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Abstract. We study a class of reinforcement learning (RL) tasks where
the objective of the agent is to accomplish temporally extended goals. In
this setting, a common approach is to represent the tasks as determin-
istic finite automata (DFA) and integrate them into the state-space for
RL algorithms. However, while these machines model the reward func-
tion, they often overlook the causal knowledge about the environment. To
address this limitation, we propose the Temporal-Logic-based Causal Di-
agram (TL-CD) in RL, which captures the temporal causal relationships
between different properties of the environment. We exploit the TL-CD
to devise an RL algorithm in which an agent requires significantly less
exploration of the environment. To this end, based on a TL-CD and a
task DFA, we identify configurations where the agent can determine the
expected rewards early during an exploration. Through a series of case
studies, we demonstrate the benefits of using TL-CDs, particularly the
faster convergence of the algorithm to an optimal policy due to reduced
exploration of the environment.

Keywords: Reinforcement Learning · Causal Inference · Neuro-Symbolic
AI.

1 Introduction

In many reinforcement learning (RL) tasks, the objective of the agent is to
accomplish temporally extended goals that require multiple actions to achieve.
One common approach to modeling these goals is to use finite state machines.
However, these machines only model the reward function and do not take into
account the causal knowledge of the underlying environment, which can limit
the effectiveness of the RL algorithms [2, 3, 6, 17,20,25–28].

⋆ The first three authors contributed equally.
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Moreover, online RL, including in the non-Markovian setting, often requires
extensive interactions with the environment. This impedes the adoption of RL al-
gorithms in real-world applications due to the impracticality of expensive and/or
unsafe data collection during the exploration phase.

To address these limitations, in this paper we propose Temporal-Logic-based
Causal Diagrams (TL-CDs) which can capture the temporal causal relation-
ships between different properties of the environment, allowing the agent to
make more informed decisions and require less exploration of the environment.
TL-CDs combine temporal logic, which allows for reasoning about events over
time, with causal diagrams, which represent the causal relationships between
variables. By using TL-CDs, the RL algorithm can exploit the causal knowledge
of the environment to identify configurations where the agent can determine the
expected rewards early during an exploration, leading to faster convergence to
an optimal policy.

We introduce an RL algorithm that leverages TL-CDs to achieve temporally
extended goals. We show that our algorithm requires significantly less exploration
of the environment than traditional RL algorithms that use finite state machines
to model goals. By using TL-CDs, our algorithm identifies configurations where
the agent can determine the expected rewards early during exploration, reducing
the number of steps required to achieve the goal.

2 Motivating Example
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Fig. 1: The seed environment. The four propositions are p (the agent plants the
seed), g (a tree grows), s (the agent sells the seed) and b (the agent buys a tree).

Let us take a running example to illustrate the concept. There is a farmer
who possesses a unique seed and his objective is to obtain a tree. There are two
potential ways to achieve this goal. First, the farmer can plant the seed (p) and
wait for the tree to grow (g). Alternatively, the farmer can sell the seed (s) and
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use the money to purchase a tree (b). The set of four propositions can thus be
represented as P = {p, g, s, b}. Figure 1a illustrates the corresponding task DFA
T . Additional causal information is provided with the TL-CD C (Figure 1b),
interpreted as follows: p X g expresses that planting a tree will result in a tree
growing in the next time-step (e.g., year), and s G¬X b expresses that selling
the seed leads to never being able to buy a tree (as the farmer will never find
an offer for a tree that is cheaper than a seed). This TL-CD is equivalent to the
causal DFA C illustrated in Figure 1c (details are provided later).

3 Related work

Causal inference answers questions about the mechanism by which manipulating
one or a set of variables affects another variable or a set of variables [22]. In other
words, through causal inference, we infer the cause and effect relationships among
the variables from observational data, experimental data, or a combination of
both [16].

