
Computer Physics Communications 292 (2023) 108883

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Atom-centered machine-learning force field package ✩,✩✩

Lei Li a,∗,1, Ryan A. Ciufo b,1, Jiyoung Lee b,1, Chuan Zhou a, Bo Lin a, Jaeyoung Cho b, 
Naman Katyal b, Graeme Henkelman b,∗

a Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of 
Science and Technology, Shenzhen 518055, Guangdong, China
b Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2022
Received in revised form 2 June 2023
Accepted 31 July 2023
Available online 18 August 2023

Keywords:
Machine learning
Adaptive kinetic Monte Carlo
Density functional theory
Atomic force field

In recent years, machine learning algorithms have been widely used for constructing force fields with an 
accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-
based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient 
platform for fitting and using machine learning force fields by implementing an atom-centered neural-
network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following 
three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and 
Python modules for user-friendly integration through scripts and facile extension of future algorithms; 
(2) a pure Fortran backend to interface with the software, including the long-timescale dynamic 
simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte 
Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation 
Environment package for active learning and ML-based algorithm development. Here, we demonstrate an 
efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based 
PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the 
system size.

Program summary
Program title: python-based atom-centered machine-learning force field (PyAMFF)
CPC Library link to program files: https://doi .org /10 .17632 /fsn6dkcvrv.1
Developer’s repository link: https://gitlab .com /pyamff /pyamff
Licensing provisions: Apache License, 2.0
Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies 
from density functional theory (DFT). With a surrogate model that is less computationally expensive 
to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated 
optimization to minima and saddle points, and ultimately, accelerated design of active materials where 
the kinetics are key to the material function.
Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello 
fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy 
and force of the training data. A parallel implementation and Fortran backend allow for efficient training 
and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the 
surrogate model surfaces are provided.

© 2023 Elsevier B.V. All rights reserved.

✩ The review of this paper was arranged by Prof. Weigel Martin.
✩✩ This paper and its associated computer program are available via the Computer 
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Corresponding authors.
E-mail addresses: lil33@sustech.edu.cn (L. Li), henkelman@utexas.edu

(G. Henkelman).
1 Contribute equally to this work.

1. Introduction

The use of atomistic calculations to study condensed matter 
systems has become standard for determining structures, reaction 
pathways, transition states, and barriers of complex systems [1,2]. 
These calculations are typically performed with ab initio meth-
ods, which return high accuracy with a tradeoff of high computa-
tional cost. Researchers have amassed large quantities of data from 

https://doi.org/10.1016/j.cpc.2023.108883
0010-4655/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2023.108883
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108883&domain=pdf
https://doi.org/10.17632/fsn6dkcvrv.1
https://gitlab.com/pyamff/pyamff
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:lil33@sustech.edu.cn
mailto:henkelman@utexas.edu
https://doi.org/10.1016/j.cpc.2023.108883


L. Li, R.A. Ciufo, J. Lee et al. Computer Physics Communications 292 (2023) 108883

these calculations representing the potential energy surfaces (PESs) 
in terms of atomic positions. Increasingly, researchers have taken 
advantage of these large datasets by applying machine learning 
(ML) methods to approximate the PES for various atomic systems. 
Some examples of the software for fitting ML PESs include but 
are not limited to AMP [3], DeePMD-kit [4], RuNNer [1,5–8], N2P2 
[9,10], and FitSNAP [11]. DeePMD-kit, RuNNer, and N2P2 construct 
a machine learning interatomic potential based on a particular de-
scriptor and provide an interface with molecular dynamics (MD) 
software, LAMMPS [12]. AMP rather supports a wide range of de-
scriptors and regression models so users can have more flexibility 
during building models and performing large-scale and long-time 
MD simulations. The remarkable success of these high-quality ma-
chine learning packages is demonstrated by numerous studies.

Of the above mentioned ML methods, one that stands out for its 
versatility is the Behler-Parrinello neural network (BPNN) [1,5–8]. 
The BPNN approach represents the PES from many-body individ-
ual atomic contributions. A sub-neural net for each atom type is 
generated, which takes atomic descriptors as input and provides 
atomic energies as output, which are then summed to give the to-
tal energy. The purpose of the input descriptors is to describe the 
relevant local environment of each atom. The atomic-centered NN 
structure allows for a high degree of transferability of the network 
while also being applicable to systems of different sizes.

