
Convergence to Lexicographically Optimal Base in
a (Contra)Polymatroid and Applications to
Densest Subgraph and Tree Packing
Elfarouk Harb �

University of Illinois at Urbana Champaign, IL, USA

Kent Quanrud �

Purdue University, West Lafayette, IN, USA

Chandra Chekuri �

University of Illinois at Urbana Champaign, IL, USA

Abstract
Boob et al. [7] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph
Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and
Torres [10] extended the algorithm to supermodular density problems (of which DSG is a special
case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++)
converges. In this paper we revisit the convergence proof and provide a di�erent perspective. This
is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal
base in a (contra) polymatroid [18], and a noisy version of the Frank-Wolfe method from convex
optimization [17, 25]. This yields a simpler convergence proof, and also shows a stronger property
that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question
raised in Harb et al. [24]. A second contribution of the paper is to understand Thorup’s work on
ideal tree packing and greedy tree packing [46, 47] via the Frank-Wolfe algorithm applied to find a
lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof.
The two results appear disparate but are unified via Fujishige’s result and convex optimization.

2012 ACM Subject Classification Networks æ Network algorithms; Mathematics of computing æ
Graph algorithms

Keywords and phrases Polymatroid, lexicographically optimum base, densest subgraph, tree packing

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.56

Related Version Full Version: https://arxiv.org/abs/2305.02987

Funding Elfarouk Harb: Supported in part by NSF grants CCF-2028861 and CCF-1910149.
Kent Quanrud: Supported in part by NSF grant CCF-2129816.
Chandra Chekuri: Supported in part by NSF grants CCF-2028861 and CCF-1910149.

1 Introduction

In this paper we consider iterative greedy algorithms for two di�erent combinatorial optimiz-
ation problems and show that the convergence of these algorithms can be understood by
combining two general tools, one coming from the theory of submodular functions, and the
other coming from convex optimization. This yields simpler proofs via a unified perspective,
while also yielding additional properties that were previously unknown.

Densest subgraph and supermodularity. We start with the problem that motivated this
work, namely, the densest subgraph problem (DSG). The input to DSG is an undirected
graph G = (V, E) with m = |E| and n = |V |. The goal is to return a subset S ™ V that
maximizes |E(S)|

|S| where E(S) = {uv œ E : u, v œ S} is the set of edges with both end points
© Elfarouk Harb, Kent Quanrud, and Chandra Chekuri;

licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).

Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 56;

pp. 56:1–56:17

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eyfmharb@gmail.com
mailto:krq@purdue.edu
mailto:chekuri@illinois.edu
https://doi.org/10.4230/LIPIcs.ESA.2023.56
https://arxiv.org/abs/2305.02987
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Convergence to Lexicographically Optimal Base and Applications

in S. Throughout the paper, we let ⁄(G) = |E(G)|
|V (G)| denote the density of graph G(V, E). We

treat the unweighted case for simplicity; all the results generalize to edge-weighted graphs.
Goldberg [22] and Picard and Queyranne [37] showed that DSG can be e�ciently solved via
a reduction to the s-t maximum-flow problem.

A di�erent connection that shows polynomial-time solvability of DSG is important to
this paper. Consider a real-valued set function f : 2V æ R+ defined over the vertex set
V , where f(S) = |E(S)|. This function is supermodular. A function f is supermodular i�
≠f is submodular. A real-valued set function f : 2V æ R is submodular i� f(A) + f(B) Ø
f(A fi B) + f(A fl B) for all A, B ™ B. Submodular and supermodular set functions are
fundamental in combinatorial optimization – see [41, 19].

Coming back to DSG, maximizing |E(S)|/|S| is equivalent to finding the largest ⁄ such
that ⁄|S| ≠ |E(S)| Ø 0 for all S ™ V . This corresponds to minimizing the submodular set
function g where g(S) = ⁄|S| ≠ |E(S)|. A classical result in combinatorial optimization is
that the minimum of a submodular set function can be found in polynomial-time in the
value oracle setting [41]. Thus, DSG can be solved via reduction to submodular set function
minimization and binary search. The preceding connection also motivates the definition of a
generalization of DSG called the densest supermodular set problem (DSS) [10]. The input
is a non-negative supermodular function f : 2V æ Ÿ+, and the goal is to find S ™ V that
maximizes f(S)

|S| . DSS is polynomial-time solvable via submodular set function minimization.
DSG, DSS and its variants have several applications in practice, and they are routinely used
in graph and network analysis to find dense clusters or communities. We refer the reader to
the extensive literature on this topic [32, 7, 14, 48, 43, 1, 49, 16, 34, 39, 6, 27, 2, 42, 30, 28].
DSG is also of interest in algorithms via its connection to arboricity and related notions –
see [40, 13] for recent work.

Faster algorithms, Greedy and Greedy++. Although DSG is polynomial-time solvable
via maxflow or submodular function minimization, the corresponding algorithms are not
yet practical for the large graphs that arise in many applications; this is despite the fact
that we now have very fast theoretical algorithms for maxflow and mincost flow [12]. For
this reason there has been considerable interest in fast (approximation) algorithms. More
than 20 years ago Charikar [9] showed that a simple “peeling” algorithm (Greedy) yields a
1/2-approximation for DSG. An ordering of the vertices as vi1 , vi2 , . . . , vin is computed as
follows: vi1 is a vertex of minimum degree in G (ties broken arbitrarily), vi2 is a minimum
degree vertex in G ≠ vi1 and so on1. After creating the ordering, the algorithm picks the
best su�x, in terms of density, among the n-possible su�xes of the ordering. Charikar
also developed a simple exact LP relaxation for DSG. Charikar’s results have been quite
influential. Greedy can be implemented in (near)-linear time and has also been adapted
to other variants. The LP relaxation has also been used in several algorithms that yield
a (1 ≠ ‘)-approximate solution [5, 8], and has led to a flow-based (1 ≠ ‘)-approximation
[10]. More recently, Boob et al. [7] developed an algorithm called Greedy++ that is
based on combining Greedy with ideas from multiplicative weight updates (MWU); the
algorithm repeatedly applies a simple peeling algorithm with the first iteration coinciding
with Greedy but later iterations depending on a weight vector that is maintained on the
vertices – the formal algorithm is described in a later section. The advantage of the algorithm
is its simplicity, and Boob et al. [7] showed that it has good empirical performance. Moreover

1 This peeling order is the same as the one used to create the so-called core decomposition of a graph [33]
and the Greedy algorithm itself was suggested by Asahiro et al. [4].

E. Harb, K. Quanrud, and C. Chekuri 56:3

they conjectured that Greedy++ converges to a (1≠ ‘)-approximation in O(1/‘2) iterations.
Although their strong conjecture is yet unverified, Chekuri, Quanrud and Torres [10] proved
that Greedy++ converges in O(� log |V |

‘2⁄ú(G)
) iterations where � is the maximum degree of G

and ⁄ú(G) is the optimum density.
The convergence proof in [10] is non-trivial and relies crucially in considering DSS

and supermodularity. [10] shows that Greedy and Greedy++ can be generalized to
SuperGreedy and SuperGreedy++ for DSS, and that SuperGreedy++ converges
to a (1 ≠ ‘)-approximation solution in O(–f /‘2) iterations where –f depends (only) on the
function f .

