Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 47, No. 4, April 2024

Deep L! Stochastic Optimal Control Policies for Planetary
Soft Landing

Marcus Aloysius Pereira,*® Camilo A. Duarte,” and Evangelos A. Theodorou®
Georgia Institute of Technology, Atlanta, Georgia 30332

and

Ioannis Exarchos*
Microsoft, Mountain View, California 94043

https://doi.org/10.2514/1.G007132

In this paper, a novel deep-learning-based solution is introduced to the Powered Descent Guidance problem,
grounded in principles of nonlinear Stochastic Optimal Control (SOC) and Feynman-Kac theory. Our algorithm
solves the problem by framing it as an £1-SOC problem for minimum fuel consumption. Additionally, it can handle
practically useful control constraints and nonlinear dynamics and enforces state constraints as soft constraints. This is
achieved by building off of recent work on deep forward-backward stochastic differential equations and
differentiable neural-network layers for nonconvex optimization based on stochastic search. In contrast to
previous approaches, our algorithm does not require convexification of the constraints or linearization of the
dynamics and is empirically shown to be robust to stochastic disturbances and the initial conditions of the
spacecraft. After training offline, our control policy can be activated once the spacecraft is within a prespecified
radius of the landing zone and at a prespecified altitude, in other words, the base of an inverted cone with the tip at the
landing zone. We demonstrate empirically that our controller can successfully and safely land all trajectories
initialized in the vicinity of the base of this cone as well as with randomization in the starting velocities and

spacecraft mass while minimizing fuel consumption.

I. Introduction

HE Powered Descent Guidance (PDG) problem addresses the

final stage of the entry, descent, and landing sequence wherein a
spacecraft uses its rocket engines to maneuver from some initial
position to a safe landing at a desired landing location. It can be
framed as a finite time-horizon optimal control problem where
the ultimate goal is to achieve a safe landing while minimizing the
amount of fuel consumed during descent. The definition of a safe
landing is provided in terms of state constraints (i.e., the terminal
velocity and position). As a consequence, PDG is regarded as a
control- and state-constrained optimization problem, with state con-
straints imposed by stringent mission requirements and control con-
straints imposed by the thrusting capabilities of the spacecraft.

The original solution to the PDG problem dates back to the 1960s,
during the Apollo era, and consisted of representing a reference
trajectory as a vector of polynomial functions of time. Initially,
Cherry [1] solved the Apollo Powered Descent Guidance (APDG)
problem explicitly, wherein a vector of polynomial functions that
evolve forward in time and intersect the current and target states is
repetitively solved onboard as the mission progresses. Later, Klumpp
[2] derived a generalized implicit guidance equation, wherein the
reference trajectory defined by the vector of polynomial functions
satisfies a constrained two-point boundary value problem (TPBVP).
In this case, the solution is a state feedback policy where the feedback
gains can be computed offline by simulating the mission. These
two methodologies laid the theoretical foundations for several plan-
etary landing studies thereafter. However, there are aspects of these

Received 16 July 2022; accepted for publication 12 November 2023;
published online 28 February 2024. Copyright © 2024 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests
for copying and permission to reprint should be submitted to CCC at
www.copyright.com; employ the ISSN 1533-3884 to initiate your request.
See also ATAA Rights and Permissions www.aiaa.org/randp.

*Ph.D. Student, Institute for Robotics and Intelligent Machines;
mpereira30@gatech.edu (Corresponding Author).

"Master’s Student, School of Aerospace Engineering; candresdu@gmail.
com.

$Associate Professor, Daniel Guggenheim School of Aerospace Engineer-
ing; evangelos.theodorou @ gatech.edu.

*exarchos @ gatech.edu.

651

guidance approaches that make them unfit for modern, more sophis-
ticated missions. For instance, these approaches are not fuel optimal
because in both cases a quadratic performance index on the thrust
magnitude is minimized. The fallacy of the assumption that quadratic
costs minimize fuel-consumption is proved in [3] wherein the author
demonstrates how the choice of the norm of the thrust in the cost
function is dependent on the type of rocket and which norms actually
measure fuel consumption. It is shown that the well-known quadratic
cost (or £2-norm) does not measure (and therefore does not mini-
mize) fuel consumption and that an optimal control policy for quad-
ratic costs will be suboptimal with respect to other control costs that
do measure fuel consumption. For future crewed missions to planets
with greater mass and stronger gravitational forces, the spacecraft
mass will be significantly larger than that of a robotic mission. In such
cases, propellant optimality may determine the feasibility of the
mission. Another important limitation is that the Apollo-era methods
do not consider hard constraints imposed on the thrust magnitude and
direction and require the time-to-go to the target condition to be
prespecified. In fact, an inaccurate choice for the time-to-go may
result in solutions outside of the physical capabilities of the propul-
sion system, thereby rendering any precomputed solutions subopti-
mal and infeasible. The use of quadratic costs for fuel minimization
can yield suboptimal conditions for certain types of missions. For
instance, as mentioned in [3], quadratic costs will provide continuous
thrusting control policies which can cause undesirable effects such as
perturbing the microgravity conditions or actively injecting noise on
position pointing payloads. For such payloads, bang/off/bang con-
trollers are preferable so that scientific experiments can be conducted
during the off periods. Thus, the £'-norm is the de facto choice for
designing optimal controllers for chemical space propulsion systems.

In [4], the author provides a framework to solve different versions
of the fuel-optimal PDG problem which all use the £'-norm of the
thrust as the control cost over the entire time horizon. The approach is
called an indirect method which relies on the Pontryagin Maximum/
Minimum Principle (PMP) and proves that a fuel-optimal solution is
characterized by a bang/bang control profile with at most two optimal
switching times for the three-dimensional (3D) PDG problem. The
method leads to a multivariate root-finding problem whose solution
provides the initial values of the costate variables, the optimal switch-
ing times, and time-to-go to the target condition. The aforementioned
method, dubbed Universal Powered Guidance (UPG), boasts of its

Check for
updates

https://orcid.org/0000-0003-4245-6172
https://doi.org/10.2514/1.G007132
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.G007132&domain=pdf&date_stamp=2024-03-04

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

652 PEREIRA ET AL.

simplicity and considers hard constraints on the thrust explicitly in its
formulation. However, UPG’s solution relies on the assumption that
the vehicle dynamics are deterministic and requires the root-finding
problem to be solved onboard or on the fly to handle stochasticity.
This can be problematic because the proposed algorithm does not
enjoy theoretically guaranteed convergence. An important contribu-
tion of UPG is the Powered Descent Initiation (PDI) condition to
determine when to transition from the engine-idle to the engine-burn
phase to prevent large divert requirements or problem infeasibility.
Recent work, dubbed the Augmented Apollo Powered Descent Guid-
ance (A2PDG) [5] combines this PDI condition with a tunable version
of the APDG. By means of a tunable gain parameter, one can recover
the original APDG law while other values allow trading off between
trajectory shaping and fuel consumption. However, the resulting guid-
ance laws are not necessarily fuel optimal because no such cost is
optimized for and control constraints on the thrust vector are ignored.
Nevertheless, it equips the nearly 50-year-old APDG with the capabil-
ity of fuel saving and ability to determine a PDI condition.

Another recent indirect approach [6] leverages the function approxi-
mation capabilities of deep neural networks (DNNs) to learn so-called
critical mission parameters which are the same parameters that UPG
solves for using nonlinear root finding. The inputs to the DNN are the
initial position and velocity vectors sampled uniformly from prespe-
cified ranges, and the targets for the DNN are obtained from the
solution of an nonlinear program (NLP) solver. The approach is
promising for onboard application because DNN inference is very fast
and the predicted critical parameters can be fed into the PMP problem
to quickly obtain the optimal control by forward propagating ordinary
differential equations (ODEs). However, the main drawbacks of the
approach are 1) that it does not account for stochasticity and 2) a
potentially biased input data set. The latter is due to the choice of the
authors to reject those solutions of the NLP solver that do not appear to
be bang/bang-like and is clear from their training description (see [6]
Sec. I11.B.3), which rejects about 53% of the sampled cases. In [7], the
authors employ an imitation learninglike procedure wherein PMP is
used to solve optimal control problems for soft landing and generate
training data. These data are then used to train DNNs that directly
predict the optimal control via supervised learning. However, the
approach is demonstrated only on two-dimensional (2D) problems
and does not consider any state constraints.

In contrast to indirect methods, direct methods discretize time
converting the original PDG problem into a nonlinear optimization
problem. Attempting to solve such a problem using brute-force
approaches can be done using NLP solvers; however, convergence
is not guaranteed, and they can be computationally inefficient, mak-
ing them unfit for onboard applications. As a result, existing direct
approaches seek to provide a solution by performing a lossless
convexification of the nonlinear problem [8] so that convergence is
guaranteed. Another noteworthy work based on the direct approach
presents a solution to the six-degrees-of-freedom (DOF) PDG prob-
lem with free final time considers aerodynamics effects and introdu-
ces a continuous version of state-triggered constraints [9]. The
proposed nonconvex optimization algorithm relies on iterative con-
vexification, solving local Second Order Cone Programming prob-
lems (SOCPs) and repeating the process until convergence. Despite
the impressive results of this method demonstrated on real flight
hardware, the approach has the following drawbacks:

1) It regards the PDG problem as a feedforward trajectory gen-
eration problem and does not address the topic of feedback control.

2) It has no convergence guarantee.

3) It requires extra machinery such as a virtual control and trust
region to handle artificial infeasibility and artificial unboundedness
that are induced due to the convexification process.

4) It relies on iteratively solving the SOCP problem onboard to
handle uncertainties arising from aerodynamic forces.

Finally, recent efforts to develop real-time onboard trajectory
optimization with full consideration of the aerodynamic forces [10]
model angle of attack as an extra control input that influences the
aerodynamic forces. Although the obtained solutions are more robust
to modeling errors, the addition of aerodynamic forces results in a

more complicated lossless convexification analysis which is only
applicable to the 2D PDG problem.

