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Abstract—Security research on smart devices mostly focuses
on malware installation and activation, privilege escalation,
remote control, financial charges, personal information stealing,
and permission use. Less attention has been paid to the deceptive
mechanisms, which are critical for the success of malware on
smart devices. Generally, malware first gets installed and then
continues operating on the device without attracting suspicion
from users. To do so, smart device malware uses various
techniques to conceal itself, e.g., hiding activity, muting the
phone, and deleting call logs. In this work, we developed an
approach to semi-automatically reveal unknown malware
hiding techniques. First, it extracts SMH behaviors from
malware descriptions by using natural language processing
techniques. Second, it maps SMH behaviors to SMH-related
APIs based on the analysis of API documents. Third, it performs
static analysis on the malware apps that contain unknown SMH
behaviors to extract the code segments related to the SMH API
calls. For those verified SMH code segments, we describe the
techniques used for unknown SMH behaviors based on the code
segments. Our experiment tested 119 malware apps with hiding
behaviors. The F-measure is 85.58%, indicating that our
approach is quite effective.
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MOTIVATION

Without the awareness of users, millions of smart
devices are infected by malware [2][3]. One core reason is
that malware can conceal its behavior and trail in a smart
device. This problem is significant because hiding techniques
are commonly used by millions of malware programs to
perform privileged malicious actions without being noticed.
We define the smart device malware-hiding (SMH)
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mechanism as a means by which smart device malware can
hide itself or its actions from being viewed (or heard!) by
users. In this paper, we exclude the hiding behaviors on
desktop/server OSes (e.g., Windows, Linux) and the
behaviors taken to evade security mechanisms (e.g., anti-
malware tools or access control), because they have been
studied thoroughly and are outside the scope of this paper.

Here are three examples of SMH behaviors: (a) benign
apps typically show up in the running app list, while malware
may attempt to run in the background, e.g., Spyware
Candy_corn; (b) to hide an activity, malware can make the
activity transparent or destroy it before it becomes visible,
e.g., Malware DroidKungFu3; and (c) to cover its presence,
malware may mute the phone or disable the vibrate function,
in order to prevent the user from hearing the sound of alarms,
notifications, phone calls, or incoming short messages, e.g.,
Trojan iBanking.

According to our previous work [11], smart device
malware samples exhibited 1.5 SMH behaviors per sample
on average, while benign samples exhibited only 0.2 SMH
behaviors. This indicates that apps with SMH behaviors are
most likely malware rather than benign apps. Figure 1 shows
experimental results from our previous work [11]: the
number of SMHs in sample sets of 1,000 malicious apps and
1,000 benign apps. The 1,000 benign apps are a random
sample extracted from 6,233 benign apps, while the 1,000
malicious apps are a random sample extracted from 3,219
malicious apps. This indicates that most SMH behaviors can
be used for detecting malicious apps.

Uncovering the unknown malware hiding behavior is of
great benefit to malware detection and prevention. The major
challenge is the difficulty in automatically retrieving code
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Figure 1: Number of SMH behaviors in two sample sets of 1,000 malware apps and 1,000 benign apps.
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sections of unknown SMH mechanisms from apps, which are
the basis for writing descriptions of SMH techniques or
designing malware detection algorithms. In this paper, we
address this challenge in order to systematically reveal
unknown SMH techniques. As far as we know, there are no
existing studies on how to systematically reveal unknown
SMH techniques.

II. PROPOSED APPROACH

To search for all possible ways of malware hiding, we begin
our work by analyzing malware descriptions. A large volume
of these has been created by professional malware analysts
from well-known anti-virus companies, such as Symantec
and Norton, based on analysis of malware samples. To
increase reliability, we use malware descriptions from
multiple companies for each type of malware. DescribeMe
[8] can automatically generate the descriptions of malicious
behavior but not the SMH behavior of malware. Moreover,
the majority of our work is to find code segments of SMH
behavior based on malware descriptions, while DescribeMe
generates descriptions from codes.

Our approach to reveal unknown SMH techniques is a
novel scheme, as illustrated in Figure 2. First, we design
natural language processing (NLP) algorithms to extract
SMH behaviors from a large volume of malware descriptions.
Second, we map SMH behaviors to SMH-related APIs based
on the analysis of API documents. Third, we perform static
analysis on the malware apps that contain unknown SMH
behaviors to extract the code segments related to the SMH
API calls. We verify the SMH code segments by reproducing
and logging SMH behaviors. Eventually, for those verified
SMH code segments, we describe the techniques used for
unknown SMH behaviors based on the code segments.

