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ON BOUNDED DEGREE GRAPHS WITH LARGE SIZE-RAMSEY

NUMBERS

KONSTANTIN TIKHOMIROV

Abstract. The size-Ramsey number r̂(G′) of a graph G
′ is defined as the smallest integer m so

that there exists a graph G with m edges such that every 2–coloring of the edges of G contains
a monochromatic copy of G′. Answering a question of Beck, Rödl and Szemerédi showed that
for every n ≥ 1 there exists a graph G

′ on n vertices each of degree at most three, with size-

Ramsey number at least cn log
1

60 n for a universal constant c > 0. In this note we show that a
modification of Rödl and Szemerédi’s construction leads to a bound r̂(G′) ≥ cn exp(c

√
log n).

1. Introduction

The size-Ramsey number of a graph G′ can be viewed as the number of edges in a most
economical “robust version” of G′, a graph G such that every 2–coloring of the edges of G
contains a monochromatic copy of G′ [4]. In [1], Beck asked whether every bounded degree
graph has size-Ramsey number linear in the number of its vertices. The question was answered
negatively by Rödl and Szemerédi in [6] who constructed for every n ≥ 1 a graph G′ on n

vertices with the maximum degree at most three, such that r̂(G′) ≥ cn log
1

60 n. The authors of
[6] further conjectured that for every d ≥ 3 there is a number ε = ε(d) > 0 such that for all
sufficiently large n,

n1+ε ≤ max
{

r̂(G′) : G′ has n vertices, each of degree at most d
}

≤ n2−ε.

The conjecture was partially confirmed in [5] where it was shown that

max
{

r̂(G′) : G′ has n vertices, each of degree at most d
}

≤ n2−1/d+o(1).

We refer to papers [2, 3] for improvements of the upper bound as well as further references
regarding size-Ramsey numbers. Whereas there has been substantial progress on estimating

size-Ramsey numbers of sparse graphs from above, the lower bound cn log
1
60 n given in [6] seems

to be the best known estimate as of this writing. The purpose of this note is to show that a
modification of Rödl and Szemerédi’s construction leads to an improvement of the lower bound:

Theorem 1.1. For every n ≥ 1 there is a graph G′ on n vertices of maximum degree at most
three such that r̂(G′) ≥ cn exp(c

√
log n), for a universal constant c > 0.

2. Proof of Theorem 1.1

Definition 2.1. Let k ≥ 2 be an integer parameter. We define a labeled random graph Uk =
(Vk, Ek) as follows. Let T = (Vk, ET ) be a complete rooted binary tree of depth k, and let VL ⊂ Vk

be its set of leaves. Let C = (VL, EC) be a spanning cycle on VL chosen uniformly at random.
Then we let Uk be the union of T and C, namely the graph with vertex set Vk and edge set
ET ∪EL. We refer to Figure 1 for a realization of U3.

Remark 2.2. We will call the root of T the root of Uk.
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Figure 1. A realization of U3.

root

Lemma 2.3. Let Uk = (Vk, Ek) be as above, and let G = (VG, EG) be a non-random labeled
graph of maximum degree d. Fix any vertex v ∈ VG. Then

P
{

There is an embedding of Uk into G mapping the root of Uk into v
}

≤
d2

k−1 · d2k+1

(2k − 1)!
.

Proof. Let T = (Vk, ET ) be the binary tree subgraph of Uk from the definition, let vr be its root,
and VL be its set of leaves. We first claim that for any non-random embedding φ of T into G
mapping vr into v, φ can be extended to an embedding of Uk into G with probability at most

2k−1
∏

"=1

d

#
=

d2
k−1

(2k − 1)!
.

This bound can be obtained by considering the following spanning cycle generation on VL. Let
v0 ∈ VL be a fixed vertex of VL. At the first step, a vertex v1 ∈ VL \ {v0} is chosen uniformly at
random; at the second step, v2 is chosen uniformly on the set VL \{v0, v1}, and so on. The cycle
is given by the random set of edges {vi, v(i+1) mod |VL|}, 0 ≤ i ≤ |VL|− 1. Then, conditioned on
any realization of v1, . . . , vi, the probability that φ(vi) and φ(vi+1) are adjacent in G is at most

d
2k−1−i

, and the claim follows.
To complete the proof of the lemma, it is sufficient to give upper bound on the number N of

embeddings φ of T into G mapping vr into v. Since every vertex of G has at most d neighbors,
a rough bound gives

N ≤ d2
1+22+···+2k ≤ d2

k+1

,

and the result follows. !

As an immediate corollary, we get

Corollary 2.4. Let r ≥ 1, k, d ≥ 2, and let U (1), . . . , U (r) be i.i.d copies of Uk. Then

P
{

There is a labeled graph G of maximum degree d and a vertex v of G such that

for each i ≤ r there is an embedding of U (i) into G mapping the root of U (i) into v
}

≤
(

d2
k−1 · d2k+1

(2k − 1)!

