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1. Introduction

Let X = (X, : n > 0) be a Markov chain taking values in a state space S. For the purpose of this paper, the state
space S may be discrete or continuous. In many applications settings, it is natural to consider the behavior of X
as a function of a parameter 0 that affects the transition dynamics of the process. In particular, suppose that for
each 0 in some open neighborhood of 6y € R?, P(0) = (P(0, x,dy) : x,y € S) defines the one-step transition kernel
of X associated with parameter choice 0. In such a setting, computing the derivative of some application-specific
expectation is often of interest.

Such derivatives play a key role when one is numerically optimizing an objective function, defined as a Mar-
kov chain’s expected value, over the decision parameter 6. In addition, such derivatives describe the sensitivity
of the expected value under consideration to perturbations in 0. Such sensitivities are valuable in statistical appli-
cations, and arise when one applies (for example) the delta method in conjunction with estimating equations
involving some expectation of the observed Markov chain; see, for example, Lehmann and Casella [14]. More
generally, sensitivity analysis is important when one is interested in understanding how robust the model is to
uncertainties in the input parameters.

In particular, suppose that 0 is a vector of statistical parameters, and that a data set of size n has been collected
to estimate the underlying true parameter 6". In significant generality, the associated estimator 6, for 6* will sat-
isfy a central limit theorem (CLT) of the form

n'2(6, — 6"y = N(0,C)

as n — oo, where = denotes weak convergence and N(0, C) is a normally distributed random column vector with
mean 0 and covariance matrix C; see, for example, Ibragimov and Has'minskii [10]. In many applications, one
wishes to understand how the uncertainty in our estimator 6,, of ° propagates through the model associated with
X to produce uncertainty in output measures of interest. Suppose, for example, that the decision maker focuses on a
performance measure of the form a(6) = E’Z, where Z is some appropriately chosen random variable (rv) and E%(-)
is the expectation operator under which X evolves according to P(0). If a(-) is differentiable at %, then

n'?(a(6,) — a(6")) = Va(0")N(0,C)
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as n — oo, where Va(6) is the (row) gradient vector evaluated at 6; see Serfling [18]. If, in addition, Va(-) is con-
tinuous at 0° and C can be consistently estimated from the observed data via an estimator C,, the interval

A On A Op

a0,) —z—, a(0,) +z—

a(0) =, a(0)+=

is an asymptotic 100(1 — 6)% confidence interval for a(6") (provided Va(6")CVa(6*)" > 0), where z is chosen so
that P(—z<N(0,1)<z)=1-dand g, = \/Va(én)CnVa(én)T. (We note that the continuity of Va(-) at 6" is needed

for the consistency of the estimator Va(0,) for Va(0").) The confidence interval (1.1) provides the modeler with
the desired sensitivity and robustness of the model described by X to the statistical uncertainties present in the
estimation of 0°. In summary, the delta method rests on three conditions: (i) the existence of the derivative of af(-)
at 0%, (ii) the continuity of the derivative at 0%, and (iii) one’s ability to compute the derivative. This paper pro-
vides close to the best possible conditions for verifying the existence and the continuity of the derivatives in the
general state space Markov chain settings and provides probabilistic representations that lead to simulation esti-
mators for the computation of those derivatives.

The problem of determining such differentiability has a long history and has been addressed through various
approaches, including weak differentiation (Pflug [16], Vazquez-Abad and Kushner [19]), likelihood ratio (Glynn
and L’Ecuyer [3]), measure-valued differentiation (Heidergott and Vazquez-Abad [8], Heidergott et al. [9]), and
derivative regeneration (Glasserman [2]). However, most of the previous approaches are limited to special clas-
ses of problems. For example, the results in Vazquez-Abad and Kushner [19] and Pflug [16] are limited to
bounded performance functionals; Glasserman [2] imposes special structures in the the transition dynamics of
the Markov chains and their parametrization; Glynn and L’Ecuyer [3] assume for random horizon expectations
that the associated stopping times have finite exponential moments, and for stationary expectations that the Mar-
kov chain is geometrically ergodic. Heidergott and Vazquez-Abad [8] provide conditions that do not require the
geometric ergodicity for random horizon and stationary performance measures based on a measure-valued dif-
ferentiation approach. However, their sufficient conditions are difficult to verify in general and still require that
the associated stopping times possess at least finite second moment. Also based on measure-valued differentia-
tion, Heidergott et al. [9] study stationary expectations and provide sufficient conditions verifiable based on the
model building blocks without such restrictions. However, their sufficient conditions require geometric ergodic-
ity of the Markov chain. In this paper, on the other hand, we provide sufficient conditions (verifiable based on
the one-step transition dynamics) for random horizon expectations that do not require any moment conditions
for the associated stopping times—hence, allowing even infinite horizon expectations. For stationary expecta-
tions, we provide (again, easily verifiable) sufficient conditions that do not require geometric ergodicity.

We illustrate that our differentiability criterion is close to minimal via the example of the G/G/1 queue wait-
ing time sequence with heavy tailed service times. If (X, :n>0) is the waiting time sequence for the G/G/1
queue, it is well known that the service time distribution needs to possess a finite (p + 1) th moment in order for
the stationary expectation a(0) = E?X%, to be finite. When we assume that the service time has a Pareto tail, such
a moment condition corresponds to the case where the shape parameter r of the Pareto distribution satisfies
r>p+1; hence, this is a necessary condition for the existence of the derivative. We show that with our Lyapunov
strategy, one can successfully prove the differentiability of @ with this minimal condition.

For both random horizon expectations and stationary expectations, we provide two different sets of sufficient
conditions—one based on operator-theoretic arguments and the other one based on Lyapunov conditions. These
two approaches complement each other. The operator ideas are simpler to apply, and immediately imply exis-
tence of derivatives over the entire space of functions with finite weighted norm. The Lyapunov approach, on
the other hand, allows one to craft a Lyapunov function that is specially tuned to the specific functional of inter-
est, and hence allows one to obtain the weakest conditions for the given functional.

We point out that the theory developed in this paper extends easily to nonexplosive Markov jump processes,
because the expectations discussed in Sections 2 through 4 correspond to linear systems involving the embedded
discrete time Markov chains.

The rest of the paper is organized as follows. Section 2 develops a preliminary theory for both random horizon
expectations and stationary expectations based on simple and clean operator-theoretic arguments. Section 3 pro-
vides more general criteria for differentiability of random horizon expectations based on stochastic Lyapunov
arguments. In Section 4, we apply the Lyapunov approach to studying differentiability for stationary expecta-
tions. Section 5 concludes the paper with a brief discussion of the Lyapunov conditions for general random hori-
zon expectations that cannot be written in the form studied in the previous sections.

(1.1)
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2. Operator-Theoretic Criteria for Differentiability
We start by studying differentiability in a setting in which one can use operator arguments to establish existance
of derivatives. In this operator setting, the proofs and theorem statements are especially straightforward.

It should be noted that the probabilistic representations of the derivatives, whose existence are studied in this
section, lead immediately to related simulation algorithms that can be deployed to compute the derivatives
numerically. The specific forms of such simulation estimators will be discussed in Section 3 and Section 4, where
we provide more general conditions for the differentiability.

Consider a Markov chain X = (X, : n > 0) living on state space S, with one-step transition kernel P = (P(x,dy) :
x,y €S), where

P(x,dy) = P(X,s1 € dy| X, = x)

for x,y € S. We focus first on expectations of the form

T-1 j—1 T—1
w(x)=E, > exp (Zg(xk)> FX) +exp (Zg(xk)>f(xT), (2.1)
=0 k=0 k=0

where T =inf{n>0:X, € C‘} is the first hitting time of the target set C°CS,f:S—R,,¢:S—> R, and E,(-)=
E(-| X = x).

In (2.1), we permit the possibility that C° = 0, in which case T = oo almost surely (a.s.), and u" is then to be inter-
preted as the infinite horizon discounted reward:

o j—1
w'(x) =By exp (Zg(Xk)>f (X))
j=0 k=0

In addition to subsuming infinite horizon discounted rewards, (2.1) also includes expected hitting times (g =0,
f=1onCandf=0on C), exit probabilities (§ =0, f= 0 on C, and f(x) = I(x € B) for x € C°, when one is consider-
ing P(Xr € B|X) = x)), and many other natural Markov chain expectations.

It is easy to verify that

u' = iknf, (2.2)
n=0

where K = (K(x,dy) : x,y € C) is the nonnegative kernel for which
K(x,dy) = exp ((x))P(x, dy) (23)

for x,y €S, and

7 =F0+ [ explstonPledy)fo)

for x € C. Here, we are taking advantage in (2.1) of the (common) notational convention that for a function
h:B — R, a measure 1 on B, and kernels Q; and Q, on B, the scalar nh, the function Q:h, the measure nQ;, and
the kernel Q; Q> are respectively defined via

nh= /B h(y)n(dy),
@)= [H)i(x,dy),
(1)) = [1(Qi(x, ),
(@Qu)(x,4)= Qe dy)Qaty, ),

whenever the right-hand sides are well-defined. Furthermore, we define the kernels Q" via Q%(x,dy) = 6.(dy)
(where 6,(.) is a unit point mass at x), and Q" = QQ"~V for n > 1.