Incidentally, the approaches mentioned thus far assume determin-
istic dynamics and ignore uncertainty that could arise due to model-
ing errors or atmospheric disturbances. To handle uncertainty, they
have to resort to recomputing optimal solutions on the fly or employ-
ing a disturbance rejecting tracking controller. The former is compu-
tationally expensive and slow to perform onboard, while for the latter
to work, conservative throttle margins must be built into the precom-
puted open-loop commands [11]. This is because a precomputed
fuel-optimal PDG throttle command trajectory will always have a
bang/bang profile [4] leading to saturation at the maximum and
minimum possible values of throttle commands. Without built-in
throttle margins, it would be impossible to employ additional control
for disturbance rejection. The problem with overly conservative
throttle margins is that it leads to high fuel cost (due to not applying
maximum or minimum thrust commands) and therefore a precom-
puted fuel-optimal control sequence will cease to be fuel optimal
or will be suboptimal when combined with a feedback controller.
To bridge this gap, minimum-fuel PDG controllers that explicitly
account for stochasticity have been proposed [11,12] and consider
dynamics modeled by stochastic differential equations (SDEs). To
minimize the impact on fuel cost caused by throttle margins, an
approach based on covariance steering [11] solves for feedback gains
using a linear model of the residual dynamics around a precomputed
mean trajectory and a user-defined terminal state covariance con-
straint. These gains are then used to optimize for the smallest possible
throttle margin while ensuring that throttle constraints are respected
with a user-defined minimum probability. Although minimizing fuel
cost as compared to deterministic approaches in a principled manner
by explicitly accounting for stochasticity, this approach relies on two
main assumptions:

1) The open-loop (mean) control term is much larger than the
feedback control term.

2) The mass-rate dynamics are deterministic.

Both assumptions are required to eliminate mass from the residual
state and render the corresponding dynamics linear, thereby allowing
one to use covariance steering to compute feedback gains. In the cases
where assumption 1 is violated, the dynamics are no longer control
affine (i.e., linear with respect to control), and covariance steering
cannot be employed. One scenario where this can arise is high noise
variance in the SDE (to account for high uncertainty), resulting in
higher feedback gains. This in turn also leads to increasing the throttle
margin and thereby increasing the fuel cost (see [11] Sec. IIL.D). In
contrast to assumption 2, a realistic model of stochasticity should
consider the noise in the mass-rate dynamics to be inversely correlated
to that affecting the acceleration dynamics (see [12] Sec. I1.B). The
approach based on forward/backward stochastic differential equations
(FBSDES) [12] does not rely on such assumptions but has only been
applied to the one-dimensional PDG problem. The closed-form opti-
mal control expression presented for the one-dimensional problem
does not hold for the general 3D constrained PDG problem, and the
proposed numerical algorithm is prone to compounding errors from
least-squares approximations at every time step. Nevertheless, the
results demonstrate superior performance in terms of crash percentages
when compared to deterministic controllers and show a comparable
fuel consumption to the venerable APDG law.

To the best of our knowledge, our work is the first to propose a
deep-learning-based solution to the stochastic 3D constrained PDG
problem. Our work is inspired by [12] and builds off of recent work
[13] that uses DNNs to solve systems of FBSDESs subject to stochas-
tic dynamics with nonaffine controls and hard nonconvex control
constraints. These so-called deep FBSDE architectures are scalable
solutions to high-dimensional parabolic partial differential equations
(PDEs) such as the Hamilton—Jacobi—Bellman (HJB) PDE that one
encounters in continuous-time SOC problems. These do not suffer
from compounding least-squares errors and do not require back-
propagating SDEs. By treating the initial value of the backward
SDE (BSDE) as a learnable parameter of the DNN, the BSDE can
be forward propagated, and the deviation from the given terminal
value can be used as a loss function to train the DNN. This approach

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

PEREIRA ET AL. 653

has been used to successfully solve high-dimensional problems in
finance [13] and safety-critical control problems [14]. Compared to
all the aforementioned work thus far, our main contributions are as
follows:

1) We introduce a novel HIB-PDE-based indirect approach to the
stochastic 3D constrained PDG problem which is in contrast to
the other PMP-based methods that are popularly used in literature
for the deterministic versions of the problem.

2) We introduce an approach to solve the nonlinear £!'-SOC PDG
problem that uses deep FBSDEs and solves the problem in an end-to-
end differentiable manner. Our proposed approach does not rely on a
customized convexification analysis, nor does it rely on convex
solvers. Our approach can be easily extended in future work, without
any change to the underlying theory, to incorporate more complicated
nonlinear dynamics models.

3) Our approach introduces a novel first-exit time capability into
the deep FBSDE framework to handle uncertainty in the problem’s
time horizon.

4) Our approach is invariant to the initial position, initial velocities
and initial mass of the spacecraft and can handle stochastic disturb-
ances. The trained neural network policy can be deployed as a feed-
back policy without having to recompute the optimal solution on the
fly as is required by deterministic approaches in literature.

With regard to computational burden, similarly as in [7], our
approach is also based on training a policy network offline. The
online computation comprises a forward pass through a neural net-
work and one-step parallel simulation of the dynamics. These com-
putations can be performed entirely on a CPU (using vectorized
operations) or a modest GPU.

II. Problem Formulation
A. Spacecraft Dynamics and Constraints

For this study, we consider the dynamics of the final stage of
the PDG problem only, and as a result, we make the following
assumptions:

1) Aerodynamic forces are neglected such that only gravity and
thrust forces act on the vehicle.

2) The spacecraft is at arelatively low altitude such that a flat planet
model can be assumed, and at a reasonable distance to the desired
landing zone.

3) Similarly as in [8], we assume high-bandwidth attitude control
so that we can decouple translational and rotational dynamics of the
vehicle.

4) We consider the initial velocity to be in the subsonic regime.

Because of assumption 3, we completely neglect rotational
dynamics of the spacecraft in this formulation and assume that the
attitude of the vehicle needed to produce the required thrust profile
can be achieved instantaneously. Therefore, it is sufficient to define
the dynamics of the vehicle by its three-dimensional translational
dynamics, which are

o) = (),
0= 0
i) = = T m

where, at any time 7, r(f) € R? is the position of the spacecraft with
respect to a defined inertial frame; v () € R3 is the velocity defined in
the same frame; and m () € R is the spacecraft’s total mass. T € R?
is the thrust vector generated by the propulsion system, g € R? is the
acceleration vector due to the gravitational force exerted by the planet
(we consider Mars for our simulations) on the spacecraft, and c € R™
is the effective exhaust speed of the propulsion system which governs
the rate at which fuel is consumed proportional to the generated thrust.

In a stochastic setting, as described in [12], we assume that
stochastic disturbances enter the acceleration channels due to unmod-
eled environmental disturbances and error induced by limitations of
the thrust modulation mechanism. Moreover, these disturbances are

negatively correlated with the noise that enters the mass-rate channel.
The SDEs representing the dynamics of the vehicle as a function of
time are

dr(r) = v(r)ds,

[T r
dv(r) = [m -]df + de(l),
am() =~ [ITOlldr + T T aw (o] @

where dW € R?® is a vector of mutually independent Brownian
motions and I € R¥S is the covariance matrix which in our case is
a diagonal matrix containing the uncorrelated noise variances enter-
ing the three acceleration channels. A vector of ones (1;,3) is used to
combine the Brownian motions entering the acceleration channels to
obtain a Brownian motion that enters the mass-rate channel which is
negatively correlated with those that enter the acceleration channels
(due to the —1 /¢ coefficient). We can rewrite the dynamics concisely
in state-space form as

dx(r) = f(x(2), T(1)) dt + Z(x(1)) dW(2) 3)

where x(f) € R’ is the state vector, f(x(z), T(t)) is the drift vector
representing the deterministic component, and Z(x(f)) 2 H(x(¢))T
is the diffusion matrix representing the stochastic component of
the dynamics. The components of the state vector are x = [r(f)T,
v(H)T, m(#)]", and H(x) is a 7 x 3 matrix defined as follows:

1 1 T
H(x(l))=|:03><3 mhx,% —El3x1:|

Similar to other works in the PDG literature, we consider hard
constraints on the thrust vector 7'(¢) that are imposed by the physical
limitations of the spacecraft’s propulsion system. For the propulsion
system to operate reliably, the engines may not operate below a
certain thrust level. In addition, the thrusters are only capable of
producing finite thrust. We represent these constraints by the follow-
ing inequality constraint:

0<p ITO| < p2 “

The presence of a lower bound in the given constraint yields a
nonconvex set of feasible thrust values which could lead to a non-
convex optimization problem. The conventional approach [8] is to
convexify the problem to handle the nonconvex constraints and show
that the convexification is lossless. In this paper, we show that our
method is able to work directly with the nonconvex thrust constraints.

Additionally, a constraint on the direction in which thrust can be
applied is also imposed. The so-called thrust-pointing constraint is
given by

n-T() > ||T(1)| cos® (5)

where 72 € R? is a unit vector describing a desired pointing direction
and 0 € [0, z] is a fixed prespecified maximum angle between the
thrust vector T'(¢) and 7. Intuitively, this constraint is required for
sensors such as cameras to ensure that the ground is always in the field
of view. For values of § > /2 rad, this also leads to a nonconvex set
of feasible thrust values. Now, although our proposed method can
handle such a constraint, to ensure the practical usefulness of main-
taining the ground in the field of view, we limit @ to be strictly less
than 7 /2 rad.