Dense subgraph decomposition and connections. As we discussed, DSG is a special case
of DSS and hence DSG inherits certain nice structural properties from supermodularity.
One of these is the fact that the vertex set V of every graph G = (V, E) admits a unique
decomposition into S1, S2, . . . , Sk for some k using the following procedure: S1 is the vertex
set of the unique maximal densest subgraph, S2 is the unique maximal densest subgraph
after “contracting” S1, and so on. The existence of such a unique decomposition is more
transparent in the setting of DSS. The fact that there is a unique maximal densest set S1

follows from supermodularity; if A and B are optimum dense sets then so is A fi B. One
can then consider a new supermodular function fS1 : 2V ≠S1 æ R defined over V ≠ S1 where
fS1(A) = f(S1 fi A) ≠ f(S1) for all A ™ V ≠ S1. The new function is also supermodular.
Then S2 is the unique maximal densest set for fS1 . We iterate this process until we obtain
an empty set. The decomposition also allows us to assign a density value ⁄v to each v œ V
(which corresponds to the density of the set when v is in the maximal set). We call this the
density vector associated with f . Dense decompositions follow from the theory of principal
partitions of submodular functions [35, 36, 20]. In the context of graphs and DSG this was
rediscovered by Tatti and Gionis who called it the locally-dense decomposition [45, 44], and
gave algorithms for computing it. Subsequently, Danisch et al. [14] applied the well-known
Frank-Wolfe algorithm for constrained convex optimization to a quadratic program derived
from Charikar’s LP relaxation for DSG. More recently, Harb et al. [24] obtained faster
algorithms for computing the dense decomposition in graphs via Charikar’s LP; they used a
di�erent method called FISTA for constrained convex optimization based on acceleration.
Although DSS was not the main focus, [24] also made an important connection to Fujishige’s
result on lexicographically optimal base in polymatroids [18] which elucidated the work of
Danisch et al. on DSG. We describe this next.

Lexicographical optimal base and dense decomposition. We briefly describe Fujishige’s
result [18] and its connection to dense decompositions. Let f : 2V æ R+ be a monotone
submodular set function (f(A) Æ f(B) if A µ B) that is also normalized (f(ÿ) = 0).
Following Edmonds, the polymatroid associated with f , denote by Pf is the polyhedron
{x œ RV | x Ø 0, x(S) Æ f(S) ’S ™ V }, where x(S) =

q
iœS

xi. The base polyhedron
associated with f , denote by Bf , is the polyhedron Pf fl {x œ RV | x(V) = f(V)} obtained
by intersecting Pf with the equality constraint x(V) = f(V). Each vector x in Bf is
called a base. If f is a monotone normalized supermodular function, we consider the
contrapolymatroid Pf = {x œ RV | x Ø 0, x(S) Ø f(S) ’S ™ V } (the inequalities are
reversed), and similarly Bf is the base contrapolymatroid obtained by intersecting Pf with
equality constraint x(V) = f(V). Fujishige proved that there exists a unique lexicographically
minimal base in any polymatroid, and morover it can found by solving the quadratic program:
min

q
v

x2

v
s.t x œ Bf . In the context of supermodular functions, one obtains a similar result;

ESA 2023

56:4 Convergence to Lexicographically Optimal Base and Applications

the quadratic program min
q

v
x2

v
s.t x œ Bf where Bf is contrapolymatroid associated with

f has a unique solution. As observed explicity in [24], the lexicographically optimal base
gives the dense decomposition vector for DSS. That is, if xú is the optimal solution to the
quadratic program then for each v, xú

v
= ⁄v. In particular, as noted in [24], one can apply

the well-known Frank-Wolfe algorithm to the quadratic program and it converges to the
dense decomposition vector. As we will see later, each iteration corresponds to finding a
maximum weight base in a contrapolymatroid which is easy to find via the greedy algorithm.

(Ideal) Tree packings in graphs and the Tutte–Nash-Williams theorem. Our discussion so
far focused on DSG. Now we describe a di�erent problem on graphs and relevant background.
Our goal is to present a unified perspective on these two problems. The well-known Tutte–
Nash-Williams theorem in graph theory (see [41]) establishes a min-max result for the
maximum number of edge-disjoint spanning trees in a multi-graph G. Given an undirected
graph G = (V, E), and a partition P of the vertices, let E(P) denote the set of edges crossing
the partition. The strength of a partition P is defined as |E(P)|

|P |≠1
. Let T (G) denote all possible

spanning trees of G. Let ·ú(G) denote the maximum number of edge-disjoint spanning trees
in G. Then ·ú(G) = minP Â |E(P)|

|P |≠1
Ê. Further, if we define ·(G) to be the maximum fractional

packing of spanning trees, then the floor can be removed and we have ·(G) = minP

|E(P)|
|P |≠1

.
We note that the graph theoretic result is a special case of matroid base packing. Tree
packings are useful for a number of applications. In particular, Karger [26] used tree packings
and other ideas in his well-known near-linear randomized algorithm for computing the global
minimum cut of a graph. We are mainly concerned here with Thorup’s work in [46, 47]
that was motivated by dynamic mincut and k-cut problems. He defined the so-called ideal

edge loads and ideal tree packing (details in later section) by recursively decomposing the
graph via Tutte–Nash-Williams partitions [46]. He also proved that a simple iterative greedy
tree packing algorithm converges to the ideal loads [47]. He used the approximate ideal tree
packing to obtain new deterministic algorithms for the k-cut problem, and his approach has
been quite influential in a number of subsequent results [21, 11, 31, 29, 23]. Thorup obtained
his tree packing result from first principles. We ask: is there a connection between ideal tree
packing and DSG?

1.1 Contributions of the paper
This paper has two main contributions. The first is a new proof of the convergence of
SuperGreedy++ for DSS. Our proof is based on showing that SuperGreedy++ can
be viewed as a “noisy” or “approximate” variant of the Frank-Wolfe algorithm applied to
the quadratic program defined by Fujishige. The advantage of the new proof is twofold.
First, it shows that SuperGreedy++ not only converges to a (1 ≠ ‘)-approximation to
the densest set, but that in fact it converges to the densest decomposition vector. This was
empirically observed in [24] for DSG, and was left as an open problem to resolve. The proof
in [10] on convergence of SuperGreedy++ is based on the MWU method via LPs, and
does not exploit Fujishige’s result which is key to the stronger property that we prove here.
Second, the proof connects two powerful tools directly and at a high-level: Fujishige’s result
on submodular functions, and a standard method for constrained convex optimization.

I Theorem 1. Let bú
be the dense decomposition vector for a non-negative monotone

supermodular set function f : 2V æ R+ where |V | = n. Then, SuperGreedy++ converges

in O(–f /‘2) iterations to a vector b such that ||b ≠ bú||2 Æ ‘, where –f depends only on f .

For a graph with m edges and n vertices, Greedy++ converges in O(mn2/‘2) iterations

for unweighted multigraphs.

E. Harb, K. Quanrud, and C. Chekuri 56:5

I Remark 2. The new convergence gives a weaker bound than the one in [10] in terms of
convergence to a (1 ≠ ‘) relative approximation to the maximum density. However, it gives a
strong additive guarantee to the entire dense decomposition vector.

Our second contribution builds on our insights on DSG and DSS, and applies it towards
understanding ideal tree packing and greed tree packing. We connect the ideal tree packing
of Thorup to the dense decomposition associated with the rank function of the underlying
graphic matroid (which is submodular). We then show that greedy tree packing algorithm
can be viewed as the Frank-Wolfe algorithm applied to the quadratic program defined by
Fujishige, and this easily yields a convergence guarantee.