Recently, the inherent capabilities of reinforcement learning (RL) and causal
inference (CI) have simultaneously been used for better decision-making in-
cluding both interventional reasoning [13, 14, 24, 30] and counterfactual reason-
ing [4,5,9,12] in different settings [15]. In other words, in an RL setting, harness-
ing casual knowledge including causal relationships between the actions, rewards,
and intrinsic properties of the domain where the agent is deployed can improve
the decision-making abilities of the agent [15].

Usually, incorporating CI in an RL setting can be done using three types of
data including observational data, experimental data, and counterfactual data
accompanied by the causal diagram of the RL setting, if available. An agent
can have access to observational data by observing another agent, observing the
environment, offline learning, acquiring prior knowledge about the underlying
setting, etc. Experimental data can be acquired by actively interacting (inter-
vening) with the environment. Counterfactual data can be generated using a
specified model, estimated through active learning empirically [5, 18,21].

In connecting CI and RL, the mentioned data types have been used by them-
selves or in different combinations. For example, in [10], through sampling obser-
vational data in new environments, an agent can make minimal necessary adap-
tions to optimize the policy given diagrams of structural relationship among the
variables of the RL setting. In [29], both observational and experimental data
(empirical data) are used to learn causal states which are the coarsest partition
of the joint history of actions and observations that are maximally predictive of
the future in partially observable Markov decision processes (POMDP). In [5], a
combination of all data types has been used in a Multi-Armed Bandit problem
in order to improve the personalized decision-making of the agent, where the
effect of unmeasured variables (unobserved confounders) has been taken into
consideration.

Our research is closely linked to the utilization of formal methods in rein-
forcement learning (RL), such as RL for reward machines [11] and RL with
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temporal logic specifications [2, 3, 6, 17, 20, 25–28]. For instance, [11] proposed a
technique known as Q-learning for reward machines (QRM) and demonstrated
that QRM can almost certainly converge to an optimal policy in the tabular
case. Additionally, QRM outperforms both Q-learning and hierarchical RL for
tasks where the reward functions can be encoded by reward machines. However,
none of these works have incorporated the causal knowledge in expediting the
RL process.

4 Preliminaries

As typically done in RL problems, we rely on Markov Decision Processes (MDP) [23]
to model the effects of sequential decisions of an RL agent. We, however, deviate
slightly from the standard definition of MDPs. This is to be able to capture
temporally extended goals for the agent and thus, want the reward to be non-
Markovian. To capture non-Markovian rewards, we rely on simple finite state
machines—deterministic finite automaton (DFA). Further, to express causal re-
lationships in the environment, we rely on the de facto temporal logic, Linear
Temporal Logic (LTL). We introduce all the necessary concepts formally in this
section.

Labeled Markov Decision Process. A labeled Markov decision process [11] is
a tuple M = ⟨S, sI , A, p, r,P, L⟩ consisting of a finite set of states S, an agent’s
initial state sI ∈ S, a finite set of actions A, a transition probability function
p : S×A 7→ ∆(S), a non-Markovian reward function r : (S×A)∗×S 7→ R, a set of
relevant propositions P, and a labeling function L : S×A×S 7→ 2P . Here ∆(S)
denotes the set of all probability distributions over S. We denote by p(s′|s, a) the
probability of transitioning to state s′ from state s under action a. Additionally,
we include a set of propositions P that track the relevant information that the
agent senses in the environment. We integrate the propositions in the labeled
MDP using the labeling function L.

We define a trajectory to be the realization of the stochastic process defined
by a labeled MDP. Formally, a trajectory is a sequence of states and actions
t = s0a1s1 · · · aksk with s0 = sI . Further, we define the corresponding label
sequence of t as tL := l0l1l2 · · · lk where li = L(si, ai+1, si+1) for each 0 ≤ i < k.

A stationary policy π : S → ∆(A) maps states to probability distributions
over the set of actions. In particular, if an agent is in state st ∈ S at time step t
and is following policy π, then π(at|st) denotes its probability of taking action
at ∈ A.