The contribution of this current work is to provide a frame-
work named the Python Atom-Centered Machine Learning Force 
Field (PyAMFF), which is based on the BPNN concept. PyAMFF 
supports rapid calculation of atomic descriptors, optimization of 
NN potentials, and calculation of energies and forces from NN 
in a transferable manner. PyAMFF provides an interface with the 
Atomic Simulation Environment (ASE) [13] as a calculator so that 
the optimized force fields can be integrated with ASE calculations 
or with the EON code, allowing long-timescale dynamics simula-
tions at a reasonable cost with high accuracy. PyAMFF allows easy 
construction of the ML force field and a platform to perform fun-
damental NN studies.

The manuscript is organized as follows: Section 2 describes the 
atom-centered machine learning algorithm used in PyAMFF. Sec-
tion 3 provides the PyAMFF code framework and describes how 
force fields are trained and utilized. Section 4 describes the per-
formance of PyAMFF. Finally, Section 5 reports calculations from 
several systems and applies PyAMFF for long-timescale simula-
tions.

2. Theory

The algorithms employed by PyAMFF have been described in 
detail elsewhere [1,3,5–8]. In brief, PyAMFF uses modified Behler-
Parrinello (BP) symmetry functions as inputs to the NN model 
[5,14]. BP symmetry functions provide a rotationally and transla-
tionally invariant description of local atomic environments that can 
be mapped to energies and forces using the NN model. Both radial 
(G I ) and angular (G I I ) terms are constructed for pairs with a value 
of the width parameter η and triplets with different values of pa-
rameters, η, λ, and ζ , respectively.

G I
i =

all∑

j≠i

e
−η

(
Ri j−Rs

)2

R2
c fc

(
Rij

)
(1)

G I I
i = 21−ζ

all∑

j,k≠i
| j≠k

(1 + λcos(θi jk

− θs))
ζ e

−η
(R2

i j+R2
ik+R2

jk)

R2
c fc

(
Rij

)
fc (Rik) fc

(
R jk

)
(2)

with a cutoff function

fc
(

Rij
)
=

{
0.5 ·

[
cos

(
π Rij

Rc

)
+ 1

]
for Rij ≤ Rc

0 for Rij = Rc
(3)

where Rij is the distance between atom i and j. The center of 
the Gaussian functions (G I ) and (G I I ) can be shifted to non-zero 
distance and angle Rs and θs , respectively, which can capture the 
local atomic environment effectively. The symmetry functions act 
as inputs into a NN for their respective atom type to calculate the 
energy for each atom. The atomic energies are summed to produce 
the system’s total energy, and the atomic forces are calculated us-
ing the chain rule, where the Jacobian matrix of the fingerprints 
is computed in advance. This structure allows for a flexible poten-
tial that is invariant to the ordering of the atoms as input into the 
network. After a forward pass through the network, the calculated 
energies E and forces F are compared to the target energies E T rue

and forces F T rue of the training set, and a loss value is generated,

Loss =
M∑

k=1

⎧
⎨

⎩α

(
E T rue

k

Nk
− Ek

Nk

)2

+ β

3Nk

3∑

l=1

N j∑

i=1

(
F T rue

il − Fil

)2

⎫
⎬

⎭

(4)

where M is the number of training images, N j is the number 
of atoms in image k, l represents the x, y, or z direction in the 
cartesian coordinate system, and α and β are energy and force co-
efficients, respectively. Backpropagation through the network cal-
culates gradients of the loss function with respect to the weights 
and biases, which are used to update the model according to a 
specified optimization scheme. An overview of the process is pre-
sented in Scheme 1.

3. The PyAMFF code

The PyAMFF code is written in Python and Fortran. The layout 
of the code is shown in Scheme 2. PyAMFF has modules for the 
descriptors, neighbor-list, and fingerprints, and the ML module is 
supported by PyTorch [15] to fit numerical relationships between 
structural information and the DFT-calculated energy and force us-
ing a back-propagating NN. The backend Fortran code speeds up 
the calculations and provides an interface with programs, includ-
ing ASE and EON.

3.1. Code framework

Once a set of training structures with energies and forces is 
supplied and user-defined settings are configured, PyAMFF calcu-
lates neighbor-lists and pair/triplet data for each atom in each 
training structure. The pair/triplet information is passed from our 
neighbor-list module to our fingerprint module, where fingerprint 
and fingerprint derivatives (or fingerprint only if force calculation 
is not requested) are calculated and stored on disk. For flexibil-
ity, PyAMFF supports a Python and Fortran implementation of the 
neighbor-list and fingerprint modules. Once calculated, symmetry 
functions go through data-processing, which normalizes the finger-
print functions for input to the BPNN model. Finally, all the data is 
passed to the ML module for the NN training, testing, and evalua-
tion.