)r

·
(

dk+1
)d·dk+1

.
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Proof. The proof is accomplished via a union bound. We first note that the event in question
coincides with the event
{

There is a labeled graph G of maximum degree d on dk+1 vertices and a vertex v of G such

that for each i ≤ r there is an embedding of U (i) into G mapping the root of U (i) into v
}

.

Indeed, the claim follows by observing that in any graph of maximum degree d, any ball of
radius k contains at most 1+ d+ d2 + · · ·+ dk ≤ dk+1 vertices. We further can assume that the
graphs G in the above event have a common vertex set V . The total number of such graphs G
can be crudely bounded above by

(

dk+1
)d·dk+1

,

implying the result. !

Everything is ready for the proof of Theorem 1.1. Note that the result is trivial for small n
by choosing the constant c in the statement of the theorem sufficiently small. From now on, we
assume that n is a large integer. Let parameters h ≥ 1, 1 ≤ r ≤ h, k, d ≥ 2 be chosen as follows:

d :=
⌊

exp
(

√

log n/100
)⌋

; k =
⌊

√

log n/10
⌋

; r := d · dk+1; h := (2−k−1n).

Let U (1), . . . , U (h) be i.i.d copies of Uk (on disjoint vertex sets), and define a random graph
G′ as the union of U (1), . . . , U (h). We will show that with a positive probability, r̂(G′) ≥
exp

(√
log n/1000

)

n. For every r–subset S of {1, 2, . . . , h}, let ES be the event

ES :=
{

There is a labeled graph G of maximum degree d and a vertex v of G such that

for each i ∈ S there is an embedding of U (i) into G mapping the root of U (i) into v
}

,

and let E be the intersection of the complements Ec
S , |S| = r, S ⊂ {1, 2, . . . , h}. In view of

Corollary 2.4 and our choice of parameters,

P(E) ≥ 1−
∑

S⊂{1,...,h}, |S|=r

P(ES)

≥ 1−
(

h

r

)(

d2
k−1 · d2k+1

(2k − 1)!

)r

·
(

dk+1
)d·dk+1

≥ 1−
(

eh · d2k−1 · d2k+1

d(2k − 1)!

)r

≥ 1−
(

e · n · exp
(

2k − 1 + 2k+2
√
log n/100

)

(2k − 1)2k−1

)r

> 0.

Condition on any realization of G′ from E . Let G = (V,E) be any graph with at most
exp

(√
log n/1000

)

n edges. We will show that there is a 2–coloring of the edges of G such
that G does not contain a monochromatic copy of G′.

Denote by Ehigh ⊂ E the collection of all edges of G incident to vertices of degree at least
d + 1, and let G̃ be the subgraph of G obtained by removing Ehigh from the edge set of G.
Observe that the maximum degree of G̃ is at most d = (exp

(√
log n/100

)

). By the definition of

E , for every vertex v of G̃ there are at most r− 1 indices i ≤ h such that U (i) can be embedded
into G̃ with the root of U (i) mapped into v. Since the number of non-isolated vertices of G̃ is at
most 2 exp

(√
log n/1000

)

n we get that there exists an index i0 ≤ h and a subset of vertices Vr

of G̃ of size at most r · 2 exp
(√

log n/1000
)

n/h, such that U (i0) can be embedded into G̃ only

when mapping the root of U (i0) into one of vertices in Vr.
At this stage, we can define a coloring of G. Color all edges from Ehigh as well as all edges

incident to Vr red, and all other edges blue, and denote the corresponding sets of edges by Ered
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and Eblue, respectively. Note that the blue subgraph Gblue = (V,Eblue) of G is also a subgraph
of G̃, and Gblue cannot contain a copy of G′ since, by our construction, it does not contain a
copy of U (i0). Assume for a moment that G′ is embeddable into subgraph Gred = (V,Ered), and
let φ : G′ → Gred be an embedding. Every edge from Ered \ Ehigh is incident to a vertex in Vr

which has degree at most d in G, and therefore

|Ered \ Ehigh| ≤ d · r · 2 exp
(

√

log n/1000
)

n/h

≤ 4 exp
(

(k + 3)
√

log n/100 +
√

log n/1000
)

2k+1 < h/2.

Let I ⊂ {1, 2, . . . , h} be the subset of all indices i such that φ(U (i)) contains an edge from
Ered \Ehigh. Then, by the above,

|I| < h/2.

For every i ∈ {1, 2, . . . , h} \ I, the edge set of the graph φ(U (i)) is entirely comprised by Ehigh

and, in particular, more than 2k−1 vertices of φ(U (i)) have degree at least d+1 in G. Thus, the
total number of vertices in G of degree d+ 1 or larger can be estimated from below by

(h− |I|) · 2k−1 ≥
h

2
· 2k−1.

On the other hand, the number of such vertices cannot be greater than

2 exp
(√

log n/1000
)

n

d
.

We get the inequality
h

2
· 2k−1 ≤

2 exp
(√

log n/1000
)

n

d
,

which is clearly false. The contradiction shows that G′ cannot be embedded into Gred, and the
result follows.
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