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Abstract—Unmanned aerial vehicles (UAVs), e.g., drones, have
become crucial assets in the military’s fleet of vehicles. UAVs
can provide limited bandwidth for tactical communications and
can act as relays over battlefields. Modern drones provide much
higher bandwidth with dynamic antenna capabilities that would
be useful in communicating around obstacles, such as urban
corridors formed by rows of tall buildings that limit terrestrial
lines of sight and attenuate high frequencies. While it is still more
likely that one UAV is used for this purpose, a well-managed
cluster of UAVs could increase the functionality of the entire
terrestrial-drone network. Software-defined wireless networking
(SDWN) is recognized as an effective way to manage distributed
wireless networks. This paper proposes to use software-defined
UAV networks (SD-UAV) to provide well-coordinated, secure
communication resources and relaying capabilities to on-the-
ground soldiers, military vehicles, and assets in an urban, signal-
challenged environment. A mobility and packet delivery analysis
is performed to determine the flow of packets through the
simulated network, and, to maintain secure communication, a
multi-cyberattack detection model is proposed to defend against
jamming, black hole, and gray hole attacks using the Light Gra-
dient Boosting (LightGBM) machine learning (ML) algorithm.
Results show our model can provide an average of greater than
98% detection accuracy, precision, recall, and F1-scores.

Keywords—software-defined networking (SDN), cybersecurity,
UAVs, machine learning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), or drones, have pro-
vided critical utility to both commercial and military appli-
cations such as communication relay, surveillance, network
mobilization, and disaster relief, and the use of UAVs for a
variety of applications, including defense, is expected to grow
25 to 75% by 2035 [1]. The military, including the Navy,
Army, and Air Force, have used UAVs as relay nodes in
tactical deployments to improve the quality of communication
in varying geography [2]. UAVs are also being researched
for ways to increase communications performance in areas
where radio signals suffer from attenuation when passing
through terrain obstacles such as mountains, or buildings
[3], an increasing concern, as shown recently in Ukraine.
Starlink’s low earth orbit (LEO) constellation, has provided
the region with stable communications, but a commercial,
proprietary service can sometimes be a limitation for military
operations [4].
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Recent studies have explored the capabilities of various
types of UAVs, including drones [5]. Although the capabilities
of UAVs continue to improve, they still have a limited range
and operational energy, and thus stay airborne for a limited
amount of time. More often, a single UAV is operated due
to effective control and mobility. To provide a cluster of
UAVs as a communications network, mechanisms are needed
to manage and control the network in a dynamic and adaptive
approach. For tactical deployments of UAV clusters, software-
defined networking (SDN) can be used to manage the dynamic
behavior and capabilities. SDN is a networking concept that
decouples the data plane and control plane of networking
forwarding devices (i.e. switches and routers) and consolidates
network control within one or more devices called SDN con-
trollers. It allows for greater management/oversight, visibility,
and security compared to traditional, or legacy, networking
approaches [6]. Researchers have investigated using software-
defined UAVs (SD-UAVs) and satellite communication (SAT-
COM) to supplement battlefield communications with relay
networks, multi-path tcp solutions, or autonomous configu-
rations of UAV swarms over disaster relief areas, e.g., [7]–
[9]. Ongoing efforts of the military [10], [11] use UAVs for
relay networks. However, these efforts do not consider SD-
UAV networks in an urban environment nor provide mention
of security against jamming, black hole, and gray hole attacks
by malicious forces.

This paper proposes to use software-defined UAV networks
(SD-UAV) to provide well-coordinated, secure communication
resources and relaying capabilities to on-the-ground soldiers,
military vehicles and assets in an urban, signal-challenged
environment. A mobility and packet delivery analysis is per-
formed to determine the flow of packets through the simulated
network, and, to maintain secure communication, a multi-
cyberattack detection model is proposed to defend against
jamming, black hole and gray hole attack using the Light
Gradient Boosting (LightBGM) machine learning (ML) algo-
rithm. Few papers have proposed effective SD-UAV network
architecture with cyber attack protection, much less a machine
learning-based multi-cyberattack detection and identification
mechanism. This paper is organized as follows. Section II
presents a brief overview of SDN, followed by a discussion
of the types of cyberattacks, envisioned attack scenarios,
and the SD-UAV envisioned architecture. Section III contains
our analysis of machine learning and network performance
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Fig. 1: (a) Envisioned SD-UAV Network Deployment in an Urban Environment (b) General SDN Architecture [12]

statistics. Section IV provides a discussion of SD-UAV traffic
and the creation of the datasets necessary to train our ML
model for detection of the cyberattacks. Section V discusses
the results of our ML model classification of cyberattacks with
average accuracy, precision, recall, and F1-scores above 98%.
Lastly, Section VI concludes the paper.