After optimization, PyAMFF calculators can predict the energy 
and forces of a given new related structure by reading the saved 
weights, biases and architectural information of the NN. Currently, 
PyAMFF supports the ASE-compatible [13] and EON-compatible 
[16] calculators. For details, see Sections 3.3 and 3.4, respectively.

2



L. Li, R.A. Ciufo, J. Lee et al. Computer Physics Communications 292 (2023) 108883

Scheme 1. An overview of the atom-centered NN applied for each element in the training set. Gi represents fingerprints of atom i. ql is the x, y, or z component of the 
Cartesian coordinate system. Atoms of one element share a single NN model.

Scheme 2. Schematic representation of the PyAMFF code. Descriptors are calculated 
for each image based on pair and triplet information. These descriptors are nor-
malized, batched, and saved to disk. Batches are passed to the NN module, and 
a potential is generated. The NN potential can be utilized using an ASE [13] style 
calculator or a ML Engine for EON [16]. The modules in the dotted red box are avail-
able in both Python and Fortran. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

3.2. Training force fields

A large training set is typically required to obtain an accu-
rate ML potential which increases the computational cost of fitting. 
For performance, PyAMFF parallelizes the training process via the 
distributed multiprocessing module of PyTorch. The model is repli-
cated across N processes, while M batches are trained by each 
process (see Fig. 2a) that can be controlled via user-supplied flags. 
Batching performance is reported in Section 4.1. In addition to par-
allel training capabilities, PyAMFF allows for batching fingerprint 
calculations to account for system memory constraints. Finally, in 
addition to being trained on CPUs, PyAMFF can be trained using 
GPUs via the CUDA toolkit supplied by PyTorch for a significant 
performance increase on modern hardware, which is discussed in 
Section 4.1.

Once the training data set is distributed, PyAMFF initiates the 
NN model with an unoptimized set of weights and biases (NN pa-
rameters). This NN model is utilized to predict the energy and 
forces for each image, and the difference between the predicted 
energy and forces from target/training energy and forces (called 
loss) is used to optimize the NN parameters. PyAMFF optimizes 
the NN parameters until either the loss in energy and forces be-
come smaller than the stopping criteria or the optimization is 
performed for a maximum number of epochs. After training, the 

NN parameters are saved in two different file formats, “pyamff.pt” 
and “mlff.pyamff”, which can be used by built-in calculators or to 
restart training. Note that “.pt” is a PyTorch readable format, and 
“.pyamff” is a user-readable format.

Additionally, PyAMFF allows for NN models to be updated and 
retrained with the addition of new data for on-the-fly training of 
systems as they evolve. Retraining becomes beneficial for acceler-
ating methods such as structural optimization or nudged elastic 
band calculations [17,18]. To enable the on-the-fly training, the 
user only needs to write three lines of commands, as shown be-
low. First, define a pyamffRunner object by turning on the active 
learning flag. Second, add new images generated during structural 
optimization, nudged elastic band calculations, or molecular dy-
namics simulations to the training set. Finally, call the run function 
in the pyamffRunner object to conduct the force field training. The 
obtained ML force field can be reused by calling the PyAMFF ASE 
calculator (see Section 3.3 for details). Fig. 1 illustrates an example 
of the speedup of structure optimizations using PyAMFF. While we 
have observed performance improvements, more work is required 
to develop a mature algorithm that utilizes machine-learning force 
fields to speed up structural optimization. PyAMFF code provides 
an easy-to-use tool for developers to design their algorithm, po-
tentially facilitating the development of machine-learning-assisted 
structural optimization, NEB, and MD methods.

self.pyamff_train = pyamffRunner(activelearning=
True)

self.training_set.append(new_images)
self.pyamff_train.run(self.epoches_max, self.train-

ing_set)

3.3. ASE calculator

PyAMFF supports a built-in ASE-compatible calculator that can 
predict the energy and force of a given structure using a trained 
ML model [13]. For modularity, we provide both Python and For-
tran based ASE-compatible calculators. The Python calculator can 
be used as pure Python or as a hybrid of Python and Fortran 
(to speed up the fingerprint calculations) and PyTorch for the NN. 
The Fortran calculator is implemented entirely in Fortran, with a 
Python wrapper to interface with ASE. That is, the entire process, 
from reading the trained network parameters to predicting energy 
and force, is performed in Fortran; this calculator does not rely on 
PyTorch for evaluating the NN.