I Theorem 3. Let G = (V, E) be a graph. The ideal edge load vector ¸ú : E æ R+ for G
is given by the lexicographically minimal base in the polymatroid associated with the rank

function of the graphic matroid of G. The Frank-Wolfe algorithm with step size
1

k+1
, when

applied to the quadratic program for computing the lexicographically minimal base in the

graphic matroid of G, coincides with the greedy tree packing algorithm. For unweighted graphs

on m edges, the generic analysis of Frank-Wolfe method’s convergence shows that greedy

tree packing converges to a load vector ¸ : E æ R+ such that ||¸ ≠ ¸ú||2 Æ ‘ in O(m log(m/‘)

‘2)
iterations. The standard step size algorithm converges in O(m

‘2) iterations.

I Remark 4. Although the algorithm is the same (greedy tree packing), Thorup’s analysis
guarantees a strongly polynomial-bound even in the capacitated case [47]. However we obtain
a stronger additive guarantee via a generic Frank-Wolfe analysis and our analysis has a 1/‘2

dependence while Thorup’s has a 1/‘3 dependence. We give a more detailed comparison in
Section 5.

Organization. The rest of the paper is devoted to proving the two theorems. The paper
relies on tools from theory of submodular functions and an adaptation of the analysis of
Frank-Wolfe. We first describe the relevant background and then prove the two results in
separate sections. Due to space constraints, most of the proofs are provided in the full
version.

2 Background on Frank-Wolfe algorithm and a variation

Let D ™ Ÿd be a compact convex set, and f : D æ Ÿ be a convex, di�erentiable function.
Consider the problem of minxœD f(x). Frank-Wolfe [17] is a first order method and it
relies on access to a linear minimization oracle, LMO, for f that can answer LMO(w) =
arg min

sœD
Ès, Òf(w)Í for any given w œ D. In several applications such oracles with fast running

times exist. Given f, D as above, the Frank-Wolfe algorithm is an iterative algorithm that
converges to the minimizer xú œ D of f . See Algorithm 1. The algorithm starts with a guess
of the minimizer b(0) œ D. In each iteration, it finds a direction d(k+1) to move towards
by calling the linear minimization oracle on the current guess b(k). It then moves slightly
towards that direction using a convex combination to ensure that the new point is in D. The
amount the algorithm moves towards the new direction decreases as k increases signifying
the “confidence” in its current guess as the minimizer.

The original convergence analysis for the Frank-Wolfe algorithm is from [17]. Jaggi [25]
gave an elegant and simpler analysis. His analysis characterizes the convergence rate in terms
of the curvature constant Cf of the function f .

ESA 2023

https://arxiv.org/abs/2305.02987
https://arxiv.org/abs/2305.02987

56:6 Convergence to Lexicographically Optimal Base and Applications

Algorithm 1 Frank-Wolfe-Original.

1: Initialize b(0) œ D
2: for k Ω 0 to T ≠ 1 do
3: “ Ω 2

k+2

4: d(k+1) Ω arg min
sœD

(Ès, Òf(b(k))Í) Û Call oracle on b(k)

5: b(k+1) Ω (1 ≠ “)b(k) + “d(k+1)

return b(T)

I Definition 5. Let D ™ Ÿd
be a compact convex set, and f : D æ Ÿ be a convex, di�erentiable

function. The curvature constant Cf of f is defined as

Cf = sup
x,sœD,“œ[0,1],y=x+“(s≠x)

2
“2

(f(y) ≠ f(x) ≠ Èy ≠ x, Òf(x)Í).

I Definition 6. Let g : D æ Ÿ be a di�erentiable function. Then g is Lipschitz with constant

L if for all x, y œ D, Îg(x) ≠ g(y)Î
2

Æ L Îx ≠ yÎ
2
.

Let diam(D) = max
x,yœD

Îx ≠ yÎ
2

be the diameter of D. One can show that Cf Æ L·diam(D)2

where L is the Lipschitz constant of Òf .

I Theorem 7 ([25]). Let D ™ Ÿd
be a compact convex set, and f : D æ Ÿ be a convex,

di�erentiable function with minimizer bú
. Let b(k)

denote the guess on the k-th iteration of

the Frank-Wolfe algorithm. Then f(b(k)) ≠ f(bú) Æ 2Cf

k+2
.

Jaggi’s proof technique can be used to prove the convergence rate of “noisy/approximate”
variants of the Frank-Wolfe algorithm. This motivates the following definition. An ‘-
approximate linear minimization oracle is an oracle that for any w œ D, returns ŝ such
that Èŝ, Òf(w)Í Æ Èsú, Òf(w)Í + ‘, where sú = LMO(w). While an e�cient exact linear
minimization oracle exists in some applications, in others one can only ‘-approximate it
(using numerical methods or otherwise). Jaggi’s proof technique extends to show that an
approximate linear minimization oracles su�ces for convergence as long as the approximation
quality improves with the iterations. Suppose the oracle, in iteration k, provides a ”Cf

k+2
-

approximate solution where ” > 0 is some fixed constant. The convergence rate will only
deteriorate by a (1 + ”) multiplicative factor. Qualitatively, this says that we can a�ord to be
inaccurate in computing the Frank-Wolfe direction in early iterations, but the approximation
should approach LMO(b(k)) as k æ Œ.

Another question of interest is the resilience of the Frank-Wolfe algorithm to changes
in the learning rate “k = 2

k+2
. Indeed, the variants we will look at will require “k = 1

k+1
.

Jaggi’s proof can again be adapted to handle this case, with only an O(log k) multiplicative
deterioration in the convergence rate. We state the following theorem whose proof we defer
to the appendix.

I Theorem 8. Let D ™ Ÿd
be a compact convex set, and f : D æ Ÿ be a convex, di�erentiable

function with minimizer bú
. Suppose instead of computing d(k+1)

by calling LMO(b(k)) in

iteration k, we call a
”Cf

k+2
-approximate linear minimization oracle, for some fixed ” > 0. Also,

suppose instead of using “k = 2

k+2
, we use “k = 1

k+1
as a step size. Then f(b(k)) ≠ f(bú) Æ

2Cf (1+”)Hk+1
k+1

, where Hn is the n-th Harmonic term.

We refer to the variant of Frank-Wolfe algorithm, as described by Theorem 8, as noisy

Frank-Wolfe.

E. Harb, K. Quanrud, and C. Chekuri 56:7

3 Sub and supermodular functions, and dense decompositions

We already defined submodular and supermodular set functions, polymatroids and con-
trapolymatroids. We restrict attention to functions satisfying f(ÿ) = 0 which together
with supermodularity and non-negativity implies monotonocity, that is, f(A) Æ f(B) for
A ™ B. An alternative definition of submodularity is via diminishing marginal values. We
let f(v | A) = f(A fi {v}) ≠ f(A) denote the marginal value of v to A. Submodularity is
equivalent to f(v | A) Ø f(v | B) whenever A ™ B and v œ V \ B; the inequality is reversed
for supermodular set functions. We need the following simple lemma.

I Lemma 9. For a submodular function f : 2V æ Ÿ, the function g(X) = f(V) ≠ f(V \ X)
is supermodular. In particular if f is a normalized monotone submodular function then g is

a normalized monotone supermodular function.