II. SYSTEM ARCHITECTURE

A. Software-Defined Networks (SDN)

As mentioned previously, SDN is a networking concept
that decouples the data plane and control plane of networking
forwarding devices (i.e. switches and routers) and consolidates
network control within one or more devices called SDN con-
trollers. The programmability of network devices makes the
concept and practice of SDN appealing to various applications.
As shown in figure 1(b), SDN can be described along three
planes: (1) Application Plane:, which addresses SDN ap-
plications for network administration, policy implementation,
and security services; (2) Control Plane:, which operates the
network operating system and provides hardware abstractions
to SDN applications. The controller can set up flows, a set of
instructions followed by a series of packets in the data plane;
(3) Data Plane: A collection of components used to forward
traffic in response to instructions from the control planes.

As shown in Figure 1(b), the data/infrastructure layer in-
cludes routers, switches, and access points. In the case of
SD-UAV, UAVs, ground stations, and possibly LEO satellites,
information is transmitted between SDN architecture planes
utilizing application programming interfaces (APIs). The con-
troller employs southbound APIs such as OpenFlow [13], to
interact with the data plane. Multiple controllers can communi-
cate via Westbound and Eastbound APIs, such as ALTO [14].
The topmost layer is the application plane. The network
operator may implement functional applications for mobility
management, access control, energy efficiency, and/or security
management at this layer. The application layer employs
northbound APIs such as FML [15] to communicate with the

control layer. These APIs can be used to communicate required
modifications to the control layer, allowing the controller to
make the required data/infrastructure layer adjustments.

B. Attack Scenario and SD-UAV System Architecture

A variety of denial-of-service (DoS) attacks such as jam-
ming, black hole, and gray hole attacks may disrupt the com-
munication of the SD-UAV network. We define the categories
of these attacks as follows:

• Jamming Attack: Disruption or inhibition of wireless
communication between nodes by transmitting a high-
level radio frequency at the same frequency as the nodes.

• Black Hole Attack: A hijacked drone is instructed to
drop packets which can loss of communication between
endpoints in the network.

• Gray Hole Attack A hijacked drone is instructed to
drop packets at variable rates, resulting in long-term QoS
degradation.

Figure 1(a) illustrates our anticipated attack scenario. We
assume the attackers use jammers and small antennas aimed
at the relay UAVs. Disruptions due to attacks are modeled by
changes in the inter-arrival time, transmission delays, packets
received, and packets sent outlined in Section III-A. Observed
behavior from these attacks are used to train a machine-
learning model to detect and identify such attacks, as discussed
in Section V.

C. SD-UAV System Architecture

Figure 1(a) depicts our envisioned architecture that consists
of 40 relay drones, 1 master controller/drone, and 1 central
station (CS) in an urban battlefield. At the central station, the
network operator can monitor the network and launch addi-
tional drones. Each drone’s buffer acts as a non-preemptive
dual-priority class-based queue as explained in Section III-A.
Packets arriving at a node from the master controller have a
priority tag of 1 and a separate queue with greater priority



than the regular queue of packets that have a label of 2. Non-
preemptive means the priority packet only skips the line of
the regular queue after the UAV has completed the service
of its current packet. Prioritizing command traffic enables
faster network reconfiguration and faster mitigation response
to attacks.

As shown in Figure 1(a), the forwarding drones hover above
the buildings to provide an overhead relay forwarding node for
ground assets. The master controller oversees a global view of
the network for the forwarding drones and installs flows in the
forwarding UAVs to successfully route traffic to the cluster’s
required destination. In the event that the master controller
fails, the relay drones will revert to legacy ad-hoc routing
until a new master controller can be deployed from the CS.
In future work, we will explore distributed and hierarchical
arrangements of duplicate master controllers.

The CS is responsible for monitoring network traffic and
implementing machine learning techniques to detect possible
cyberattacks within the network. When an attack is detected,
the CS communicates with the master controller and instructs
it to command the relay drones to isolate the compromised
UAV drones and reroute traffic around these drones until these
devices can be further investigated. To accomplish this task,
first the master controller pulls network statistics from the
relay drones and sends this information back to the CS for
processing and labeling to train the machine learning model
so that it will be able to detect future cyberattacks.