Next, we introduce state constraints that are necessary to ensure a
soft landing at a prespecified landing zone. Our strategy is to handle
these as soft constraints and heavily penalize violations. These soft
constraints are represented by adding extra terms to the terminal and
running cost functions of our proposed stochastic optimal control
problem formulation. Incidentally, the goal of our proposed algo-
rithm is to minimize the expected running and terminal costs, where

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

654 PEREIRA ET AL.

the expectation is evaluated using sampled trajectories according to
(2). Similarly as in [12], because the approach discussed in this paper
requires trajectory sampling, it is imperative to impose an upper bound
on the duration of each trajectory. This is necessary because it is
possible to encounter trajectories with very large or infinite duration
that cannot be simulated. On the other hand, it is practically mean-
ingless to continue the simulation if a landing or crash occurs before
reaching this upper bound. Thus, we formulate a first-exit problem
with a finite upper bound on flight time where the simulation is
terminated when one of the following two conditions is met: 1) we
reach the ground, in other words, r3 = 0 (or more realistically some
threshold r3 < hy, where A, is some arbitrarily small number defin-
ing a height at which shutting off the thrusters would be considered
safe), or 2) the time elapsed during simulation is equal to or greater than
a predetermined maximum simulation time (¢ s), whichever occurs
first. Mathematically, the first-exit time 7 is defined as follows:

Let,r = inf{s € [0, /]|r3(s) < hyor}
7 = min(z, t;) (6)

The vehicle is required to perform a safe landing which is charac-
terized by a zero terminal velocity at a predetermined landing zone.
However, in a stochastic setting, the probability of a continuous
random variable being exactly equal to a specific value is zero. Thus,
under stochastic disturbances, it is unrealistic to impose exact terminal
conditions. Our strategy is to penalize the mean-squared deviations
from the desired positions and velocities at t = 7 s and thus approach
the target positions and velocities on average. As will be shown later,
our simulations demonstrate controlled trajectories that terminate in
the vicinity of the desired terminal conditions. We define the following
components of our proposed terminal cost function:

D ¢, = (r(7))? and ¢, = (r,(7))?, which means, without
loss of generality, that we consider the x and y coordinates of the
landing zone to be at the origin of the interial frame.

2) ¢, = (r3(7))?, which means that we penalize the residual
altitude at t = 7 s to discourage hovering.

3) ¢, = (71(7))* and ¢, = (7(7))?, which means that we
penalize the residual x and y velocities at t = 7 s to discourage
landing with unsafe lateral terminal velocities.

b gy — s G2 (D) >0m/s

: e, (;3(T))*, (7)) <0m/s

Here, the constants ¢, , and c, _ represent penalty terms for the
residual vertical velocity. Note that the terminal vertical velocity is
penalized such that ¢, , > ¢, _ in order to discourage hovering
around the landing zone.

An inequality constraint on the spacecraft’s total mass given by
m(7T) > my is used to ensure that the dry mass (m,kgs) of the
vehicle is lower than the total mass at terminal time (m(7)). We
enforce this constraint as

m(T) —my
=2 (-G =)

wherein the penalty increases exponentially if the terminal mass
m(7) falls below the dry mass m,. Additionally, this also encourages
minimum fuel consumption as higher values of m(7) — m, lead to
lower values of ¢,,.

The terminal cost function can now be stated as a weighted sum of
the terms described previously,

¢(x(7—)) = Qx . ¢x + Qy . ¢y + Qz . ¢z + QuY . ¢UA
+ vi : ¢vy + Qv, ' ¢vz + 0 ¢m @)

where the coefficients Q; allow the user to assign relative importance
to each term in the terminal cost function.

A glide-slope constraint is also employed to keep the vehicle in an
inverted cone with the tip of the cone at the landing zone [8]. This is
given by

tany - [[(ri (1), (D) < r3(1) ®)
wherey € [0, /2) is the minimum admissible glide-slope angle. We

can convert this inequality constraint to an equality constraint as
follows:

Agige = tany - /ri(0)* + ra()? = r3(1) ©)

Because this constraint is imposed at every point in time, we define it
as the running cost function; thus,

(7 AZ_ s A lide = 0
x) =4 0 (10)
q-- Aglide» Agige £0

where g, > g_ to heavily penalize trajectories from leaving the
glide-slope cone. Note that we do not set g_ to zero, as this encour-
ages hovering around the landing zone at high altitudes by making
Agjig. highly negative. Thus, a nonzero value for g_ encourages
landing.

Finally, concerning the initial conditions, we assume that separate
navigation systems onboard the spacecraft take care of the main flight
segment (e.g., from planet to planet) and will navigate the spacecraft
to a position that is within a reasonable distance from the landing zone
for the final descent stage to begin. Specifically, we assume that the
final descent stage is initialized when the spacecraft reaches a certain
altitude. We sample from a normal distribution around a prespecified
mean trigger altitude, to ensure that the control policy can handle
small perturbations around the trigger value. As far as the correspond-
ing initial x, y coordinates are concerned, we assume that these lie on
the base of an inverted cone as defined by Eq. (8). Sampling on the
base of the cone allows our control policy to be able to handle the
spacecraft approaching from any direction towards a prespecified
landing zone. The initial vertical velocity v, and initial mass are also
sampled from normal distributions to ensure tolerance to perturba-
tions. Finally, the horizontal velocities v, and v, are initialized such
that they are directed toward the axis of the inverted cone with the
directions being perturbed and the magnitude set proportional to the
distance from the axis. Specifically, we assume that the main navi-
gation system is aware of the landing zone and will adjust the speed of
the spacecraft proportional to its horizontal distance from the landing
zone. Therefore, if the spacecraft starts (the descent stage) on the rim
of the base of the inverted cone, it will have a higher horizontal
velocity as compared to if it starts very close to the axis of the cone.

B. Minimum Fuel or £! Stochastic Optimal Control Problem

We can now formulate the three-dimensional PDG stochastic
optimal control problem as a constrained nonconvex minimization
problem where the goal is to minimize the amount of fuel needed to
achieve a safe landing. As motivated in the Introduction and in [3],
we consider the £!-norm of the thrust as the running control cost
(as opposed to the conventional quadratic cost or £2-norm) to cor-
rectly measure and hence minimize the total fuel consumption. The
optimization problem is formally stated as

T
minimize J =]E[d)(x(T)) n A (l(s, x(s)) + g ||T(t)||) ds]

subject to

dr(r) = dv(r)ds,
_T@® r

1
dm(n) = [IT(0)]dr + 1L,,LaW ()]

dw (),

0<pi <ITON <po. A-T(1) 2 [T(t)] cosd
(1)

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

PEREIRA ET AL. 655

where ¢:R" — R* is defined in Eq. (7), [:R" - R™" is defined in
Eq. (10), and g is a positive scalar weight assigned to the £!-norm
of the thrust vector. With the presented constraints, we now have three
sources of nonconvexity in the problem formulation: 1) the relation-
ship between the mass rate mi(f) and the thrust vector 7'(¢) in the
dynamics, 2) the lower bound on the norm of the thrust vector
(p1 £ IT(®|), and 3) the thrust-pointing constraint when 0 > /2.
Existing work in the literature either attempts to convexify the
original problem so that customized convex solvers can be used or
relies on sequential convex programming to iteratively convexify and
solve the original nonlinear problem. In contrast to these methods, we
propose and develop an approach, in the subsequent sections of the
paper, that can handle the nonlinear dynamics and does not require
complex reformulations of the problem at hand.

C. Solution Using Forward/Backward Stochastic Differential Equations

In this section, we describe our methodology to solve the £!
stochastic optimal control problem described in Eq. (11). We seek
to minimize the expected cost with respect to the set of all admissible
controls &/{. We begin by defining the value function V (i.e., the
minimum cost-to-go) as follows:

{ V(x(0), t) = infr¢yeypnT 12
V(7). T) = ¢px(T). T)

Using Bellman’s principle of optimality and applying Ito’s lemma
[15], one can derive the HIB PDE given by

. 1
Vi+ lnfT(»)eZ/{[O.’T]{Etr(vxxzzT) + Vif(x(n), T(1), 1)

+1Ux(0), D+ qplIT@O)]p =0 (13)

V(T),T) = ¢p(x(T).T)

where the subscripts # and x are used to denote partial derivatives
with respect to time and the state vector, respectively. The term
inside the infimum operator is known as the Hamiltonian (denoted
‘H). The HIB PDE is a backward, nonlinear parabolic PDE, and
solving it using grid-based methods is known to suffer from the
well-known curse of dimensionality. Among some of the recent
scalable methods to solve nonlinear parabolic PDEs, the deep-
FBSDEs-based [14,16,17] solution is the most promising and has
been used successfully for high-dimensional problems in finance
[13]. Deep FBSDEs leverage the function approximation capabil-
ities of deep neural networks to solve systems of FBSDEs which in
turn solve the corresponding nonlinear parabolic PDE. The con-
nection between the solutions of nonlinear parabolic PDEs and
FBSDEs is established via the nonlinear Feynman—Kac lemma
(see [18], Lemma 2). Thus, applying the nonlinear Feynman—Kac
lemma to (13) yields the following system of FBSDEs:

x(t) =x(0) + A (), T (1), 1)) di + L 'S(x(¢), 1))dW (1) [FSDE]

(14)
T
V).) =) + [(160, 0+ go |7 0] ar
- / . VIS (x(r), 1)) dW(r) [BSDE] (15)
T*(¢) = argmin H(x(t), T(2), V,, Vi, ZZT)
Teu
[Hamiltonian minimization] (16)

Note that from here on, the superscript * will be used to denote a
solution to the respective optimization problem.

Because of the terminal condition V(x(7), 7) = ¢(x(7)), the
value function V(x(¢),) evolves backward in time, while x(r)

evolves forward in time. As aresult, the previously mentioned system
of FBSDEs yields a TPBVP. Although simulating x(f) might be
trivial, V(x(7), t) cannot be naively simulated by backward integra-
tion like an ODE. This is because within the Ito-calculus framework,
in order for solutions to be adapted, the process should be non-
anticipating, which means that in this case naive backward integra-
tion of V(x(r), t) would result in it depending explicitly on future
values of noise making it an anticipating stochastic process. One
solution to solve BSDE:s is to backward propagate the conditional
expectation of the process as is done in [18]. However, the least-
squares-based algorithm to approximate the conditional expectation
suffers from compounding approximation errors at every time step
and does not scale for long time horizons. To overcome this, the deep
FBSDE method [16] parameterizes the unknown value function
V(x(0), 0; &) at the initial time step using trainable weights of a
neural network and parameterizes the gradient of the value function
V. (x(1), t; £) using a Long Short-Term Memory (LSTM-)based
deep neural network. The parameters & of the network are trained
using Adam [19] or any variant of the stochastic gradient descent
algorithm. By introducing an initial condition, the BSDE is forward
propagated as if it were a forward SDE, and the known terminal
condition (V(x(7), 7) = ¢(x(7))) is used as a training loss for the
deep neural network. This solution has been demonstrated to be
immune to compounding errors and can scale to high-dimensional
problems [14,16,17]. The Hamiltonian minimization at every time
step computes the optimal control (i.e., the optimal thrust) that is used
in the drifts of the FSDE and the BSDE. For numerical simulations,
the system of FBSDEs is discretized in time using an Euler—Mar-
uyama discretization [20] to yield the set of equations

x[k + 1] = x[k] + F(lk], T*[K], k) At + S(x[K]. k) AW[K] (17)

V(xlk + 1], k+ 1) = V(x[k], k) — (Ix[k], k) + g | T*[K]])) At
+ VIS(x[k], k) AW[K] (18)

T*[k] = argmin H(x[k], T[k], V,, V. Z=") (19)
TeUu

where k denotes the discrete-time index and At denotes the time
interval (in continuous time) between any two discrete-time indices
kand k + 1.