Our goal is to use operator-theoretic tools to study the differentiability of (2.2). To this end, we start by defin-
ing the appropriate linear spaces that underlie this approach. Given a measurable space (B, B), measurable
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w:B—[1,00), and h: B — R, let ||h||,, = sup {|h(x)|/w(x) : x € B} and L, = {h € L: |}h]|,, < oo}, where L is the set of
measurable functions. For a linear operator Q : L,, — L, and a functional 1: L, = R, set

h
”lQl”w = ”Q ”w

neLyililly#0 Pl

and
Inll., = sup {Inkl : h € Ly, [hll,, < 1}.

Then, let £, ={Q € L:]||Qlll, < oo}, and My, = {ne€ M : ||, < oo}, where £ and M are the sets of kernels, and
measures, respectively. Each of the spaces L, £, and M, are Banach spaces under their respective norms and
addition/scalar multiplication operations. Furthermore, for Q1,Q, € Ly, h € L, and 1 € My, it is easy to show
that

11Q1Q2llly < QI - Q2L (24)
and
1QAll, < QL - 117l
17Qlkw < linll, - QI
Inhl < lInlly, - IRl (2.5)

see, for example, Dunford et al. [1] for the special case w = 1. In view of (2.4), if |||Q™|||, < 1 for some m > 1, then
(I — Q) is invertible on £, and

1-Q7'=) Q"
n=0
Given a parametrized family of kernels (Q(0) € L, : 0 € (a,b)), we say that Q(-) is continuous in Ly, at 6y € (a,b) if

QB + 1) — Q(Bo)lll, = 0 as h — 0, and differentiable in L, at 6y € (a,b) with derivative Q’(6y) if there exists a
kernel Q’(6y) € L,, for which

—0

H‘Q(QO + h;l - Q(GO) - QI(QO)

as h — 0. If Q(:) is differentiable in a neighborhood of 6, with derivative Q’(-), and Q’(:) is continuous at 6y in
Ly, then we say that Q(-) is continuously differentiable at 6. Similarly, given families (f(6) € L, : 6 € (a,1)) and
(n(0) € My : 0 € (a,b)), we say that f(-) is continuous in L, at Oy if || f(Oo + h) — f(Oo)ll,, — 0 as h — 0, and differentia-
ble in L,, at 0y if there exists f'(6y) € L,, such that

Hﬂ%+m—ﬂ%)
h

—f'(6o)

as h — 0; and 7(-) is continuous in M, at 6y if ||n(6y + 1) — n(6p)||, — 0 as 1 — 0, and differentiable in M,, at 6y if
there exists 17'(6p) € M, such that

'lU_)O

H’Y(Qo +h})1* n(6o) n,(eo)Hw o

as h— 0. As in L, if f(-) and 7n(-) are differentiable and their derivatives are continuous at 6, in L,, and My,
respectively, we say that they are continuously differentiable.

Assuming that (Q(0): 6 € (a,b)) is n-times differentiable in some neighborhood N of 0y, with derivative
(Q"(0): 0 € N), we say that Q(-) is (n + 1)-times differentiable in L, at 0y if (Q"(0): 0 € N) is differentiable at
0o, with corresponding derivative QU+ (6y). We can analogously define f +1)(9,) and 1](”“)(90) in the spaces L,
and M, respectively. (We restrict our discussion in this paper to scalar 0, because the vector case introduces no
new mathematical issues.)

We can now state our first result, pertaining to the differentiability of u".

Theorem 2.1. Suppose there exists w : C — [1, 00) and 6y € (a, b) for which
a. [|[K"(Bo)lll,, <1 for some m > 1;
b. K(-) is (continuously) differentiable in L, at 0o, with derivative K’'(0y);
c. f(+) is (continuously) differentiable in Ly, at 0o, with derivative f "(60).
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Then,
i. (I — K(0)) is invertible on Ly, for 0 in a neighborhood of O,

ii. Setting G(0) = (I — K@), G()is (continuously) differentiable in Ly, at 6y, and
G'(60) = G(00)K'(00)G(60);
i uw'(0) =", K"(G)f(@) is (continuously) differentiable in L., at Oy, with

(1) (80) = G (00)f (00) + G(B0)f (00). (2.6)

If, in addition, K(-) and f (-) are n-times (continuously) differentiable in L, and L., respectively, at 0, then Q(-) and u*(-)
are n-times (continuously) differentiable at 0y in L., and L., respectively, and Q" (0y) and ()" (60) can be recursively
computed via

G"(60) = Zl (’;) GY(60)K"(60)G(60) (2.7)
j=0
and

() _ 7(n) S (n (n—j) ()
(ur) (60)—G(60)(f @)+ (1)K o)) ), 238)
0

=
where, as usual, KO (6) = K(0) andf(o)(Q) :f(G).
Proof. Part (i) is obvious. For part (ii), note that assumptions (a) and (b) imply that there exists a neighborhood A of

0 for which sup . [IK™(0)][l,, < 1 and sup . IK(O)|l|,, < oo, from which it follows that sup, IG(O)]ll,, < co. Fur-
thermore, because (I — K(6¢ +h))G(6p + h) = G(Op + h)(I — K(Op + h)) = I, evidently

(G(Og +h) — G(00))I — K(69)) = G(Og + h)(K(6o + h) — K(60)),
so that
G(Qo + ]’Z) — G(Qo) = G(Go + I’Z)(K(Qo + h) — K(Qo))G(Go) (29)

Clearly, this implies that [[|G(6o + h) — G(60)lll,, < [IIG(6o + M|l IK(Bo + 1) — K(6o)lll IG(Eo)ll., — 0 as h — 0, so G(-)
is continuous in L, at Oy Consequently, (2.9) implies that G(-) is differentiable in £, at 0, with G'(0p) =
G(00)K’(00)G(Op). In case K’ is continuous, continuity of G’ is also immediate from this expression.

For part (iii), the result follows analogously from the identity

(8 +h) = w'(80) = G(B0)(f(B0 +h) = F(60) +(G(Bo +h) = G(60))f (B0 + ).
The proof for the n-fold derivatives for n > 2 is very similar and therefore omitted. O

Remark 2.1. Suppose that K(-) possesses a density (k(-,x,y) : x,y € C) that is n-times differentiable (with (point-
wise) derivative (k" (-,x,y) : x,y € C)). Fore >0and 0 <j<n, let @ (x,y) = sup|9790|<€|k(f)(9, x,Y)|. Then, the con-
ditions

sup Km(eo,x,dy)M<1 for some m > 1, (2.10)
xeC JC w(x)
() W(y)K
su w(x, Oo,x,dy) < oo, 2.11
P J 8 Yy KO0 y) @11
and
sup [ (1+&9 0090 LD k60, dy) < o, 212)
xeC JC¢ w(x)

forj=0,...,nimply (a), (b), and (c) of Theorem 2.1, implying the validity of (2.7) and (2.8).

There is an analogous differentiability result for measures. For a given initial distribution y on C, let v be the
measure defined by

T-1 j—1
v(dy) = EMZ exp (Z g(Xk)> I(X; € dy)
=0

k=0
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fory € S, where E,(-) £ Jot(dx)Ex(:). Then,

V= Z uK",
n=0
where K is defined as in (2.3). Assume that p(-) and K(-) now depend on the parameter 6 (so that v does as well).
The following result has a proof identical to that of Theorem 2.1, and is therefore omitted.

Theorem 2.2. Suppose there exists w : C — [1,00) and 6y € (a,b) for which
a. [[[K™(Oo)lll,, <1 for some m = 1;
b. K(:) is (continuously) differentiable in L., at 6o, with derivative K'(6y);
c. u(:) is (continuously) differentiable in M., at Oy, with derivative p’(60y).
Then, v(0) = >_,7, w(O)K™(0) is (continuously) differentiable in M., in 6o, with

V'(60) = ' (60)G(6o) +v(00)G' (Op).

If, in addition, K(-) and u(-) are n-times (continuously) differentiable in L., and Mo, respectively, at 0o, then v(-) is
n-times (continuously) differentiable in M, and v\")(6y) can be recursively computed via

n—1
W (00) = <u<”><eo> £y (’})v”>1<(”—f>(eo>) G(6o).
j=0

We finish this section with a short operator-theoretic argument establishing existence of a derivative for the sta-
tionary distribution under the assumption of geometric ergodicity (see condition (a) in the following, which is
the key Lyapunov condition that implies geometric ergodicity in chapter 15 of Meyn and Tweedie [15]).

Theorem 2.3. Suppose that there exists a subset AC S, €,c>0,A,r€(0,1), an integer m > 1, a probability measure ¢ on
S,and w: S — [1,00) such that

a. (P(Bp)w)(x) < rw(x) +cl(x € A) forx € S;

b.P™(0,x,dy) = Ap(dy) forxe A,y €S, and |0 — Op| <¢;

c. P(:) is (continuously) differentiable in L., at .

Then, X is positive Harris recurrent for O in a neighborhood of 0y, and the stationary distributions 11(0) € My, for O in
a neighborhood of Oy are (continuously) differentiable in M., at Oo. Furthermore, if T1(0o) is the kernel defined by
I1(69, x,dy) = (6, dy) for x,y € S, (I — P(6y) +I1(6o)) has an inverse on L, and

' (60) = 7(60)P'(60)(I — P(60) + T1(69)) " (213)
If, in addition, P(-) is n-times (continuously) differentiable in Ly, at Oy, then m(-) is n-times (continuously) differentiable in
My, at 0o, and 7" (8,) can be recursively computed via

n—1

w60 = (] )7 E0P 6ot - Peeo) +Tion)

=0

Remark 2.2. Note that theorem 4 of Glynn and L’Ecuyer [3] is closely related to the Theorem 2.3. See also remark
11 and the Kendall set assumption in Glynn and L’Ecuyer [3]. Heidergott et al. [9] and Heidergott and Hordijk
[6] also impose similar assumptions to establish the measure-valued derivative of the stationary distribution.

