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ABSTRACT

Various parametric volatility models for financial data have been developed to incorporate high-frequency
realized volatilities and better capture market dynamics. However, because high-frequency trading data
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are not available during the close-to-open period, the volatility models often ignore volatility information

over the close-to-open period and thus may suffer from loss of important information relevant to market
dynamics. In this article, to account for whole-day market dynamics, we propose an overnight volatility
model based on [t6 diffusions to accommodate two different instantaneous volatility processes for the
open-to-close and close-to-open periods. We develop a weighted least squares method to estimate model
parameters for two different periods and investigate its asymptotic properties.

1. Introduction

Since Markowitz (1952) introduced the modern portfolio the-
ory, measuring risk has become important in financial appli-
cations. Volatility itself is often employed as a proxy for risk.
Furthermore, there are several risk measurements, such as Value
at Risk (VaR), expected shortfall, and market beta (Duffie and
Pan 1997; Sharpe 1964; Rockafellar and Uryasev 2000). These
risk measurements take volatilities as an important ingredient
in their formulations, and their performances heavily depend
on the accuracy of volatility estimation.

Generalized autoregressive conditional heteroscedasticity
(GARCH) models are one of the most successful volatility mod-
els for low-frequency data (Bollerslev 1986; Engle 1982). They
employ squared daily log-returns as innovations in conditional
expected volatilities and are able to capture low-frequency mar-
ket dynamics, such as volatility clustering and heavy tail. At
the high-frequency level, nonparametric approaches, such as It6
processes and realized volatility estimators, are often used to
model and estimate volatilities. Examples include two-time scale
realized volatility (TSRV) (Zhang, Mykland, and Ait-Sahalia
2005), multi-scale realized volatility (MSRV) (Zhang 2006),
kernel realized volatility (KRV) (Barndorff-Nielsen et al. 2008),
quasi-maximum likelihood estimator (QMLE) (Ait-Sahalia,
Fan, and Xiu 2010; Xiu 2010), pre-averaging realized volatility
(PRV) (Jacod et al. 2009), and robust pre-averaging realized
volatility (Fan and Kim 2018; Shin, Kim, and Fan 2021). In prac-
tice, we often observe jumps in financial data, and the decompo-
sition of daily variation into continuous and jump components
can improve volatility estimation and aid with better explana-
tion of volatility dynamics (Barndorff-Nielsen and Shephard
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2006; Corsi, Pirino, and Reno 2010; Ait-Sahalia, Jacod, and Li
2012). For example, Fan and Wang (2007) and Zhang, Kim,
and Wang (2016) employed the wavelet method to identify
the jumps in given noisy high-frequency data. Mancini (2004)
studied a threshold method for jump-detection and presented
the order of an optimal threshold, and Jacod et al. (2009) intro-
duced the jump robust pre-averaging realized (PRV) estimator.
We call this realized volatility. There have been several recent
attempts to combine low-frequency GARCH and SV models
and high-frequency realized volatilities. Examples include the
realized volatility based models (Andersen et al. 2003), the
heterogeneous autoregressive (HAR) model (Corsi 2009), the
high-frequency based volatility (HEAVY) model (Shephard and
Sheppard 2010), the realized GARCH model (Hansen, Huang,
and Shek 2012), and the unified GARCH/SV-It6 models (Kim
and Wang 2016; Song et al. 2020; Kim and Fan 2019). The
realized volatility based models, such as HAR, HEAVY, and real-
ized GARCH models, take reduced ARFIMA forms to model
and forecast realized volatilities estimated from high-frequency
data, and the unified GARCH/SV-It6 models provide theoret-
ical platform to reconcile low-frequency GARCH/SV volatil-
ity representations and high-frequency volatility processes and
harnesses realized volatilities and GARCH/SV models to yield
better, albeit more complicated, modeling and inference for
combining low- and high-frequency data. Empirical studies
have shown that, with realized volatility as a part of the inno-
vation, volatility models can better capture market dynamics.
However, because high-frequency data are usually available only
during the open-to-close period, the high-frequency volatility
models often include open-to-close integrated volatility in the
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innovation and ignore the overnight risk (Corsi 2009; Kim and
Wang 2016; Song et al. 2020). Taylor (2007) showed that the
overnight information is important for evaluating risk manage-
ment models, so the volatility measured by the open-to-close
high-frequency observations may significantly undervalue their
risk. Furthermore, the overnight risk is often severe—for exam-
ple, during the European debt crisis, Asian financial crisis, and
so on—and so it is an important factor that accounts for market
dynamics. From this point of view, there are several studies on
the impact of overnight returns on volatility and modeling the
volatility process using overnight returns and realized volatility.
Hansen and Lunde (2005) studied optimal incorporation of
the overnight information and proposed inverse weighting of
the realized volatility and squared overnight returns by using
the corresponding variance estimates. Andersen, Bollerslev,
and Huang (2011) modeled the overnight returns using an
augmented GARCH type structure. See also Martens (2002),
Todorova and Soucek (2014), and Tseng, Lai, and Lin (2012)
for more information on the impact of overnight volatility.
These studies document an increasing interest in developing
It6 process-based models that provide a rigorous mathematical
formulation for using both open-to-close high-frequency data
and close-to-open low-frequency data to analyze whole-day
market dynamics.