III. ANALYSIS

The network statistics collected by the master controller
will include inter-arrival time (IAT), transmission delay (TD),
packets sent, packets received, priority labels, etc. In this
Section, we discuss analysis of the network model and perfor-
mance statistics.

A. Network Performance Statistics

In the non-preemptive dual-class priority queue, each UAV
represents the M/M/c queue [16], i.e. c ≥ 1, in which packet
arrival is governed by a Poisson process and packet service
time is governed by an exponential distribution, e.g., as in [17].
We denote the priority class as subscript 1 and the lesser
priority class as subscript 2. The following equations describe
the volume or intensity of traffic, p , for both classes:

p1 ≡ λ1

µ
, p2 ≡ λ2

µ
, p ≡ p1 + p2 =

λ

µ
(1)

The arrival rate of the packets is represented by λ and the
service rate of the packets is represented by µ. The inter-arrival
time (IAT) is the time difference ( ∆t) between packet arrivals
and has an exponential distribution with the parameter λ. The
probability density function is defined as follows for t ≥0:

f(t) = λeλt. (2)

The average IAT for both classes is defined as

IAT =
1

λ
(3)

The service time follows an exponential distribution with
parameter µ. The probability density function is as follows:

g(s) = µe−µs,∀ ≥ 0 (4)

where 1
µ is the average service time of the system. Utilizing

Little’s theorem, the total waiting time is defined as transmis-
sion delays (TD), and represented as the following for the two
classes:

Wi = TDi =
1

µi − λi
(5)

Let Li
q denote the average number of packets for each class

in the queues can be represented in equations 6 and 7 and the
average total number is defined in equation 8:

L1
q =

λ1p

µ− λ1
(6)

L2
q =

λ2p

(µ− λ1)(1− p)
(7)

Lq =
p2

1− p
(8)

where p = λ1

µ + λ2

µ . Therefore, second-priority packets wait
in a queue of UAVs longer than first-priority customers when
p < 1 as shown in equation 9:

W 2
q =

p

(µ− λ1)(1− p)
=

p/(µ− λ1)

1− p
=

W 1
q

1− p
> W 1

q (9)

The probability of observing a given number of packet ar-
rivals in a period from [0,T] determined the normal distribution
of network packet arrivals (i.e., non-attacked packets) within
each system. This equation is utilized to model the bus’s traffic
volume:

P (n arrivals in interval T ) =
(λT )ne−λT

n!
(10)

where T is the IAT, and n represents the number of packets.
The packet count (PC) is modeled as the following:

PC = λT (11)

B. Machine Learning Statistics

We employ accuracy, precision, recall, and F1-score to
assess the performance of the LightGBM algorithm for at-
tack classification. We compute these metrics utilizing the
following: true negative (TN), true positive (TP), false negative
(FN), and false positive (FP). TN refers to the predicted
and actual negative sample for a given class. TP refers to a
predicted positive and positive sample for a class. FN denotes
a sample that was predicted to be negative but turned out to
be positive for a given class. Lastly, FP refers to a sample
that was predicted to be positive for a class but turned out to
be negative. Keerthiraj et al. [18] define accuracy, precision,
recall, and F1-score as follows:

Accuracy is the ratio of samples correctly predicted to the
total number of samples. It is defined as follows:

Accuracy = 100× TP + TN

TP + FP + TN + FN
(12)



Precision is the ratio of correctly predicted instances to
the total number of positively predicted instances. A high
precision indicates that the model has a low false positive
rate, indicating that the model’s positive predictions tend to
be correct. Precision is defined as follows:

Precision = 100× TP

TP + FP
(13)

Recall is the ratio of correctly predicted instances to all
correct instances. A high recall indicates that the model has a
low false positive rate, indicating that the majority of positive
instances are correctly identified. It is defined as follows:

Recall = 100× TP

TP + FN
(14)

The F1-score quantifies the harmonic mean of precision and
recall. A high F1-score indicates that both the precision and
recall of the data are high. In addition, F1-score is valuable
for imbalanced datasets, such as the one used to train our
machine learning model, which is discussed in greater detail
in Section V. F1-Score is defined as follows:

F1− score =
2×Recall × Precision

Recall + Precision
(15)

IV. SIMULATION

A. Mobile Connection and Routing Simulation

Simulations have been implemented using Mininet-Wifi and
the Open Network Operating System (ONOS) controller from
our previous work [5], using the principles of reactive for-
warding, the shortest path algorithm, and a code modification,
to create the shortest possible paths between the hosts on
demand. In addition, the routing algorithm favors lower energy
routes to preserve drone batteries, as well as routes that avoid
bottlenecks in the network.

