lemma 21)

Æ E[f(S)] + k max
;

1 ≠ p

p
, 1 + —

<
E[w(Send)] (Lemma 25)

Æ
3

k max
;

1 ≠ p

p
, 1 + —

<
+

3
1 + —

—

44
E[w(Send)] (Lemma 23)

Æ
3

k max
;

1 ≠ p

p
, 1 + —

<
+

3
1 + —

—

44
E

Ë
f

1
Ŝ

2È
(Lemma 22). J

It remains to choose p œ [0, 1] and — > 0 to minimize the RHS. Consider the term
max{(1 ≠ p)/p, 1 + —}. If (1 ≠ p)/p Ø 1 + —, then p Ø 1/2 (to force (1 ≠ p)/p Ø 1), and the
RHS is minimized by taking — as large as possible – that is, such that 1 + — = (1 ≠ p)/p. If
(1 ≠ p)/p Æ 1 + —, then the RHS is minimized by taking p as small as possible – that is, such
that (1 ≠ p)/p = 1/p ≠ 1 = 1 + —. Thus (1 ≠ p)/p = 1 + — at the optimum. In terms of just
p, then, we have

OPT Æ
3

1
1 ≠ p

43
k(1 ≠ p)

p
+ 1 ≠ p

1 ≠ 2p

4
E

Ë
f

1
Ŝ

2È
=

3
k

p
+ 1

1 ≠ 2p

4
E

Ë
f

1
Ŝ

2È
.

(Here we note that — = (1 ≠ 2p)/p, hence (1 + —)/— = (1 ≠ p)/(1 ≠ 2p).)
In the special case of k = 2, as in matching, the RHS is

OPT Æ
3

2
p

+ 1
1 ≠ 2p

4
E

Ë
f

1
Ŝ

2È
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The RHS is minimized by p = 1/3, giving an approximation factor of 9.
For general k, the minimum is 2k +

Ô
8k + 1.

It is easy to see that the primal-dual algorithm makes O(n) evaluation calls to f and the
overall running time is linear in the size of the graph. The results for the monotone and
non-negative functions, together yield Theorem 6.

5 Concluding Remarks and Open Problems

We described �( 1

k )-approximation algorithms for independent sets in two parameterized
families of graphs that capture several problems of interest. Although the multilinear relax-
ation based framework yields such algorithms, the resulting algorithms are computationally
expensive and randomized. We utilized ideas from streaming and primal-dual based algo-
rithms to give simple and fast algorithms for inductively k-independent graphs with the
additional property that they are deterministic for monotone functions. Our work raises
several interesting questions that we summarize below.

The CR scheme that we described in Section 3 is unable to distinguish k-perfectly
orientable graphs and inductive k-independent graphs. Is a better bound possible for
inductively k-independent graphs?
Our combinatorial algorithms only apply to inductively k-independent graphs. Can we
obtain combinatorial algorithms for k-perfectly orientable graphs? Even for MIS the only
approach appears to be via primal rounding of the LP solution [34].
Can we obtain deterministic �( 1

k )-approximation algorithms for these graph classes when
f is non-negative? Interval graphs seem to be a natural first step to consider.
Are better approximation ratios achievable? For instance, can we obtain better than
1/4-approximation for monotone submodular function maximization in interval graphs?
Can we prove better lower bounds under complexity theory assumptions or in the oracle
model for interval graphs or other concrete special cases of interest?
For both classes of graphs our algorithms are based on having an ordering that certifies
that they belong to the class. For MWIS in k-simplicial and k-perfectly orientable graphs,
[30] describes algorithms based on the Lovász number of a graph and the Lovász ◊-function
of a graph, and these algorithms do not require an ordering. It may be feasible to extend
their approach to the submodular setting via the multilinear relaxation. However, the
resulting algorithms are computationally quite expensive. It would be interesting to
obtain fast algorithms for these classes of graphs (or interesting special cases) when the
ordering is not explicitly given.
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A A Preemptive Greedy Algorithm