Deterministic Finite Automaton. A deterministic finite automaton (DFA)
is a finite state machine described using tuple A = (V, 2P , δ, vI , F ) where V is a
finite set of states, 2P is the alphabet, vI ∈ V is the initial state, F ⊆ V is the
set of final states, and δ : V × 2P 7→ V is the deterministic transition function.
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A run of a DFA A on a label sequence tL = l0l1 . . . lk ∈ (2P)∗, denoted using

A : v0
tL−→ vk+1, is simply a sequence of states and labels v0l0v1l1 · · · lkvk+1, such

that v0 = vI and for each 0 ≤ i ≤ k, vi+1 = δ(vi, li). An accepted run is a
run that ends in a final state vk+1 ∈ F . Finally, we define the language of A as
L(A) = {tL ∈ (2P)∗ | tL is accepted by A}.

We define the parallel composition of two DFAs A1 = (V 1, 2P , δ1, v1I , F
1) and

A2 = (V 2, 2P , δ2, v2I , F
2) to be the cross-product A1 × A2 = (V, 2P , δ, vI , F

2),
where V = V 1 × V 2, δ((s1, s2), li) = (δ1(s1, li), δ

2(s2, li)), vI = (v1I , v
2
I ), and

F = F 1 × F 2. Using such a definition for parallel composition, it is not hard to
verify that language L(A1 ×A2) is simply L(A1) ∩ L(A2).

Task DFA. Following some recent works [1,19], we rely on so-called task DFA
T = ⟨V T , 2P , δT , vTI , F

T ⟩ to represent the structure of a non-Markovian reward
function. We say a trajectory t has a positive reward if and only if the run of T
on the label sequence tL, T : vT0

tL−→ vTk+1, ends in a final state vTk+1 ∈ F T .

Linear Temporal Logic. Linear temporal logic (over finite traces) (LTLf) is
a logic that expresses temporal properties using temporal modalities. Formally,
we define LTLf formulas—denoted by Greek small letters—inductively as:

– each proposition p ∈ P is an LTLf formula; and
– if ψ and φ are LTLf formulas, so are ¬ψ, ψ ∨ φ, Xψ (“neXt”), and ψUφ

(“Until”).

As syntactic sugar, we allow Boolean constants true and false, and formulas
ψ ∧ φ := ¬(¬ψ ∨ ¬φ) and ψ → φ := ¬ψ ∨ φ. Moreover, we additionally allow
commonly used temporal formulas Fψ := trueUψ (“finally”) and G := ¬F¬φ
(“globally”).

To interpret LTLf formulas over (finite) trajectories, we follow the seman-
tics proposed by Giacomo and Vardi [7]. Given a label sequence tL, we define
recursively when an LTLf formula holds at position i, i.e., tL, i |= φ, as follows:

tL, i |= p if and only if p ∈ tL[i]

tL, i |= ¬φ if and only if w, i ̸|= φ

tL, i |= φ ∨ ψ if and only if tL, i |= φ or tL, i |= ψ

tL, i |= Xφ if and only if i < |w| and tL, i+ 1 |= φ

tL, i |= φUψ if and only if tL, j |= ψ for some

i ≤ j ≤ |tL| and tL, i′ |= φ for all i ≤ i′ < j

We say tL satisfies φ if tL |= φ, which, in short, is written as tL |= φ.
Any LTLf formula φ can be translated to an equivalent DFA Aφ, that is, for

any tL ∈ (2P)∗, tL |= φ if and only if tL ∈ L(Aφ) [7, 31].
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Fig. 2: Examples of TL-CDs with their corresponding description in LTL

Deterministic causal diagrams. A causal diagram where every edge repre-
sents a cause leading to an effect with probability 1 is called a deterministic
causal diagram. In a deterministic causal diagram, the occurrence of the cause
will always result in the occurrence of the effect.