When using the PyAMFF calculator, the trained ML model pa-
rameters are read from a file in either “.pt” for the Python calcula-
tor or “.pyamff” for the Fortran calculator. The Python and Fortran 
calculators can be imported and initialized respectively as:

#Python:
from pyamff.aseCalc import aseCalc

3



L. Li, R.A. Ciufo, J. Lee et al. Computer Physics Communications 292 (2023) 108883

Fig. 1. a.) Mildly and b.) severely perturbed bulk 256 atom Pt structures described by a Morse potential. Using PyAMFF with 2 G I s and 2 G I I s and a (5,5) neural network 
reduces the total number of force evaluations needed. Structures were obtained from optbench.org, [19] where additional information about this benchmark system can be 
found for reference.

calc = aseCalc(’./pyamff.pt’)
#Fortran:
from pyamff.aseCalcF import aseCalcF
calc = aseCalcF(mlff_file=’mlff.pyamff’)
Once initialized, both calculators inherit the methods of an atoms ob-

ject in ASE [13].

3.4. Fortran module for EON

One of the key features of PyAMFF is that the trained ML potential can 
be utilized for modeling dynamics of atomic-scale systems over long time 
scales with our EON code [16]. EON provides the adaptive kinetic Monte 
Carlo (AKMC) method, which can achieve long time scale dynamics within 
a computationally reasonable time by finding relevant transitions on the 
fly [20,21]. While the availability of a reliable and inexpensive force field 
is a significant challenge for the method, ML potentials have become a 
good candidate due to their DFT accuracy with orders of magnitude lower 
computational cost. To take full advantage of ML in EON, we built a pure 
Fortran module for PyAMFF, which follows a very similar workflow to the 
Fortran ASE calculator described in Section 3.3, that can be executed by 
EON. The actual application and its performance validations are discussed 
in the following sections.

4. Performance test

4.1. Parallelization for training

Fig. 2a shows a framework of the parallelization algorithm applied 
in PyAMFF to speed up the training process. PyAMFF splits the training 
dataset to nProc × nbatch total batches, where nProc defines the number 
of processes and nbatch defines the number of batches per process. Each 
process then receives a batch corresponding to one column of nbatch in 
Fig. 2a. Each nbatch is passed through the NN on the corresponding pro-
cess, and the loss is evaluated. The total loss is calculated by looping over 
nbatch columns of batches. nProc and nbatch can be used to manage the 
computational efficiency and memory usage, respectively.

To demonstrate the parallelization efficiency of PyAMFF, we performed 
a training job with 2000 images of a Pd13H2 nanoparticle for 1000 epochs 
and NN architecture of one hidden layer with 50 neurons. The optimized 
fingerprints from Ref. [14] were adopted without modifications. The left 
panel of Fig. 2b shows the training time and the corresponding speedup 
factor with nProc (nbatch=1). The speedup factor is used to measure the 
parallelization efficiency relative to the sequential execution and is defined 
as

speedup = runtime of serial execution
runtime of parallel execution

.

The training time reduces linearly with increasing nProc, i.e., the 
speedup factor is linearly correlated with nProc and maximum compu-

tational efficiency at nProc = 20. Further increase of the process number 
beyond 20 led to a loss of computational efficiency, and an inverse lin-
ear relationship between the speedup factor and nProc was observed due 
to more frequent data loading and a communication bottleneck. Note that 
these values will vary for different machines.

In PyAMFF, nbatch is used to manage memory usage during training. 
The right panel of Fig. 2b presents the memory usage and the calculated 
scaledown factor with nbatch (nProc = 1). Similar to the definition of 
speedup, the scaledown factor is used to measure the scaling efficiency 
of memory usage relative to execution with nbatch = 1, which is calcu-
lated as

scaledown = memory usage of execution with nbatch = 1
memory usage of execution with nbatch > 1

.

The training job with nbatch = 1 used 4 GB of memory, which was re-
duced to 1.64 GB at nbatch 8, corresponding to a scaledown factor of 2.4. 
A further increase of nbatch provides limited gains in the scaledown effi-
ciency. As expected, the maximum memory usage is inversely proportional 
to nbatch.