For systems with control-affine dynamics and quadratic runn-
ing control costs (i.e., the £> norm of the control) as in [16], the
minimization step (19) has a closed-form expression for the
optimal control (i.e., the optimal thrust profile) T*(¢). For the one-
dimensional soft-landing problem as in [12], although the £! norm is
used, a closed-form expression (i.e., the bang/bang controller) can be
derived because the dynamics are affine with respect to the control.
However, for the general soft-landing problem in three dimensions,
as presented in this paper, the dynamics are nonaffine with respect to
the controls. As a result, a closed-form bang/bang optimal control
cannot be derived, and the Hamiltonian minimization step must be
solved numerically. Additionally, as described in Eq. (11), the gen-
eral problem has nontrivial control constraints with nonaffine dynam-
ics. In the following section, we build off of recent work [13] that
embeds a nonconvex optimizer into the deep FBSDE framework to
solve nonconvex Hamiltonian minimization problems at each time
step. We extend this framework to handle the aforementioned control
constraints as well as the first-exit problem formulation. Moreover,
as stated in [13], this nonconvex optimizer is differentiable and
can facilitate end-to-end learning, making it a good fit for the deep
FBSDE framework.

III. Proposed Solution Using NOVAS-FBSDE

The presence of the Euclidean norm || - || in the equation for r(t)
makes the dynamics a nonaffine function of the thrust vector, 7'(¢).
Additionally, the control constraints given by Eqs. (4) and (5) are
nonconvex as described in the previous sections. As a result, Eq. (19)
is a nonconvex optimization problem. The general Hamiltonian H

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

656 PEREIRA ET AL.

takes the following form (note that henceforth the dependence of
Vi, Vi, and Z on x and ¢ will be dropped for ease of readability):

Hx(0), T(). Ve ViZET) 2 2 1r(V,537)

+ Vafe(0). T(0) + I(t.x(1), T(2))

However, because in this problem the diffusion matrix X is not
dependent on the control T'(f) (i.e., we do not consider control-
multiplicative noise), the trace term can be ignored from the given
expression, and unlike in [13], we do not require an extra neural
network to predict the terms of the Hessian of the value function V.
Thus, the simplified Hamiltonian for our problem is given by

Hx(D), T(1), Vo) = Vif(x(0),T(1) + g T (20

Recently, a new framework [13] to handle nonconvex Hamiltonian
minimization problems using deep FBSDEs has been developed
wherein the authors employ the Gradient-Based Adaptive Stochastic
Search (GASS) [21] algorithm to solve problems such as Eq. (19)
while allowing efficient backpropagation of gradients to train the
deep FBSDE network. This framework is called NOVAS-FBSDE
wherein NOVAS stands for Non-Convex Optimization Via Adaptive
Stochastic Search. NOVAS has been demonstrated to recover the
closed-form optimal control profile in the case of control-affine
dynamics and quadratic control costs. Additionally, it has been
successfully tested in simulation on high-dimensional systems such
as portfolio optimization with 100 stocks [13] in simulation. In a
nutshell, at each time step, the Hamiltonian 7 is minimized using the
GASS algorithm. Briefly stated, Adaptive Stochastic Search first
converts the original deterministic problem into a stochastic problem
by introducing a parameterized distribution p(7T'(¢); 6) on the control
T (1) and reformulating the minimization of H with respect to 7'(¢) as
the minimization of its expectation E[H], with respect to €. This
allows for H to be an arbitrary function of 7'(¢) (potentially non-
differentiable), and E[H] is approximated by sampling from
p(T(1); 6). By minimizing E[H], the upper bound on 7 is minimized.
We invite the interested reader to refer to the Appendix for a deriva-
tion of the equations of the NOVAS optimizer.

Notice that the general problem (11) has hard control constraints
[i.e. Egs. (4) and (5)]. To enforce these constraints, we employ a novel
sampling scheme that allows us to efficiently sample feasible control
inputs while guaranteeing that the control constraints are satisfied. To
define the constrained sampling procedure, we make the following
assumptions.

Assumption 1: The horizontal thrust components (T;(z), T»(z))
are bounded based on the lower bound of the norm of the thrust p; so

that | T, (1)] < ’% and |T, ()] < /’7‘

Assumption 2: The maximum angle € between the thrust vector
T(¢) and i belongs to the interval [g %)
Assumption 3: The bounds p;, p, and the angle 0 satisfy

[pi
———<|ITO| £ p>.
2-sin29_” Ol <p2

Assumption 2 is justified because values of 6 > /2 will result in
the camera sensors losing the ground from their field of view, while
very low values of @ will restrict horizontal motion.

We choose 72 = [0, 0, 1]T, and therefore we can show that if
assumptions 1-3 hold, i - T = T3 > ||T| cos @ the thrust-pointing
control constraint is always satisfied.

Lemma 1: Given that Assumptions 1-3 hold, the thrust-pointing
constraint T3 > ||T|| cos @ is satisfied.

2 2
: [P P1
Proof: Given that /———— < ||T|| £ p,, we have ———— <
f 2-sin26’_” I'<p2 2 -sin% 0

ITIP <03

Therefore, P < |T|)? sin? @ = ||T||*?(1 = cos? 8) = ||T||*> -
IT||> cos® 6. e
Based on Assumption 1, we know that T2 + T3 < 71

Combining the inequalities resulting from Assumptions 1 and 3,

2
%] < |IT)1? = ||IT||? cos? @ we have

2
T2+ T2 < %1 <|TII? = |ITI? cos? 6

Therefore, rearranging the terms, we have |T||? cos? @ < ||T||*—
T? — T3 = T3, which implies that ||T|| cos@ < Tj.

Thus, for Lemma 1 to hold, we need to satisfy Assumptions 1-3.
Assumption 2 is satisfied by design decisions. For Assumptions 1 and
3, we first sample the horizontal thrust components (T'(¢), T,(t))
and the norm of the thrust | T'(¢)|| = /T3(t) + T3(z) + T3(¢), and
then we project these samples onto closed intervals such that both

assumptions along with the original thrust bounds in Eq. (4) are

ol

2 -sin’@
IT(1)|| onto the interval [max(p;, p3). pa], both control constraints
(4) and (5)] can be satisfied. A pseudocode of this sampling scheme is
presented in Algorithm 1, wherein the inputs uy and Xy are the
sampling mean and variance used by the NOVAS algorithm. Note
that the subscript T has been used to differentiate the distribution
p(T; 0) parameters for sampling thrust values from the diffusion
matrix X. The algorithm outputs feasible values of horizontal thrust
and thrust norm (i.e., [T, T, ||T||]) from which the feasible vertical
thrust can be computed.

satisfied. Defining p; = and projecting the samples of

Algorithm 1: Sampling with control constraints for
NOVAS

1: Function SAMPLE(uy, Z7)
2: Given: py, p,, and @

3: Compute: p3 <

5570
4: Sample: x ~ N (y; S;Ti, where the components of x are
=T, x=T, x=|T|

5: Project samples to satisfy hard control constraints.
X = Projiy, 12, 121(01)
Xy = Projiy, 12, 121(x2)
X3 = Pr0jjmax (s, p3). 2] (%3)

¥ (X, X, X3)

OX « X — ur

Return (x, 6x)

: End function

R

IV. Algorithmic Details

In this section, we present algorithmic details concerning the
capability to handle random initial positions and training of the
NOVAS-FBSDE network with first-exit times, which differentiate
the proposed framework from algorithms presented in past works
[13,16] on deep FBSDEs. A diagram incorporating architectural
changes of the deep neural network to enable these new capabilities
is also presented.

A. Training a Policy Network Invariant of Initial Conditions

So far, in the deep FBSDEs literature [13,14,16,17,22], a fixed
initial state x[0] has been used, leading to the policy network only
being able to solve the problem starting from x[0]. However, this is a
very limiting assumption in practice, more so for the planetary soft-
landing problem, as the probability of the spacecraft being in a
specific initial state is zero. To tackle this, we relax this assumption
of constant x[0] and consider random initial states as briefly described
at the end of Sec. ILA of the problem formulation. We provide
specific details regarding random sampling of the spacecraft’s initial
state in the pseudocode Algorithm 2. The inputs of Algorithm 2 are
the batch-size B, the radius of the base of the glide-slope cone rad,
the respective means and the standard deviations of the trigger
altitude (y (), 0,(p)), the initial vertical velocity (4, (). 0y (0))> and
the initial mass (4,,(0), Gi()). For sampling random horizontal

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

PEREIRA ET AL. 657

Algorithm 2: Sampling random initial conditions (the square-root, cosine, and sine operations are
elementwise operations)
1: Function SAMPLE_INITIAL_STATES(B, rad, fi.(0), 02(0)> Hu,(0)> Ou.(0)> Hm(0)> Om(0)> Chvets V€l max)
2 radii = rad - /e, ¢, ~U(0, 1) > sample B uniformly distributed variables
3: 0=2r-¢, e ~UO0,1)
4: x = radii - cos(0), y = radii - sin(0)
5: 2~ N ()1, 0,01
- —x _ -y _ -
6 X = = 5 ahvel = atanz()’# x), and ghvel NN(ehuel# UhveII)

7: (st Uv) = hv€lmax COS(éhW,) E—
: Hz(0)
8: v, ~ Ny)1, 64, 0)1)
: m NN(ﬂm(O)L Um(O)I)
10: Return (x, y, z, vy, v, v, m)

11: End function

hvelmax Sin(éhvel)

Hz(0)

velocities, the inputs 6;,,; and hvel,,,, are the standard deviation
for directions of horizontal velocity unit vectors and the maximum
horizontal velocity magnitude, respectively. The bold symbols 0
and 1 are vectors of 0 s and 1 s, respectively, of length B, and I is
an identity matrix of size B.