5 Temporal-Logic-Based Causal Diagrams

We now formalize causality in RL using (deterministic) Causal Diagrams [8], a
concept that is widely used in the field of Causal Inference. We here augment
Causal Diagrams with temporal logic since we like to express temporally ex-
tended relations. We call such Causal Diagrams as Temporal-Logic-based Causal
Diagrams or TL-CDs in short. While, in principle, TL-CDs can be conceived for
several temporal logics, we consider LTLf due to its popularity in AI applica-
tions [7].

Structurally, for a given set of propositions P, a Temporal Logic based Causal
Diagram (TL-CD) is a directed acyclic graph C where

– each node represents an LTLf formula over propositions P, and
– each edge ( ) represents a causal link between two nodes.

Examples of TL-CDs are illustrated in Figure 2, where, in the causal relation
ψ φ, ψ is considered to be the cause and φ to be the effect. The TL-CD in
Figure 2a describes that whenever the cause p happens, the effect q eventually
(i.e., F q) occurs. The TL-CD in Figure 2b describes that whenever the cause p
happens, the effect q never (i.e., G¬q) occurs. The TL-CD in Figure 2c describes
that whenever the cause p happens, effects q eventually (i.e., F q) occurs and r
never (i.e., G¬r) occurs.

For a TL-CD to be practically relevant, we must impose that the occurrence
of the cause ψ must precede that of the effect φ. To do so, we introduce concepts
that track the time of occurrence of an event such as the worst-case satisfaction
ws(φ), the worst-case violation wv(φ), the best-case satisfaction bs(φ) and the
best-case violation of a formula φ. Intuitively, the worst-case satisfaction ws(φ)
(resp., the best-case satisfaction bs(φ)) tracks the last (resp., the first) possible
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time point that a formula can get satisfied by a trajectory. Likewise, the worst-
case violation wv(φ) (resp., the best-case violation bv(φ)) tracks the last (resp.,
the first) possible time point that a formula can get violated by a trajectory. We
introduce all the concepts formally in the following definition.

Definition 1. For an LTL formula φ, we define the worst-case satisfaction time
ws(φ), best-case satisfaction time bs(φ), worst-case violation time wv(φ) induc-
tively on the structure of φ as follows:

bs(p) =ws(p) = bv(p) = wv(p) = 0,

¬φ :


bs(¬φ) = bv(φ),

ws(¬φ) = wv(φ),

bv(¬φ) = bs(φ),

wv(¬φ) = ws(φ);

φ1 ∧ φ2 :


bs(φ1 ∧ φ2) = max{bs(φ1), bs(φ2)},
ws(φ1 ∧ φ2) = max{ws(φ1), ws(φ2)},
bv(φ1 ∧ φ2) = min{bv(φ1), bv(φ2)},
wv(φ1 ∧ φ2) = max{wv(φ1), wv(φ2)};

φ1 ∨ φ2 :


bs(φ1 ∨ φ2) = min{bs(φ1), bs(φ2)},
ws(φ1 ∨ φ2) = max{ws(φ1), ws(φ2)},
bv(φ1 ∨ φ2) = max{bv(φ1), bv(φ2)},
wv(φ1 ∨ φ2) = max{wv(φ1), wv(φ2)};

Gφ :

{
bs(Gφ) = ws(Gφ) = wv(Gφ) = ∞,

bv(Gφ) = bv(φ);

Fφ :

{
bs(Fφ) = bs(φ),

ws(Fφ) = wv(Fφ) = bv(Fφ) = ∞;

Xφ :


bs(Xφ) = bs(φ) + 1,

ws(Xφ) = ws(φ) + 1,

wv(Xφ) = wv(φ) + 1,

bv(Xφ) = bv(φ) + 1;

φ1Uφ2 :


bs(φ1Uφ2) = bs(φ2),

ws(φ1Uφ2) = wv(φ1Uφ2) = ∞,

bv(φ1Uφ2) = bv(φ1).