PyAMFF package supports GPU training which we have compared 
to CPU training. While we are still optimizing our GPU performance, 
the current version of PyAMFF GPU training is up to 1.5 times faster 
than CPU training. We would like to emphasize that our benchmarking 
was performed with only one system discussed below, using an A100 
GPU machine, and rigorous testing will be performed in the future. Fi-
nally, PyAMFF only supports GPU training on one machine nProc = 1, 
and we are building an interface that can support multi-GPU training. 
The GPU vs. CPU speedup was tested using a lithium DFT dataset from 
VASP calculations. The dataset consists of bulk structures, surfaces with 
adatoms, strained bulk structures from 4 different lithium phases (BCC, 
FCC, 9R, HCP), and lithium clusters from sizes 6-100. The GPU train-
ing was performed with nProc = 1 and batches per process nbatch =
1, 2, 4, 8, 16, 32, 64, and the CPU training was performed such that to-
tal batches (nProc * nbatch) was equal to 1, 2, 4, 8, 16, 32, 64 for a 
fair comparison with GPU. The GPU vs. CPU training time comparison 
with total batches is shown in Fig. 2c. CPU-Z1 means CPU training with 
Z=2x nProc and nbatch = 1 (multiple processes, one batch per process), 
CPU-1Z means CPU training with nProc = 1, and Z=2x nbatch (one pro-
cess, multiple batches per process), and CPU-4,8,16,32,64 is CPU training 
with 4, 8, 16, 32, 64 total batches with 2x nProc. For the CPU-4 ex-
ample, the hexagonal point represents training time for nProc = 21 and 
nbatch = 2 (total batches/nProc, 4/2). The best training time for GPU is 
nProc, nbatch = (1,1) 143 seconds which is ∼1.5 times faster than the 
best CPU training time with nProc, nbatch = (16,1) 217.9 seconds and ∼8 
times faster than CPU training time with nProc, nbatch = (1,1) 752 sec-
onds. The GPU vs. CPU training time difference becomes 1.64 with 1500 
training images. Hence, with a bigger dataset, the GPU vs. CPU speed up 
can be higher, which we plan to investigate in future studies.

4



L. Li, R.A. Ciufo, J. Lee et al. Computer Physics Communications 292 (2023) 108883

Fig. 2. (a) Schematic illustration of the parallelization algorithm for training in PyAMFF. (b) The execution time and memory used for training as a function of the number of 
processes (nProc) and batches (nbatch). (c) GPU vs. CPU training time for lithium dataset with 1000 images. X-axis represents a different number of total batches for GPU, 
CPU-Z1, and CPU-1Z, where total batches are defined as the number of processes (nProc) * batches per processes (nbatch) and number of processes for CPU training (nProc) 
for CPU-4, CPU-8, CPU-16, CPU-32, and CPU-64 for 4, 8, 16, 32 and 64 total batches respectively. The training time was calculated for 1000 epochs.

Fig. 3. Computational cost as a function of (left) number of G I I functions for a Au309
cluster and (right) the number of atoms in a gold nanoparticle.

4.2. Calculator for energy and force evaluation

The scaling relationship between computational cost and system size 
is an important metric for the efficiency of our computational methods. 
Here, we tested the dependence of computational cost on the number of 
fingerprints and the number of atoms by evaluating the energy and force 
of Au nanoparticles with a pre-trained PyAMFF force field (Fig. 3). The 
computational cost dependence on the number of fingerprints was tested 
by varying number of G I I functions per atom because the evaluation of 
the G I I fingerprints is the most resource-intensive calculation. As shown 
in Fig. 3a, the computational cost scales linearly on the number of G I I fin-
gerprints. A force evaluation with 200 G I I functions took 1.3 × 10−5 s, 
which is 8 orders of magnitude faster than the comparable DFT calcula-
tion. Computational scaling as a function of system size was performed 
by evaluating the force and energy of icosahedral Au nanoparticles with 

varying numbers of atoms ranging from 13 to 923 (Fig. 3b); the compu-
tational cost increased linearly with the number of atoms. These scaling 
tests demonstrate that the PyAMFF Fortran calculator has a linear scaling 
relationship with the number of fingerprints and system size, ensuring the 
extensibility of our code to large systems.

5. Computational results

Here we show performance tests of force-field training for a periodic 
(Ge) and a nanoparticle (Pd13H2) system with the PyAMFF code. We also 
present an AKMC example of a Pd13H2 nanoparticle with a pre-trained 
force field.