Proof. In view of (a) and (c), there exists ' < 1 such that
(P(Og + h)w)(x) <rw(x)+cl(x € A) (2.14)

for x €S and |h| sufficiently small. Assumptions (a) and (b), and the fact that w >1 implies that X is positive
Harris recurrent for 6 in a neighborhood of 6. We can now appeal to theorem 2.3 of Glynn and Meyn [4] to
establish that (I — P(6y) + I1(0p)) is invertible on L, with (I — P(6y) + I1(6p)) " € Lq.
Furthermore, according to Glynn and Zeevi [5], (2.14) implies that n(6y +h)w < c/(1 — 1), and hence [|rt(Op +
W, <c/(1—1"). Also,
(1t(60 + h) — 1(60))(I — P(60)) = (6o + h)(I — P(6y))
= 71(90 + h)(P(eo + h) — P(Qo)).

In addition, vI1(6y) = 1(6p) for any probability v on S. So (1t(6y + h) — 7(00))I1(6p) = 0. Consequently,
(1t(6o + h) — 11(60))(I — P(60) +11(69)) = 1(6o + h)(P(O + 1) — P(6y)),
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from which it follows that
(0 +h) — (0g) = (Oy + h)(P(Og + h) — P(6p))(I — P(6y) + H(QO))%. (2.15)
Thus,

(6o + 1) — (B0)ll, < ﬁIIIP(QO +h) = P(00)l,, - T = P(Bo) +TT(60)) "l (2.16)
Because P(+) is differentiable in Ly, |||P(6¢ +h) — P(0o)||l,, — 0 as h — 0, so 1t(6g + h) — 7(6y) in M., as h — 0. Let-
ting i — 0 in (2.15) then yields (2.13).

For the continuity of the derivative in case P(-) is continuously differentiable, note first that (a) and (b) imply
that [[|(P(69) — I1(60))"|ll, <1 for some m >1; this along with the continuity of P(-) and 7(:), in turn, implies
that sup,, l(P(60 + h) — T1(6o + 1))"lll., < 1 for a small enough hy. Therefore, we conclude that |||(I — P(6y + h)+

T1(00 + 1) *|lI, is bounded (uniformly with respect to (w.r.t.) h). From this, it is easy to see that the same argu-
ment as for (2.13) works with 6 = 0, + h instead of 6, and proves that

7' (0y +h) = (By + )P (6 + h)(I — P(6y + h) + T1(6y + h)) . (2.17)

Now,

7'(’(60 + h) _ 7'(,(60) — (T(,(Go + ]’l) _ 77(60) B 77(90 + h)) _ (n/(eo) _ T((GO + h) - T((GO)

o ) = 0-m,

where we have already seen that (II) converges to 0. To show that (I) also vanishes, note that

((6o) — 1(Og + h))(I — P(6g + h) + I1(6p + h)) = (1(6g) — 1(Og + h))(I — P(Op + h))
= 1(00)(I — P(Op + h)) = 1(60)(P(60) — P(6o + 1)),

and hence,

7'((60) —_ﬂ}f@o + I’l) _ 77(90) P(Qo + h;l — P(@o)

From (2.17), (2.18), the continuity of 7t(-), the continuous differentiability of P(-), and the uniform boundedness of
the norm of (I — P(6y + h) + I1(6, + h)) ', we conclude that (I) vanishes. Therefore, 7/(-) is continuous at 6.

Finally, as in Theorem 2.1, the proof for the n-fold derivatives for n > 2 follows similar lines, and is therefore
omitted. O

(I — P(6 +h) +T1(0y + h)) . (2.18)

We conclude this section with a brief discussion of the role of w. Note that the growth rate of w decides the extent
of the performance measures to which the theorems in this section apply. For example, the M,,-differentiability of
11(0) in Theorem 2.3 establishes the differentiability of the stationary expectations of f for all f’s that are majorized by
w. On the other hand, the sufficient conditions are also stated in terms of w, and it tends to be harder to establish
such sufficient conditions when w’s grow faster. Therefore, in the context of optimization or sensitivity analysis, the
choice of w should be made in such a way that it covers sufficiently wide range of performance measures and objec-
tive functions for the purpose of the tasks at hand, while the sufficient conditions are satisfied at the same time.

The condition (a) of Theorem 2.1, 2.2, and 2.3 are the key inequalities that ensure the differentiability of the
expectations of our interest. Note that the condition (a) of Theorem 2.1 and 2.2 are equivalent to ‘/CK’"(QO)w(x) <
rw(x) for some r € (0,1), and hence, we see that w plays the role of a Lyapunov function in all three main theo-
rems. It should be noted that the operator-theoretic formulation in this section allows simple statements at the
cost of stronger conditions. For example, Theorem 2.3 establishes, in the presence of a single Lyapunov function
w, the n-fold differentiability of the stationary distribution 7(-) in My, but the existence of such w requires geo-
metric ergodicity; compare this to Theorem 4.1, which involves two Lyapunov conditions but does not require
geometry ergodicity. Establishing sufficient conditions that are closer to necessary (at the cost of slightly more
involved sufficient conditions) is the overarching subject of the rest of this paper.

3. Lyapunov Criteria for Differentiability of Random Horizon Expectations
Let A = (a,b) be an open interval containing 6. For each 6 € A, let EE(-) 2 E9(|X, = x) be the expectation operator
associated with X, when X is driven by the one-step transition kernel P(6). As in Section 2, we consider

T-1 j-1 I-1
(6,0~ S exp (Zg(Xk))f(Xf) roxp (zgm))ﬂxT) 6
k=0 k=0

=0
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foreachxeCgivenf:S—R,¢:S—>R,0#£CCS,and T =inf{n > 0: X,, € C°}. Our goal, in this section, is to pro-
vide Lyapunov conditions under which u*(0) = (u*(6,x) : x € C) is differentiable at 8, and to provide an expres-
sion for the derivative u*'(6).

Note that if f is nonnegative, then u*(0) is always well-defined. Furthermore, by conditioning on X;, it is easily
seen that

w(0,=f()+ [ expGEIPO,% () + [expE)PO,xdy(0,)
for x € C, and hence

w'(0) = (0) + K(0)u'(0), (32)

where as in Section 2,
70,2 =)+ [ exp GO, %, dy)f )

for x € C, and K(6) = (K(6,x,dy) : x,y € C) is the nonnegative kernel on C for which
K(0,x,dy) = exp (3(x))P(6, x,dy).

Given (3.2), formal differentiation of both sides of the equation yields

u”(60) = f (09) + K'(0p)u*(60) + K(Oo)u" (6), (3.3)
so that 1/(6) should satisfy the linear system
(I = K(60))u™(60) = f (69) + K’ (B0)u*(6p). (34)

When |C| is finite and g is negative, it will frequently be the case that the matrix K(6y) has spectral radius less
than 1, in which case I — K(6y) is invertible and

(I—K(6)) ' = ij"(eo). (3.5)
n=0
In this case,
w00 = > K00 (F (00) + K00 (00)).
n=0

But (3.2) and (3.5) further imply that

u(6o) = f K"(60)f (60), (3.6)
n=0
and hence we arrive at the formula
W (00) = 303 KM (O00)K (0K 00 (0) + > K7 (O0)F (0o) 67)
m=0 n=0 m=0

The remainder of this section is largely concerned with rigorously extending the formula (3.7) to the general state
space setting, under Lyapunov criteria that are close to minimal (and easily checkable from the model building
blocks). We start by observing that when f is nonnegative, Fubini’s theorem implies that

© -1
u(0,x) = ZEfexp ( E g(Xk)>f(Xj)I(T > /)
=0 k=0

0 j-1
+) _Elexp (Zg(Xw) I(T > HFX)I(X; € C°)

j=0 k=0

= (K(O)F (0)(), (3.8)
j=0
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thereby rigorously verifying (3.6). To simplify the notation in the remainder of this paper, we set K = K(6y) and
put

G=Y K" (3.9)
n=0

Our path to providing rigorous conditions under which (3.7) holds involves the following key absolute continuity
assumption:

A1. The kernels (K(0) : 0 € A) are absolutely continuous with respect to K, in the sense that there exists a (meas-
urable) density (k(6,x,y) : x € C,y € S) such that

K(6,x,dy) = k(6,x,y)K(x, dy)
for0e A, xeC,yeSs.

Our absolute continuity condition is often a mild hypothesis. For example, when X has a transition density
with respect to a reference measure 1), Al is in force when the support of the density is independent of 6.
We also need to assume that K(0) is suitably differentiable at 0.

A2. There exists € > 0 such that for each x € C and y € S, k(:,x,y) is continuously differentiable, with derivative
K(,x,y),in[6p —€,00 +€].

Set we(x,y) = sup{|k'(0,x,y)|: 10 — Oo| <€}, K'(x,y) =K (B0, x,y), and K'(x,dy) = k' (x,y)K(x,dy). (Note that K’ is a
signed kernel, and not nonnegative.)

Our hypotheses are stated in terms of K(6), not P(0), in order to offer the extra generality needed to cover set-
tings in which derivatives involving parameters in the discount factor exp (g(-)) are of interest. Such derivatives
are commonly considered in the finance literature when attempting to hedge uncertainty in the so-called “short
rate.” (The resulting derivative is called rho in the finance context.)