B. Proposed Network Architecture and Pseudocode

The new architecture proposed in Fig. 1 features additional fully
connected neural network layers to enable training from multiple
randomly sampled initial states. Given a batch of randomly sampled
initial states, the layers FCy, FC, and FC, are used to generate
corresponding initial values for the value function, the hidden states of
the LSTM layers, and the cell states of the LSTM layers, respectively.

The random initial state generation procedure not only makes our
proposed approach practically meaningful as discussed in the pre-
vious subsection but also leads to better exploration of the state space
around the landing zone. This was found to significantly improve
the performance of the trained policy when subject to stochasticity in
the initial positions, and the network can be deployed as a feedback
policy. The output of Algorithm 2 serves as an input to the FCy,
FC,;,, and FC, neural network layers which contain Rectified Linear
Unit (ReLU) nonlinearities. The LSTM layers predict V,, (i.e., the
gradient of the value function), which is then used to compute and
minimize H (i.e., the Hamiltonian) at each time step within the
NOVAS layer. To satisfy hard control constraints, a batch of con-
strained control samples generated by Algorithm 1 is fed to the
NOVAS layer during every NOVAS iteration to minimize H

Aw,

Sample
Constrained
Controls

(i.e., step 2 of Algorithm 5). Similarly as in [16], we also choose
LSTM layers in the proposed architecture in order to provide robust-
ness against the vanishing gradient problem, to reduce memory
requirements by avoiding individual neural networks to approximate
V. at every time step, to generate a temporally coherent control
policy, and to avoid the need to feed the time step as an explicit input
to the policy network. The output of the NOVAS layer is the optimal
thrust that minimizes the Hamiltonian. This is fed to the dynamics
model (17) to forward propagate the state. This process is repeated for
all time steps until the first-exit termination criteria are met.

So far, deep FBSDEs have been successfully implemented for
fixed finite time-horizon problems (i.e., 7 = t; is constant). To
incorporate first-exit times, we use a mask such that

1, r3(8) > hy

mask = {0’ ry < Iy

where A, > 0 m is a user-defined fixed tolerance for the altitude to
determine if a landing has occurred. In the deep FBSDEs framework,
due to stochastic dynamics, each trajectory could potentially have a
different first-exit time. To keep track of these different first-exit
times, we maintain a vector of masks of the same size as the mini-
batch, which is then incorporated into the equations of the forward
and backward SDE:s. If a particular trajectory is found to terminate
early, its state, value function, and gradient of the value function are
propagated forward using an identity map for the remaining time
steps until the maximum simulation time. This freezes the compo-
nents of the state vector and the value function to the values they take

Sample
Constrained
Controls

Initial State Aw,
Randomizer

Fig. 1

~ % | 12 % 2) %112 % 2
JosszlE[”VN_Vf\;”g"'||Vx.N_V;N||3+||VA§||2+||V;N”3:|

A new DNN architecture to handle hard control constraints, first-exit times, and random initial conditions as compared to the architecture in [13].

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

658 PEREIRA ET AL.

on at the first-exit time 7 . This allows gradients to freely flow from
the final time step #, to the first-exit time step 7. Once the end of the
time horizon ¢, is reached, we compute targets for the value function
and its gradient using the propagated terminal states and terminal
cost function (7). These are fed to a loss function that is used to train
the LSTM layers and the additional neural network layers at the
initial time step by minimizing the difference between the predicted
and target value functions and their respective gradients. The math-
ematical description of the loss function is shown at the bottom
of Fig. 1.

The pseudocode (Algorithm 3) provides further details regarding
the forward pass of the NOVAS-FBSDE architecture and also contains
discretized equations of the FSDE and the BSDE. The discretization
interval (At s) is fixed and is user defined. The total number
of time steps (or discrete time intervals) is computed as N = t;/At
such that when ¢ = tr s the discrete-time index k = N, where
ke {0, 1, ..., N}. Please note in Algorithm 3 that in steps 20 and
21, for a given batch index b, the same mask[b] is applied to all seven
elements of the state vector x. Please also note that the parallel for-loops
overb =0:B—1andi = 1:H 4+ 1 can be easily implemented with
vectorized operations and batched operations, using any deep-learning
framework such as PyTorch [23] or TensorFlow [24].

We would like to emphasize here that our framework is computa-
tionally demanding only during the training stage which does not
occur onboard the spacecraft. Once fully trained, the policy can be
deployed onboard the spacecraft, and it is expected to use minimal
computational resources to predict an optimal thrust at every time
step. This is because predicting the optimal thrust only requires a
forward pass through the trained networks which can be performed
using basic linear algebra operations such as matrix-vector products
and elementwise application of nonlinear functions such as ReL.U,
tanh, and sigmoid. Moreover, during flight, the batch size B =1,
allowing all computations to be performed on a CPU and thus
eliminating the need for a GPU onboard the spacecraft.

C. NOVAS Layer

In this section, we summarize the algorithmic implementation of
the NOVAS Layer from [13] for the convenience of the reader.
Because the goal of the NOVAS Layer is to solve the problem
proposed in Eq. (16), we must provide all the necessary inputs for
the computation of H such as the current state vector x(7), the gradient
of the value function V(¢), and the system’s drift vector f(x, T). In
addition to these quantities, we also have tunable hyperparameters,
referred to in Algorithms 3 and 4 as NOVAS_inputs, that directly

Algorithm 3: NOVAS-FBSDE with first-exit times (using Python convention for indexing and for-loops)

1: Function FORWARD_PAss(number of time steps N, altitude threshold &, minibatch size B, discretization time
interval Az, LSTM neural-network to predict V., fismv, diffusion matrix X, drift function f, Hamiltonian
function H, running cost function /, terminal cost function ¢, inputs and hyperparameters for NOVAS Layers
NOVAS_inputs, initial value-function network FCy, number of LSTM hidden layers H, neural networks to
predict initial LSTM states {FC./, FC,/}2 |, and radius of base of the inverted glide-slope cone rad

2: Initialize: mask < 0,

x[:, 0, :] « sample_initial_states (...)
where x is a tensor of shape (B X N X 7)

> Algorithm 2

(Predict the initial value function and the initial cell and hidden states of the LSTM for all batch elements.)

3: for b = 0:B — 1 (in parallel), do

4: V[b, 0] = FCy (x[b, 0])

5: for i = 1:H + 1 (in parallel), do
6: h[b, 0] = FC,/(x[b, 0])

7 c;[b, 0] = FC./(x[b, 0])

8: end for

9: end for

(Forward propagate the dynamics and value function trajectories,)

10: fork=0:N-1,do

11: for b = 0:B — 1 (in parallel), do

12: if r3 > hy,, then

13: mask [b] < 1

14: else

15: mask [p] < 0

16: end if

17: sample noise, Aw[b, k] ~ N'(0, ~/ArI) 1> zero mean vector which has same dimensionality as x

18: (Velb, K Abilb, Kk + 11, ik + 1Y) < fuso(x(b. KL {hilb, K, cilb, kL)

19: T*[b, k] < NOVAS_Layer (x[b, k], V. [b, k], H, f, NOVAS_inputs) > Algorithm 4
> warm-start NOVAS with T#[b, k — 1] for k > 0

20: FSDE: x[b, k + 1] = x[b, k] + mask[b] © (f(x[b, k], T*[b, k]) At + Z(x[b, k], k) Aw[b, k])

21: BSDE: V[b, k + 1] = V[b, k] + mask[b] © (—I(x[b, k], T*[b, k]) At + V. [b, k| =(x[b, k], k) Aw[b, k])

22: end for

23: end for

(Compute loss function using the predicted value and its gradient.)

24 for b = 0:B — 1 (in parallel), do

25: V*[b,N] = ¢(x[b. N)), Vi[b,N] = W
26: Vilb,N] = fLsTM(x[bvN]~ {ilb, N, Ci[b’N]}’il)
27: end for

B

28: Loss = éz { [VIb, NI = V[, NI|2+|| Vilb, N1 - Vilb, N1|2+ | V¥[b, N|2+] Vilb, N2 }

b=1
29: return Loss

30: end function

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

PEREIRA ET AL. 659

affect the performance of the algorithm. These values include the
initial sampling mean and variance (u7, 7), a scalar learning rate «a,
number of NOVAS samples M, number of NOVAS inner-loop iter-
ations Nje;, some arbitrarily small positive number ¢ indicating
minimum variance, and a user-defined shape function S. The quantity
€ and the function S are chosen in such a way as to improve the
stability of the algorithm, while all other values directly affect the
convergence rate and the accuracy of the output control solution.
The hyperparameter values used to obtain the simulation results are
presented in Table 1.

During each iteration of the NOVAS Layer (Algorithms 4 and 5),
we approximate the gradient (A4) (see the Appendix for derivation)
of the stochastic approximation of the objective with respect to yp
through sampling. To do this, we sample M different values of
horizontal thrust and thrust norm using univariate Gaussian distribu-
tions with mean yy and covariance X7. These are then projected to
appropriate intervals to satisfy the hard control constraints specified
in the problem formulation (as shown in Algorithm 1). For initial-
ization, the mean vector can be populated using random values within
the admissible control set. However, in our case, we set the initial
ur = (0,0, p;) for the first (k = 0) time step and warm start the
NOVAS Layers for subsequent time steps (k > 0) using the opti-
mal thrust values from the respective previous time steps (where
“time step” refers to the for-loop k = 0: N — 1 in Algorithm 3). Note
that the first Ny, — 1 iterations of the NOVAS Layer are off-graph
operations, meaning that they are not part of the deep-learning frame-
work’s compute graph and therefore not considered during back-
propagation. A compute graph is built to approximate gradients, by
means of automatic differentiation, of the loss function with respect
to the weights of the deep neural network. Taking the first Ny, — 1
iterations off-the-graph can be seen as warm starting the last iteration,
which is performed on the graph. This procedure has a negligible
effect on the training of the neural network and can be performed
because NOVAS does not overfit to the specific number of inner-loop
iterations as demonstrated in [13]. By performing the first N, — 1

Algorithm 4:

iterations within the NOVAS Layers at each time step off the graph,
we significantly reduce the length of the overall compute graph
(i.e., over all N time steps), which speeds up training and enables us
to use this approach to train policies for long time horizons.

