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Abstract—Security research on smart devices mostly focuses 
on malware installation and activation, privilege escalation, 
remote control, financial charges, personal information stealing, 
and permission use. Less attention has been paid to the deceptive 
mechanisms, which are critical for the success of malware on 
smart devices. Generally, malware first gets installed and then 
continues operating on the device without attracting suspicion 
from users. To do so, smart device malware uses various 
techniques to conceal itself, e.g., hiding activity, muting the 
phone, and deleting call logs. In this work, we developed an 
approach to semi-automatically reveal unknown malware 
hiding techniques. First, it extracts SMH behaviors from 
malware descriptions by using natural language processing 
techniques. Second, it maps SMH behaviors to SMH-related 
APIs based on the analysis of API documents. Third, it performs 
static analysis on the malware apps that contain unknown SMH 
behaviors to extract the code segments related to the SMH API 
calls. For those verified SMH code segments, we describe the 
techniques used for unknown SMH behaviors based on the code 
segments. Our experiment tested 119 malware apps with hiding 
behaviors. The F-measure is 85.58%, indicating that our 
approach is quite effective. 
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I. MOTIVATION 
Without the awareness of users, millions of smart 

devices are infected by malware [2][3]. One core reason is 
that malware can conceal its behavior and trail in a smart 
device. This problem is significant because hiding techniques 
are commonly used by millions of malware programs to 
perform privileged malicious actions without being noticed. 
We define the smart device malware-hiding (SMH) 

mechanism as a means by which smart device malware can 
hide itself or its actions from being viewed (or heard!) by 
users. In this paper, we exclude the hiding behaviors on 
desktop/server OSes (e.g., Windows, Linux) and the 
behaviors taken to evade security mechanisms (e.g., anti-
malware tools or access control), because they have been 
studied thoroughly and are outside the scope of this paper.  

Here are three examples of SMH behaviors: (a) benign 
apps typically show up in the running app list, while malware 
may attempt to run in the background, e.g., Spyware 
Candy_corn; (b) to hide an activity, malware can make the 
activity transparent or destroy it before it becomes visible, 
e.g., Malware DroidKungFu3; and (c) to cover its presence, 
malware may mute the phone or disable the vibrate function, 
in order to prevent the user from hearing the sound of alarms, 
notifications, phone calls, or incoming short messages, e.g., 
Trojan iBanking. 

According to our previous work [11], smart device 
malware samples exhibited 1.5 SMH behaviors per sample 
on average, while benign samples exhibited only 0.2 SMH 
behaviors. This indicates that apps with SMH behaviors are 
most likely malware rather than benign apps. Figure 1 shows 
experimental results from our previous work [11]: the 
number of SMHs in sample sets of 1,000 malicious apps and 
1,000 benign apps. The 1,000 benign apps are a random 
sample extracted from 6,233 benign apps, while the 1,000 
malicious apps are a random sample extracted from 3,219 
malicious apps. This indicates that most SMH behaviors can 
be used for detecting malicious apps. 

Uncovering the unknown malware hiding behavior is of 
great benefit to malware detection and prevention. The major 
challenge is the difficulty in automatically retrieving code 
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Figure 1: Number of SMH behaviors in two sample sets of 1,000 malware apps and 1,000 benign apps. 

	



	

sections of unknown SMH mechanisms from apps, which are 
the basis for writing descriptions of SMH techniques or 
designing malware detection algorithms. In this paper, we 
address this challenge in order to systematically reveal 
unknown SMH techniques. As far as we know, there are no 
existing studies on how to systematically reveal unknown 
SMH techniques. 

 

II. PROPOSED APPROACH 
To search for all possible ways of malware hiding, we begin 
our work by analyzing malware descriptions. A large volume 
of these has been created by professional malware analysts 
from well-known anti-virus companies, such as Symantec 
and Norton, based on analysis of malware samples. To 
increase reliability, we use malware descriptions from 
multiple companies for each type of malware. DescribeMe 
[8] can automatically generate the descriptions of malicious 
behavior but not the SMH behavior of malware. Moreover, 
the majority of our work is to find code segments of SMH 
behavior based on malware descriptions, while DescribeMe 
generates descriptions from codes.  

Our approach to reveal unknown SMH techniques is a 
novel scheme, as illustrated in Figure 2. First, we design 
natural language processing (NLP) algorithms to extract 
SMH behaviors from a large volume of malware descriptions. 
Second, we map SMH behaviors to SMH-related APIs based 
on the analysis of API documents. Third, we perform static 
analysis on the malware apps that contain unknown SMH 
behaviors to extract the code segments related to the SMH 
API calls. We verify the SMH code segments by reproducing 
and logging SMH behaviors. Eventually, for those verified 
SMH code segments, we describe the techniques used for 
unknown SMH behaviors based on the code segments. 