Finally, we also need to assume f(0) is suitably differentiable at 6. To permit derivatives in parameters that
involve the discount factor, we write f(0) in the form

Flo.0)=fw+ [ KO dyfo). .10)

A3. Assume that
e [ el ) FIK(Oo, 7 dy) < o

for x € C.

In many applications, f =0 on C°, and hence, f(0) is independent of 6 and A3 need not be verified (e.g.
expected hitting times).

Throught the rest of this section, we will slightly abuse notation and let K(6)h(x) denote [.h(y)K(x,dy). We are
now ready to state the main theorem of this section.

Theorem 3.1. Assume Al, A2, and A3. Suppose there exists € > 0 and two finite-valued nonnegative functions vy and v,
defined on C for which

(K(0)v0)(x) < vo(x) — | £(6,%)| (3.11)
forxeCand |0 — Op| <€, and

(Ken)(x) < 100~ [l pn(y)KGrdy) = (o) (612)
for x € C. Then, u*(-,x) is differentiable at 6y and

1w (64) = /C /C /C G(x, dy)K' (y, d2)G(z, duw)f (w) + /C /CCG(x,dy)K'(y,dz)f(z). (3.13)
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If, in addition,
/C e, )01(YK(x, dy) < o0 (3.14)
and (3.12) holds in a neighborhood of Oy, that is,
(K(0)o1)(x) < v1(x) — /C we(x, y)vo(y)K(x, dy) — Fe(x), VO € [6) —€,00 + €], (3.12)

then u*’' (-, x) is continuous on [0y — €, 0y + €].

Recalling the definition of G, we see that (3.13) is indeed the general state space analog of (3.7). The functions
vp and v, appearing in Theorem 3.1 are often called (stochastic) Lyapunov functions. A standard means of guess-
ing good choices for vy and v is to recognize that u*(6) satisfies (3.11) with equality if f is nonnegative, whereas

/ [ K. @210 2000 +7e)| Gl
C C

satisfies (3.12) with equality. When C CR" is unbounded, one can often approximate the large x behavior of
these functions, and use these approximations as choices for v; and v,, respectively.
The proof of Theorem 3.1 rests on the following easy bound.

Proposition 3.1. Suppose that Q = (Q(x,dy) : x,y € C) is a nonnegative kernel and that f:C - R,. Ifv:C—> R, isa
finite-valued function for which

Qu<o—f, (3.15)
then,

ZDO: Qf <wv. (3.16)

n=0

Proof. Note that (3.15) implies that Qu <o, and hence Q"v < v for n > 0. It follows that Q" v is finite-valued for
n > 0. Inequality (3.15) can be rewritten as

f<v-Qu. (3.17)
Applying Q' to both sides of (3.17), we get
Qf < Qv - Q" (3.18)
Summing both sides of (3.18) overj=0,1,...,n, we find that

ZH:ijSU— Q"lv <.
=0

Sending n — oo yields (3.16). O

Proof of Theorem 3.1. For the purposes of this proof, € is taken as the smallest of the €’s appearing in A2, A3,
and the statement of the theorem. We start by observing that Proposition 3.1, applied to the Lyapunov bound
(3.11), guarantees that

D> K0)If(0)] < v,
n=0
and hence Fubini’s theorem implies that u*(0) is finite-valued, u*(0) =), , K"(0)f(0), and |u*(0)| < vy. Because
u*(0) is finite-valued (as is K(0)u*(6)), we can write
(60 +h) — u"(60) = K(Bo +h)u’ (6 + h) — K(6o)u’(6) +f (60 +h) — f(6),
and hence,

(I = K)u" (80 + h) — u"(60)) = (K(60 + h) — K(60)u*(6o +h) + (f (60 + 1) — f(60)). (3.19)
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For |h| <e,

/C (K(60 + 1, %, dy) — K(Bo, %, dy))iw (G + h, )
< /C k(60 + 1%, y) — K60, %, YIK(x, dy)oo(y)

<Jh) / sup [k(6, %, )IK(x, dy)oo(y)
Cl0—0y|<e

= |h| / we(x, y)K(x, dy)ovo(y).
C
Similarly, for |1 <,
|f (60 + 1, x) — f(60,x)|
< / w06, Ko, dy)| )
CC
< [hfFe(x).

Recall that we assumed that 7.(x) < oo in Assumption A3. Consequently, Proposition 3.1, together with the
Lyapunov bound (3.12), ensures that

/G(x, dy) (‘/(K(E)o +h,y,dz) — K(6o,y,dz))u’ (60 + h,z)
C C

7@+ 760 )] ) < o),
It follows from (3.19) that u*(0, x) is continuous at 6y and

u (0o +h,x) —u'(6o,%) _ /G(x,dy) {/ KO0t loy2) KO0y, 2) u*(6p +h,z)K(y,dz)
C C

7 h
N /C k(6o + 1, ,zl)1 — k(60,Y,2) FRKG, dz)} .
But,
k(0o + 1y, Z;)z — kOoy,2) _ 4 W,2) (3.20)
and
(0o +h,z) — u* (0o, 2) (3.21)
ash — 0. Also,
k(6o +h,y, Z;)z — Kk(60,y,2) 106y +h,2)| < ey, 2)00(2) (3.22)
fory,z € C, and
k(8o +h,y,z) — k(6o,y,2)| <w.(y,2) (3.23)

h
for y € C, z € C°. The Lyapunov bound (3.12), together with Proposition 3.1, guarantees that

/C G(x,dy) < /C we(y,z)vo(2)K(y, dz) + /C Cwe(y,z)| f(z)|K(y,dz)> < 00. (3.24)

In view of (3.20) through (3.24), the dominated convergence theorem therefore establishes that 1(6, x) is differen-
tiable at 6y, and

u’(0g,x) = /CG(x, dy)/ck’(y,z)u*(GO,Z)K(y, dz) + /CG(x, dy)/o_k’(y,z)f(z)K(y, dz), (3.25)

which is equivalent to (3.13).
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Turning to the continuity of u*(-, x), note one can easily check that
uw’(0) =F (0) + K'(0)'(0) + K(O)u' (6)
For O € [0y — €,0¢ + €], where K’ (0)u*(6,x) = /Ck’(Q, x,y)u*(0,y)K(x,dy), and hence,

w0 +h) — u”(0) = GO)F (0 +h) — F(6)) + GO)(K'(O +h) — K'(0))u’ (6 +h)
+G(O)K'(O)(u (0 +h) —u*(0))) + GO)((K(6 +h) — K(O)u*' (O +h)).

Now, a similar argument (via dominated convergence and the Lyapunov conditions) as the one that leads to
(3.25)—along with (3.14), and (3.12")—shows that u* (0 + h) — u*(0) = 0 for 0 € [Op —€,0p +€]. O

Our proof also yields the following (computable) bound on #*(6), namely,

"’ (6o, x)| < v1(x), (3.26)
for x € C. Moreover, (3.13) implies that
m+n
u & Z exp <Z g(Xz)> kI(QO/ Xm/ Xm+1 )f(Xm+n+1) (327)
m+n<T i=0

is an unbiased estimator for u*’(6y).

In many applications, the parameter 0 enters the dynamics in a very specific way, which allows further simpli-
fication of the result. In particular, whenever S is a separable metric space, we can always express X as the solu-
tion to a stochastic recursion; see, for example, Kifer [12]. Namely, we can find a mapping 7: Sx S’ — S and a
sequence (Z, : n > 1) of independent and identically distributed (iid) S’-valued random elements such that

Xpr1 = V(Xn/ Zn+1) (328)

for n > 0. Suppose that O affects the dynamics of X only through the distribution of the Z,’s. Assume that for
zes,

P%(Z, € dz) = p(0,2z)P*(Z, € dz), (3.29)

where p(-,z) is continuously differentiable for z € S’. If u*(0, x) is defined as in (3.1), then u*(:, x) is differentiable at
0o and u*' (0, x) is given by (3.13) (where K'(x,dy) = E*1(r(x, Z1) € dy)p’ (60, Z1)), provided that there exists € > 0
and finite-valued nonnegative functions vy and v, defined on C C S for which

E%00(r(x, Z))P(6, Z1) < vo(x) — | (6,)] (3.30)
forxe Cand |0 — Oy| <€, and

E%0;(r(x, Z1)) < 01(x) — E®o(r(x, Z1))| Su}? [p"(0, Z1)|(r(x, Z1) € C)
0—0y|<e

— E?|f(r(x, Z1))| |QSL;I|) [p'(6, Z1)II(r(x, Z1) € C°),

for x € C; the proof is essentially identical to that of Theorem 3.1 and is omitted.
According to Theorem 3.1, for functions f satisfying the Lyapunov bound,

u’ (0o, x) = /SV'(JC, ay)f(y),
where

G(w,dx) | K'(x,dy) [ G(y,dz), w,z€C
V’(w,dz): /C /C y/C y
/CG(w, dx)/CEK’(x, dz), weC,zeC.

Hence, our derivative can be represented in terms of a signed measure. (In general, v/(x,S) is nonzero in this
setting.)