We now describe a preemptive greedy algorithm for maximizing a monotone submodular
function f : 2V æ R+ over independent sets of a inductively k-independent graph G = (V, E)
assuming that we are also given the ordering. The algorithm is simple and intuitive, and is
inspired by algorithms developed in the streaming model.
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The pseudocode for the algorithm is given in Figure 4, and is designed as follows. Starting
from an empty solution S = ÿ, preemptive-greedy processes the vertices in the given
ordering one by one. When considering vi, the algorithm gathers the subset Ci ™ S of
all vertices in the current set S that are neighbors of vi (those that conflict with vi). The
algorithm has to decide whether to reject vi or to accept vi in which case it has to remove
Ci from S. It accepts vi if the marginal gain fS(vi)

def= f(S + vi) ≠ f(S) of adding vi directly
to S is at least (1 + —) times the value

q
uœCi

fS\Ci
(u). Here — > 0 is a parameter that is

fixed based on the analysis. After processing all vertices, we return the final set S.

preemptive-greedy(G = (V, E),f : 2V æ RØ0,k œ N,— œ R>0).

1. Let S = ÿ. Let V = {v1, . . . , vn} by a k-independence ordering of V
2. For i = 1, . . . , n:

A. Let Ci = N(vi) fl S = {u œ S : uvi œ E}
B. If fS(vi) Ø (1 + —)

q
uœCi

‹(f, S, u)
1. Set S Ω (S \ Ci) + vi

3. Return S

Figure 4 The algorithm preemptive-greedy for finding an independent set in a inductively
k-independent graph to maximize a monotone submodular objective function.

preemptive-greedy for inductively k-independent graphs has the following approximation
bound. The proof is deferred to the subsection following the theorem statements.

I Theorem 27. Given an inductively k-independent graph with a k-inductive ordering, the
algorithm preemptive-greedy returns an independent set Ŝ such that for any independent
set T , f(T ) Æ (k(1 + —) + 1)(1 + —≠1)f(Ŝ).

preemptive-greedy can be extended to nonnegative (and non-monotone) submodular
functions with a constant factor loss in approximation by random sampling. As a preprocessing
step, we let V Õ randomly sample each vertex in V independently with probability 1/2. We
then apply preemptive-greedy to the subgraph GÕ = G[V Õ] induced by V Õ. It is easy to see
that any subgraph of an inductively k-independent graph is also inductively k-independent.
The net e�ect of the random sampling is an approximation factor for nonnegative submodular
functions that is a factor 4 worse than for the monotone case. The modified algorithm, called
randomized-preemptive-greedy, is given in Figure 5.

I Theorem 28. Given an inductively k-independent graph with a k-inductive ordering, the
algorithm randomized-preemptive-greedy returns an independent set Ŝ such that for any
independent set T , f(T ) Æ 4(k(1 + —) + 1)(1 + —≠1)f(Ŝ).

randomized-preemptive-greedy(G = (V, E),f : 2V æ RØ0,k œ N,— œ R>0).

1. Let V Õ ™ V sample each v œ V independently with probability 1/2
2. Let GÕ = G[V Õ] be the subgraph of G induced by V Õ

3. Return preemptive-greedy(GÕ,f : 2VÕ æ RØ0,k œ N,— œ R>0).

Figure 5 The algorithm randomized-preemptive-greedy for finding an independent set in an
inductively k-independent graph to maximize a nonnegative submodular objective function.
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I Remark 29. The randomized strategy we outline is simple and oblivious. It loses a factor
of 4 over the monotone case. One could try to improve the approximation ratio by using
randomization within the algorithm which would make the analysis more involved. However,
we have not done this since the primal-dual algorithm yields better approximation bounds.
This subsampling strategy is not new and has been used previously in [25], and is also implicit
in [17].

The rest of the section is devoted to proving the claimed approximation guarantees.

A.1 Analysis of preemptive greedy

We follow the notation of [17]. Let Ŝ be the final set of vertices returned by preemptive-
greedy. It is easy to see that the algorithm returns an independent set. For each u œ V let
S≠

u denote the set of vertices in S just before u is processed, and let S+
u denote the set after

u is processed. Thus a vertex u is added to S i� S+
u \ S≠

u = {u}. Let U =
t

uœV S+
u be the

set of all vertices that were ever (even momentarily) added to S. Alternatively, V \ U is the
set of vertices that are discarded by the algorithm when it considers them. For each vertex
u, let ”u

def= f(S+
u ) ≠ f(S≠

u ) be the value added to S from processing u. We have ”u = 0 for
all u /œ U , and f(Ŝ) =

q
uœV ”u =

q
uœU ”u.