The simulation scenario is an area of 1 square mile with 80
mobile devices that may connect to the SDN-UAV network
through 40 drones or access points (APs). In Figure 2, the
numbered dots from 1 to 80 represent the mobile devices, and
the circles numbered from 81 to 120 represent the drones, each
with a 120m radius range of network support.

Figure 2 (a), (b) and (c) shows the dynamic paths that can
be created in the network over time as the drones move in
response to the impact of the combat zones. In the simulations,
performing a pingall between all the hosts, reveals the level
of connectivity. When the mobile devices and drones are
moving, there is a slight increase in the delay to create paths,
as well as the packet loss, due to some drones and hosts
not being connected at various moments. However, the drone
configuration adjusts and regains connectivity dynamically.

When the number of drones is increased, Table I demon-
strates that the level of disruption and routing delay increases.
We tested increasing the number of drones to 50, which created
14% more packet loss and a 14-fold to 28-fold increase in
delay. This may be due to there being congestion or saturation

TABLE I: Comparison of Path Establishment and Packet Loss for
Different Emulated Scenarios

Scenario Longest Time to Create a Path % of Packages Lost
40 Drones Connected to all the Hosts 1 ms 0%

40 Drones with Random Movement 2 ms 14%

50 Drones with Random Movement 28 ms 19%

TABLE II: Simulation Parameters for each Class

Class Port Rate Queue Size
(KBps) (KB)

Normal 10 100

Jamming 0.5 100

Black Hole 10 0.005

Gray Hole 10 0.03

at the controller. It will be key to evaluate the optimal number
of drones each type of area.

Figure 3 shows the network packet flow, with the 40 drones,
as captured by WireShark. The peaks represent the number of
packets being sent. The proposed system architecture, with an
effective choice in the number of drones, results in a very
small amount of packet loss.

B. Simulation of Network Traffic under Cyber Attack

In addition to testing the effectiveness of our architecture
with our routing scheme, we tested the effectiveness of our
cyberattack defense mechanisms. The SD-UAV network traf-
fic was tested using SimComponents [19], a network traffic
simulation program built using the SimPY process-based dis-
crete event simulation framework. We modified the original
open source code of SimComponents to incorporate a non-
preemptive priority M/M/C queuing model as explained in
Section III-A. We modelled our simulation after the UHF/VHF
radio traffic often used during military operations. The packet
inter-arrival times and packet transmission delays, based on
the military UAV wireless communication standards STANAG
4586, MIL-STD-6016, and related research, were achieved by
altering the port rate and queue size parameters of the servers
as shown in Table II. In addition, we added 5% Gaussian noise
to the dataset after generation to increase data variability for
training and testing.

We completed a 1-hour network traffic simulation for the
40 UAVs described in Section II-B on a Linux server running
Redhat Enterprise 8.6 with an Intel® 5th Gen CoreTM i5-
6500 CPU @ 3.20GhZ. The network traffic consists of the
following classes: normal, jamming, black hole, and gray
hole. We consider our normal class as our non-attack traffic
while the others are considered to be attack traffic. Our attack
traffic makes up ∼ 15% of our dataset with each attack class
accounting for ∼ 5% of the total dataset. The goal is for the
CS that monitors the overall SD-UAV network traffic to be
able to detect abnormalities and identify the beginning of the
aforementioned attacks.

To simulate these varied attacks, we created three different
attack classes based on the behavior of the attack. To mimic
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Fig. 2: Example UAV topology in Mininet-WiFi for 80 hosts and 40 drones (APs), with X and Y axes scaled in meters.
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Fig. 3: Packet Flow within the UAV Network with 80 hosts
and 40 drones (APs)

the behavior of a jamming attack on a node, we limited the
throughput of an affected node by limiting the port-based rate
to create a throughput lost 95%. For the black hole attack class,
we assume the attacker has successfully hijacked a node and
begun to instruct the node to drop packets. Therefore, we limit
the queuing buffer of a targeted node by > 95% which causes
it to drop packets when its limited queue is full. To simulate
the gray hole attack, we assume the node is hijacked as well
but the attacker is aiming to disrupt QoS. Hence, we instruct
the node to limit the buffer size randomly by 70% − 75% to
create a variable packet drop.