To implement the scheme, we need to address three 
challenges: How to extract SMH behaviors from malware 
descriptions. How to map SMH behaviors to APIs. How to 
extract code segments of SMH behaviors from apps. We 
outline the corresponding solutions as follows: 

Extracting SMH Behaviors. We design an algorithm that 
employs NLP techniques to retrieve comprehensive SMH 
behaviors from malware descriptions. The steps are as 
follows:  
• Preprocessing descriptions. This removes stop words 

(common words such as “the,” “is,” “at”) and apply 
stemming to all descriptions, in order to identify the 
word’s root. It also removes non-text items such as 
numerals, HTML tags, links, and email addresses. 

• Splitting descriptions into sentences for subsequent 
sentence structure analysis [16] [15]. Characters such as 
“.” and “:” are treated as sentence separators. 

• Analyzing each sentence for grammatical structure. A 
series of grammars are designed based on NLTK [20] 
and Stanford Parser [14] to analyze the grammatical 
structure of sentences. These grammars check whether a 
given sentence contains a string that means SMH 
behavior. To construct the grammars, first, we find 
comprehensive SMH operations (e.g., hide, delete, close, 
cancel, remove, conceal, block, clean up, mute, disable, 

deactivate, disappear, exclude) and SMH objects (e.g., 
app, icon, activity, message, phone call, audio, vibration, 
system log, notification, alert, call log), which can form 
SMH behavior strings. Second, we find synonyms of the 
operations and objects. Third, we construct grammars 
based on the SMH operations, SMH objects, and 
synonyms, which consider various grammatical 
structures of SMH behavior strings. Fourth, we test and 
improve the grammars. Last, we run the grammars on all 
data sets to obtain comprehensive SMH behaviors. 
Following is an example of a grammar to identify the 
SMH strings led by the verb phrase “hide”: 

SMHstring   ::=  Verbphrase Nounphrase 
Verbphrase  ::=  “hide” 
Nounphrase ::=  Det Noun | Ppr Noun | Noun 
Det               ::=  “the” | “this” 
Noun            ::=  “app” | “icon” | “activity” | 
“message” | “phone call” | “notification” | “alert” 
Ppr               ::=  “its” | “their” | “app’s” 

Another example grammar checks whether a string 
means “delete message”:  

ADstring       ::=  Verbphrase Nounphrase 
Verbphrase   ::=  “delete” | “destroy” | “remove” |  
… 
Nounphrase  ::=  Det Noun | Ppr Noun | Noun 
Det                ::=  “the” | “this” 
Noun             ::=  “message” | “text message” | 
“multimedia message” 
Ppr                ::=  “user’s” | “his” | “her” | “its” 

Mapping API. We design an algorithm to analyze all 
Android API documents and map SMH behaviors to API 
functions. The algorithm extract classes and API names from 
Android API documents, split an API name into a pair that 
consists of a verb and a noun, and then map SMH behaviors 
to API names and corresponding classes. For example, the 

Figure 2: Uncovering SMH Techniques 



	

SMH behavior “Delete Message” can be mapped to the API 
function “delete()” of class 
“android.content.ContentResolver”; the SMH behavior 
“Mute Phone” can be mapped to the API function 
“setStreamMute()” of class “android.media.AudioManager.” 
To reduce potential false positives, we consider not only APIs 
but also parameters and related APIs when determining 
whether a code segment contributes to an SMH behavior. 

Extracting SMH Related Code Segments. The static 
analysis identifies SMH-related codes to help create 
descriptions of the SMH techniques, following five steps. 
First, it identifies the top functions of the SMH-related codes, 
such as callback functions. Second, it identifies the API 
functions that actually perform the SMH behaviors. Third, it 
finds the code that initiates the parameters of the SMH API 
function; considering both API functions and parameters can 
reduce potential false positives. Fourth, it finds the related 
API functions; for example, a behavior to erase a trail usually 
has a related API to generate the trail, and the related API 
functions can be used to further reduce potential false 
positives when identifying SMH behaviors. Last, the tool 
extracts the app properties, intent categories, and actions.  

Static analysis is sound but also prone to false positives. 
Therefore, it is necessary to verify the SMH code segments 
obtained by reproducing SMH behaviors. We inject 
statements into the apps with SMH code segments for logging 
SMH API calls, related API calls, and parameter values. Then 
we run the apps on our SMH Testbot to reproduce SMH 
behaviors and check the logs. An SMH code segment is 
verified if the API calls and parameter values are correctly 
logged when SMH behaviors are exhibited. 
 