In this article, we develop an instantaneous volatility model
for a whole-day period. The whole-day is broken down into two
time periods, the open-to-close and close-to-open periods. Dur-
ing the open-to-close period, we observe high-frequency trad-
ing data, whereas during the close-to-open period, we observe
low-frequency close and open prices. To reflect this structural
difference, we develop two different instantaneous volatility
processes for the open-to-close and close-to-open periods. For
example, for the open-to-close period, we use the current inte-
grated volatility as an innovation to reflect the market dynamics
immediately, which helps to adapt to the rapid change in the
volatility process, as occurs in the high-frequency volatility
models (Corsi 2009; Shephard and Sheppard 2010; Hansen,
Huang, and Shek 2012; Song et al. 2020). For the close-to-
open period, we employ the current squared log-return as an
innovation, which brings us back to the discrete-time GARCH
model for the close-to-open period. The proposed structure
implies that the conditional expected volatility for the whole-day
period is a function of past open-to-close integrated volatilities
and squared close-to-open log-returns. We call this volatility
model the overnight GARCH-It6 (OGI) model. Moreover, to
estimate its model parameters, we develop a quasi-likelihood
estimation procedure. Specifically, for the open-to-close period,
we employ realized volatilities as a proxy for the correspond-
ing conditional expected volatilities, whereas for the close-to-
open period, we adopt squared close-to-open log-returns as a
proxy for the corresponding conditional expected volatilities.
These proxies have heterogeneous variances that are related to
the accuracy of the proxies. To reflect this, we calculate their
variances and assign different weights to each proxy. As a result,
the proposed estimation method takes the form of weighted
least squares.

The rest of this article is organized as follows. Section 2
introduces the overnight GARCH-It6 model and discusses its

properties. Section 3 proposes weighted least squares estimation
methods and investigates its asymptotic properties. Section 4
conducts a simulation study to check the finite sample perfor-
mance of the proposed estimation methods. Section 5 applies
the proposed overnight GARCH-It6 model and method to real
trading data. The conclusion is presented in Section 6. We
collect the proofs in the supplementary materials.

2. Overnight GARCH-It6 Models

In this section, we develop an Ité diffusion process to capture
the whole-day market dynamics. To separate the parameters for
the high-frequency period (open-to-close) and low-frequency
period (close-to-open), we use the subscript or superscript H
and L, respectively. For the low-frequency GARCH volatility
related parameter, we use superscript g.

Definition 1. We call the log-price X; an overnight GARCH-It6
(OGI) process if it satisfies

dX; = puedt + 04(0)dBt + JrdAy,
of (©)

U[Zﬂ ©) + (t;[zt])z (w1 + VHU[ZH ©))
~ 50 (o + oy 0)) + S0
x Y2 ! (/[[z?:,\l__f 05(9)d35>2
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(1—1)21
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x Y2y 1/m+1—j o2(0)ds
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+ (f[tt]+k 05(9)d35>

v LN\2
+ﬁ([ﬂ+1—t)(zt),

ift € ([t],[t] + 2],

+
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where [t] denotes the integer part of ¢ except that [t] =t — 1
when t is an integer, A is the time length of the trading
period, ZH = f[tt] dw,, 78 = f)»t+[t] dWs, y = ynyL, and
0 = (wH1, WH2, OL, YH> VL, ¢H> &L, BH,> B VH> VL) is the model
parameters. For the jump part, A, is the Poisson process with
constant intensity uj, and the jump sizes J;’s are independent of
the continuous diffusion processes. Furthermore, the jump size
J¢ is equal to zero for the overnight period.