Fig. 4: Histogram for Normal Traffic Transmission Delays

From the data and simulation, we create five 3600 rows x 40
column CSV files for each of the following features: priority

factor, inter-arrival time, transmission delay/latency, number of
packets sent, and number of packets received. In our dataset,
each row represents a time stamp for each second in an hour
and each column represents a drone’s communication for the
entire duration. Figure 4 shows a normalized histogram of
our transmission delay times for both priority and non-priority
normal traffic. The priority traffic receives faster service times
(µ) than non-priority traffic. (Priority traffic accounts for 8.5%
of the total dataset.) Our dataset was then processed and
prepared for our LightGBM algorithm which is explained in
the next section.

V. NUMERICAL RESULTS

To detect, identify, and classify jamming, black hole, and
gray hole attacks, we utilize the LightGBM machine learning
algorithm. LightGBM was chosen over other comparable mod-
els, e.g., extreme gradient boost (XGBoost) and categorical
boost (CatBoost) due to faster training and prediction times
[20]. We apply k-fold cross-validation (k=5) to our LightGBM
output to validate our results. The average and standard
deviation of the accuracy, precision, recall, and F1-score of
the five folds are shown in Table III. The results show that
our model was able to correctly classify the network traffic
on average at greater than > 98%. Thus, using our model, the
CS would be able to detect the cyber attacks present in the
SD-UAV network.

TABLE III: Average Performance Results for k-fold Cross Valida-
tion (k=5) for Normal and Attack Traffic Classes

Algorithm Avg. Accuracy Avg. Precision Avg. Recall Avg. F1-score
µ ± σ µ ± σ µ ± σ µ ± σ

LightGBM 99.78 ± 0.02 99.03 ± 0.13 98.95 ± 0.13 98.98 ± 0.13

To further demonstrate the efficacy of our detection algo-
rithm, we have included the output of k-fold cross-validation
for each individual class in Table IV and the confusion matrix
in Figure 5. As shown in Table IV, each individual class of
network traffic achieved performance greater than > 96%. The
normal class achieved the best results overall due to the natural
skew in the dataset since attack traffic, as aforementioned,



only composed of only ∼ 15%. The gray hole attack class
has the lowest overall performance because the algorithm had
difficulty distinguishing from the other classes. This is due to
the variable nature of gray hole attacks which makes them
more difficult to detect than black hole attacks due to their
similar network statistics. However, the LightGBM algorithm
was still able to make the correct classification and classify
gray hole attacks with an accuracy greater than > 96%.

TABLE IV: Individual Performance Results for k-fold Cross Vali-
dation (k=5) for each Class

Class Avg. Accuracy Avg. Precision Avg. Recall Avg. F1-score
µ ± σ µ ± σ µ ± σ µ ± σ

Normal 99.99 ± 0.01 99.91 ± 0.04 99.99 ± 0.01 99.95 ± 0.02

Jamming 98.29 ± 0.79 97.86 ± 1.07 98.29 ± 0.79 98.07± 0.75

Black Hole 99.31 ± 0.45 99.06 ± 0.73 99.31 ± 0.45 99.18 ± 0.42

Gray Hole 96.67 ± 0.82 98.63 ± 0.66 96.67 ± 0.82 97.64 ± 0.41

The results of our confusion matrix for the k-fold cross-
validation shown in Figure 5 demonstrate the efficiency of
our model in detecting and classifying these attacks in our
dataset among the four classes. We contribute our model’s
success to the five features we extract from our simulation:
priority, inter-arrival times, transmission delay, packets sent,
and packets received.

Fig. 5: Confusion Matrix of LightGBM ML Algorithm k-fold
Cross Validation (k = 5) for the Multiple Traffic Classes

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an SD-UAV system for overcoming
attenuation for ground assets in urban areas. In our Mininet-
Wifi-simulated testbed, we find that one controller with 40
drones can be effective for a 1 mile squared zone and that
higher drone counts have a negative impact on the longest
time to establish paths and packet loss. In our simulations of
network traffic under cyberattack, SimComponent was used
to generate traffic using non-preemptive priority-based queues.
This increases overall network security response since priority
traffic, such as traffic from the controller, has shorter service
times (µ) than non-priority traffic. Using data sets from our
network traffic simulations, we trained the LightGBM machine
learning algorithm. The results demonstrated average accuracy,
precision, recall, and F1-scores > 98%.

In future work, we plan to develop this framework further
to incorporate a broader range of cyberattack detection such as

botnets, false data injection, low-rate denial of service, etc. We
also will develop mitigation techniques after attack detection
to maintain network QoS while under attack.
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