Deletion and contraction, and non-negative summation. Sub and supermodular functions
are closed under a few simple operations. Given f : 2V æ R, restricting it to a subset
V Õ corresponds to deleting V \ V Õ. Given A µ V , contracting f to A yields the function
g : 2V \A æ R where g(X) = g(X fi A) ≠ g(A). Given two functions f and g we can take their
non-negative sum af + bg where a, b Ø 0. Monotonicity and normalization is also preserved
under these operations.

3.1 Dense decompositions for submodular and supermodular functions
Following the discussion in the introduction, we are interested in decompositions of super-
modular and submodular functions. Dense decompositions follow from the theory of principal
partitions of submodular functions that have been explored extensively. We refer the reader
to Fujishige’s survey [20] as well as Naraynan’s work [35, 36]. The standard perspective comes
from considering the minimizers of the function f⁄ for a scalar ⁄ where f⁄(S) = f(S) ≠ ⁄|S|.
As ⁄ varies from ≠Œ to Œ the minimizers change only at a finite number of break points. In
this paper we are interested in the notion of density, in the form of ratios, for non-negative
submodular and supermodular functions. For this reason we follow the notation from recent
work [44, 14, 10, 24] and state lemmas in a convenient form, and provide proofs in the
appendix for the sake of completeness.

Supermodular function dense decomposition. The basic observation is the following.

I Lemma 10. Let f : 2V æ Ÿ+ be a non-negative supermodular set function. There exists a

unique maximal set S ™ V that maximizes
f(S)

|S| .

The preceding lemma can be used in a simple fashion to derive the following corollary
(this was explicitly noted in [10] for instance).

I Corollary 11. Let f : 2V æ Ÿ+ be a non-negative supermodular set function. There is

a unique partition S1, S2, . . . , Sh of V with the following property. Let Vi = V ≠ fij<iSj

and let Ai = fij<iSi. Then, for each i = 1 to h, Si is the unique maximal densest set for

the function fDi : 2Vi æ R+. Moroever, letting ⁄i be the optimum density of fDi , we have

⁄1 > ⁄2 . . . > ⁄h.

Based on the preceding corollary, we can associated with each v œ V a value ⁄(v):
⁄(v) = ⁄i where v œ Si. See Figure 1 (full version) for an example of a dense decomposition
of the function f(S) = |E(S)|.

ESA 2023

56:8 Convergence to Lexicographically Optimal Base and Applications

Dense decomposition for submodular functions. We now discuss submodular functions.
We consider two variants. We start with a basic observation.

I Lemma 12. Let f : 2V æ Ÿ+ be a monotone non-negative submodular set function such

that f(v) > 0 for all v œ V . There is a unique minimal set S ™ V that minimizes
|V |≠|S|

f(V)≠f(S)

for submodular function f .

Consider the following variant of a decomposition of f . We let S0 = V and find S1 as the
unique minimal set S ™ V that minimizes |V |≠|S|

f(V)≠f(S)
. Then we “delete” Ŝ1 = V \ S1, and

find the minimal set S2 ™ S1 that minimizes |S1|≠|S|
f(S1)≠f(S)

. In iteration i, we find the unique
minimal set Si µ Si≠1 that minimizes |Si≠1|≠|Si|

f(Si≠1)≠f(Si)
. Notice that Sk µ Sk≠1 µ ... µ S1 µ V .

We say the relative density of Ŝi = Si≠1 \ Si is ⁄i = |Si≠1|≠|Si|
f(Si≠1)≠f(Si)

. For u œ Ŝi, we say the
density of u is ⁄u = ⁄i. Hence the dense decomposition of f is Ŝ1, ..., Ŝk with densities
⁄1, . . . , ⁄k. We refer to this decomposition as the first variant which is based on deletions.

We now describe a second dense decomposition for submodular functions. Let f : 2V æ R+

be a monotone submodular function. Consider the supermodular function g : 2V æ R+

where g(X) = f(V) ≠ f(V \ X) for all X ™ V . From Lemma 9, g is monotone supermodular.
We can then apply Corollary 11 to obtain a dense decomposition of g. Let T1, T2, . . . , TkÕ be
the unique decomposition obtained by considering g and let ⁄̂1, ..., ⁄̂kÕ be the corresponding
densities. Note that this second decomposition is based on contractions.

Not too surprisingly, the two decompositions coincide, as we show in the next theorem.
The main reason to consider them separately is for technical ease in applications where one
or the other view is more natural.

I Theorem 13. Let Ŝ1, ..., Ŝk be a dense decomposition (using deletion variant) of a sub-

modular function f with densities ⁄i, . . . , ⁄k. Let T1, ..., TkÕ be a dense decomposition (using

contraction variant) of the same function with densities ⁄̂1, ..., ⁄̂kÕ . We have (i) kÕ = k, (ii)

Ŝ1, ...Ŝk is exactly T1, ..., Tk, and (iii) ⁄̂i = 1

⁄i
for 1 Æ i Æ k.

3.2 Fujishige’s results on lexicographically optimal bases
Fujishige [18] gave a polyhedral view of the dense decomposition which is the central ingredient
in our work. He stated his theorem for polymatroids, however, it can be easily generalized to
contrapolymatroids. We restrict attention to the unweighted case for notational ease – [18]
treats the weighted case.

Vectors in Rn can be totally ordered by sorting the coordinates in increasing order of
value and considering the lexicographical ordering of the two sorted sequences of length n.
In the following, for a, b œ Rn we use a ªø b and a ∞ø b to refer to this order. We say that a
vector x in a set D is lexicographically maximum if for all y œ D we have y ∞ø x.

Fujishige proved the following theorem for polymatroids.

I Theorem 14 ([18]). Let f : 2V æ R+ be a monotone submodular function (a polymatroid)

and let Bf be its base polytope. Then there is a unique lexicographically maximum base

bú œ Bf and for each v œ V , bú
v

= ⁄v. Moroever, bú
is the optimum solution to the quadratic

program: min
q

v
x2

v
subject to x œ Bf .

Another ordering is to sort the coordinates in decreasing order of value and then taking
the lexicographic ordering on the two sorted sequences. We denote this ordering by ª¿, ∞¿ for
strict and non-strict ordering respectively. We say that a vector x in a set D is lexicographically
minimum if for all y œ D we have x ∞¿ y. The preceding theorem can be generalized to
contrapolymatroids in a straight forward fashion and this was explicitly pointed out in [24].
We paraphrase it to be similar to the preceding theorem statement.

E. Harb, K. Quanrud, and C. Chekuri 56:9

I Theorem 15. Let f : 2V æ R+ be a monotone supermodular function (a contrapolymatroid)

and let Bf be its base polytope. Then there is a unique lexicographically minimum base bú œ Bf

and for each v œ V , bú
v

= ⁄v. Moreover, bú
is the optimum solution to the quadratic program:

min
q

v
x2

v
subject to x œ Bf .

3.3 Approximating a lexicographically optimal base using Frank-Wolfe

Consider the convex quadratic program min
q

vœV
x2

v
subject to x œ Bf where Bf is the

base polytope of f (could be submodular of supermodular). We can use the Frank-Wolfe
method to approximately solve this optimization problem. The gradient of the quadratic
function is 2x and it follows that in each iteration, we need to answer the linear minimization
oracle of LMO(w) = arg minsœBf

Ès, 2wÍ for w œ Bf . This is equivalent to arg minsœBf
Ès, wÍ,

in other words optimizing a linear objective over the base polytope. Edmonds [15] showed
that the simple greedy algorithm is an O(|V | log |V |) time exact algorithm (assuming O(1)
time oracle access to f).