5.1. Ge

A PyAMFF model was trained for a periodic Ge system. The database 
of atomic structures was constructed by expanding the Si atomic struc-
tures reported by Bartók et al. [22]. In total, 2364 atomic structures were 
collected for training. Another 7092 atomic structures were created by 
further expanding or compressing the unit cell, with 73% of the data in 
the training set and 27% reserved for model validation. The energy and 
forces were evaluated with DFT as implemented in VASP. To describe the 
chemical environment of each Ge atom, 24 G I s and 16 G I I s were selected, 
with a cutoff of 5.7 Å (refer to supporting information for details of the 
fingerprints parameters). A (15, 15) NN model with the sigmoid activa-
tion function was adopted to fit the PES of the Ge system. Fig. 4 shows 
the predicted energy (left) and forces (right) of the training (in red) and 
validation (in green) data from the PyAMFF model as compared to the 
reference DFT values. The energy and forces for training and validation 
data are distributed tightly along the y = x line. The calculated RMSEs per 
atom of the energy and forces for the training data are 0.013 eV/atom 

5



L. Li, R.A. Ciufo, J. Lee et al. Computer Physics Communications 292 (2023) 108883

Fig. 4. Comparison of the energy (left) and forces (right) for a periodic Ge system 
with reference DFT values. The red and green symbols represent the values of the 
training and test data, respectively. The training and test values reported are root 
mean square errors of energy (eV/atom) and force (eV/Å) for the training (in red) 
and test data (in green). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 5. Comparison of the energy (left) and forces (right) evaluated by the PyAMFF 
model with the reference DFT values. The red and green symbols represent the 
values of the training and test data, respectively. Light blue and white spheres repre-
sent Pd and H atoms, respectively. The values reported are root mean square errors 
of energy (in eV/atom) and force (eV/Å) for the training (in red) and test data (in 
green). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

and 0.076 eV/Å, respectively. Similar RMSEs for the validation data are ob-
served, 0.017 eV/image for energy and 0.075 eV/Å for forces.

5.2. Pd13 H2 particles

In our previous study [14], we optimized fingerprints and trained a 
BPNN force field for the Pd13H2 nanoparticle with the AMP [3] package. 
Here, we adopted the same fingerprints (36 G I s and 12 G I I s) and training 
and test data to evaluate the performance of our PyAMFF code for force 
field training (refer to Ref. [14] for more details). Fig. 5 shows the pre-
dicted energy (left) and forces (right) of the training and test data from 
the PyAMFF model against the reference DFT values. The calculated RM-
SEs per atom of the energy and forces for the training data are 0.0086 
eV/atom and 0.099 eV/Å, respectively and RMSEs for test data are 0.0089 
eV/atom and 0.102 eV/Å, respectively, slightly larger than the RMSEs of 
the training data. Overall, the trained PyAMFF model exhibits a very simi-
lar performance as the BPNN model obtained from the AMP package.

5.3. AKMC simulations

Finally, as shown in Fig. 6, we performed AKMC simulations to com-
pute the dynamical evolution of a Pd13H2 nanoparticle at 300 K, using the 
PyAMFF force field described in Section 5.2. More computational details 
can be found in Ref. [14]. When compared to results reported previously 
using AMP in Ref. [14], a similar trend is seen. Due to the improved com-
putational efficiency of fingerprints and their derivatives, the time scale 
of the dynamic simulation reaches 17 ns, much longer than that reported 
(100 ps) in Ref. [14]. As observed in Ref. [14], the nanoparticle undergoes 
a structural transition accompanied by diffusion of the hydrogen atoms on 
the surface. As shown in Fig. 6a, at ∼0.6 ns, the rotation of a five-Pd motif 
(highlighted in gold) leads to a transition from an icosahedral structure to 

Fig. 6. (a) Time evolution of the total energy and (b) disconnectivity graph from 
an AKMC simulation of the Pd13H2 nanoparticle at 300 K using PyAMFF-based EON 
[16]. Inset images in (a) indicate the structure transition from an icosahedral cluster 
to a deformed cluster, denoted as Structure 1 and 2 in (b). Both the light blue and 
gold spheres represent Pd atoms, and the white spheres represent H atoms. In (b), 
brown and red lines represent isomers with an icosahedral Pd structure. Red lines 
represent isomers with a chiral Pd skeletal structure, as shown in the inset images. 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

a deformed structure. Upon that, the system undergoes several metastable 
states (blue lines in Fig. 6b) and transitions to a more stable state (red 
lines in Fig. 6b). In such a state, the nanoparticle entails a chiral Pd struc-
ture, as shown in the inset images of Fig. 6b. The chiral structures (3 and 
4) correspond to the Type 4 and 5 isomers reported in Ref. [14] (corre-
sponding side images are shown in Figure S1).