For each causal relation ψ φ in a causal diagram C, we impose the con-
straints that ws(ψ) ≤ min{bs(φ), bv(φ)} and wv(ψ) ≤ min{bs(φ), bv(φ)}. Such
a constraint is designed to make sure that the cause ψ, even in the worst-time
scenario, occurs before the event φ, in the best-time scenario. Based on the con-



8 F. Author et al.

straint, we rule out causal relations in which the cause occurs after the effect
such as X p q, where ws(X p) = 1 is greater than bs(q) = 0.

To express the meaning of TL-CD in formal logic, we turn to its description in
LTL. A causal relation ψ φ can be described using the LTLf formula G(ψ →
φ), which expresses that whenever ψ occurs, φ should also occur. Further, an
entire TL-CD C can be described using the LTLf formula φC :=

∧
(ψ φ) G(ψ →

φ) which is simply the conjunction of the LTLf formulas corresponding to each
causal relation in C.

Based on its description in LTLf φ
C, we can now define when a trajectory π

satisfies a TL-CD C. Precisely, t satisfies C if and only if its label sequence tL
satisfies φC.

In the subsequent sections, we also rely on a representation of a TL-CD as
a deterministic finite automaton (DFA). In particular, for a TL-CD C, we can
construct a DFA CC = ⟨V C , 2P , δC , vCI , F

C⟩ from its description in LTLf φ
C. We

call such a DFA a causal DFA. When the TL-CD is clear from the context, we
simply represent a causal DFA as C, dropping its superscript.

In the motivating example (Section 2), the TL-CD C pictured in Figure 1b
translates into the LTLf formula φC = G(p→X g) ∧ G(s→G¬X b), which is
equivalent to the causal DFA C pictured in Figure 1c.

6 Reinforcement Learning with Causal Diagrams

We now aim to utilize the information provided in a Temporal-Logic-based
Causal Diagram (TL-CD) to enhance the process of reinforcement learning in
a non-Markovian setting. However, in our setting, we assume a TL-CD to be
a ground truth about the causal relations in the underlying environment. As a
result, we must ensure that a TL-CD is compatible with a labeled MDP.

Intuitively, a TL-CD C is compatible with a labeled MDP M if all pos-
sible trajectories of M respect (i.e., do not violate) the TL-CD C. To define
compatibility formally, we rely on the cross-product M×C, where M is a (non-
deterministic) finite state machine representation of M with states S, alphabet
2P , transition δ(s, l) = {s′ ∈ S | L(s, a, s′) = l for some a ∈ A}, initial state sI
and final states S, and C is the causal DFA.

Formally, we say that a TL-CD C is compatible with an MDP M if from any
reachable state (s, q) ∈ M × C, one can always reach a state (s′, q′) ∈ M × C
where q′ is a final state in the causal DFA C. The above formal definition ensures
that any trajectory of M can be continued to satisfy the causal relations defined
by C.

We are now ready to state the central problem of the paper.

Problem 1 (Non-Markovian Reinforcement learning with Causal Diagrams). Let
M be a labeled MDP, T be a task DFA, and C be a Temporal Logic based Causal
Diagram (TL-CD) such that C is compatible with M. Given M, T and C, learn
a policy that achieves a maximal reward in the environment.
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We view TL-CDs as a concise representation of the causal knowledge in an
environment. In our next subsection, we develop an algorithm that exploits this
causal knowledge to alleviate the issues of extensive interaction in an online RL
setting.

6.1 Q-learning with early stopping

Our RL algorithm is an adaptation of QRM [11], which is a Q-learning al-
gorithm [23] that is typically used when rewards are specified as finite state
machines. On a high level, QRM explores the product space M × T in many
episodes in the search for an optimal policy. We modify QRM by stopping its
exploration early based on the causal knowledge from a TL-CD C. Before we
describe the algorithm in detail, we must introduce some concepts that aid the
early stopping.