Our approach also extends, in a straightforward way, to higher-order derivatives. Formal differentiation of
(3.2) n times yields the identity

w0y = "0+ 3 (1)Ko o)
=0
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which suggests that the n™ order derivative u*™(6) can then be recursively computed from u*©(0), . . .,
u*"=1(0) by solving the linear (integral) equation

(I — K@) () =F" (0) + i (?)K("f)(e)u*(f)(G). (3.31)
=0

In particular, it should follow that
n—1
w(0) = G (f(”)(e) Y (?)K("—f)(e)u*<f>(9)) . (332)
j=0

Rigorous verification of (3.32) can be implemented with a family vy, vy, .. .,v, of Lyapunov functions. Specifically,
assume that the densities k(-,x,y) (for x € S,y € S) are n-times continuously differentiable in some neighborhood
[0 — €,60 + €] of 6;, and set

oV (x,y)= sup [KV(6,x,y)l
|6—00|<e

forxeC,ye€S.

Theorem 3.2. Suppose that there exists € > 0 and a family of finite-valued nonnegative functions vy, vy, ...,v, defined on
C for which

(K(0)vo)(x) < vo(x) — | £(6, )]
forxeCand |0 — Op| <e;
-1

(K(O)o)(x) <vy(x) = > (;) /C @l y)o,(y)K(6, x,dy) — /C @Y fIKO,x,dy)

j=0

forxeC, |0 —6p|<e and1<1<n; and
/ a)g”) (x, y)vn(y)K(x,dy) < oo
C

for x € C. Then, u*(-,x) is n-times continuously differentiable at 0, and the derivative can be recursively computed from the
equations

1 D(0y, x) :/G(x,dy)/lzl(l.)k(l‘f)(ﬁo,x,y)u*<f)(y)1<(x,dy)
c cim \J
+ [Glx,dy) [ K0, 2K ).

The proof of Theorem 3.2 mirrors that of Theorem 3.1, and is therefore omitted. As in the proof of Theorem 3.1,
the argument establishes the bound [u*" (6, x)| < v,,(x) for x € C on the n'™ order derivative.

The previous results that come closest to our results in this section are Glynn and L’Ecuyer [3] and Heidergott
and Vazquez-Abad [8]. Glynn and L’Ecuyer [3] study more general functionals over the random horizon than
those studied in this section, however, they require geometric moments of the associated stopping times, which
is often a much stronger condition than necessary. The sufficient conditions in Heidergott and Vazquez-Abad [8]
do not assume geometric moments of the stopping times. However, they study a quite restricted class of random
horizon expectations—that is, the ones of the form EY Z]T:O f(Xj)—and they require that the stopping time possess
at least finite second moment. Moreover, their sufficient conditions for differentiability are not given in terms of
conditions that can be checked directly from the transition function of the Markov chain (unlike the Lyapunov
criteria used in our paper). Instead, they provide conditions that require the expectation of a certain functional of
the parametrized maximum of the Markov chains over the random horizon to be finite:

E|supte(a) Z SuP|f(Xz)|

SUPge, T0(@)
:| <00,
O, i=1 O,
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where {X%},., is the coupled family of Markov chains with the corresponding transition distributions
{P(0,x,dy)}gcp. and {1o(a)} is the associated stopping times. As a result, verifying such conditions typically
requires cleverly bounding the above functionals with some other random variable that does not depend on 0’s
and then bounding the expectation of the random variable.

4. Lyapunov Criteria for Differentiability of Stationary Expectations
Perhaps the most commonly occurring expectations that arise in applications are those associated with steady-
state behavior. Our Lyapunov approach is also well-suited to establishing differentiability in this context. As in
Section 3, it is informative to first study the problem nonrigorously.

A stationary distribution 71(0) = (11(6,dx) : x € S) of the Markov chain X associated with one-step transition ker-
nel P(0) will satisfy

7(0) = m(0)P(0). (4.1)
Differentiating both sides of (4.1) with respect to 0, we obtain
'(0) = 7' (0)P(0) + n(O)P'(0),
which leads to the equation
'(0)(I — P(6)) = n(6)P'(6).

This equation is similar to (3.4). However, unlike (3.4), the operator I — P(6) appearing here will never be inverti-
ble, even when [S| < co. In addition, I — P(0) is acting on a measure rather than a function in this setting. Thus, a
different approach is needed here.

For a given functionf : S — R, set a(0) = n(6)f. Thus,

a(0o +h) — a(0)= m(6o + h)f — 7(6o)f

= (6o + 1) f,, (42)
where f.(x) = f(x) — 7(6p)f. Whereas I — P(6y) is singular, the Poisson’s equation
(I — P(60))g =fc (4.3)

is, under suitable technical conditions, generally solvable for g (because of the special structure of the right-hand
side, namely 7t(6p) f. = 0). Substituting (4.3) into (4.2), we get

a(0o +h) — a(0o) = (0o +h)(I — P(60))g (4.4)
= 1(6 + h)(P(6 + ) — P(60))g- '
This suggests that

@’ (6g) = 1(60)P’(60)g. (4.5)

We now turn to making this argument rigorous.
We start by assuming that (P(0) : 0 € A) itself satisfies the absolute continuity condition:

A4. The family of one-step transition kernels (P(0) : 0 € A) is absolutely continuous with respect to P(6y), in the
sense that there exists a density (p(0,x,y) : 0 € A, x,y € S) for which

P(6,x,dy) =p(6,x,y)P(6o, x,dy)

for x,y € S, and O € A. Furthermore, there exists € > 0 for which p(-,x,y) is continuously differentiable on [0y —
€,00 +¢€] foreach x,y € S.

Set we(x,y) = supjg_g,|<IP’(6,%,y)|. Our next assumption involves a (uniform) minorization condition over the set 4,
which is standard in the theory of Harris recurrent Markov chains; see, for example, Meyn and Tweedie [15]:
A5. There exists € > 0, a subset A C S, an integer n > 1, A > 0, and a probability ¢ for which
P06, x,dy) = Ap(dy)
forxeA,yeS, and |0 — Oy <e.

For a,b€R, let avb2max(a,b). We can now state our main theorem on differentiability of stationary
expectations.
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Theorem 4.1. Assume that A4 and A5 hold. Let x : Ry — Ry be a function for which x(x) > x and k(x)/x — oo as x — co.
Suppose that there exist positive constants €, co, and c1, and nonnegative finite-valued functions q, vo, and vy for which

(P(O)o0)(x) < o0®) — (1) v 1) + col(x € A), 46)
@@mmmmuw«(éwwwmmmeWmeﬁ+mMem, @)
forxeS, |0 — 0| <€, and
sup vp(x) < oo (4.8)
x€A

Then,

i. There exists an open interval N containing 6y for which X is a positive recurrent Harris chain under P(0) for each
OeN;

ii. There exists a unique stationary distribution 1(0) satisfying 7(6) = (0)P(0) for each 6 e N and m(0)q < c, for
OeN;

iii. For each f such that | f(x)| < g(x) v 1 for x € S, there exists a solution g (denoted g = T'f) of Poisson’s equation satisfying

((I = P(60))8)(x) = f(x) — 1(Bo)f
for x €S, and |g(x)| = |(Tf)(x)| <a(vo(x) + 1) for x € S, where a is a finite constant;
iv. For each f such that | f(x)| < g(x) v 1, a(0) = n(O)f is continuously differentiable at 6,, and

a’(6) = /SR(GO,dx)/sp'(QO,x,y)(Ff)(y)P(Qo,x,dy). 4.9)

Proof. It is a standard fact that A5, (4.6), and (4.8) imply that X is a positive recurrent Harris chain under P(6) for
0 € N (where N is selected so that A5, (4.6), and (4.8) are all in force); see, for example, (Meyn and Tweedie [15]).
As a consequence, there exists a unique stationary distribution 7(6) for each 6 € N. Furthermore, (4.6) implies
that the bound 7(0)g < ¢y holds for 6 € NV; see, for example, corollary 4 of Glynn and Zeevi [5]. Because X is Har-
ris recurrent (and (4.6) holds), one can now invoke theorem 2.3 of Glynn and Meyn [4] to obtain (iii).

Turning to (iv), note that (4.7) guarantees that 71(0)vy < oo for 0 € N, so that 7(0)|['f| < co.

With (i), (if), and (iii) having been verified, we can now appeal to (4.4) to write

(0o + h)f — m(O)f = 1(O0 +h)(P(Op + h) — P(6o))Lf
= /Sn(Go +h, dx)/S(P(GO + h,x,dy) — P(6o, x,dy))ITf)(y). (4.10)

Set s(x) = Js we(x,y)(vo(y) + 1)P(60, x,dy) and put L, (x) = I(s(x) > m), I’ (x) = L(s(x) < m).
Observe that because Ip(60 +h,x,y) — p(60,x,y)|/h < we(x,y), and I(Ff)(y)l <a(vo(y) +1),
[+ o | (MO0 =0 ) o
s

s/ﬁ«%+hdwmmw we(x,y)a(ooy) + DP(6o,x,dy)
S S

<a / (00 + h, dx)T,, (x)s(x)
S

< 4 (60 + 1 dx) CD ¢ )
n{(g”(>>m}/ (0
(00 +h,dx)x( [ (1vwe(x,y))(vo(y) + 1)P(O, x,dy)
{(8»5@>m%/‘ (/ )
1, 4.11)
“{(g»“”>w}

where the last inequality follows from (4.7) and corollary 4 of Glynn and Zeevi [5].
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On the other hand,

/ (00 + h, d)IE, (v) 00 h;)l = PO (ppy ) 2 / (6o + b, dx)s"(x) = (60 + H)sT,
S S

where
Isp(x)| < a/sa)g(x, Y)(@o(y) + 1)P(Oo, x, dy)l(s(x) < m) < am, (4.12)

so s} is bounded. It follows that
(O + h)s;' — m(Oo)sy,’ = (O + h)(P(Op + h) — P(6p))(Is}).