To implement the scheme, we need to address three
challenges: How to extract SMH behaviors from malware
descriptions. How to map SMH behaviors to APIs. How to
extract code segments of SMH behaviors from apps. We
outline the corresponding solutions as follows:

Extracting SMH Behaviors. We design an algorithm that
employs NLP techniques to retrieve comprehensive SMH
behaviors from malware descriptions. The steps are as
follows:

e  Preprocessing descriptions. This removes stop words
(common words such as “the,” “is,” “at”) and apply
stemming to all descriptions, in order to identify the
word’s root. It also removes non-text items such as
numerals, HTML tags, links, and email addresses.

e Splitting descriptions into sentences for subsequent
sentence structure analysis [16] [15]. Characters such as
“” and “:” are treated as sentence separators.

e Analyzing each sentence for grammatical structure. A
series of grammars are designed based on NLTK [20]
and Stanford Parser [14] to analyze the grammatical
structure of sentences. These grammars check whether a
given sentence contains a string that means SMH
behavior. To construct the grammars, first, we find
comprehensive SMH operations (e.g., hide, delete, close,
cancel, remove, conceal, block, clean up, mute, disable,
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Figure 2: Uncovering SMH Techniques

deactivate, disappear, exclude) and SMH objects (e.g.,
app, icon, activity, message, phone call, audio, vibration,
system log, notification, alert, call log), which can form
SMH behavior strings. Second, we find synonyms of the
operations and objects. Third, we construct grammars
based on the SMH operations, SMH objects, and
synonyms, which consider various grammatical
structures of SMH behavior strings. Fourth, we test and
improve the grammars. Last, we run the grammars on all
data sets to obtain comprehensive SMH behaviors.
Following is an example of a grammar to identify the
SMH strings led by the verb phrase “hide”:

SMHstring ::= Verbphrase Nounphrase
Verbphrase ::= “hide”

Nounphrase ::= Det Noun | Ppr Noun | Noun

Det ;= “the” | “this”

Noun = “app” | “icon” | “activity” |
“message” | “phone call” | “notification” | “alert”
Ppr = Yits” | “their” | “app’s”

Another example grammar checks whether a string
means “delete message”:

ADstring  ::= Verbphrase Nounphrase
Verbphrase ::= “delete” | “destroy” | “remove”
Nounphrase ::= Det Noun | Ppr Noun | Noun

Det = “the” | “this”

Noun :r= “message” | “text message” |
“multimedia message”

Ppr :o= “user’s” | “his” | “her” | “its”

Mapping API. We design an algorithm to analyze all
Android API documents and map SMH behaviors to API
functions. The algorithm extract classes and API names from
Android API documents, split an API name into a pair that
consists of a verb and a noun, and then map SMH behaviors
to API names and corresponding classes. For example, the



SMH behavior “Delete Message” can be mapped to the API
function “delete()” of class
“android.content. ContentResolver”; the SMH behavior
“Mute Phone” can be mapped to the API function
“setStreamMute()” of class “android. media. AudioManager.”
To reduce potential false positives, we consider not only APIs
but also parameters and related APIs when determining
whether a code segment contributes to an SMH behavior.

Extracting SMH Related Code Segments. The static
analysis identifies SMH-related codes to help create
descriptions of the SMH techniques, following five steps.
First, it identifies the top functions of the SMH-related codes,
such as callback functions. Second, it identifies the API
functions that actually perform the SMH behaviors. Third, it
finds the code that initiates the parameters of the SMH API
function; considering both API functions and parameters can
reduce potential false positives. Fourth, it finds the related
API functions; for example, a behavior to erase a trail usually
has a related API to generate the trail, and the related API
functions can be used to further reduce potential false
positives when identifying SMH behaviors. Last, the tool
extracts the app properties, intent categories, and actions.

Static analysis is sound but also prone to false positives.
Therefore, it is necessary to verify the SMH code segments
obtained by reproducing SMH behaviors. We inject
statements into the apps with SMH code segments for logging
SMH API calls, related API calls, and parameter values. Then
we run the apps on our SMH Testbot to reproduce SMH
behaviors and check the logs. An SMH code segment is
verified if the API calls and parameter values are correctly
logged when SMH behaviors are exhibited.