III. EVALUATION 
In this section, we present an evaluation of our approach 

along two dimensions: effectiveness and efficiency. For a 
given malware and its description, a tool is considered 
effective if it can correctly extract code segments of the SMH 
behaviors mentioned in the malware description. We measure 
efficiency using the metrics average, median, maximum, and 
minimum handling time for malware samples. We begin by 
describing the datasets and platform used in our evaluation. 

Datasets. We analyzed 119 malware samples from well-
known sources, such as AndroZoo [17], Virustotal [5], and 
AAGM [6].  

Platform. Our tools ran on an 8-core Intel Xeon i7-4770 
(8MB Cache, 3.4 GHz) with 32GB of RAM. The system ran 
Ubuntu 14.04.1, Linux kernel version 3.13.0-32-generic. 

 

A. Effectiveness 

As there is no existing oracle to determine SMH, we 
manually verified each static analysis results. Specifically, 
we reverse-engineered each app – decompiled the app (to 
source code) via the JADX decompiler [4]. Note that 
decompilation is not always possible due to obfuscation, so 
some of our manual analysis was based on source code 
inspection, some on Dalvik bytecode inspection. The results 
are shown in Table 1. Our tool has reported 209 SMH code 
segments in total; of these 178 were true SMH code 

TABLE 1. EFFECTIVENESS RESULTS 

 

 
segments, while 31 SMH code segments were over-reported 
(false positives) and 29 were false negatives, i.e., our tool 
missed those SMH code segments. This yields an F-measure 
of 85.58%, indicating that our tool is quite effective. 
 
Examples. Here we list three example SMH code segments 
found by our approach:  
• Hiding icon. After installation, benign apps add their 

icons to the home screen. To hide itself, a malicious app 
removes the icon so the user does not notice the app’s 
presence. This can be done by calling an Android API 
method setComponentEnabledSetting() to disable the 
icon at runtime. For example, malware Facebook-otp 
(full package name: jgywwv.jvyjsd.sordvd) masquerades 
itself as the Facebook app but disables its icon 
immediately after installation. We show the segment of 
the code reverse-engineered from this malware: 

1 PackageManager pm = getPackageManager(); 
2 ComponentName cn = new 
ComponentName("jgywwv.jvyjsd.sordvd", 
"jgywwv.jvyjsd.sordvd.Activity1"); 
3 pm.setComponentEnabledSetting(cn, 
PackageManager.COMPONENT_ENABLED_STATE
_DISABLED,  
  PackageManager.DONT_KILL_APP); 

• Hiding in the running app list. When benign apps are 
running, they typically show up in the running app list. 
In contrast, a malicious app runs as a service in the 
background without showing up in the list. In order to 
automatically start the malware as a service without the 
user needing to click the icon, a malicious app creates a 
BroadcastReceiver class and registers itself to receive 
events such as SMS_RECEIVED and 
BOOT_COMPLETED. After receiving one of the 
registered events, the malware’s BroadcastReceiver 
launches the malware as a service in the background. As 
a result, the user cannot see the malicious app in the 
running app list. For example, the spyware Candy-corn 
automatically records Google voice calls in the 
background. As shown in the following code segment, 
Candy-corn monitors seven kinds of events and starts 
itself as a service (if the service is not running already).  

True SMH code 
segments 

Over-reported SMH 
code segments (FP) 

Under-reported 
SMH code segments 
(FN) 

178 31 29 
Precision: 178 / (178+31) = 85.17%               
Recall:  178 / (178+29) = 85.99% 
F-measure: 2 * (85.17*85.99) / (85.17+85.99) = 85.58% 



	

 

• Excluded from the recent app list. After an app has run, 
the system puts its activities into the recent app list. To 
prevent this, malware can set the flag 
excludeFromRecents in the manifest file, or by calling 
ActivityManager.setExcludeFromRecents(). An example 
is Trojan Malapp. 

1 <activity 
android:name="com.yangccaa.chengaa.WEYY" 
2     android:label="@string/notification_name" 
3     android:taskAffinity=".NotificationActivity" 
4     android:excludeFromRecents="true"> 
5         <intent-filter> 
6             <action 
android:name="android.intent.action.MAIN" /> 
7             <category 
android:name="android.intent.category.LAUNCHER" 
/> 
8         </intent-filter> 
9 </activity> 

 

B Efficiency 

We show the detailed efficiency results in Table 2. The 
“Bytecode size” grouped columns show that the datasets had 
substantial variety in terms of app size, and some apps’ 
bytecode size was as large as 24 MB. The “Time” grouped 
columns show running time statistics for the apps. The mean 
analysis time was 46 seconds while the median was 22 
seconds, which shows that our analysis is practical. Finally, 
we believe that even the maximum analysis time of 3,427 
seconds (i.e., 57 minutes) is acceptable for a static analysis. 
To conclude, with a median analysis time of 22 seconds on a 
median app size of 1.9MB we believe that our approach is 
efficient at SMH analysis. 
 