I
S
am

I7(60 + h)sj;' — (Bo)s}y| < a®mh| Sﬂ(Qo +h,dx) swe(x,y)P(Qo,x,d]/)(Uo(y) +1)

l"sm
h
-l <a(vg + 1) because

Note that

<qv1from (4.12), and hence,

< a2m|h|/n(60 + I, dx)s(x)
S
<a*mlhlc; — 0 (4.13)

as h — 0. Finally,

(6005t = [0 an, o [POEL2DZLODD pg, ),
S S S

and

6 +h,x/ - 9 /x/ ’
p(6o y})l p(6o y)—>P(90,x,y)

as h ™\, 0. Furthermore, |p(6y + I, x,y) — p(60, X, y)|/h < we(x,y), Tf)(y) < a(vo(y) + 1), and
/S (00, d3) [0, P00, ) eow) +1) < /S (00, dx)s(x) < c1,
so the dominated convergence theorem implies that
[0 sy — [0, 0 - [p00, %P0, %, dn)T)w) @.14)

ash\ 0.

If we first let 1 — 0 and then let m — oo, (4.10) through (4.14) imply part (iv) of our theorem.

Finally, turning to the continuity of the derivative, note that the exactly same argument as earlier gives a’ (6 +
h) = [1(0g +h,dx)p’ (0o + h,x,y)Tosn f(X)P(Oo, x,dy) where Tg .y, f is the solution g of the Poisson equation
g—P(Oy+h)g=f — 1(6 + h)f. Because

(6o + 1) — ' (80) = (a'(@o oy M@+ (1) — a0y +h)> - <a'(90) a6 +h) a(Go)),

—h h

and we have seen that the second term vanishes as 1 — 0, we are done if we show that the first term also van-
ishes. Similarly as in (4.4), ®(6p) — a(8o + h) = (60)(P(6y) — P(6¢ + h))L g 4 f- Therefore,
a((Bg +h) +(—h)) —a(@o+h) _ a(6g) — (O + h)

—h B h

= [0+ 1y 00+, TSP , )

a' (g +h) — a'(6o +h) +

6o,x,y) — p(O +h,x,
[0, POEDZPOERED )00, )

= /s(n(Qo +h,dx) — 1(6p,dx))p’ (B0 + h,x,y)L g i f(x)P(O0, x,dy) (4.15)

+ /5 718y, dx) (p'(@o +h,x,y) +F (60, %,y) = Z (Go+h,x,y )) Tousn f()P(O0, x, dy). (4.16)



Downloaded from informs.org by [162.254.170.41] on 14 April 2024, at 13:03 . For personal use only, all rights reserved.

Rhee and Glynn: Sensitivity Analysis for Markov Chain Expectations
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2019-2042, © 2022 INFORMS 2035

Upon a perusal of the proof of theorem 2.3 of Glynn and Meyn [4], one can see that the uniform minorization
condition A5 and the uniform Lyapunov inequality (4.6) imply g+, f(x)| < a(vo(x) + 1) with the same constant a
as in (iii). One can prove that (4.15) vanishes as i — 0 by the same argument as (4.11) and (4.13). On the other
hand, (4.16) vanishes by the continuous differentiability condition A4 of p and the dominated convergence along
with (4.7). O

As for Theorem 3.1, the proof also establishes a computable bound on |a’(6p)|, namely |a’(6y)| < ac; where a is the
constant in (iii). Also, the representation (4.9) of the derivative leads to the simulation estimator as well. Assuming
without loss of generality that X possesses an atom A, (4.9) can be written as an infinite sum of expectations:

& (00) = S % (8, X0, X0)(F(X0) — m(@)(T1(A) 2 ),
i=1

where 71(A) =inf{n >1: X, € A}. Such a quantity can be estimated via cross-spectral density estimation meth-
ods; see, for example, Rosenblatt [17]. Again, as in Section 3, we can further simplify the conditions when X is
the solution to the stochastic recursion (3.28), in which the parameter 0 affects only the distribution Z;. When
p(-,z) is continuously differentiable, (4.7) may be simplified as

(P(B)v1)(x) <v1(x) — x (EGU (1 v sup [p'(6, Z1)|> (vo(r(x,Z1)) + 1)p(6, Z1)> +cl(x € A). (4.17)

|6—00|<e

With A5, (4.6), and (4.8) also in force, this ensures the differentiability of a(-) at 6y, with a’(6y) given by
a/(00) = (60, dxE (TN, Z0)p' (00, 21) (418)
s

A useful example on which to illustrate our theory (and an important model in its own right) is that of the
waiting time sequence W = (W,, : n > 0) for the single-server G/G/1 queue, with first-come, first-serve queue dis-
cipline. Let V,, be the service time for the n™ customer, and let y,.,; be the interarrival time that elapses between
the arrival of the n™ and (1 +1)* customer. If W,, is the waiting time (exclusive of service) for customer 7, the
W,/’s satisty the stochastic recursion

Wy = [Wn +V, - Xn+l]+ (4.19)

for n >0, where [x]" £max(x,0). Assume that the V,/s are iid, independent of the x,’s (which are also assumed
iid). Then, W is a Markov chain takmg values in S = [0, o). It is well known that W is a positive recurrent Harris
chain if EVjy < Exy, and that EVP < oo is then a necessary and sufficient condition for guaranteeing the finiteness
of ntf,, where f,(x) = x” (with p > 0); see, for example, Kiefer and Wolfowitz [11]. This suggests that it then typi-
cally will be the case that the pth moment should be differentiable when EV} ! < co. This can be immediately
seen in the setting of the M/M/1 queue, where this follows directly from the Pollaczek Khintchine formula.

We consider this problem in the special case in which the service times are finite mean Pareto random varia-
bles (rv’s), and O influences the scale parameter of the Pareto distribution. In other words, we consider the setting
in which

PO(Vo>v)=(1+60)"

for & > 1. In this case, the density of V, under PY is given by 6hy(6v), where hy(v) = a(1 + v)"*!, so that
0\ /1+060\ "
100=(5) (170) -

0,0 = 0,05 @+

and

v
1+ 60)) '

Note that both the density p and its derivative (with respect to 0) are bounded functions. Furthermore, the rv
p’ (6, V;) has mean zero under P%. For any ¢ > 0, the set A = [0, c] is easily seen to satisfy condition A5, and A4 is
trivially verified (with w.(-) bounded). Then, if vo(x) = 1271, v1(x) = apx"*?, and «x(x) = X (with r > p and a3, a,
chosen suitably), we see that (4.6), (4.7), and (4.8) all hold, guaranteeing the differentiability of 71(0) f, (according
to Theorem 4.1).
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1 + p+1
1+;<%V0—X1>:| ) — mx.
Observe that as x — oo,

Xfp+1 ( {1 +% (% Vo — X1>:| +) —x= x(fp+1(1) +f;+1(1) (%) (% Vo — X1>> —x+o(l) as.

= (P+1)<%V0 — Xl) +0(1) as.

For example, to verify (4.6), we note that

X PI(PO)00)(x) — v0(x)] = alxﬁ%(

where o(1) represents a function k(x) such that k(x) — 0 as x — oo uniformly in a neighborhood of 6,. In addition,
note that for p > 0 and x > 0, the mean value theorem implies that f,.1(1+x) = f,1(1) +f;,,(1 + &)x for some
&€0,x], so that f1(1+x) =fpe1(1) + (p+ 1)(1+ EY'x <1+ (p+1)(1 + x)’x. Consequently,

1/6, i 160, \""
x< 1+x<6V0—)(1>:| ) —XSX<1+X6V0> — X

10 10
Sx<1+(p+1)<1 +;6_0V0> ;G—OVO) —X

Because EVg+1 < o0, Fatou’s lemma applies to ensure that

1 60 * 6O
1+;(§V0 _Xl)] ) —x> S(P"'l)EeOSI;P <§V0 —X1>

1
=(p+ 1)s%p (9(?—1) - Ex1>,

limsup sup E% <xfp+1 <

X—00 ]

as x — oo (with convergence that is uniform in a neighborhood of 6p). If we choose a; so that a;(p+1)

sup, (ﬁ — E)(l) < —2and c so that

1/0 *
a; sup E% (xpr({l +(0V0 —)(1)} ) —x) <-1
0 x\ 0

for x > ¢, then (4.6) is validated. A similar argument applies to (4.7), in view of the boundedness of w,(-). Our
argument therefore establishes that 7f, is differentiable if EV{ < oo for some g >p+2. This is not quite the
“correct” result (in that we previously argued that EV(’;Jr1 < oo should be sufficient.)

The reason that our argument fails to provide optimal condition here has to do with special random walk
structure that is present in the process W that is difficult for general machinery to exploit. The challenge arises in
(4.4). Note that the argument just provided for W involves using vy = a1 f,+1 as a bound on the solution g to Pois-
son’s equation for f,. (As we shall see in a moment, g is indeed exactly of order x”*!). The problem is that neither
P(6¢ +h) fp41 nor P(0p) f,+1 in (4.4) are integrable with respect to 71(0p + 1) unless EVgJr2 < 00, This is what leads to
the extra moment appearing in our earlier argument for W. Thus, any argument that yields differentiability
under the hypothesis EVSJrl < co must take advantage of the fact that the random walk structure of W yields the
integrability of (P(6 +h) — P(0))g under EV(";Jrl < oo without demanding the integrability of P(6y)g and P(0y +
h)g separately.