I Theorem 16 ([15]). Fix a polymatroid f : 2V æ Ÿ+. Given a weight vector w œ Ÿn
,

let vj1 , vj2 , . . . , vjn be a sort of V = {v1, ..., vn} in ascending order of wi values. Let

Ai = {vj1 , ..., vji} for 1 Æ i Æ n with A0 = ÿ. Define sú
i

= f(Ai) ≠ f(Ai≠1). Then

sú = arg minsœBf
Ès, wÍ.

The theorem also holds for supermodular functions but by reversing the order from ascending
to descending order of w and complimenting the set Ai.

I Theorem 17 ([15]). Fix a contrapolymatroid f : 2V æ Ÿ+. Given a weight vector

w œ Ÿn
, let vj1 , vj2 , . . . , vjn be a sort of V = {v1, ..., vn} in descending order of wi values.

Let Ai = {vji , ..., vjn} for 1 Æ i Æ n with An+1 = ÿ. Define sú
i

= f(Ai) ≠ f(Ai+1). Then

sú = arg minsœBf
Ès, wÍ.

Both algorithms are dominated by the sorting step and thus takes O(|V | log |V |) time.
These simple algorithms imply that the Frank-Wolfe algorithm can be used on the quad-
ratic program to obtain an approximation to the lexicographically maximum (respectively
minimum) bases of submodular (respectively supermodular) functions. The standard Frank-
Wolfe algorithm would need O(diam(Bf)

2

‘2) iterations to converge to a vector b̂ satisfying...b̂ ≠ bú
...

2

Æ ‘.

4 Application 1: Convergence of GREEDY++ and SUPERGREEDY++

We begin by describing Greedy++ [7] and its generlization SuperGreedy++ [10].
Greedy++ is built upon the peeling idea of Greedy, and applies it over several iter-
ations. The algorithm initializes a weight/load on each v œ V , denoted by w(v), to 0. In
each iteration it creates an ordering by peeling the vertices: the next vertex to be chosen is
arg min

vœV (GÕ)(w(v)+deg
GÕ(v)) where GÕ is the current graph (after removing the previously

peeled vertices). At the end of the iteration, w(v) is increased by the degree of v when it was
peeled in the current iteration. A precise description can be found below. SuperGreedy

is a natural generalization of Greedy, and SuperGreedy++ generalizes Greedy++. A
formal description of SuperGreedy++ is given below.

ESA 2023

56:10 Convergence to Lexicographically Optimal Base and Applications

Algorithm 2 Greedy++(G(V, E), T) [7].
Initialize w(u) Ω 0 for all u œ V
Gú Ω G
for k Ω 0 to T ≠ 1 do

GÕ Ω G
while |GÕ| > 1 do

u Ω arg min
uœGÕ

(w(u) + degGÕ(u))

w(u) Ω w(u) + degGÕ(u)
GÕ Ω GÕ ≠ {u}
if ⁄(GÕ) > ⁄(Gú) then

Gú Ω GÕ

return Gú

Algorithm 3 Super-Greedy++(f, T) [10].
Initialize w(u) Ω 0 for all u œ V
Sú Ω V
for k Ω 0 to T ≠ 1 do

V Õ Ω V
while |V Õ| > 1 do

u Ω arg min
uœV Õ

(w(u)+f(V Õ)≠f(V Õ ≠u))

w(u) Ω w(u) + f(V Õ) ≠ f(V Õ ≠ u)
V Õ Ω V Õ ≠ u
if f(V

Õ
)

|V Õ| > f(S
ú

)

|Sú| then
Sú Ω V Õ

return Sú

The goal of this section is to prove Theorem 1 on the convergence of SuperGreedy++

and Greedy++ to the lexicographically maximal base.

4.1 Intuition and main technical lemmas

As we saw in Section 3.3, if one applies the Frank-Wolfe algorithm to solve the qaudratic
program min

q
vœV

x2

v
subject to x œ Bf , each iteration corresponds to finding a minimum

weight base of f where the weights are given by the current vector x. Finding a minimum
weight base corresponds to sorting V by x. However, SuperGreedy++ and Greedy++

use a more involved peeling algorithm in each iteration; the peeling is based on the weights
as well as the degrees of the vertices and it is not a static ordering (the degrees change as
peeling proceeds). This is the di�culty in formally analyzing these algorithms. In [10], the
authors used a connection to the multiplicative weight update method via LP relaxations.
Here we rely on the quadratic program and noisy Frank-Wolfe. The high-level intuition, that
originates in [10], is the following. As the algorithm proceeds in iterations, the weights on
the vertices accumulate; recall that the total increase in the weight in the case of DSG is
m = |E|. The degree term, which influences the peeling, is dominant in early iterations,
but its influence on the ordering of the vertices decreases eventually as the weights of the
vertices get larger. It is then plausible to conjecture that the algorithm behaves like the
standard Frank-Wolfe method in the limit. The main question is how to make this intuition
precise. [10] relies on a connection to the MWU method while we use a connection to noisy
Frank-Wolfe.

For this purpose, consider an iteration of Greedy++ and SuperGreedy++. The
algorithm peels based on the current weight vector and the degrees. We isolate and abstract
this peeling algorithm and refer to it as Weighted-Greedy and Weighted-SuperGreedy
respectively, and formally describe them with the weight vector w as a parameter.

E. Harb, K. Quanrud, and C. Chekuri 56:11

Algorithm 4 Weighted-Greedy(G, w).
Input: G(V, E) and w(u) for u œ V

GÕ Ω G
Initialize d̂(u) = 0 for all u œ V .
while |GÕ| > 1 do

u Ω arg min
uœGÕ(w(u) + degGÕ(u))

d̂(u) Ω degGÕ(u)
GÕ Ω GÕ ≠ {u}

return d̂

Algorithm 5 Weighted-SuperGreedy(f , w).

Input: Supermodular f : 2V æ Ÿ+, w(u) for
u œ V

V Õ Ω V
Initialize d̂(u) = 0 for all u œ V .
while |V Õ| > 1 do

u Ω arg min
uœGÕ

(w(u) + f(V Õ) ≠ f(V Õ ≠ u)

d̂(u) Ω f(V Õ) ≠ f(V Õ ≠ u)
V Õ Ω V Õ ≠ u

return d̂

The peeling algorithms also compute a base d̂ œ Bf . In the case of graphs and DSG,
d̂(u) is set to the degree of the vertex u when it is peeled. One can alternatively view the
base as an orientation of the edges of E. Define for each edge uv œ G two weights xuv, xvu.
We say that x is valid if xuv + xvu = 1 and xuv, xvu Ø 0 for all {u, v} œ E(G). For b œ Ÿ|V |,
we say x induces b if bu =

q
vœ”(u)

xuv for all u œ V . We say a vector d is an orientation if
there is a valid x that induces it.

I Lemma 18 ([24]). For f(S) = |E(S)|, b œ Bf if and only if b is an orientation.