The instantaneous volatility process of the OGI model is
continuous with respect to time. That is, its trajectories are
continuous. For the open-to-close period—for example, [t] <
t < [t] + A—the instantaneous volatility process reflects the
market risk via the current integrated volatility and past squared
overnight returns, whereas for the close-to-open period, [¢] +
A < t < [t] + 1, the instantaneous volatility process uti-
lizes the current log-return and past open-to-close integrated
volatilities to express the market risk. Specifically, the past risk
factors are calculated through exponentially weighted averages
with y order. Furthermore, to account for the U-shape pat-
tern of the intra-day volatility process (Andersen, Thyrsgaard,
and Todorov 2019), the instantaneous volatility process has the
quadratic terms with respect to time t. Thus, with appropriate
choices of wy; and g, the OGI model can explain the U-shape



pattern. At the market open time, the instantaneous volatility
process has the following GARCH structure:
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where 7 is an integer, and at the market close time,
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Thus, the instantaneous volatility process is some quadratic
interpolation of the GARCH volatility with the open-to-close
integrated volatility and squared close-to-open log-return as
the innovation. To account for the random fluctuations of the
instantaneous volatilities, we introduce Z and Z! with the
scale parameters vy and vz. When considering only one of
the open-to-close and close-to-open periods and ignoring the
other period, the OGI model recovers the realized GARCH-
It6 process (Hansen, Huang, and Shek 2012; Song et al. 2020)
or unified GARCH-Itd process (Kim and Wang 2016). Thus,
unlike the proposed OGI model, these models only incorporate
one innovation term of the integrated volatility and squared log-
return in their conditional volatility.

Because our main interest lies in measuring the whole-day
risk, to estimate the model parameters, we use nonparametric
integrated volatility estimators (Zhang 2006; Barndorft-Nielsen
et al. 2008; Jacod et al. 2009) and squared log-returns as proxies
for the parametric conditional expected integrated volatility.
Thus, it is important to investigate properties of the integrated
volatility of the proposed OGI model. The following theorem
shows the properties of integrated volatilities.

Theorem 1. For the OGI model, we have the following proper-
ties.

(a) The integrated volatilities have the following structure. For
0<ayg <1,0 < Br < 1,and n € N, we have

/ ol (0)dt = h,(0) + D, as., (2.2)
n—1

n—1+A
/ o (0)dt = Ahfl(0) + DI as, (2.3)
n

-1

n
f ol(0)dt = (1 — MhL@) + DL as., (2.4)
n—1+xa
where

of [n—2tA

ha(0) = &8 + yhy_1(0) + — f ol (0)dt
A Jn—2

n—1

g
[edt)?,

1—A

+ (Xn—l - Xn—2+)» - /

n—24A

. g . ﬁ n—2+Ax 5
Bl (0) = oy + y il 0) + = o2(0)dt
n—2
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D,, DI, DL are martingale differences and

8, y,a8, BE, a)‘f{,ai,ﬁﬁ, wﬁ,af,ﬂf are functions of 6.
Their detailed forms are defined in Theorem C1 in the

supplementary materials.
(b) We have

E| 0f)’
E [(D’f)z Fm} = oL ®)

= Fp;15,_1(0) + Fp 2015, 1 ()
+FﬁL,3a)% + 1 - )»)va a.s.,

Iﬁnl] = () = 1?05 as.,

where DE- = DL +2 [ (Xi — Xy 4n-1)01(60)dBy, v,
and vf are defined in (C.2) and (C.7), respectively, sfl_ 1)
is defined in (C.6), and Fg, ;s are functions of f; defined in
(C.3) in the supplementary materials.

Theorem 1(a) shows that the integrated volatility can be
decomposed into the GARCH and martingale difference. This
structure implies that the daily conditional expected volatility
is a function of the past open-to-close integrated volatilities
and squared close-to-open log-returns. That is, under the OGI
model, the market dynamics can be explained by the open-
to-close integrated volatility and squared close-to-open log-
returns, which represent volatilities for the open-to-close and
close-to-open periods, respectively. Thanks to these two differ-
ent volatility sources, we expect the OGI model to capture the
market dynamics well. In the empirical study, we find that the
integrated volatilities and squared log-returns help explain the
market dynamics (see Section 5).