Let T ™ V be an independent set in the given graph, in particular an optimum set. We
would like to compare f(Ŝ) with f(T ). Directly comparing T with Ŝ is di�cult since Ŝ is
obtained by deleting vertices in S along the way; thus a vertex v œ T \ Ŝ may have been
discarded due to a vertex u œ S when v was considered but u may not be in Ŝ. Thus, the
analysis is broken into two parts that detour through U . First, we relate the value of f(Ŝ) to
the value of f(U). This part of the analysis bounds the amount of value lost by kicking out
vertices from S during the exchanges. We then relate f(U) and f(T ); this is easier because
any vertex in T is always compared against some subset of vertices in U . Chaining the
inequalities from f(Ŝ) to f(U) to f(T ) gives the final approximation ratio.

Relating f(Ŝ) to f(U)

The analysis is similar to that in [17]. We provide proofs for the sake of completeness. The
following claim is easy to see since elements before s can only be deleted from S as the
algorithm proceeds.

B Claim 30. Over the course of the algorithm, the incremental value ‹(f, S, s) of an element
s œ S is nondecreasing.

For a vertex u œ U \ Ŝ we let uÕ denote the vertex that caused u to be removed
from S. And we let ‰(u) denote its incremental value just before it is removed. Therefore,
‰(u) = ‹

!
f, S≠

uÕ , u
"
.

I Lemma 31. Let u œ U then ”u Ø —
q

cœCu
‹(f, S≠

u , c).

Proof. Since the vertex u was added to S when it was considered, we have ”u =
f(S+

u ) ≠ f(S≠
u ) where S+

u = S≠
u ≠ Cu + u. The vertex u was added by the algorithm

since fS(u) Ø (1 + —)
q

cœCu
‹(f, S, c) where S = S≠

u . Therefore —
q

cœCu
‹(f, S≠

u , c) Æ
fS≠

u

(u)≠
q

cœCu
‹(f, S≠

u , c). It su�ces to prove that f(S+
u )≠f(S≠

u ) Ø fS(u)≠
q

cœCu
‹(f, S, c)

which we do below. For notational convenience let A = S≠
u ≠ Cu.
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f(S+

u ) ≠ f(S≠
u ) = f(A + u) ≠ f(S≠

u )
= fA(u) + f(A) ≠ f(S≠

u )
Ø fS≠

u

(u) ≠ (f(S≠
u ) ≠ f(A)) by submodularity since A ™ S≠

u

Ø fS≠
u

(u) ≠
ÿ

cœCu

‹
!
f, S≠

u , c
"

by submodularity and defn of ‹. J

I Lemma 32.
q

uœU\Ŝ ‰(u) Æ —≠1f(Ŝ).

Proof. Indeed,
ÿ

uœU\Ŝ

‰(u) =
ÿ

uœU

ÿ

cœCu

‰(c) since {Cu : u œ U} partitions U \ Ŝ

Æ
ÿ

uœU

1
—

ÿ

uœU

”u from Lemma 31

= 1
—

f(Ŝ). J

The next lemma shows that f(U) is not much larger than f(Ŝ).

I Lemma 33. f(U) Æ
!
1 + —≠1

"
f(Ŝ).

Proof. Let U Õ = U \ Ŝ and let U Õ = {vi1 , . . . , vih
} where i1 < i2 . . . < ih. We have

f(U) = f(Ŝ) + fŜ(U Õ). It su�ces to upper bound fŜ(U Õ) by f(Ŝ)/—. For 1 Æ j Æ h let U Õ
j =

{vi1 , . . . , vij
}. We have fŜ(U Õ) =

qh
j=1

fŜfiU Õ
j≠1

(vij
). We claim that fŜfiU Õ

j≠1
(vij

) Æ ‰
!
vij

"
.

This follows by submodularity and the fact that Ŝ fi U Õ
j≠1

is a superset of the vertices that
are in S when vij

is deleted. Putting things together,

fŜ(U Õ) =
hÿ

j=1

fŜfiU Õ
j≠1

(vij
) Æ

ÿ

uœU Õ

‰(u) Æ 1
—

f(Ŝ)

where the last inequality follows from Lemma 32. J

Relating OPT to f(U)

It remains to bound f(T ) (for some competing set T ) to f(U) and hence to f(Ŝ). The
critical question, addressed in the following lemmas, is how to charge the value of elements
in T o� to elements in U .

I Lemma 34. Let T ™ V be an independent set disjoint from U . Each element u œ U
appears in the conflict list Ct for at most k vertices t œ T .