It is shown in Glynn and Meyn [4] that, in view of the fact that W regenerates at hitting times of {0}, the solu-
tion ¢ to Poisson’s equation for f, can be expressed as

7(0)-1

§x) =EX Y " (f(W)) — 1(60) f,), (4.20)

=0
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where 7(0) = inf {n > 1: W, = 0} is the hitting time of {0}. Let Z; = V; 1 — Xj, Sj=Zi+ - +Z;, (forj > 1), 7,(0) = inf{j >
1:x+85; <0}, u = EZ;, and note that (4.20) implies that
(P(80 +1)g)(x) — (P(60))(x) = E*g(W1)[p(60 + 11, Vo) — 1]
T7,(0)—1
=E® > [(x+S)’ — n(00) f](p(60+h, Vo) — DI(x+Z1 >0).  (421)
=1
But,
7x(0)—1 T,(0)—1

>+ PO +h, Vo) 1) =" Y

j=1 j=1

Si — Vo \? Vi
(1 + ]TO> + péj(x);Fl 70:| (p(@o +h, Vo) — 1),

where &;(x) lies between 1+ S;/x — Vo /x and 1 + S;/x. Note that

7,(0)-1

7,(0)-1 X _
> aesti= [ (1+5[1¢1/X)p_11du= /0 (1+ 8,0 du,

j=1

x(0)-1

where S,(it) = Spy,1/x. Similarly, Z?:“(O) "1+s; i/x — Vo/x)~ ! 1= / (1 +S,(1) — Vo/x) 'du. Because Sy(-) con-

verges to a straight line with slope 1, and T*(? ! converges to 1/|u|, while Vj/x vanishes almost surely as x — oo,

7 (0)-1 1 1/|ul
> Ej(x)p_1; —>/ (1 +usy'ds as.
=1 0
_11
lul p

as x — oo. Furthermore, p(6y +h, Vo) — 1 is a mean zero rv that is independent of (1 + (S; — Vo)/x)" for j > 1 and
Et.(0) ~ x/|u| as x — oo (where a1(x) ~ ax(x) as x — oo means that a1(x)/a2(x) — 1 as x — c0). In view of (4.21), this
suggests that

(P(6o + h)g)(x) — (P(60)g)(x) ~ EVo(P(Go +h, Vo) —1)

lul
as x — oo (i.e.,, one power lower than the growth of g itself). Thus, this style of argument can successfully deal with
the integrability 1ssue discussed earlier, and leads to a validation of the derivative formula (4.9) for W under the
assumption EVp < oo. A rigorous statement and the remaining details of the proof can be found in Appendix A.

This dlfferentlatlon result for W can also be found in Heidergott and Hordijk [7], with a different (and longer)
proof, and with some steps that appear to be incomplete. (In particular, the paper asserts that E% ZT(O) ! fp(W)) is
bounded for any fixed 0 and p, which implies that our function g grows at most linearly regardless of p; see Lemma
5.5 of the paper). Another related result can be found in Leahu et al. [13], which also proves the differentiability of
the G/G/1 queue. However, it requires that the stationary waiting time has p + 1 moments, which in turn requires
that the service time has p + 2 moments; see condition (iv) in theorem 4. As discussed earlier, this is a stronger
assumption than necessary.

For general Markov chain stationary expectations, the previous results that come closest to Theorem 4.1 are
Glynn and L’Ecuyer [3] and Heidergott et al. [9]. However, the sufficient conditions provided in these papers
require geometric ergodicity of the Markov chain, which is a much stronger condition than our Lyapunov condi-
tions. For example, for the G/G/1 queue in the previous example to be geometrically ergodic, the service time
distribution needs to possess an exponential moment. It should be noted that in case the Markov chain possesses
an atom «, the sufficient condition for the random horizon result in Heidergott and Vazquez-Abad [8] can also
be used for checking the differentiability of the stationary expectation of Markov chains taking advantage of the
fact that the stationary expectation can be written as 7(0)g = EY ZT(‘)‘) '¢(X,)/Elt(a). However, as pointed out in
Section 3, the sufficient conditions provided there are often not straightforward to verify.

5. Lyapunov Criteria for Differentiability of General Random Horizon Expectations

In this section, we discuss the differentiability of the Markov chain expectations that cannot be described as solu-
tions of linear systems as in the previous sections. More specifically, let T2inf{n > 0: X, € C°} and consider for
each positive integer k a functional f; : C* x C° — R. We are interested in the differentiability of

u(@,x) = ESfT(XO/Xlr o /XT)



Downloaded from informs.org by [162.254.170.41] on 14 April 2024, at 13:03 . For personal use only, all rights reserved.

Rhee and Glynn: Sensitivity Analysis for Markov Chain Expectations
2038 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2019-2042, © 2022 INFORMS

for fr(Xo,X1,...,Xr)’s that can be bounded by the functionals of the form studied in Section 2. For example, fr(Xo,
Xj,...,Xr) can be a function of the maximum of X/s between time 0 and T. Set ve(x,y)=sup {|p(6,x,y):
|0 — Oo| < €}, we(x,y) =sup{lp’(6,x,1)/p(0,x,y)| : |0 — Oy| < €}, and for each p > 1,

002 [ e dy)P(O0, ),

ég(x)é/wg(xly)P(GO/xldy)+// wZ(y/Z)P(GO/y/dZ)P(Q()/xrdy)r
C cJce

and

fp(Q, x)2fP(x) + /Ccexp (p - gx)fP(y)P(6, x, dy).

Theorem 5.1. Assume that A4 in Section 4 holds. Suppose that fr(Xo, X1, ..., X1) < Z]T:o exp ( f:é g(Xk))f(Xj) almost
surely for some g§:S — R and f: S — Ry, and there exist constants €,y € (0,1), q,v,s > 1, and nonnegativé finite-valued
functions vy, vy, and vy such that 1/q+1/r+1/s <1 and

2 )P, dy) < o) ~ 920, Ve, 5.1)
C
/C 01()P(00, x,dy) <o (x) — [G1(x),  VxeC, (52)
/Cexp (sg(x))v2(y)P(Bo, x,dy) < va(x) — |fs(90,x)|, Vx eC, (5.3)
/03(y)P(90,x,dy) <yus(x) — Pf“(Xl € ("), VxeC. (5.4)
fe
Then, u(0, x) is differentiable at 0 and
w'(0,x) = E%fr(Xo, X4, ..., X7)L1(0), (5.5)
where
102 Ly(e)S PO X X)) d L@ 2T p6,Xi1,%).
K203 Frn et ad L2 T[p0. X0 X)

If (5.3) and (5.4) hold in a neighborhood of 6y, then 1’ (-, x) is continuous at 6.
Proof. It is well known (see, for example, Glynn and L’Ecuyer [3]) that

u(0g +h) = EXL(Og + h) fr(Xo, X1, - - ., X1),
and hence,

1 L(Oy +h) — L(O
7 (B fr(Xo, X1, Xr) = EMfr(Xo, X, ., Xp)) = B O +h) — L(0)

7 fr(Xo, X1, ..., Xr)

for each h € (Op — €,0p + €). Because (Lt(0g + h) — L1(00))/h — L}(0p) almost surely as 1 — 0, (5.5) follows if the
integrand on the right-hand side is uniformly integrable. To establish such a uniform integrability, pick 6 > 1 suf-
ficiently close to 1 so thata = (1/g+06/r + 6/s)" > 1. We will show that

Lr(69+h) — L1(6 !
T( 0 })l T( O)fT(Xo, X1 ..... XT) < 00,

sup E%
Ihl<e

Note that due to the continuous differentiability of p(-,x,y), (Lt(0¢ +h) — Lt(09))/h = L7(0") where |0 — 0| < h.

From Holder inequality,

L1(69 +h) — Lr(6o)
h

a

E fr(Xo, X1, ..., Xr)

T T _r(n* a
- NP0 X, X)
R R e

< E"“ﬁ 1(Xio1, X; " EY S Xi 1, Xi A EX| fr(Xo, ..., Xp)/? o8 5.6
< (E| |vi(Xi-1, X)) - Za)e( i—1, Xj) (E°l fr(Xo, ..., 7). (5.6)
=1

i=1

= ESO|fT(XO, .. ’XT)L%(G*)la — ESU

>

£ ()
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We proceed to proving (I), (II), and (III) are all finite. Starting with (I), note that from (5.1) following a similar
argument as in the proof of Theorem 3.1 along with Proposition 3.1, one can check that this implies that (I) is
finite, in particular, bounded by vy(x). We now move onto (III) and omit the proof for (II) because the argument
for (II) is similar to (III) but only slightly easier. We start with observmg that (5.4) implies that T possesses a finite
exponential moment: Eeoy*T < o0. Now we turn to proving E °| fr(Xo, X1, .. XT)|S /% < oo, which, in turn, is
implied by the finiteness of E| Z] _oexp (X =0 g(Xk))f(X )F° due to the assumptlon of the current theorem. Note
that from (5.3) and again following the same reasoning as in the proof of Theorem 3.1,