Remark 1. Based on Theorem 1, we can predict the one period
ahead volatility. In practice, we often need to predict the multi-
period ahead volatility. To do this, we use the following relation-

ship:

E [/ af(@)dt‘f“] =E [E [/ of(e)dt‘fnl] fn2:|
n—1 n—1

= o + yhu_1(0) + «fh_ | (0)

=E [hn(e)‘}-n—z}
+B8hE_1(6) as.

Then, recursively, we can obtain the multi-period prediction.

As we discussed above, we estimate the model parameters via
the relationship between the conditional GARCH volatilities,
h @), hL(#), and h,(0), and the corresponding integrated
volatility or squared log-return. Thus, to study the low-
frequency volatility dynamics, we only need Theorem 1(a).
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That is, under the model assumptions (2.2)-(2.4), we develop
the rest of the article. In comparison with direct volatility
modeling based on realized volatility such as HAR, HEAVY,
and realized GARCH models (Andersen et al. 2003; Corsi 2009;
Shephard and Sheppard 2010; Hansen, Huang, and Shek 2012),
the unified GARCH-Ité6 model and OGI model may be more
difficult or even less practical for drawing statistical inferences
from combined low- and high-frequency data. However, like the
unified GARCH-It6 model case, the OGI approach indicates the
existence of the diffusion process, which satisfies the conditions
(2.2)-(2.4) and fills the gap between the low-frequency
discrete time series volatility modeling and the high-frequency
continuous time diffusion process. Because the purpose of this
article is to develop diffusion processes that can account for the
low-frequency market dynamics, the parameter of interest is
the GARCH parameter 88 = (wi,a)‘%, y,ai,a‘g,ﬁg, ﬂf). We
notice that, under the model assumption, we need the common
y condition for the open-to-close and close-to-open conditional
volatilities to have the GARCH conditional volatility form for
hI,f ), hﬁ (0), and h,(9). When it comes to estimating GARCH
parameters, we assume that the open-to-close and close-to-
open volatilities have different dynamic structures, so we make
inferences for hI,;I (0) and h];,(é’) separately under the common
y condition. Details can be found in Section 3.

3. Estimation Procedure
3.1. A Model Setup

We assume that the underlying diffusion process follows the
OGI process defined in Definition 1. The high-frequency obser-
vations during the dth open-to-close period are observed at

tipi = 1,...,mg, whered — 1 = t39 < t7; < -+ <
tam; = A 4+ d — 1. Let m be the average number of the
high-frequency observations, that is, m = %Z?I:l mg. Due

to market inefficiencies, such as the bid-ask spread, asymmetric
information, and so on, the high-frequency data are masked by
the microstructure noise. To account for this, we assume that
the observed log-prices during the open-to-close period have
the following additive noise structure:

Yi,, =Xty + €, ford=1,...,ni=1,...,mg—1,

where X; is the true log-price, €, is microstructure noise with
mean zero and variance 74, and the log-price and microstruc-
ture noise are independent. The effect of u; is negligible regard-
ing high-frequency realized volatility estimators, and the mag-
nitude of daily returns is relatively small. Thus, for simplicity,
we assume (; = 0 in Definition 1. We note that the theoretical
results in Theorem 2 can be established in the similar way with
nonzero ¢ under some piecewise constant condition for y;. In
contrast, during the close-to-open period, we only observe the
low-frequency observations, open and close prices. In the low-
frequency time series modeling, we often assume that the true
low-frequency prices are observed. In practice, the microstruc-
ture noise may exist in the low-frequency observations, but its
impact on the low-frequency modeling is relatively small. Thus,
we also assume that the true low-frequency observations, the
open and close prices Xy and X 4, are observed at the open
and close times, f441,0 and tg41,mg, -

Remark 2. For the microstructure noise, we may need a sta-
tionary condition to estimate the integrated volatility with
the optimal convergence rate m~'/* (Zhang 2006; Barndorff-
Nielsen et al. 2008; Jacod et al. 2009; Kim, Wang, and Zou 2016;
Fan and Kim 2018). For example, we may impose a ARMA-
type structure on the microstructure noise and assume some
dependence between the price processes and the microstruc-
ture noise. However, in this article, we directly adopt a well-
performing nonparametric realized volatility estimator, which
can be obtained under certain structures of the microstructure
without affecting the volatility modeling. Thus, we can put such
structures on the microstructure noise, as long as we can secure
the well-performing realized volatility estimator.