III. EVALUATION

In this section, we present an evaluation of our approach
along two dimensions: effectiveness and efficiency. For a
given malware and its description, a tool is considered
effective if it can correctly extract code segments of the SMH
behaviors mentioned in the malware description. We measure
efficiency using the metrics average, median, maximum, and
minimum handling time for malware samples. We begin by
describing the datasets and platform used in our evaluation.

Datasets. We analyzed 119 malware samples from well-
known sources, such as AndroZoo [17], Virustotal [5], and
AAGM [6].

Platform. Our tools ran on an §-core Intel Xeon i7-4770
(8MB Cache, 3.4 GHz) with 32GB of RAM. The system ran
Ubuntu 14.04.1, Linux kernel version 3.13.0-32-generic.

A. Effectiveness

As there is no existing oracle to determine SMH, we
manually verified each static analysis results. Specifically,
we reverse-engineered each app — decompiled the app (to
source code) via the JADX decompiler [4]. Note that
decompilation is not always possible due to obfuscation, so
some of our manual analysis was based on source code
inspection, some on Dalvik bytecode inspection. The results
are shown in Table 1. Our tool has reported 209 SMH code
segments in total; of these 178 were true SMH code

TABLE 1. EFFECTIVENESS RESULTS

True SMH code Over-reported SMH | Under-reported

segments code segments (FP) SMH code segments
(FN)

178 31 29

Precision: 178 /(178+31) =85.17%
Recall: 178 /(178+29) = 85.99%
F-measure: 2 * (85.17%85.99) / (85.17+85.99) = 85.58%

segments, while 31 SMH code segments were over-reported
(false positives) and 29 were false negatives, i.e., our tool
missed those SMH code segments. This yields an F-measure
of 85.58%, indicating that our tool is quite effective.

Examples. Here we list three example SMH code segments
found by our approach:

e Hiding icon. After installation, benign apps add their
icons to the home screen. To hide itself, a malicious app
removes the icon so the user does not notice the app’s
presence. This can be done by calling an Android API
method setComponentEnabledSetting() to disable the
icon at runtime. For example, malware Facebook-otp
(full package name: jgywwv.jvyjsd.sordvd) masquerades
itself as the Facebook app but disables its icon
immediately after installation. We show the segment of
the code reverse-engineered from this malware:

1 PackageManager pm = getPackageManager (),
2 ComponentName cn = new
ComponentName("jgywwv.jvyjsd.sordvd”,
"fgywwv.jvyjsd.sordvd. Activity1");
3 pm.setComponentEnabledSetting(cn,
PackageManager. COMPONENT ENABLED STATE
_DISABLED,

PackageManager. DONT KILL APP);

o  Hiding in the running app list. When benign apps are
running, they typically show up in the running app list.
In contrast, a malicious app runs as a service in the
background without showing up in the list. In order to
automatically start the malware as a service without the
user needing to click the icon, a malicious app creates a
BroadcastReceiver class and registers itself to receive
events such as SMS RECEIVED and
BOOT COMPLETED. After receiving one of the
registered events, the malware’s BroadcastReceiver
launches the malware as a service in the background. As
a result, the user cannot see the malicious app in the
running app list. For example, the spyware Candy-corn
automatically records Google voice calls in the
background. As shown in the following code segment,
Candy-corn monitors seven kinds of events and starts
itself as a service (if the service is not running already).




1 public void onReceive(Context context, Intent
intent){

2 String act = intent.getAction();

3 if (Intent

ACTION BOOT COMPLETED.equals(act)|

4 Intent SMS RECEIVED.equals(act) |

5 Intent NEW _OUTGOING CALL.equals(act) |

6 Intent SCREEN OFF .equals(act) |

7 Intent PACKAGE INSTALL.equals(act) |

8 Intent PACKAGE ADDED.equals(act) |

9 Intent .SIG_STR.equals(act)){

e Excluded from the recent app list. After an app has run,
the system puts its activities into the recent app list. To
prevent  this, malware can set the flag
excludeFromRecents in the manifest file, or by calling
ActivityManager.setExcludeFromRecents(). An example
is Trojan Malapp.