5.4. Performance comparison with other BPNN packages

We conducted benchmark calculations to evaluate the computational 
efficiency of the PyAMFF code. Firstly, we used a Ge system with 24 G I s 
and 16 G I I s to compare the execution time of PyAMFF, N2P2, and AMP for 
single-point energy and force evaluation. Fig. 7a shows the variation of ex-
ecution time for single-point energy and force evaluation with the number 
of atoms for each package. The PyAMFF code was approximately 100 times 
faster than AMP but about 10 times slower than N2P2. We also compared 
the training efficiency of PyAMFF and N2P2 and found that PyAMFF out-
performs N2P2 in the training process (Fig. 7b). In just 1300 s, PyAMFF 
achieved an energy RMSE value of 5 meV/atom and a force RMSE value 
of 0.07 eV/Å, whereas N2P2 maintains larger RMSE values even at 2000 
s. Additionally, we evaluated the performance of PyAMFF by running the 
benchmark systems reported by Zuo and Ong et al. [23]. Our results show 
that PyAMFF achieves smaller RMSE values compared to the NNP results 
reported in the same publication (Table 1). Although PyAMFF has a mod-
erate computational efficiency in energy and force evaluation, it exhibits 
better training performance with higher accuracy and lower computa-

6



L. Li, R.A. Ciufo, J. Lee et al. Computer Physics Communications 292 (2023) 108883

Fig. 7. (a) Variation of the execution time of single-point-energy calculation with the number of atoms using PyAMFF, N2P2, and AMP. (b) Variation of energy and force RMSEs 
with training time obtained with PyAMFF and N2P2. Training is performed on 40 CPU cores with 100 Ge structures, including 24 G I and 16 G I I functions. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Energy and force RMSEs obtained from the PyAMFF package for the 
Ni, Cu, Li, Mo, Si, and Ge systems reported in Ref. [23]. The values in 
column ‘NNP’ are data from Ref. [23]. In each cell, the values before 
and after the slash symbol are RMSE values for the training and test 
sets, respectively.

Energy_RMSE (meV/atom) Force_RMSE (eV/Å)

PyAMFF NNP (ref. [23]) PyAMFF NNP (ref. [23])

Ni 0.28/0.72 2.38/2.25 0.03/0.04 0.06/0.07
Cu 0.24/0.49 2.13/1.68 0.02/0.02 0.05/0.06
Li 0.26/0.79 1.24/0.98 0.02/0.02 0.06/0.06
Mo 1.50/3.73 6.06/5.67 0.16/0.20 0.20/0.20
Si 1.64/4.05 10.84/9.95 0.10/0.13 0.17/0.17
Ge 1.40/3.96 11.27/10.95 0.08/0.10 0.12/0.12

tional cost. Overall, our evaluation indicates that PyAMFF is a promising 
machine-learning force field development package.

6. Conclusion

The robustness of machine learning and the BPNN method has mo-
tivated us to develop the open-source Pythonic Atom-Centered Machine 
Learning Force Field package. The goals of the project are to provide a 
quick, easy, and efficient platform for fitting and using machine learning 
force fields while also providing a platform that can supplement calcula-
tions and provide a basis for studying and understanding machine learning 
for chemistry and materials. PyAMFF allows for the efficient training of 
machine learning force fields and includes integration with ASE [13] and 
EON [16] for the utilization of trained force fields. We have shown that 
PyAMFF is efficient and scalable to large systems while accurately (re)pro-
ducing results for various periodic and non-periodic systems. Additionally, 
PyAMFF allows for active training, which can be used to fit potentials on-
the-fly to speed up DFT calculations.

Declaration of competing interest

The authors declare the following financial interests/personal relation-
ships which may be considered as potential competing interests: Graeme 
Henkelman reports financial support was provided by Welch Foundation 
(F-1841), National Science Foundation (CHE-2102317). Lei Li reports fi-
nancial support was provided by the National Key R&D Program of China 
(2022YFA1503102), the National Natural Science Foundation of China 
(22179058), the Department of Science and Technology of Guangdong 
Province (2021B1212040001).