Recall that the Frank-Wolfe algorithm, for a given weight vector w : V æ R+, computes
the minimum-weight base b with respect to w since Èw, bÍ = minyœBf Èw, yÍ. It is worth taking
a moment to note that this base (or orientation due to Lemma 18) is easily computable: we
orient each edge integrally (i.e xvu = 1, xuv = 0) from v to u if w(u) Ø w(v), and from u to v
otherwise. A simple exchange argument yields a proof of correctness and is implicit in many
works [14]2. This induces an optimal base dú

w
with respect to w. Our goal is to compare

how the peeling order created by Weighted-Greedy (and Weighted-SuperGreedy) compares
with the best base. The following two technical lemmas formalize the key idea. The first is
tailored to DSG and the second applies to DSS.

I Lemma 19. Let d̂ be the output from Weighted-Greedy(G, w) and dú
w

be the optimal

orientation with respect to w. Then Èw, d̂Í Æ Èw, dú
w

Í +
q

u
degG(u)2

. In particular, the

additive error does not depend on the weight vector w.

I Lemma 20. For a supermodular function f : 2V æ Ÿ+, let d̂ be the output from Weighted-

SuperGreedy(f, w) (Algorithm 5) and dú
w

be the optimal vector with respect to w as described

in Theorem 17. Then Èw, d̂Í Æ Èw, dú
w

Í + n
q

uœV
f(u | V ≠ u)2

. In particular, the additive

error does not depend on the weight vector w.

4.2 Convergence proof for Greedy++
Why is Lemma 19 crucial? First, observe that the minimizer dú

w
of Èw, dÍ is exactly the same

minimizer as ÈKw, dÍ for any constant K > 0 (and vice-versa).

I Lemma 21. Let d̂K be the output of Weighted-Greedy(G, Kw). Then Èw, d̂KÍ Æ
Èw, dú

w
Í +

q
u

degG(u)
2

K
.

2 Since the optimal orientation is easily computable, one can replace the “peeling” iteration of Greedy++

with the optimum base. This would result in the Frank-Wolfe based algorithm of [14].

ESA 2023

56:12 Convergence to Lexicographically Optimal Base and Applications

Proof. By Lemma 19,
q

uœV
Kw(u)d̂K(u) Æ min

orientation d

!q
uœV

Kw(u)d(u)
"

+
q

u
degG(u)2.

Dividing by K implies the claim. J

We are now ready to view Greedy++ as a noisy Frank-Wolfe algorithm. Algorithm 6
shows how Greedy++ could be interpreted.

Algorithm 6 Greedy++(G(V, E)).
Input: G = (V, E) and w(u) for u œ V

Initialize b(0) Ω Weighted-Greedy(G, 0) Û b(0) is a valid orientation
for k Ω 0 to T ≠ 1 do

“ Ω 1

k+1

d(k+1) Ω Weighted-Greedy(G, (k + 1)b(k))
b(k+1) Ω (1 ≠ “)b(k) + “d(k+1)

return b(T)

The algorithm is exactly the same as the one described in Algorithm 2. Indeed, one
can prove that kb(k) is precisely the weights that Greedy++ ends with at round k by
induction. Observe that (k +1)b(k+1) = kb(k) +d(k+1) which is precisely the load as described
in Algorithm 2 (via induction). We note that “ Ω 1/(k + 1) is crucial here to ensure we
are taking the average. Lemma 25 in the appendix (full version) implies that each peel in
Algorithm 2 is ”Cf

k+2
-approximate linear minimization oracle. Using Theorem 8, this implies

that Greedy++ (as described in Algorithm 2) converges to bú in Õ(mn
2

‘2) iterations since

” = O(
q

u
dG(u)

2

m
) and Cf = O(

q
u

dG(u)2). We use the probabilistic method to bound Cf

in the full version.

Extension to SuperGreedy++. An essentially similar analysis works for
SuperGreedy++. Instead of Lemma 19, we rely on Lemma 20. For technical
reasons, the convergence analysis of SuperGreedy++ is slightly weaker than for
Greedy++.

5 Application 2: Greedy Tree Packing interpreted via Frank-Wolfe

Let G = (V, E) be a graph with non-negative edge capacities. The goal of this section
is to view Thorup’s definitions of ideal edge loads and the associated tree packing from
a di�erent perspective, and to derive an alternate convergence analysis of his greedy tree
packing algorithm [46, 47]. In previous work, Chekuri, Quanrud and Xu [11] obtained a
di�erent tree packing based on an LP relaxation for k-cut, and used it in place of ideal tree
packing. Despite this, there was a gap in our understanding which we address here.

We restrict our attention to unweighted multi-graphs throughout this section, and
comment on the capacitated case at the end of the section. Let G = (V, E) be a connected
multi-graph, with n vertices and m edges. Consider the graphic matroid MG(E, F) induced
by G; E is the ground set, and F consists of all sub-forests of G. The bases of the matroid
are precisely the spanning trees of G. Consider the rank function r : 2E æ Z+ of MG. r is
submodular, and it is well-known that for a edge subset X ™ E, r(X) = n ≠ Ÿ(X) where
Ÿ(X) is the number of connected components induced by X.

E. Harb, K. Quanrud, and C. Chekuri 56:13

5.1 Thorup’s recursive algorithm as dense decomposition
For consistency with previous notation, we use f to denote the submodular rank function
r. We first describe ideal loads as defined by Thorup. Consider the Tutte–Nash-Williams
partition P for G. Recall that P minimizes the ratio |E(P)|

|P |≠1
among all partitions, and this

ratio is ·(G). For each edge e œ E(P), assign ¸ú(e) = 1

·(G)
. Remove the edges in E(P)

to obtain a graph GÕ which now consists of several disconnected components. Recursively
compute ideal loads for the edges in each connected component of GÕ (the process stops
when G has no edges).

We claim that Thorup’s recursive decomposition coincides with the dense decomposition
of f (the first variant). To see this, it su�ces to see the first step of the dense decomposition.
We find the minimal set S1 ™ E that minimizes |E|≠|S|

f(E)≠f(S)
. We let Ŝ1 = E \S1 and assign the

edges in Ŝ1 the density f(E)≠f(S)

|E|≠|S| . Then, we “delete” Ŝ1. Observe that Ŝ1 = E \S1 is just the
edges crossing the partition P (S1) defined by the Ÿ(S1) connected components spanned by
S1. Also, recall that f(E)≠f(S1)

|E|≠|S1| = Ÿ(S1)≠1

|E\S1| = |P (S1)|≠1

E(P (S1))
= 1

·(G)
. Hence, the density assigned

to edges in Ŝ1 is exactly 1

·(G)
by the Tutte–Nash-Williams theorem. The next step is deleting

Ŝ1 = E \ S1, which, as discussed above, are the edges crossing the partition P (S1).
Via induction we prove the following lemma.

I Lemma 22. The weights given to the edges by the dense decomposition algorithm on f
coincide with ¸ú

.

5.2 Greedy tree packing converge to ideal relative loads
Thorup considered the following greedy tree packing algorithm. For each edge define a
load ¸(e) which is initialized to 0. The algorithm proceeds in iterations. In iteration i the
algorithm computes an MST Ti in G with respect to edge weights w(e) = ¸(e). The load
of each edge e œ Ti is increased by 1. Thorup showed that as k æ Œ, the quantity ¸(e)/k
converges to ¸ú(e) for each edge e. His proof is fairly technical. In this section, we present a
di�erent proof of this fact that uses the machinery we have built thus far.

I Lemma 23. The vector ¸ú
is the lexicographically maximal base of the spanning tree

polytope.