1 <activity
android-name="com.yangccaa.chengaa. WEYY"
2 android:label="@string/notification_name"
3 android:taskAffinity="".NotificationActivity"
4 android:excludeFromRecents="true">

5 <intent-filter>

6 <action
android:name="android.intent.action. MAIN" />

7 <category
android:-name="android.intent.category. LAUNCHER"
/>

8 </intent-filter>

9 </activity>

B Efficiency

We show the detailed efficiency results in Table 2. The
“Bytecode size” grouped columns show that the datasets had
substantial variety in terms of app size, and some apps’
bytecode size was as large as 24 MB. The “Time” grouped
columns show running time statistics for the apps. The mean
analysis time was 46 seconds while the median was 22
seconds, which shows that our analysis is practical. Finally,
we believe that even the maximum analysis time of 3,427
seconds (i.e., 57 minutes) is acceptable for a static analysis.
To conclude, with a median analysis time of 22 seconds on a
median app size of 1.9MB we believe that our approach is
efficient at SMH analysis.

TABLE 2. EFFICIENCY RESSULTS

Byte code size (KB) Time (Seconds)
Min Max | Average | Median | Min Max | Average | Median
32 |15,021] 5,321 | 1,995 | 10 |3,427| 46 22

IV. RELATED WORK

There are a few SMH-related research works, but all of them
discuss how to use known SMH to construct detection tools
rather than how to reveal unknown SMH. StateDroid [10]

10 if{isServiceRunning())

11 return;

12 Intent servicelntent = new Intent(context,
com.google.progress.AndroidClientService.
class);

13 servicelntent.setAction("com.google.
ACTION START CALL RECORD");

14 context.startService(servicelntent);

15}

16}

uses features of a set of attacks and actions to detect specified
stealthy behaviors in Android apps. AsDroid [18] utilizes the
contradiction between the implemented app actions and
user’s expected behaviors to detect stealthy behaviors.
AsDroid relies on API-based detection of six actions, such as
starting a phone call, sending SMS, and inserting data into a
sensitive database. VAHunt [9] conducts data flow analysis
to determine stealthy plugin loading behaviors. We
developed an SHB detector [11] to identify a number of
malicious behaviors of concealing app activities, such as
removing traces of suspicious actions and hiding the presence
of an app.

No existing malware analysis techniques can
automatically extract code sections of a given malware
behavior from apps. The code sections of a malware behavior
are critical when designing detection algorithms for the
malware behavior. Existing malware analysis techniques can
be categorized as dynamic analysis, static analysis, hybrid
analysis and memory-based analysis [21][22][23][19].
However, all of these four categories of analysis techniques
aim to either detect malware or produce malware behavior
reports. None of them aim to automatically extract code
sections of malware behaviors. Extracting code sections
needs to be manually done by experts [11][18].

Existing efforts related to characterizing malware
behaviors do not discuss SMH behaviors. FeatureSmith [7]
automates the manual procedure of engineering features of
malware behaviors that are known to the community, while
we aim to uncover techniques of SMH behaviors that are
mostly unknown. Zhou and Jiang [1] characterized existing
Android malware from different aspects, including
installation methods, activation mechanisms, and the nature
of carried malicious payloads. CopperDroid [25]
characterizes a malware behavior based on how it is initiated,
either through Java, JNI, or native code execution.
ANDRUBIS [12] discusses the trend of malware behaviors,
based on the app observation dating back as far as 2010. Yuan
and Lu [13] proposed to associate features from the static
analysis with features from the dynamic analysis of Android
apps and characterize malware using deep learning
techniques. SmartDroid [24] uses a combination of static and
dynamic analysis to expose the behavior of Android malware
in Ul-based triggers.

V. SUMMARY

In this paper, we proposed a semi-automatic approach
to extract the code segments of malware hiding behaviors



from malicious apps’ binary files. Our experiments shown
that the approach can effective and efficiently find and report
those code segments. The approach can systematically
improve the understanding of how smart device malware
hides its behaviors, and anti-malware researchers and
developers can create new malware detection techniques
based on the unveiled SMH techniques. The applicability of
this research is twofold. First, the code segments of unknown
SMH obtained by this research can potentially be used to
develop new techniques for malware detection. Second, the
approach to reveal unknown SMH techniques can potentially
be applied to study other categories of malware behavior.
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