TABLE 2. EFFICIENCY RESSULTS 
 

Byte code size (KB) Time (Seconds) 
Min Max Average Median Min Max Average Median 

32 15,021 5,321 1,995 10 3,427 46 22 
 
 

IV. RELATED WORK 

There are a few SMH-related research works, but all of them 
discuss how to use known SMH to construct detection tools 
rather than how to reveal unknown SMH. StateDroid [10] 

uses features of a set of attacks and actions to detect specified 
stealthy behaviors in Android apps. AsDroid [18] utilizes the 
contradiction between the implemented app actions and 
user’s expected behaviors to detect stealthy behaviors. 
AsDroid relies on API-based detection of six actions, such as 
starting a phone call, sending SMS, and inserting data into a 
sensitive database. VAHunt [9] conducts data flow analysis 
to determine stealthy plugin loading behaviors. We 
developed an SHB detector [11] to identify a number of 
malicious behaviors of concealing app activities, such as 
removing traces of suspicious actions and hiding the presence 
of an app. 

No existing malware analysis techniques can 
automatically extract code sections of a given malware 
behavior from apps. The code sections of a malware behavior 
are critical when designing detection algorithms for the 
malware behavior. Existing malware analysis techniques can 
be categorized as dynamic analysis, static analysis, hybrid 
analysis and memory-based analysis [21][22][23][19]. 
However, all of these four categories of analysis techniques 
aim to either detect malware or produce malware behavior 
reports. None of them aim to automatically extract code 
sections of malware behaviors. Extracting code sections 
needs to be manually done by experts [11][18]. 

Existing efforts related to characterizing malware 
behaviors do not discuss SMH behaviors. FeatureSmith [7] 
automates the manual procedure of engineering features of 
malware behaviors that are known to the community, while 
we aim to uncover techniques of SMH behaviors that are 
mostly unknown. Zhou and Jiang [1] characterized existing 
Android malware from different aspects, including 
installation methods, activation mechanisms, and the nature 
of carried malicious payloads. CopperDroid [25] 
characterizes a malware behavior based on how it is initiated, 
either through Java, JNI, or native code execution. 
ANDRUBIS [12] discusses the trend of malware behaviors, 
based on the app observation dating back as far as 2010. Yuan 
and Lu [13] proposed to associate features from the static 
analysis with features from the dynamic analysis of Android 
apps and characterize malware using deep learning 
techniques. SmartDroid [24] uses a combination of static and 
dynamic analysis to expose the behavior of Android malware 
in UI-based triggers. 
 

V. SUMMARY 
 

In this paper, we proposed a semi-automatic approach 
to extract the code segments of malware hiding behaviors 

1 public void onReceive(Context context, Intent  
   intent){ 
2 String act = intent.getAction(); 
3 if ( Intent 
.ACTION_BOOT_COMPLETED.equals(act)| 
4  Intent .SMS_RECEIVED.equals(act) | 
5  Intent .NEW_OUTGOING_CALL.equals(act) | 
6  Intent .SCREEN_OFF.equals(act) | 
7  Intent .PACKAGE_INSTALL.equals(act) | 
8  Intent .PACKAGE_ADDED.equals(act) | 
9  Intent .SIG_STR.equals(act)){ 
 

10   if(isServiceRunning()) 
11     return; 
12   Intent serviceIntent = new Intent(context, 
       com.google.progress.AndroidClientService. 
       class); 
13   serviceIntent.setAction("com.google. 
       ACTION_START_CALL_RECORD"); 
14   context.startService(serviceIntent); 
15   } 
16 } 
 
 



	

from malicious apps’ binary files. Our experiments shown 
that the approach can effective and efficiently find and report 
those code segments. The approach can systematically 
improve the understanding of how smart device malware 
hides its behaviors, and anti-malware researchers and 
developers can create new malware detection techniques 
based on the unveiled SMH techniques. The applicability of 
this research is twofold. First, the code segments of unknown 
SMH obtained by this research can potentially be used to 
develop new techniques for malware detection. Second, the 
approach to reveal unknown SMH techniques can potentially 
be applied to study other categories of malware behavior. 
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