V. Simulation Results

We demonstrate the capabilities of the NOVAS-FBSDE algorithm
by training it to perform a safe landing maneuver on the Martian
surface in simulation. A full list of the system and algorithm param-
eters is presented in Table 1. For our simulations, we consider the
discretized equations of motion (17) and assume a constant value for
the Martian acceleration due to gravity, g = 3.72 m/s?. During
training, we allow a maximum simulation time of tp = 20 s and set
atime discretization of At = 0.05 s. To achieve the results presented
in the following, the network was trained for 16,500 iterations, add-
ing complexity to the task progressively to facilitate learning. First, a
model was trained until convergence for 9,800 iterations and a fixed
learning rate of 0.0005. During training of this first model, only the
initial position (i.e., downrange and altitude) was randomly sampled.
Using this pretrained model, a new training run was initiated for
6,700 iterations and a learning rate schedule of [0.0001, 0.00002].
For the second run, the entire state was randomly sampled according
to Algorithm 2. We found this two-step training procedure to be the
most effective as the pretrained policy serves as a good starting point
and allows for more efficient exploration than starting from scratch.
For the computation of the discretized-BSDE in Eq. (18), the param-
eters used to compute the terminal cost (7), the running state cost
[i.e., the glide-slope constraint cost in Eq. (10)], and the control cost
are also provided in Table 1. Based on the mass-flow-rate equation for
gimbaled rockets [3], our control cost takes the form of an £'-norm to
penalize fuel consumption, which is given by

ITolle = [* i+ 130 + 130 @

NOVAS_LAYER

1: Function Novas_LAYER(x[b, 1], V. [b, 1], H, f, NOVAS _inputs —[initial sampling mean and variance (uy,),
learning rate @, shape function S, number of samples M, number of iterations N;.,, and minimum variance €])

2: for n = 0:Nj,, — 2 (off-graph operations), do
3: (ur, Lr) < NOVAS_STEP (x[b, t], V. [b,t], H, f, ur, Zr, @, S, M, €) > Algorithm 5
4: end for

(final iteration is on graph)
5: (ur, Zp) « NOVAS_STEP (x[b, 1], V.[b, 1], H, f, ur, Zp, a, S, M, €)
6: T« (ﬂr.l,llm- \/(ﬂm)z - (ur1)* — OlT,z)z)
7: return T*
8: end function

Algorithm 5: NOVAS_STEP
function Novas_STeP(x[b, 1], V. [b, 1], H, f, ur, Zr, a, S, M, €)
Generate M control samples: (x", 6x™) « SAMPLE (uy,%Z7), m=1,...M > Algorithm 1

for m = 0:M — 1 (in parallel), do
Shift: F" = F™ — min,, F™

Normalize: S" = S" /Y M_ gm
end for

RN A S ol S

(Perform thrust mean and variance update.)
10: ur = pp +ad M_, Smoxm
11: Sx™ — X" — puy
2. ¥, = diag(,/Z%:l G e)
13: return (up, X7)
14: end function

Evaluate: F™ = —H(x[b, 1], V,[b,t]. T", f)

Transform: T" « (¥}, 35, /(@) —)% = (35)%)

> using Eq. (20)

Apply (elementwise) the shape function: S™ = S(F™)

> derived in Appendix (A7)

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

660 PEREIRA ET AL.

Table1 System and algorithm parameters

Description Symbol Value Units
System parameters
Thrust bounds (1, p2) (497%x10°,1.334x10) N
Minimum admissible glide-slope angle 4 /4 rad
Maximum allowable angle between T and 7 0 /4 rad
Glide-slope cone base radius rad 80 m
Acceleration due to gravity for Mars g 3.7144 m/s?
Effective exhaust velocity c 553.31 m/s
Altitude tolerance for landing Aol 1073 m
Dynamics diffusion matrix z 1074 - Inys —_—
Initial trigger altitude mean Hz(0) 80 m
Initial trigger altitude standard deviation 0.0 2.5 m
Initial horizontal velocity orientation standard deviation Ohvel 5 deg
Initial horizontal velocity maximum magnitude hvelax 10 m/s
Initial vertical velocity mean Ho.(0) -10 m/s
Initial vertical velocity standard deviation Gu.(0) 2.5 m/s
(Dry mass, initial mass mean) (Mg, fm(o)) (1505, 1905) kg
Initial mass standard deviation G (0) 10 kg
Maximum simulation time (training) 1 20 S
Maximum simulation time (testing) ty 30 S
Discretization time interval At 0.05 S
NOVAS-FBSDE algorithm parameters
Cost on terminal position Oy, 0y, Q) (2.5,2.5,2.5) —_—
Cost on terminal velocity (Qy,» Qv‘) QI,:) (5.0,5.0, 10.0) —_—
Cost on terminal mass 0. 10.0 —_—
Glide-slope violation penalty (-, q+) (1.0, 0.005) —_—
L'-norm fuel consumption coefficient qr 0.00055 —_—
Hidden and cell state neurons per layer —_— 8 —_
Optimizer —— Adam —_—
NOVAS shape function S() exp(+) —_
NOVAS initial sampling variance I diag(500%, 500%, 1000?) — —
NOVAS initial sampling mean Hr (0.0, 0.0, 5000) —_
NOVAS iteration learning rate a 1.0 —_
Mini-batch-size (training) B 32 e
Mini-batch-size (testing) B 1024 _
Number of LSTM hidden layers H 2 e

Furthermore, we considered a first-exit formulation, where a
particular simulated trajectory is terminated if the spacecraft is
found to be within a user-defined altitude tolerance value of
hy <= 1073 m from the Martian surface. Similarly as in [12], we
assume that a touchdown speed of higher than 5 ft/s7(1.52 m/s) in any
direction leads to a crash landing. The cost function hyperparameters
(e, O, Qy’ Q.. Qv,v vi’ Qv:v Om»q-+9+»qc) were determined
through experimentation until desirable results were obtained. In
practice, one could carry out a grid search over the hyperparameters
space. Table 2 provides the logic to categorize each trajectory as
either no landing, safe landing, or crash landing.

During testing, to allow the spacecraft to get close enough to the
ground (i.e., below an altitude of k), we increased the maximum
simulation time to t, = 30 s. Note that this is 10 s higher than
the maximum simulation time considered during training (i.e.,
If training = 20 8). We hypothesize that because our policy behaves
like a feedback policy we can deploy the learnt policy for a much
longer duration than what it was trained for. As shown in Figs. 24,
our policy can successfully steer all trajectories toward the landing
location and safely land while staying as much as possible inside the
glide-slope cone enforced as a soft constraint. Specifically, Fig. 2
shows trajectories of position states (top row) and the corresponding
velocity states (bottom row) of 1024 independent test trials. The

INASA specifications: https://www.nasa.gov/mission_pages/station/structure/
elements/soyuz/landing.html.

Table 2 Logic to determine the type of landing

Simulation outcome Height and speed criteria

No landing height >10~% m
Safe landing height < 10~ m AND speed < 1.52 m/s
Crash landing height < 10~ m AND speed >1.52 m/s

random initial states are sampled as per Algorithm 2. Each trial uses
50 NOVAS samples and 6 NOVAS iterations per time step. Because
we have formulated this problem as a first-exit problem, all velocities
are zeroed out once alanding or a crash happens. To gain more insight
on the true performance of the learned policy, we have computed
the landing statistics based on the 1024 test trials. We summarize our
observations in Table 3, wherein the correct category is chosen based
on the logic provided in Table 2. We noticed that just increasing
the NOVAS iterations by 1 (per time step) we were able to achieve
100% safe landing at test time.

Finally, we demonstrate through empirical evidence that our con-
strained sampling scheme satisfies the hard constraints on the thrust.
For our simulations, we chose & = z/4 to ensure that the ground
always is in the field of view of the camera and other sensors on the

2
P1 :
b f the ft. Thus, p3 = ,|———~ = p;. In Fig. 5,
ase of the spacecra us, p3 ‘/2 /) p1- In Fig

we show randomly sampled instances of the control norm

https://www.nasa.gov/mission_pages/station/structure/elements/soyuz/landing.html
https://www.nasa.gov/mission_pages/station/structure/elements/soyuz/landing.html

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

PEREIRA ET AL. 661

80 80
60 60 80
40 40

3

X-position (m)
o
ey
S

y-position (m)
o
z-position (m)

|
S
o
A
o

N

o

-60 -60
-80 -80 0
10
10
0
5 5
Q) Q Q)
E E £
E z 0 2z
o o o
o ke o
$ 2 ¢ -10
x 5 > -5 y N
-15
-10 -10
0O 5 10 15 20 25 30 0 5 10 15 20 25 30 0O 5 10 15 20 25 30
time (s) time (s) time (s)

Fig. 2 Position and velocity trajectories of 1024 test trials showing safe landing in all instances.