3.2. GARCH Parameters Estimation

We first fix some notations. For any given vector b = (b;);=1, . k>
we define ||b|lmax = max;|b;]. Let Cs be positive generic
constants whose values are independent of 6, n, and m and
may change from occurrence to occurrence. In this section,
we develop an estimation procedure for the GARCH param-
eters, 08 = (a)‘f{,w‘i, y,aﬁ,af, ,Bf_I, ﬂf), which are minimum
required parameters to evaluate the GARCH volatilities defined
in Theorem 1, where elements of 68 are defined in Theorem C1
in the supplementary materials. We denote the true GARCH
parameter by «9§ = (a)‘f_l’o, a)io, Y0 oz}g{’o, aio, ﬂg,o’ ﬁf,o)-

Theorem 1 indicates that integrated volatilities can be
decomposed into the GARCH volatility terms h(65) and
hL(63), and the martingale difference terms D! and DL. This
fact inspires us to use the integrated volatilities as proxies of the
GARCH volatilities. Then, as the sample period goes to infinity,
the martingale convergence theorem may provide consistency
of the estimators. However, the integrated volatilities are not
observable, so we first need to estimate them. For the open-to-
close period, we use the high-frequency observations to estimate
the open-to-close integrated volatility nonparametrically (Ait-
Sahalia, Jacod, and Li 2012; Barndorff-Nielsen et al. 2008; Corsi,
Pirino, and Reno 2010; Fan and Wang 2007; Jacod et al. 2009;
Xiu 2010; Zhang 2006; Zhang, Kim, and Wang 2016), and we
call these nonparametric estimators “realized volatility” Under
mild conditions, we can show that realized volatility converges
to integrated volatility with the optimal convergence rate m /4
(Zhang 2006; Barndorft-Nielsen et al. 2008; Jacod et al. 2009; Xiu
2010; Tao, Wang, and Chen 2013; Kim, Wang, and Zou 2016). In
the numerical study, we employ the jump robust pre-averaging
realized (PRV) estimator (Jacod et al. 2009; Ait-Sahalia and Xiu
2016). However, for the close-to-open period, high-frequency
data are not available, so we use the squared close-to-open
return as the proxy. Note that It0’s lemma indicates

n

O N R

An—1

n
+ zf (Xt = Xp4n—1)01(6p)dB; as.
At+n—1

This implies that the squared close-to-open return can also be
decomposed into the GARCH volatility and martingale differ-
ence. That is, we have the following relationships:



Atn—1
/ o (Bp)dt = Ah1(63) + D as.,
n—1

Xn — Xon1)® = (1 — WhLOF) + Dy as,

where DIL = DE kan+n_1(Xt — Xs4n—1)0:(60)dB;. We use
the above relationships to estimate the GARCH parameter 6;.

The variances of the martingale differences D and DLL indi-
cate the accuracy of the GARCH volatility information coming
from the proxies f;f{'_l o2(0p)dt and (X, — X 44—1)%, so each
proxy with the smaller variance is closer to the corresponding
GARCH volatility. Thus, as we incorporate the variance infor-
mation into an estimation procedure, we expect to improve its
performance. For example, we can standardize the proxies as
follows:

An—1
(fnj_ln

o2 (Bo)dt — AhH (95))2
E[(pf)’]

(%~ Xoen 02— (1= D))’

E[(Di)’]

The unit expectations help to assign a larger weight to a more
accurate proxy. In the empirical study, we find that the variance
of the integrated volatilities is smaller than that of the squared
close-to-open returns. That is, the open-to-close proxy is more
accurate, so we make more use of the information from the
open-to-close period by assigning to it a larger weight. To
compare the proxies and GARCH volatilities, we employ the
weighted least squares estimation as follows:

and

a1 H 2
Lo - - [
n Py oH
. (X — Xopim)? — (1 — A)hf(eg))z]
1 ’

where the GARCH volatility terms hfl (6%) and hiL(é‘g) are

defined in Theorem 1, IV; = fik_—’l_’_l o (6p)dt, and b and ¢
are consistent estimators of variances of martingale differences
DH and DL, respectively. To evaluate the above quasi-likelihood
function, we first need to estimate the integrated volatility IV;.
It can be estimated by the realized volatility estimator, which is
denoted by RV;. Then we estimate the GARCH volatilities as

follows:

g
H0%) = o, + yh (6%) + —HRVn !
ﬂ
o H i1 — Xogn—2)%, (3.1)
oL L “f
hh(08) = of + yhi_ (6%) + RV
B
+1 (Xn 1 — Xagn— 22 (3.2)