For early stopping to work, the learning agent must keep track of whether
a trajectory can lead to a reward. We do this by keeping track of the current
configuration in the synchronized run of a trajectory on the product T ×C of the
task DFA and the causal DFA. We here identify two particular configurations
that can be useful for early stopping: causally accepting and causally rejecting.
Intuitively, a trajectory reaches a causally accepting configuration if all contin-
uations of the trajectory from the current configuration that satisfy the TL-CD
C receive a reward of 1 (or a positive reward). On the other hand, a trajectory
reaches a causally rejecting configuration if all continuations of the trajectory
rom the current configuration that satisfy the TL-CD C, do not receive a reward.

We formalize the notion of causally accepting configurations and causal re-
jecting configurations in the following two definitions. We use the terminology
Aq to describe a DFA that is structurally identical to DFA A, except that its
initial state is q.

Definition 2 (Causally accepting). We say (vT , vC) ∈ V T × V C is causally

accepting if for each tL ∈ (2P)
∗ for which the run C : vC

tL−→ vCf ends in some

final state vCf ∈ F C, the run T : vT
tL−→ vTf must also end in some final state

vTf ∈ F T . Equivalently, we say that (vT , vC) ∈ V T × V C is causally accepting if
L(CvC ) ⊆ L(TvT ).

Definition 3 (Causally rejecting). We say (vT , vC) ∈ V T × V C is causally

rejecting if for each tL ∈ (2P)
∗ for which the run C : vC

tL−→ vCf ends in some

final state vCf ∈ F C, the run T : vT
tL−→ vTf must not end in any final state

in F T . Equivalently, we say that (vT , vC) ∈ V T × V C is causally rejecting if
L(CvC ) ∩ L(TvT ) = ∅.

Remark 1. A configuration (vT , vC) may be neither causally accepting nor causally
rejecting.
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To illustrate these concepts, we consider the motivating example introduced
in Section 2, where T and C are depicted in Figures 1a and 1c. The initial
state (vT0 , v

C
0 ) is neither causally accepting nor causally rejecting. If the agent

encounters a label p, it reaches (vT1 , vC1 ), which is causally accepting since the only
reachable configurations where C is accepting {(vT3 , vC0 ), (vT3 , vC2 )} are accepting
for T . If the agent encounters a label s instead, it reaches (vT2 , v

C
2 ), which is

causally rejecting since the only reachable configurations where C is accepting
{(vT2 , vC2 )} are rejecting for T .

Algorithm 1: causally accepting/rejecting state detection
1 Input: Task DFA T , Causal DFA C, a pair of states (vT , vC) ∈ V T × V C .
2 CT ← ∅ // set of reachable “causal states” of T
3 P← T × C // the parallel composition of T and C
4 foreach state (vTr , vCr ) of P reachable from (vT , vC) do
5 if vCr ∈ F C then
6 CT ← CT ∪ {vTr }

// (vT , vC) is causally accepting if CT ⊆ F T

// (vT , vC) is causally rejecting if CT ∩ F T = ∅
7 return CT

We now present the pseudo-code of the algorithm used for detecting the
causally accepting and causally rejecting configurations in Algorithm 1. Intu-
itively, the algorithm relies on a breadth-first search on the cross-product DFA
T × C of the task DFA and the causal DFA.

Algorithm 2: Q-learning with TL-CD
1 Input: Labeled MDP M, Task DFA T , Causal diagram C.
2 Convert C to causal DFA C
3 Detect causally accepting and rejecting states of T × C
4 foreach training episode do
5 run QTLCD_episode

We now expand on our adaptation of the QRM algorithm. The pseudo-code
of the algorithm is sketched in Algorithm 2. In the algorithm, we first compute
the set of causally accepting or causally rejecting configurations as described in
Algorithm 1. Next, like a typical Q-learning algorithm, we perform explorations
of the environment in several episodes to estimate the Q-values of the state-action
pairs. However, during an episode, we additionally keep track of the configuration
of the product T × C. If during the episode, we encounter a causally accepting



Reinforcement Learning with Temporal-Logic-Based Causal Diagrams 11

or causally rejecting configuration, we terminate the episode and update the
Q-values accordingly.