Proof. Fix u œ U . The set T fl N(u) fl {v : v > u} consists of precisely the vertices t œ T for
which u œ Ct. As a subset of T , this set is certainly independent. By definition of k-inductive
independence, the cardinality of this set is at most k. J

I Lemma 35. Let T ™ V be an independent set. Then

fU (T ) Æ k(1 + —)(1 + —≠1)f(Ŝ).
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Proof. Since fU (T ) = fU (T \ U), it su�ces to assume that T is disjoint from U . For each
vertex t œ T , since t is not in U , we have fS≠

t

(t) Æ (1 + —)
q

cœCt
‹
!
f, S≠

t , c
"
. Fix a vertex

u œ Ct. If u œ Ŝ, then u is in the final output; then we have ‹
!
f, S≠

t , u
"

Æ ‹
1

f, Ŝ, u
2

because
the incremental value of an element in S is nondecreasing. If u /œ Ŝ, and u was deleted
to make room for some later element uÕ, then we have ‹

!
f, S≠

t , u
"

Æ ‰(u) again because
incremental values are nondecreasing.

By the preceding lemma, each element u œ U appears in Ct for at most k choices of t.
Therefore, in sum, we have

fU (T ) Æ
ÿ

tœT

fS≠
t

(t) by submodularity,

Æ (1 + —)
ÿ

tœT

ÿ

cœCt

‹
!
f, S≠

t , c
"

since t /œ U,

Æ k(1 + —)

Q

a
ÿ

uœŜ

‹
1

f, Ŝ, u
2

+
ÿ

uœU\Ŝ

‰(u)

R

b Lemma 34 and argument above,

Æ k(1 + —)

Q

af(Ŝ) +
ÿ

uœU\Ŝ

‰(u)

R

b

Æ k(1 + —)(1 + —≠1)f(Ŝ) by Lemma 32

as desired. J

From here, it is relatively straightforward to get a final approximation bound.

I Theorem 36. Given an inductively k-independent graph with a k-inductive ordering, the
algorithm preemptive-greedy returns an independent set Ŝ such that for any independent
set T ,

f(T ) Æ (k(1 + —) + 1)(1 + —≠1)f(Ŝ).

Proof. Let T be an optimal solution. We have

f(T ) Æ fU (T ) + f(U) Æ (k(1 + —) + 1)(1 + —≠1)f(Ŝ) (1)

via Lemma 35 and Lemma 33. J

The bound is minimized by taking — =
Ô

1 + k≠1, which at which point

f(T ) Æ (4k + 2 + o(1))f(Ŝ),

where the o(1) goes to 0 as k increases. For k = 1, the approximation ratio is 3 + 2
Ô

2.

A.2 Randomized preemptive greedy for nonnegative functions

Here we analyze the randomized-preemptive-greedy for non-negative submodular functions
that may not be monotone. A key observation is that the analysis of preemptive-greedy
does not invoke the monotonicity of f until the very end, in equation (1). In particular,
Lemma 35 and Lemma 33 hold for nonnegative submodular functions.
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(1) invokes monotonicity when it takes the inequality f(U fi T ) Ø f(T ). Informally
speaking, by injecting randomization, we will be able recover a similar inequality, except
losing a factor of 4.

Fix a set T . Let V Õ sample each element in V with probability 1/2. Let T Õ = T fl V Õ.
Conditional on V Õ, we have

f(U) Æ
!
1 + —≠1

"
f

1
Ŝ

2

and

fU (T Õ) Æ k(1 + —)(1 + —)≠1f
1

Ŝ
2

via Lemma 33 and Lemma 35 respectively.
Now, conditional on T Õ, U \ T = U \ T Õ is a randomized set, where any vertex v œ V

appears in U \ T with probability at most 1/2. By Lemma 21,

E[f(U fi T Õ) | T Õ] Ø 1
2f(T Õ).

We also have, via the concavity of F along any non-negative direction [39],

E[f(T Õ)] = F (1
21T ) Ø 1

2F (1T ) = 1
2f(T )

where 1T is the indicator vector of T .
Altogether, we have

f(T ) Æ 2 E[f(T Õ)] Æ 4 E[f(U fi T Õ)]

= 4 E[fU (T Õ) + f(U)] Æ 4(k(1 + —) + 1)(1 + —)≠1
E

Ë
f

1
Ŝ

2È
,

as desired.
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