We note that the conditional expected volatilities for the open-
to-close and close-to-open periods have the common y as in
(3.1) and (3.2), which makes it possible to have the GARCH
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form for the whole-day conditional expected volatility. To evalu-
ate the GARCH volatilities, we use RV} and the sample variance
of the close-to-open log-returns as the initial values h}!(6%)
and hl(6%), respectively. The effect of the initial value has the
negligible order n~! (see Lemma 1 in Kim and Wang 2016), so
its choice does not significantly affect the parameter estimation.
With these estimators, we define the quasi-likelihood function
as follows:

(RV; — ,\hH (68))2
nm Qg - -
0= n ; |: oH

~ 2
(% = Xuric1? = (1= DRHED))
é1
and we obtain the estimator of the GARCH parameters 6§ by
maximizing the quasi-likelihood function. That is,

+

}(3.3)

08 = arg max Ly ,(6%),
0208

where ©f is the parameter space of 88. We call the estimator
the weighted least squares estimator (WLSE). To obtain the
variances of martingale differences, ér and @y, we employ
the QMLE method as follows. We define the quasi-likelihood
functions for the open-to-close and close-to-open, respectively,
in the following manner:

n

1 RV;
- |:log(AhH(0§)) NV )] ., (34)

i=1

TH g
Ln,m (GH) =

~ 1 <& ~
L@ = —— ; [log«l = Wi 6])
- )2
(Xi Xoti—1) :| (3.5)

(1 —hk@%) I

where 05, = (0, v, o5, B5) and 65 = (o, y, a5, 7). Then we
find their maximizers, which are denoted by /9}% and éf Using
the residuals, we estimate the variances of martingale difference
in the following way:

1 ¢ ~
= =D RV = A @),

i=1

1 -
= =D (X = Xoi)? = (1= DR O,

i=1

Similar to the proofs of Theorems 3 and 5 in Kim and Wang
(2016), we can show their consistency.

Remark 3. There are other possible choices of the variance
of the martingale differences. For example, we can use the
conditional variances in Theorem 1(b) to evaluate the quasi-
likelihood function (3.3). However, the conditional variance
heavily depends on the underline process, which may cause
some bias when the underline model is misspecified. Thus,
to make robust inferences, we use the unconditional variance
instead of the conditional variance. Furthermore, the proposed
procedure has a more simple structure, which may help reduce
estimation errors. We note that the proposed two-step weighted
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least square estimation procedure works well as long as the
first-step variance estimators are consistent. Thus, we can easily
incorporate other variance estimator. According to our empiri-
cal analysis, the unconditional variance estimator provides more
stable results than the conditional variance estimator. Thus,
we use the unconditional variance and only report its related
results. If we can estimate conditional variance in a robust
way, it may show better performance. However, obtaining the
robustness is not straightforward because we need to impose
structure on the process to evaluate the conditional variance. We
leave this for a future study.

To establish asymptotic properties for the proposed WLSE,
we need the following technical assumptions.

Assumption 1.

14 g & g 8 n8 p8\. g &
1. 6 € ©8 = {(a)H,a)L,y,otH,o;L,,Bg,ﬂL),wl < wg,w%g <
WY <Y < vu < Lo <apo <ayf < BB <

.Bu < LJAlz < 1}’ where W), Wys Vis Yu> AL Ky, ﬂl’ ﬁu are

some known positive constants, || - ||, is the matrix spectral
g 34
norm, and A = ¢ -2
% + A
2 [ vy

2. We have for some positive constant C,

sup B [(Xora—1 —XaD*] = C
SupE[(Xg — X 1a1)*] < C, supE [(fo)“] <cC
d d

3. We have Cim < my < Cym for all d, and
MaxXg SUP; <jcp, |taj — taj—11 = O(m™1).

4. Foranyd € N, E(|RV; — IV4]?) < Cm~'/% .

(DH , DIQL) is a stationary process.