Algorithm 3: QTLCD_episode
1 Hyperparameter: Q-learning parameters, episode length eplength.
2 Input: labeled MDP M, task DFA T , causal DFA C, learning rate α.
3 Input: a set of q-functions Q = {qv

T
|vT ∈ V T }

4 Output: the updated set of q-functions Q

5 s← sI ; v
T ← vTI ; vC ← vCI // initialise states

6 R← 0 // initialise cumulative reward
7 for 0 ≤ t < eplength do
8 a← GetEpsilonGreedyAction(qv

T
, s) // get action from policy

9 s′ ← ExecuteAction(p(s, a)) // based on distribution p(s, a)

10 vT ′ ← δT (vT , L(s, a, s′)) // synchronize T
11 vC′ ← δC(vC , L(s, a, s′)) // synchronize C
12 R′ ← 1FT (vT ′) // compute cumulative reward

// override reward based on causal analysis:
13 if (vT ′, vC′) causally accepting then R′ ← 1

14 if (vT ′, vC′) causally rejecting then R′ ← 0

15 update qv
T
(s, a) using reward r = R′ −R // Bellman update

16 if vT ′ ∈ F T then return Q
// end of episode

17 if (vT ′, vC′) causally accepting or rejecting then return Q
// interrupt episode early

18 s← s′; vT ← vT ′; vC ← vC′;R← R′

19 return Q

The Q-learning with TL-CD algorithms consists of a loop of several episodes.
The pseudo-code of one episode is sketched in Algorithm 3. The instant reward
r is computed such that the cumulative reward R is 1 if and only if the Task
DFA is accepting. The cumulative reward is then overridden if it is possible to
predict the future cumulative reward, based on if the current configuration is
causally accepting or causally rejecting. If the reward could be predicted, the
episode is interrupted right after updating the q-functions, using that predicted
reward. Note that the notion causally accepting and rejecting configurations is
defined on unbounded episodes, and might predict a different reward than if the
episode were to time out.

The above algorithm follows the exact steps of the QRM algorithm and
thus, inherits all its advantages, including termination and optimality. The only
notable difference is the early stopping based on the causally accepting and
causally rejecting states. However, when these configurations are reached, based
on their definition, all continuations are guaranteed to return positive and no
reward, respectively. Thus, early stopping helps to determine the future reward
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Fig. 3: Case study I: small office world.

and update the estimates of Q-value earlier. We next demonstrate the advantages
of the algorithm experimentally.

7 Case Studies

In this section, we implement the proposed Q-learning with TL-CD (QTLCD)
algorithm in comparison with a baseline algorithm in three different case studies.

In each case study, we compare the performance of the following two algo-
rithms:

– Q-learning with TL-CD (QTLCD): the proposed algorithm, including early
stopping of the episodes when a causally accepting/rejecting state is reached

– Q-learning with Reward Machines (QRM): the algorithm from [11], with the
same MDP and RM but no causal diagram.

7.1 Case Study I: Small Office World Domain

We consider a small officeworld scenario in a 17 × 9 grid. The agent’s objective
is to first reach the location of either one key k1 or k2 and then exit the grid by
reaching either e1 or e2. The agent navigates on the grid with walls, keys, and
one-way doors. The set of actions is A = {S,N,E,W}. The action S,N,E,W
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correspond to moving in the four cardinal directions. The one-way doors are
shown in Figure 3a with green arrows. We specify the complex task of the RL
agent in a maze as a deterministic finite automaton (DFA) T (see Fig. 3), as
both event sequences a − k1 − e1 (open door a, pick up key k1, exit at e1) and
b − k2 − e2 (open door b, pick up key k2, exit at e2) lead to completion of the
task of exiting the maze (receiving reward 1). The agent starts at position o.
If TL-CD in Figure 3d is true, then the RL agent should never go along the
sequence b − k2 − e2 as k2 G¬e2 means if the agent picks up key k2 then it
can never exit at e2 (as c is a one-way door, so the agent can never get outside
Room 3 once it enters c to pick up key k2).
Results: Figure 3b (d) presents the performance comparison of the RL agent
with TL-CD and without TL-CD. It shows that the accumulated reward of the
RL agent can converge to its optimal value 3 times faster if the agent knows the
TL-CD and learns never to open door b.