(i.e., | T(?)|) to demonstrate satisfaction of hard constraints on the
thrust norm (i.e., the solid blue lines never cross the bounds indicated
0 by dashed blue lines). We additionally plot the norm of the velocity
vector in red and indicate the time step after which the distance to the
landing zone is less than 10 m with the dashed green line. Available
research literature affirms that the optimal thrust profile (i.e., one that
consumes the least amount of fuel overall) for the deterministic 3D
PDG problem is bang/bang in nature, implying that our controller has
converged to a suboptimal control policy. A majority of the samples
illustrated in Fig. 5 show a highly undesirable thrust profile to fly on
actual hardware. Although we acknowledge this outcome, we would
like to point out that in most cases the undesired oscillations arise at
-80 10 . low speeds and low altitudes, which we hypothesize as the control-
Xopoer 0 240 & ler"s response in tfy}ﬂg to achlevg the softest landing p(')s.s1b.1e' (i.e., it
Sitiop, K\ prioritizes minimizing the terminal state cost over minimizing the

) 8o —80 fuel consumption when very close to the landing zone). In some

Fig.3 Three-dimensional view of glide-slope soft-constraint satisfaction. instances, a highly suboptimal (i.e., not like bang/bang) thrust profile

Z-position (m)

80
€ 60
C
.0
% 40
o
o
N

20

0

-50 0 50 =50 0 50
Xx-position (m) y-position (m)

Fig. 4 xz (left) and yz (right) cross-sectional views of the glide-slope soft-constraint satisfaction.

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

662 PEREIRA ET AL.

Table3 Landing statistics for 1024 trials with maximum simulation time of ¢/ (.s; = 30 s

NOVAS inner-loop iterations NOVAS samples Not landed, % Safely landed, % Crashed, %

5 50 0.2 99.8 0.0
6 50 0.0 100.0 0.0
sample index: 111 sample index: 165
12 4 14
12000 21 | 12000
— 101 = £
) = 2 et
3 4 E 104 a
2 2
£ 89 F100005 £ I 10000 £
B 5 E 81 =
S 6 § s g
> > 6
S Lgooo &= = lsoo0 =
S 4 g ° 5
g = 24 =
© o
2 o o
- 6000 2 I 6000
0 0
o s 10 15 20 o 5 10 15 20
time (s) time (s)
sample index: 218 sample index: 265
____________________ e —————————— 14 4 R — e ——————————
i
12 i 1
i 120005 | 12000
1
. | 1 £ . £
w1 ! s 107 put
[} (%]
= | ‘- 2
£ s ! F100005 £] I 10000 S
€ i % E s
o 1 E o E
= | 2 2 .
S i L8000 = S 8000 =
S | s o | s
2 = 2 : b
o 1 =3
j 2 i E
B - 6000 21 i I 6000
i H
04 mmmmmmmm o 1 o 4
OAIO 2.’5 5.‘0 7:5 10’.0 12‘.5 15‘.0 17'45 26.0 OjO 2:5 5;0 7j5 1010 12’.5 15’.0 17‘.5
time (s) time (s)
sample index: 288 sample index: 540
14 -
12 4
12000 12 4 | 12000
c [=4
@ 1% P =
€ g E]
£ s F100005 £ I 10000 5
g 5 £ °] 5
2 6 E 2 -
=z 2 29 2
S L8000 - S 8000
< 4 3 3 5]
2 = 2 % =
=3 =3
o]
21 6000 21 [6000
01 0
0.‘0 2.'5 SjO 7.5 10.0 12’.5 15:.0 17'A5 0.‘0 2.5 5.0 7.‘5 10'.0 12.5 15.0 17.5
time (s) time (s)
sample index: 576 sample index: 583
« 3 [—— U — 149 -
1 1
1 1
1 12 4 1
121 1 12000 1 12000
_ i £ =4 i £
2 101 i — 109 ! =
wn [}
E : g E | 3
s] ! F10000S £ & ! 10000 5
= i s E i s
s i E 2 .| i E
> °] ! e = ' S
S i L8000 - T | 8000 .
s j g o ¢ i g
g 4 = 2 ! =
© o©
s S
2 L6000 “ 21 L6000 “
1
0 =mmmmmemmeseeee———————— L 0
O.IO 2:5 5.‘0 7.‘5 1(;.0 12‘.5 15’.0 17‘.5 20'40 0.‘0 2.’5 5.’0 7.‘5 10’.0 12‘.5 15I40 17‘.5
time (s) time (s)

Fig. 5 Randomly sampled test instances wherein the dashed blue lines are p; and p, showing satisfaction of hard constraints on the thrust norm. The
dashed green line indicates the time step when the distance to the landing zone is less than 10 m to distinguish the thrust-norm profiles in the two intervals.

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

PEREIRA ET AL. 663

is also observed before the 10 m mark. This is a limitation of
modeling the thrust norm as a continuous random variable with a
truncated Gaussian distribution (see line 4 of Algorithm 1), instead of
a discrete random variable. This allows for a continuous thrusting
profile which in the presence of high levels of stochasticity can lead to
a suboptimal control policy. We suspect this to be the primary reason
for the departure from the optimal bang/bang thrust profile. This can
be overcome by modeling the thrust norm using discrete distributions
such as the categorical distribution wherein the discrete values are
p1 and p,, while using the truncated Gaussian distribution to model
the horizontal thrust components similar to Algorithm 1. Because
the categorical distribution is also part of the exponential family, the
theory of stochastic search applies, and it can be used to optimize the
parameters of the distribution. We invite the interested reader to
refer to the work in [25] for more details, and we postpone the
investigation of extending NOVAS to use a discrete distribution for
the thrust norm to future work.

VI. Conclusions

This paper presents a novel approach to solve the constrained
three-dimensional stochastic soft-landing problem using LSTM-
based deep recurrent neural networks and the differentiable non-
convex optimization layer called the NOVAS Layer, within the deep
Forward/Backward Stochastic Differential Equation framework for
end-to-end differentiable £! stochastic optimal control. This paper’s
approach does not rely on convexification of the constraints or
linearization of the dynamics. Through simulations, the authors
demonstrated satisfaction of hard thrusting (i.e., control) constraints
and soft state constraints as well as robustness to the spacecraft’s
initial conditions and external disturbances. Not only does the trained
control policy of the proposed approach safely land all test cases, but
it also exhibits properties of a feedback policy, thereby allowing it to
be deployed for longer than the maximum simulation time during
training. Thus, once trained offline, this policy does not require on-
the-go replanning as compared to other deterministic methods in
literature and can output an optimal control by performing a forward
pass through a neural network and the NOVAS Layer. By making the
framework robust to the initial state at the start of the descent stage,
not only is the glide slope of the descent trajectory regulated, but the
trained policy also has a higher tolerance for errors made by the pre-
descent stage controllers and can take over from the previous stage
starting in a wide radius around the landing zone. The authors believe
these successful results serve as a stepping stone for future research
directions in using deep-learning-based stochastic optimal control for
planetary soft landing.

Appendix: NOVAS Derivation

In this paper, we consider nonconvex optimization problems
where the optimal control cannot be computed as an analytical
solution and therefore we rely on the use of a novel approach
introduced by Exarchos et al. [13], by the name of NOVAS. NOVAS
stands for Non-Convex Optimization Via Adaptive Stochastic
Search. NOVAS is designed to tackle very general nonconvex opti-
mization problems and is inspired by a well-researched method used
across the field of stochastic optimization known as GASS [21]. We
summarize, in this section, the main ideas and the derivation from the
work [13] for the convenience of the reader. For more details and
other applications of NOVAS, we invite the interested reader to refer
to [13]. In general, GASS addresses a maximization problem (for
minimization, we consider the negative of the objective function) of
the form

T* € argmaxH(T), UCR" (A1)
Teu

where U is nonempty and compact and H:U/ — R is a real-valued
function that may be nonconvex, discontinuous, and nondifferen-
tiable. Given that H(T) is allowed to be very general, this function
may be defined by an analytical expression or a neural network.
GASS allows us to solve the given maximization problem through

a stochastic approximation. For this, we first convert the men-
tioned deterministic problem into a stochastic one in which T is a
random variable. Moreover, we assume that 7' has a probability
distribution p(T;0) from the exponential family and is parame-
terized by 6. Using this approximation, we now shift from explic-
itly maximizing H(T) to maximizing a lower bound on H(T)
given by

0" = arg max/H(T)p(T; 6)dTr (A2)
0

—————————
£EH(T)]

It is common practice to introduce a natural log and a shape
function S(-) with properties of being a continuous, nonnegative,
and nondecreasing function. Because of these properties, the
optima of the new problem remain unchanged. The problem then
becomes

0* = arg max{(’n, fS(H(T))/)(T; 0) dT} (A3)
0

=t E[sr(r))

Notice that the optimization is not with respect to T anymore and
is instead with respect to the parameters of the distribution on 7.
Thus, we can attempt to solve the given problem with gradient-
based approaches because the nondifferentiability of H with
respect to T has now been circumvented. Taking the gradient of
the objective, we have

Vo lo / S(H(T)) p(T;0) dT

[S(H(T)) Vp(T;0) dT
= [S(H(T)) p(T:0)dT
ISOUT) V(o) 4
[S(H(T)) p(T:6)dT
_ [S(H(T)) Vg b p(T;0) p(T; 0)dT
~ [S(H(T) p(T;6)dT
_E[S(H(T)) Vy ta p(T36)]
N E[S(H(T))]

dT

(alsoknown as the log trick)

(A4)

The log trick allows us to approximate the gradient by sampling.
This makes this method amenable to GPUs or vectorized oper-
ations. Because p(T'; 0) belongs to the exponential family, we can
compute an analytical form for the gradient inside the expectation.
Distributions belonging to the exponential family generally take
the form

p(T:0) = h(T) exp(6"Z(T) - A(9))

where @ is the vector of natural parameters, Z is the vector of
sufficient statistics, and A is the log-partition function. For a
multivariate Gaussian, we can obtain analytical expressions for
each of these as

. _ 1 1 Ty-1
P(T; pr, Zr) = \/Wexp(2(T ur) Zp (T ﬂT))
(AS)
= ;exp (—lTTZ"T) exp(TTZ‘lyT - lyTZ"yT)
V) | 2 T2
h(T)
= h(T) exp(6TZ(T) — A(6)) (A6)

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

664 PEREIRA ET AL.

where 0 = Z;l/zﬂr, Z= Z;I/ZT and A(0) = 1u} 27 ur. Before

we compute the gradient, we observe the following regarding the
log-partition function A:

P(T; uz, 1) = h(T) exp (6"Z(T)) - exp (—A(6))
_ h(T) exp (F)TZ(T))
~ exp(A(9)

For this to be a valid probability distribution, we must have
exp (A(9)) = /h(T) exp (TZ(T))dT

= A(0) = ln / h(T)exp (TZ(T)) dT
(hence the name log-partition function)
We can verify that the expression for A(€) obtained previously for the

Gaussian distribution agrees with this definition of the log-partition
function:

A(0) = v fh(T) exp(6'Z) dT

1
——TT%;! T) exp(TTE7 yy) AT

1
= ﬂn —_—
/ \/(2n)"|zr|e’(p(2

1 1
—T'27'T + T2 ur - 5#?2;1141)

= ﬁn/;exp(
vV (2n)" 2] 2

p(T:0)
1
X exp (5/42}%) dr
1 1
=l / p(T;0) eXp(EﬁZEIMr) dT = eXp(EﬁZFuT)

x/p(T; 6)dT

—_——
=1

[
= Eu;ZleT

Now, it is common practice to simply optimize the mean y7 alone
and update the variance using an empirical estimate, which is what we
adopt in our algorithm as well. In that case, we are interested in the
gradient with respect to y7 alone. Returning back to the derivation of
the gradient update and considering the p(T'; 6) to be the Gaussian
distribution, we have the following derivation for the gradient:

Vy b p(T;0) = Vo(l h(T) + 07Z — A(6))

_ 1 _ _
= 5T = 3|7) (27)|
= E;I/ZT - Z}l/z,uT (because 6 = Z}l/zﬂT)
=22 puy)

Substituting this back into the expression for the gradient of the objec-
tive, we get the following gradient ascent update for the parameter 9:

E[S(UD) 7 (T - pp)]
E[SCH(T))]

pr. wehave, ;2 pktt = 5712k

9k+1 =0k+a

using 0 = £,/

12 E[SCHM)(T = pr)]
O R)]

E[S(H(T)(T = pr)]
E[S(H(T))]

therefore, pkt! = uk + a

(AT)

References

[1] Cherry, G. W., “A General, Explicit, Optimizing Guidance Law for
Rocket-Propelled Spaceflight,” Astrodynamics Guidance and Control
Conference, AIAA Paper 1964-0638, 1964.
https://doi.org/10.2514/6.1964-638

[2] Klumpp, A.R., “Apollo Lunar Descent Guidance,” Automatica, Vol. 10,
No. 2, 1974, pp. 133-146.
https://doi.org/10.1016/0005-1098(74)90019-3

[3] Ross, M. 1., “How to Find Minimum-Fuel Controllers,” AIAA Guidance,
Navigation, and Control Conference and Exhibit, AIAA Paper 2004-
5346, Aug. 2004.

[4] Lu, P., “Propellant-Optimal Powered Descent Guidance,” Journal of

Guidance, Control, and Dynamics, Vol. 41, No. 4, 2018, pp. 813-826.

https://doi.org/10.2514/1.G003243

Lu, P, “Augmented Apollo Powered Descent Guidance,” Journal of

Guidance, Control, and Dynamics, Vol. 42, No. 3, 2019, pp. 447-457.

https://doi.org/10.2514/1.G004048

[6] You, S., Wan, C., Dai, R., Lu, P, and Rea, J. R., “Learning-Based

Optimal Control for Planetary Entry, Powered Descent and Landing

Guidance,” AIAA Scitech 2020 Forum, AIAA Paper 2020-0849, 2020.

https://doi.org/10.2514/1.G004928

Sanchez-Sanchez, C., and Izzo, D., “Real-Time Optimal Control via

Deep Neural Networks: Study on Landing Problems,” Journal of Guid-

ance, Control, and Dynamics, Vol. 41, No. 5, 2018, pp. 1122-1135.

https://doi.org/10.2514/1.G002357

Dueri, D., Agikmese, B., Scharf, D. P., and Harris, M. W., “Customized

Real-Time Interior-Point Methods for Onboard Powered-Descent

Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 40,

No. 2, 2017, pp. 197-212.

https://doi.org/10.2514/1.G001480

Szmuk, M., Reynolds, T. P, and A¢tkmese, B., “Successive Convex-

ification for Real-Time Six-Degree-of-Freedom Powered Descent

Guidance with State-Triggered Constraints,” Journal of Guidance,

Control, and Dynamics, Vol. 43, No. 8, 2020, pp. 1399-1413.

https://doi.org/10.2514/1.G004549

[10] Liu, X., “Fuel-Optimal Rocket Landing with Aerodynamic Controls,”
Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019,
pp. 65-77.
https://doi.org/10.2514/1.G003537

[11] Ridderhof, J., and Tsiotras, P., “Minimum-Fuel Closed-Loop Powered
Descent Guidance with Stochastically Derived Throttle Margins,”
Journal of Guidance, Control, and Dynamics, Vol. 44, No. 3, 2021,
pp. 537-547.
https://doi.org/10.2514/1.G005400

[12] Exarchos, I., Theodorou, E. A., and Tsiotras, P., “Optimal Thrust Profile
for Planetary Soft Landing Under Stochastic Disturbances,” Journal of
Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 209-216.
https://doi.org/10.2514/1.G003598

[13] Exarchos, I., Pereira, M. A., Wang, Z., and Theodorou, E. A., “NOVAS:
Non-Convex Optimization via Adaptive Stochastic Search for End-
to-End Learning and Control,” Published as a Conference Paper at
the International Conference on Learning Representations (ICLR),
2021, https://openreview.net/forum?id=Iw4ZGwenbXf.

[14] Pereira, M. A., Wang, Z., Exarchos, 1., and Theodorou, E. A., “Safe
Optimal Control Using Stochastic Barrier Functions and Deep Forward-
Backward Sdes,” Proceedings of the 2020 Conference on Robot Learn-
ing, Proceedings of Machine Learning Research (PMLR), Vol. 155,
2020, pp. 1783-1801.

[15] Ito, K., “Stochastic Integral,” Proceedings of the Imperial Academy,
Vol. 8, No. 8, 1944, pp. 519-524.
https://doi.org/10.3792/pia/1195572786

[16] Pereira, M., Wang, Z., Exarchos, 1., and Theodorou, E. A., “Learning
Deep Stochastic Optimal Control Policies Using Forward-Backward
Sdes,” Published as a Conference Paper at Robotics: Science and Sys-
tems (RSS), 2019, https://www.roboticsproceedings.org/rss15/p70.html.
https://doi.org/10.15607/RSS.2019.XV.070

[17] Pereira, M., Wang, Z., Chen, T., Reed, E., and Theodorou, E., “Feynman-
Kac Neural Network Architectures for Stochastic Control Using
Second-Order FBSDE Theory,” Proceedings of Machine Learning
Research (PMLR), Learning for Dynamics and Control, PMLR,
2020, pp. 728-738.

[18] Exarchos, I., and Theodorou, E. A., “Stochastic Optimal Control via
Forward and Backward Stochastic Differential Equations and Impor-
tance Sampling,” Automatica, Vol. 87, Jan. 2018, pp. 159-165.
https://doi.org/10.1016/j.automatica.2017.09.004

[19] Kingma, D. P., and Ba, J., “Adam: A Method for Stochastic Optimiza-
tion,” 3rd International Conference on Learning Representations,
ICLR, Conference Track Proceedings, 2015, http://arxiv.org/abs/
1412.6980.

[5

[t

[7

—

[8

[9

—

https://doi.org/10.2514/6.1964-638
https://doi.org/10.1016/0005-1098(74)90019-3
https://doi.org/10.2514/1.G003243
https://doi.org/10.2514/1.G004048
https://doi.org/10.2514/1.G004928
https://doi.org/10.2514/1.G002357
https://doi.org/10.2514/1.G001480
https://doi.org/10.2514/1.G004549
https://doi.org/10.2514/1.G003537
https://doi.org/10.2514/1.G005400
https://doi.org/10.2514/1.G003598
https://openreview.net/forum?id=Iw4ZGwenbXf
https://doi.org/10.3792/pia/1195572786
https://www.roboticsproceedings.org/rss15/p70.html
https://doi.org/10.15607/RSS.2019.XV.070
https://doi.org/10.1016/j.automatica.2017.09.004
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Downloaded by Georgia Institute of Technology on April 14, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.G007132

[20]

[21]

[22]

PEREIRA ET AL.

Gisiro, M., “Continuous Markov Processes and Stochastic Equations,”
Rendiconti del Circolo Matematico di Palermo, Vol. 4, No. 1, 1955,
pp. 48-90.

https://doi.org/10.1007/BF02846028

Zhou, E., and Hu, J., “Gradient-Based Adaptive Stochastic Search for
Non-Differentiable Optimization,” IEEE Transactions on Automatic
Control, Vol. 59, No. 7, 2014, pp. 1818-1832.
https://doi.org/10.1109/TAC.2014.2310052

Wang, Z., Lee, K., Pereira, M. A., Exarchos, 1., and Theodorou,
E. A., “Deep Forward-Backward Sdes for Min-Max Control,” 2019
IEEE 58th Conference on Decision and Control (CDC), Inst. of
Electrical and Electronics Engineers, New York, 2019, pp. 6807—
6814.

https://doi.org/10.1109/CDC40024.2019

[23]

[24]

[25]

665

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al., “Pytorch: An
Imperative Style, High-Performance Deep Learning Library,” Advances
in Neural Information Processing Systems, Vol. 32, Dec. 2019, pp. 8026—
8037.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., , “Tensorflow: A System for
Large-Scale Machine Learning,” 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16), The Advanced
Computing Systems Assoc., 2016, pp. 265-283.

Chen, X., Zhou, E., and Hu, J., “Discrete Optimization via Gradient-
Based Adaptive Stochastic Search Methods,” IISE Transactions,
Vol. 50, No. 9, 2018, pp. 789-805.
https://doi.org/10.1080/24725854.2018.1448489

https://doi.org/10.1007/BF02846028
https://doi.org/10.1109/TAC.2014.2310052
https://doi.org/10.1109/CDC40024.2019
https://doi.org/10.1080/24725854.2018.1448489