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Key R&D Program of 
China (2022YFA1503102), the National Natural Science Foundation of 

China (22179058), the Guangdong Provincial Key Laboratory Program 
(2021B1212040001) from the Department of Science and Technology of 
Guangdong Province, and the Center for Computational Science and Engi-
neering at the Southern University of Science and Technology (SUSTech). 
Work in Austin was supported by the National Science Foundation (CHE-
2102317), the Welch Foundation (F-1841), and the Texas Advanced Com-
puting Center.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at 
https://doi .org /10 .1016 /j .cpc .2023 .108883.

References

[1] J. Behler, Angew. Chem., Int. Ed. 56 (2017) 12828–12840.
[2] O.T. Unke, S. Chmiela, H.E. Sauceda, M. Gastegger, I. Poltavsky, K.T. Schütt, A. 

Tkatchenko, K.-R. Müller, Chem. Rev. 121 (2021) 10142–10186.
[3] A. Khorshidi, A.A. Peterson, Comput. Phys. Commun. 207 (2016) 310–324.
[4] H. Wang, L. Zhang, J. Han, W. E, Comput. Phys. Commun. 228 (2018) 178–184.
[5] J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.
[6] J. Behler, Int. J. Quant. Chem. 115 (2015) 1032–1050.
[7] J. Behler, J. Chem. Phys. 134 (2011) 074106.
[8] J. Behler, J. Phys. Condens. Matter 26 (2014) 183001.
[9] A. Singraber, J. Behler, C. Dellago, J. Chem. Theory Comput. 15 (2019) 

1827–1840.
[10] A. Singraber, T. Morawietz, J. Behler, C. Dellago, J. Chem. Theory Comput. 15 

(2019) 3075–3092.
[11] A. Rohskopf, C. Sievers, N. Lubbers, M.A. Cusentino, J. Goff, J. Janssen, M. Mc-

Carthy, D.M. De Oca Zapiain, S. Nikolov, K. Sargsyan, D. Sema, E. Sikorski, L. 
Williams, A.P. Thompson, M.A. Wood, J. Soc. Struct. 8 (2023) 5118.

[12] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. 
Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. 
Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271 (2022) 
108171.

[13] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, 
M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jen-
nings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, 
K. Kaasbjerg, S. Lysgaard, J. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Pe-
terson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, 
L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, J. Phys. Condens. Matter 29 
(2017) 273002.

[14] L. Li, H. Li, I.D. Seymour, L. Koziol, G. Henkelman, J. Chem. Phys. 152 (2020) 
224102.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, 
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, 
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, in: H. Wallach, 
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett (Eds.), Advances 
in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019, 
pp. 8024–8035.

[16] S.T. Chill, M. Welborn, R. Terrell, L. Zhang, J.-C. Berthet, A. Pedersen, H. Jónsson, 
G. Henkelman, Model. Simul. Mater. Sci. Eng. 22 (2014) 055002.

[17] G. Henkelman, H. Jónsson, J. Chem. Phys. 113 (2000) 9978–9985.
[18] A.A. Peterson, J. Chem. Phys. 145 (2016) 074106.
[19] S. Chill, G. Henkelman, (n.d.).
[20] G. Henkelman, H. Jónsson, J. Chem. Phys. 115 (2001) 9657–9666.
[21] L. Xu, G. Henkelman, J. Chem. Phys. 129 (2008) 114104.
[22] A.P. Bartók, J. Kermode, N. Bernstein, G. Csányi, Phys. Rev. X 8 (2018) 041048.
[23] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. 

Thompson, M.A. Wood, S.P. Ong, J. Phys. Chem. A 124 (2020) 731–745.

7

https://doi.org/10.1016/j.cpc.2023.108883
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0010-4655(23)00228-X/bib37693CFC748049E45D87B8C7D8B9AACDs1

	Atom-centered machine-learning force field package
	1 Introduction
	2 Theory
	3 The PyAMFF code
	3.1 Code framework
	3.2 Training force fields
	3.3 ASE calculator
	3.4 Fortran module for EON

	4 Performance test
	4.1 Parallelization for training
	4.2 Calculator for energy and force evaluation

	5 Computational results
	5.1 Ge
	5.2 Pd13H2 particles
	5.3 AKMC simulations
	5.4 Performance comparison with other BPNN packages

	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