T -1 s
EPY (eXp (Zg(Xk)>f(Xj)> < co. (5.7)
7=0 k=0

Therefore,

s/0 -1 /0
E (Zexp (Zg<xk>)f<x >) <ED <T££‘,i¥ exp (Zg(Xk))f(Xf)>
5= =0

j=0

(EGOTD 1) & <E9° (1)1<1]zix <exp <Zg(Xk))f(X )) )
T = 5
(EHOT_) g (EGOZ <€‘Xp <Zg(Xk)>f(X])> )
k=0

j=0
< . (5.8)

Note that in case (5.3) and (5.4) hold in the neighborhood of 8y, the previous argument can be carried out for 0’s
that are sufficiently close to 0y as well to show that u'(0) = EGOfT(XO, .., X71)L%(0), and note that the previous
argument in fact proves the uniform integrability of | fr(Xo, ..., X)L’ (9)| s in a neighborhood of 0y. Therefore,
the continuity of the derivative follows. O

In the case that X is the solution to the stochastic recursion (3.28), the conditions of Theorem 5.1 simplify again.
That is, if (5.4) holds, and for some ¢q,7,s > 1 such that1/g+1/r+1/s <1,

E%0,(r(x, Z1))exp (s - §(x))p(Oo, Z1) < v(x) — |J£s(90,x)|/ (5.9)
E{ sup Ip(G,Zl)ﬂ < 00, and E{ sup [p’(0,Z1)/p(6,Z1)| | <o, (5.10)
|6—60|<e |6—6|<e

then 1/(-, x) is differentiable at 0, and if in addition (5.4) and (5.9) hold for ’s in the neighborhood of 6y, then
the derivative is continuous. The proof is similar, with the only difference arising in bounding what corresponds
to (5.6). That is, instead of (5.6), here we need to bound

EQ|fr(Xo, ..., X)Ly (@

. (67, Z)
=E 'fT(Xo ..... XT)HP(G Z)ZP(Q Z)

2 (mm)

2 (1) £ (I

uniformly in /1 where ve(x) = supjg_gq,.[P(6, %) and we(x) = supg_gq |Ip"(0,%)/p(6,x)|. For (I), note that E%v1(Z,) =
Eeosup|6_90|<€p‘7(9,zl) — 1 as e >0 and P(T > n) <y"E%y~T. Therefore, one can choose € small enough, so that

(E®01(Z1))"° (PP (T > 1)) V/° decreases at a geometric rate w.r.t. 1. For such ,

: = 2 o 1/6
EEOHUZ/O(ZI') Z B {HUZ“’(Z,-);T = n} < Z <E9°HU'7(Z )) (PO(T = n)’s
i=1 n=1 = —

<3 (ELVUZ)) BT 2 )T < oo

n=1
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For (II), from Wald's inequality

T r/o T T r/d T /6
EQ <Zwe(Zi)) <E% (Z (nljl_.alx Cl)e(Zi)) > <E, (Tnljl_alx a)e(Zi))
i=1 = =

i=1
r — % r — T %
< (E% l”(o—l))% (Efonléx wé(Z,-)) < (ESTeD 5 <Eg° Zwé(ZJ)
= i=1

< (ENToT) T (BENT - B! (Z1))F < 0.

The argument for (III) comes from (5.9) in the same way as in Theorem 5.1, and the rest of the argument is identi-
cal as well.

It should be noted that the conditions (5.1), (5.2), (5.3), (5.4) are much stronger conditions than the Lyapunov
conditions in Sections 3 and 4. The expectations in Sections 3 and 4 that arise as “solutions of linear systems”
have the special structure that allows one to fully leverage the fact that the underlying process is a Markov chain.
As a consequence, we can establish Lyapunov criteria that come close to allowing one to obtain minimal condi-
tions for smoothness in the setting of such expectations. On the other hand, for general expectations, it seems to
be difficult to fully utilize the Markov structure.

Appendix A. The G/G/1 Queue Example
In this section, we prove the following statement: if PP(Vy>0) = (1+90)_r_1, then a(0) =m(0)f, is differentiable for
1<p<r, and the derivative is

o’ (60) = Egg, 1 (B0, Vo)Tfy(Wh). (A1)
It turns out to be handy to have the following bound. The proof of the claim will be provided at the end of this section.
Claim A.1. Let f,, Lm A fp- There is a constant d > 0 and kg > 0 such that
[(P(O0 + )T fym — P(O0)Lfpm)(x)| < hd(xP +1), (A.2)
for h < hg and m € [0, c0].

First note that (4.6) can be established as in Section 4 with vg(x) = x"*! and g(x) = x” for any p < r, and hence, |If,(x)| <
c(x**1 +1) for p < r by Glynn and Meyn [4], and f, is 7(0)-integrable for p < r by Glynn and Zeevi [5]. Because If,,, is
71(0p + h)-integrable (because it is bounded by an affine function), if we let @,,(0)27(6) fym, then (69 +h) — ay(0o) =
1(00 +h)(P(Og + 1) — P(00))Lfy,,. Monotone convergence theorem guarantees that a,,(0p +h) — a,,(0g) converges to a(6p +
h) — a(6y) as m — oo; on the other hand, applying monotone convergence and then bounded convergence twice along with
Glynn and Zeevi [5] and (A.2), one can check that 7(6q +)(P(6g + h) — P(00))Lfp,n — 7(6g + h)(P(O + 1) — P(00))Lf,. There-
fore, (4.4) is valid. Now, set s(x) =x” +1 and put L,(x) = I(x > m) and I}, = I(x < m). Then,

/ (0 + 1, dx)T, (%) w% () <d / (O + I, dx)T, (x)s(x)
JRr, )
are+1 mP +1
Sd/n(@o +h,dx) 0 s(x)mp+€ 1
mP+1
—ca L (A3)

for 0 <e <r — p and some constant ¢ > 0. On the other hand, let

P(QO +h) — P(GO)

= If,(x) 21(6p + h)syy,

/ (6o + h, dx)IE, (x)

+

then, s}’ is bounded by c(m” + 1) for some ¢, and hence I's)' <a(m” +1)(x + 1) for some a > 0.
Therefore, by the same argument as in (4.4),

[7(Bo + h)s — 1(Oo)sy| = I1(Og + h)(P(O + h) — P(6p))(I'sy,)]
- / (B + b, dX)ETS([x + Vo — x117)(p(60 + h, Vo) — 1)
< hd'(m? +1) (A4)

for some d’ > 0. Finally,

7@ = [ mOn o, Er KL=
JR,

For each x, sj'(x) — ]Iﬁ”(x)Efop’(Gg +h, Vo)I'f,(Wy) as h — 0 by bounded convergence. Also, due to the definition of I (x)
and boundedness of p’, s}' itself is bounded w.r.t. i and x. Therefore, applying the bounded convergence theorem, we

rfp(wl)~
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conclude that
(B0)sl — / (00, X)L, (X)Ep’ (60, Vo)TF, (W), (A5)

as h — 0. Therefore, if we let h — 0 and then let m — o0, (A.3), (A4), and (A.5) imply (A.1).

Proof of the Claim. First note that

T:(0)—1
P(6 + M) fy(x) = P(O0)Tfym(x) = E® > [m n (x + ;) — 71(60) fom | (p(60 + 1, Vo) — 1).
j=1

Set 0,(0) =inf{n >1:x+S5, — Vo <0}, then obviously 0,(0) < 7,(0). Considering the Taylor expansion of f, up to [p] th
term, (x+S;) = (x+S; — Vo) +R(x,S;, Vo), where

lpl-1
R(x,S;,Vo) = Y culx+S; — Vo)l "V +cppy(x+ 5 — Vo + Vi PV
n=1
L]
< ch(x +8; = Vo) "V + oV,

where ¢, = W and 0 < Va]- < Vy. Note that because 0,(0) and (x + S; — V) are independent of Vi, and p(6o +h, Vo) —
1is a mean zero rv, E® 337\ a (x+ S — Vo) (p(6 +h), Vo) 1) =0 and E z;gf’)*l(n(eo) Fom)p(60+h), Vo) —1)=0.
Applying the generic inequality

@nbyd—cldl<{an(b+c)}d<(anrb)d+cld, Vab,c>0,
witha =m, b=(x+S; — Vo), c=R(x,S;, Vo), and d = p(6p + h, Vo) — 1,

ax(0)—1 ax(0)—1

E® N [ma(x+S) — (60) frum](p(B0 +h, Vo) = 1)| < > R(x+S; — Vo)|p(6o +h, Vo) — 1]
j=1 j=1
0(0)—1
<Zc E®VE|p(0o +h, Vo) — 1| - E® Z (x+8; = Vo)’ ™" + ¢y E®(02(0) — E® V1 |p(60 + h, Vo) — 1]
n=1 j=1

Note that for s <p,

7,(0)—1 1(0)-1
0<E® > (x+8— Vo <E® Y~ (x+8) =TIfi + 1(60) LEX14(0) S comn (¢ +1). (A.6)
j=1 j=1

Therefore, B S>7\" " [m A (x +5;)" = 71(60)fym] ((60 + 1, Vo) — 1) = O(hx?). On the other hand,

Tx(o) 1 Tv(0)-1 v(0)-1 Ty(0)-1
E> (x+S)|<[E Z (V+S)Y|<|E D (V+S) —n(60)fy|+ |E Y m(60)f,
j=0x(0) j=0 j=0 4

<[ELf,(V)| +[m(60) fLEy (V)] < 0

;Nﬁere y(x) 2 Et,(0). Likewise, EZ]T*(GO)O; n(0p)f, can be bounded by a constant, and the conclusion of the claim
ollows. 0O
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