7.2 Case Study II: Large Office World Domain

We consider a large office world scenario in a 25× 25 grid. The objective of the
agent is to exit the grid from e1 or e2 after visiting the location of both keys k1
and k2 in a given sequence, here the agent first has to reach the location of k1
and then the location of k2. The set of actions is A = {S,N,E,W}. The action
S,N,E,W correspond to moving in the four cardinal directions. The one-way
doors are shown in Figure 4a with green arrows. The motivation behind this
example is to observe the effect of increasing causally rejecting states on RL
agents’ performance. The task DFA and the TL-CD are depicted in Section 7.2.

Results : Figure 4b presents the performance comparison of the RL agent
in a large office world scenario with TL-CD (QTLCD) and without TL-CD (QRM).
It shows that the RL agent can converge to its optimal value 5 times faster if
the agent knows the TL-CD.
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7.3 Case Study III: Crossroad Domain

This experiment is inspired by the real-world example of crossing the road at
a traffic signal. The agent’s objective is to reach the other side of the road.
The agent navigates on a grid with walls, crossroad, button, and light signal.
The agent starts from a random location in the grid. The set of actions is A =
{S,N,E,W,PressButton,Wait}. The action PressButton presses the button
at the crossroad to indicate it wants to cross the road. After pressing the button,
at some later time, the pedestrian crossing light will be turned ON. The action
Wait will let the agent stay at a location. The actions S,N,E,W correspond to
moving in the four cardinal directions.

To simplify the problem, we make some assumptions: the agent starts from a
fixed location in the left half (one side) of the grid. After pressing the button at
the crossroad, the crossing light will turn ON N steps later, where N is a random
variable following a geometric distribution of success probability 0.05. Thus, the
underlying MDP has three observable variables: x, y, the discrete coordinates of
the agent on the grid, and t, a Boolean flag that indicates that the button has
been pressed and that the light is bound to happen (note that a geometric law
is memoryless and does not require extra variables). We specify the task as to
reach the location of the crossroad where the button is located, press the button,
and cross the road only when the light signal is ON. We define two labels for
the task: e for successfully crossing the road when the light is ON, and f for
crossing the road when the light is not ON.

We consider the causal LTL specification G(b→FX l)∧G(l↔ c), where the
first part of the conjunction represents the knowledge that the pedestrian light
has to turn ON some time later, and the second part represents the policy of
the agent, because we suppose that the agent already knows to cross if and only
if the light is on. Under these conditions, pressing the button leads to a causally
accepting state.
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8 Conclusions and discussions

This paper introduces the Temporal-Logic-based Causal Diagram (TL-CD) in
reinforcement learning (RL) to address the limitations of traditional RL algo-
rithms that use finite state machines to represent temporally extended goals.
By capturing the temporal causal relationships between different properties of
the environment, our TL-CD-based RL algorithm requires significantly less ex-
ploration of the environment and can identify expected rewards early during
exploration. Through a series of case studies, we demonstrate the effectiveness
of our algorithm in achieving optimal policies with faster convergence than tra-
ditional RL algorithms.

In the future, we plan to explore the applicability of TL-CDs in other RL set-
tings, such as continuous control tasks and multi-agent environments. Addition-
ally, we aim to investigate the scalability of TL-CDs in large-scale environments
and the impact of noise and uncertainty on the performance of the algorithm.
Another direction for future research is to investigate the combination of TL-CDs
with other techniques, such as meta-learning and deep reinforcement learning,
to further improve the performance of RL algorithms in achieving temporally
extended goals.
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