Proof. We showed that Thorup’s definition of ideal loads is obtained by simply running the
dense decomposition on the rank function of the graphic matroid induced by G. The bases
of the graphic matroid are the spanning trees of G and hence the base polytope of f is the
spanning tree polytope of G. The dense decomposition of f gives us the lexicographically
maximum base, and hence ¸ú is the lexicographically maximal base in the spanning tree
polytope of G. J

Hence, ¸ú is the unique solution to the quadratic program: min
q

e
¸(e)2 subject to

¸ œ SPT(G) where SPT(G) is the spanning tree base polytope. We can thus apply a noisy
Frank-Wolfe algorithm to the quadratic program to obtain Algorithm 7.

The main observation is that this algorithm is exactly the same as Thorup’s greedy
tree packing algorithm. Indeed, observe that (k + 1)¸(k+1) Ω k¸(k) + d(k+1) = k¸(k) + 1{e œ
MST(G, ¸(k))} where MST(G, w) is a minimum spanning tree of G with respect to edge
weights w. Since noisy Frank-Wolfe converges, then ¸(k) converges to ¸ú(e), and greedy tree
packing converges.

ESA 2023

56:14 Convergence to Lexicographically Optimal Base and Applications

Algorithm 7 Frank-Wolfe-Greedy-TreePack(G(V, E)).
Input: G(V, E)

Initialize l(0)(u) = 1{e œ T} for any spanning tree T .
for k Ω 0 to T ≠ 1 do

“ Ω 1

k+1

d(k+1) Ω min
sœSPT(G)

Èl(k), sÍ Û This is the minimum spanning tree with respect to l(k)

l(k+1) Ω (1 ≠ “)l(k) + “d(k+1)

return b(T)

We now establish the convergence guarantee for greedy tree packing. For the spanning
tree polytope of an m edge graph, the curvature constant Cf Æ 4m because for x, y œ Bf ,
2(x ≠ y)T (x ≠ y) =

q
eœE

(xe ≠ ye)2 Æ 4m. Plugging this bound into Theorem 8, after
k = O(m log(m/‘)

‘2) iterations,
..¸(k) ≠ ¸ú

..
2

Æ ‘.
Suppose we run the standard Frank-Wolfe algorithm with “ = 2/(k + 2). Then, the

convergence guarantee improves to O(m

‘2). Note that each iteration still corresponds to
finding an MST in the graph with weights. However, the load vector is no longer a simple
average of the trees taken so far.

Comparison to Thorup’s bound and analysis. Thorup [47] considered ideal tree packings
in capacitated graphs; let c(e) Ø 1 (via scaling) denote the capacity of edge e. Via [18], one
sees that the optimum solution of the quadratic program

q
e

x2

e
/c(e) subject to x œ SP (G)

is the ideal load vector ¸ú. Greedy tree packing generalizes to the capacitated case easily; in
each iteration we compute the MST with respect to weights w(e) = ¸(e)c(e). Thorup proved
the following.

I Theorem 24 ([47]). Let G = (V, E) be capacitated graph. Greedy tree packing after

O(m log(mn/‘)

‘3) iterations ouputs a load vector ¸ such that for each edge e œ E, ¸(e) Æ
(1 + ‘)¸ú(e).

We observe that if all capacities are 1 (or identical) then Thorup’s guarantee is that
¸(e) ≠ ¸ú(e) Æ O(‘) for each edge e. For this case, via Frank-Wolfe, we obtain the much
stronger guarantee that ||¸ ≠ ¸ú||2 Æ ‘ which easily implies the per edge condition, however
the per edge guarantee does not imply a guarantee on the norm. Further, in the unweighted
case, our iteration complexity dependence on ‘ is 1/‘2 while Thorup’s is 1/‘3. Thorup’s
guarantee works for the capacitated case in strongly polynomial number of iterations. We
can adapt the Frank-Wolfe analysis to the capacitated case but it would yield a bound that
depends on C =

q
e

c(e) (in the unweighted case C = m); on the other hand the guarantee
provided by Frank-Wolfe is stronger.

It may seem surprising that the same greedy tree packing algorithm yields di�erent types
of guarantees based on the type of analysis used. We do not have a completely satisfactory
explanation but we point out the following. Thorup’s analysis is a non-trivial refinement
of the standard MWU type analysis of tree packing [38, 50, 3]. As already noted in [24],
if one uses Frank-Wolfe (with “ = 1/(k + 1)) with the softmax potential function that is
standard in the MWU framework, then the resulting algorithm would also be greedy tree
packing. Fujishige’s uses a quadratic objective to guarantee that the optimum solution is the
unique maximal base but in fact any increasing strongly convex function would su�ce. In the
context of optimizing a linear function over Bf , due to the optimality of the greedy algorithm,
the only thing that determines the base is the ordering of the elements of V according to the
weight vector; the weights themselves do not matter. Thus, Frank-Wolfe applied to di�erent

E. Harb, K. Quanrud, and C. Chekuri 56:15

convex objectives can result in the same greedy tree/base packing algorithm. However, the
specific objective can determine the guarantee one obtains after a number of iterations. The
softmax objective is better suited for obtaining relative error guarantees while the quadratic
objective is better suited for obtaining additive error guarantees. Thorup’s analysis is more
sophisticated due to the per edge guarantee in the capacitated setting. A unified analysis
that explains both the relative and additive guarantees is desirable. We leave this is an
interesting direction for future research.

References
1 Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In

Konstantin Avrachenkov, Debora Donato, and Nelly Litvak, editors, Algorithms and Models
for the Web-Graph, pages 25–37, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

2 Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. Dense subgraph maintenance
under streaming edge weight updates for real-time story identification. Proc. VLDB Endow.,
5(6):574–585, February 2012. doi:10.14778/2168651.2168658.

3 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of computing, 8(1):121–164, 2012.

4 Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.

5 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. E�cient primal-dual graph algorithms
for mapreduce. In International Workshop on Algorithms and Models for the Web-Graph,
pages 59–78. Springer, 2014.

6 Oana Denisa Balalau, Francesco Bonchi, T-H. Hubert Chan, Francesco Gullo, and Mauro
Sozio. Finding subgraphs with maximum total density and limited overlap. In Proceedings
of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15,
pages 379–388, New York, NY, USA, 2015. Association for Computing Machinery. doi:
10.1145/2684822.2685298.

7 Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang,
and Junxing Wang. Flowless: Extracting Densest Subgraphs Without Flow Computations,
pages 573–583. Association for Computing Machinery, New York, NY, USA, 2020. doi:
10.1145/3366423.3380140.

8 Digvijay Boob, Saurabh Sawlani, and Di Wang. Faster width-dependent algorithm for mixed
packing and covering lps. Advances in Neural Information Processing Systems 32 (NIPS 2019),
2019.

9 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial
Optimization, pages 84–95, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

10 Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Densest subgraph: Supermodularity,
iterative peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1531–1555, 2022. doi:10.1137/1.9781611977073.64.

11 Chandra Chekuri, Kent Quanrud, and Chao Xu. Lp relaxation and tree packing for minimum
k-cut. SIAM Journal on Discrete Mathematics, 34(2):1334–1353, 2020.

12 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time, 2022.
arXiv:2203.00671.

13 Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg, and Chris
Schwiegelshohn. Adaptive out-orientations with applications, 2023. arXiv:2209.14087.

14 Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-friendly graph
decomposition via convex programming. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 233–242, Republic and Canton of Geneva, CHE,
2017. International World Wide Web Conferences Steering Committee. doi:10.1145/3038912.
3052619.

ESA 2023

https://doi.org/10.14778/2168651.2168658
https://doi.org/10.1145/2684822.2685298
https://doi.org/10.1145/2684822.2685298
https://doi.org/10.1145/3366423.3380140
https://doi.org/10.1145/3366423.3380140
https://doi.org/10.1137/1.9781611977073.64
https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2209.14087
https://doi.org/10.1145/3038912.3052619
https://doi.org/10.1145/3038912.3052619

56:16 Convergence to Lexicographically Optimal Base and Applications

15 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani,
N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their Applications (Pro-
ceedings Calgary International Conference on Combinatorial Structures and Their Applications,
Calgary, Alberta, 1969; R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.), New York, 1970.
Gordon and Breach.

16 Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. E�cient densest subgraph computation
in evolving graphs. In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pages 300–310, Republic and Canton of Geneva, CHE, 2015. International World
Wide Web Conferences Steering Committee. doi:10.1145/2736277.2741638.

17 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956. doi:10.1002/nav.3800030109.

18 Satoru Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, 5(2):186–196, 1980. URL: http://www.jstor.
org/stable/3689149.

19 Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.
20 Satoru Fujishige. Theory of principal partitions revisited. Research Trends in Combinatorial

Optimization: Bonn 2008, pages 127–162, 2009.
21 Takuro Fukunaga. Computing minimum multiway cuts in hypergraphs from hypertree packings.

In IPCO, pages 15–28. Springer, 2010.
22 A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-

171, EECS Department, University of California, Berkeley, 1984. URL: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/1984/5956.html.

23 Anupam Gupta, David G Harris, Euiwoong Lee, and Jason Li. Optimal bounds for the k-cut
problem. ACM Journal of the ACM (JACM), 69(1):1–18, 2021.

24 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable al-
gorithms for densest subgraph and decomposition. In Advances in Neural In-
formation Processing Systems, volume 35, pages 26966–26979. Curran Associates,
Inc., 2022. URL: https://proceedings.neurips.cc/paper_files/paper/2022/file/
ac8fbba029dadca99d6b8c3f913d3ed6-Paper-Conference.pdf.

25 Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, number 1 in Proceedings of Machine Learning Research, pages 427–435,
Atlanta, Georgia, USA, 17–19 June 2013. PMLR. URL: https://proceedings.mlr.press/
v28/jaggi13.html.

26 David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM), 47(1):46–76,
2000.

27 Yuko Kuroki, Atsushi Miyauchi, Junya Honda, and Masashi Sugiyama. Online dense subgraph
discovery via blurred-graph feedback. In ICML, 2020.

28 Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on
the densest subgraph problem and its variants, 2023. arXiv:2303.14467.

29 Jason Li. Faster minimum k-cut of a simple graph. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1056–1077. IEEE, 2019.

30 Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and
Xueqi Cheng. Flowscope: Spotting money laundering based on graphs. In AAAI, 2020.

31 Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approxima-
tion scheme for min k-cut. SIAM Journal on Computing, 0:FOCS20–205, 2022.

32 Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V.S. Lakshmanan, Wenjie Zhang, and
Xuemin Lin. E�cient algorithms for densest subgraph discovery on large directed graphs. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’20, pages 1051–1066, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3318464.3389697.

https://doi.org/10.1145/2736277.2741638
https://doi.org/10.1002/nav.3800030109
http://www.jstor.org/stable/3689149
http://www.jstor.org/stable/3689149
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac8fbba029dadca99d6b8c3f913d3ed6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac8fbba029dadca99d6b8c3f913d3ed6-Paper-Conference.pdf
https://proceedings.mlr.press/v28/jaggi13.html
https://proceedings.mlr.press/v28/jaggi13.html
https://arxiv.org/abs/2303.14467
https://doi.org/10.1145/3318464.3389697

E. Harb, K. Quanrud, and C. Chekuri 56:17

33 Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and Michalis Vazirgi-
annis. The core decomposition of networks: Theory, algorithms and applications. The VLDB
Journal, 29(1):61–92, 2020.

34 Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph
in dynamic graph streams. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald T.
Sannella, editors, Mathematical Foundations of Computer Science 2015, pages 472–482, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

35 H Narayanan. The principal lattice of partitions of a submodular function. Linear Algebra
and its Applications, 144:179–216, 1991.

36 Hariharan Narayanan. Submodular functions and electrical networks, volume 54. Elsevier,
1997.

37 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.

38 Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301,
1995. URL: http://www.jstor.org/stable/3690406.

39 Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Discovering dynamic communities
in interaction networks. In Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa
Meo, editors, Machine Learning and Knowledge Discovery in Databases, pages 678–693, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

40 Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 181–193. ACM, 2020.
doi:10.1145/3357713.3384327.

41 Alexander Schrijver et al. Combinatorial optimization: polyhedra and e�ciency, volume 24.
Springer, 2003.

42 Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining using k-core
analysis — patterns, anomalies and algorithms. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 469–478, 2016. doi:10.1109/ICDM.2016.0058.

43 Bintao Sun, Maximilien Danisch, T-H. Hubert Chan, and Mauro Sozio. Kclist++: A simple
algorithm for finding k-clique densest subgraphs in large graphs. Proc. VLDB Endow.,
13(10):1628–1640, June 2020. doi:10.14778/3401960.3401962.

44 Nikolaj Tatti. Density-friendly graph decomposition. ACM Transactions on Knowledge
Discovery from Data (TKDD), 13(5):1–29, 2019.

45 Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In Proceedings of
the 24th International Conference on World Wide Web, pages 1089–1099, 2015.

46 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. Preliminary
version in Proc. of ACM STOC 2001.

47 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings of
the fortieth annual ACM symposium on Theory of computing, pages 159–166, 2008.

48 Charalampos Tsourakakis. The k-clique densest subgraph problem. In Proceedings of the
24th International Conference on World Wide Web, WWW ’15, pages 1122–1132, Republic
and Canton of Geneva, CHE, 2015. International World Wide Web Conferences Steering
Committee. doi:10.1145/2736277.2741098.

49 Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria
Tsiarli. Denser than the densest subgraph: Extracting optimal quasi-cliques with quality
guarantees. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, pages 104–112, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2487575.2487645.

50 N. Young. Randomized rounding without solving the linear program. In ACM-SIAM Symposium
on Discrete Algorithms, 1995.

ESA 2023

http://www.jstor.org/stable/3690406
https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1109/ICDM.2016.0058
https://doi.org/10.14778/3401960.3401962
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1145/2487575.2487645

	1 Introduction
	1.1 Contributions of the paper

	2 Background on Frank-Wolfe algorithm and a variation
	3 Sub and supermodular functions, and dense decompositions
	3.1 Dense decompositions for submodular and supermodular functions
	3.2 Fujishige's results on lexicographically optimal bases
	3.3 Approximating a lexicographically optimal base using Frank-Wolfe

	4 Application 1: Convergence of GREEDY++ and SUPERGREEDY++
	4.1 Intuition and main technical lemmas
	4.2 Convergence proof for Greedy++

	5 Application 2: Greedy Tree Packing interpreted via Frank-Wolfe
	5.1 Thorup's recursive algorithm as dense decomposition
	5.2 Greedy tree packing converge to ideal relative loads