6. |or — Prol = 0p(1) and |61 — brol = 0p(1), where ¢ppo =
E[(DH)?] and g1 = E[ (D)’

v

Remark 4. Assumption 1(2) is about the finite 4th moment
condition, which is the minimum requirement when handling
the second moment target parameter. Under some finite 4th
moment conditions, Assumption 1(4) is satisfied (Tao, Wang,
and Chen 2013; Kim, Liu, and Wang 2018). However, when
there is a jump part in the diffusion process, this condition may
be violated. In this case, we need to employ some jump robust
realized volatility (Ait-Sahalia and Xiu 2016; Zhang, Kim, and
Wang 2016) and derive some uniform convergence with respect
to time d. Finally, Assumption 1(5) is required to derive an
asymptotic normal distribution of the proposed WLSE.

The following theorem investigates the asymptotic behaviors
of the proposed WLSE 6.

Theorem 2. Under Assumption 1, we have

168 — 65 llmax = Op(m™Y* 4 n=1/2), (3.6)

—-1/2

Furthermore, we suppose that nm — O0asm,n — oo.Then

we have

Jn(@ — 68 5 N©,A71BATY), (3.7)

where
A_E 2 ot (6%) am'(69)
oo 9608 308T
(1 — )% ahk(62) dnk(69)
éLo 908 9687
5 gl Fei @) 9 (09) 1 (0%)
b0 308 9087
(1 = 1)*¢{ (6y) 3K (6%) dh (6%)
02, 308 9087

golH (6p) and goiL (6p) are defined in Theorem 1(b).

08=65

eg:eg]’

08=65
eg=e§}

Remark 5. Theorem 2 shows that the WLSE 6% has the conver-
gence rate m~ /4 4+ n=1/2, The first term, m~/4, comes from
estimating the integrated volatility, which is known as the opti-
mal convergence rate in the case of high-frequency data with the
presence of the microstructure noise. The second term, n~1/2,
is the usual convergence rate in the low-frequency data case.
Under the stationary assumption, we also derive the asymptotic
normality.

+

Remark 6. To derive the asymptotic normality, we need the
condition nm~/2 — 0, which is too restrictive for the long
sample period. If this condition is violated, the asymptotic nor-
mality may depend on m'/4(RV,; — IV;), which is the quantity
related to high-frequency estimation. If this term is some mar-
tingale difference, we may be able to relax the condition such as
nm~! — 0.1In this case, usually, m is huge, so it is not restrictive.

One of our objectives in this article is to predict future volatil-
ity. The best predictor given the current available information
F, is the conditional expected volatility—that is, the GARCH
volatility hn+1(9§). With the model parameter estimator, we
estimate the GARCH volatility as follows:

’h\n—&-l(ég) =af + ?ﬁn(é\g)
+ @RV, + BE1 = 1) T (X — XopnD)

where the GARCH parameters @f, o8, and/ﬁg are estimated
using the plug-in method with the WLSE 6$. The following
corollary provides the consistency of the GARCH volatility
estimator.

Corollary 1. Under the assumptions of Theorem 2 (except for
nm~1/2 = 0), we have

i1 (B%) — hys1 (65)] = Op(n™ 12 4 m=1/4),

3.3. Hypothesis Tests

In financial practices, we are interested in the GARCH param-
eters (w8, y, a8, B8) and often make statistical inferences about
them, such as hypothesis tests. In this section, we discuss how
to conduct hypothesis tests for the GARCH parameters.

We first derive the asymptotic distribution of the GARCH
parameter estimators. Theorem 2 implies that

Jn(@ — 68 5 N©,A71BATY),



where
A—E 22 oht'(69) 9k (6%)
oo 9608 308T
N (1 — )% ahk(62) ank(6%)
b0 968 0087 lps=ef |’
5 gl Kol @) 9 (0%) R (0%)
%o 208 08T loz=65
(1 = 2)%¢f (60) dh7(6%) 3K (69)
®%, 008 0687 lgs=6% |’
The GARCH parameters are functions of 6. For example, € =
A+ (=Nt af = ras +(1—A)as, p8 = Afy+(1—1) 65,

where ai,a‘g, ﬂl‘g_}, ,Bf are defined in Theorem CI. Thus, using

the delta method and Slutsky’s theorem, we can show that when

f (%)
08 |93:9§ # 0,

08=65

VA @%) — £(65))

N — 4 N,
JIf@)T A1BAH 1Y)

(3.8)

Tfn =

where Vf(/@\g) = %bg:gg and A and B are consistent

estimators of A and B, respectively. To evaluate the asymptotic
variances of the GARCH parameter estimators, we first need to
estimate A and B. We use the following estimators,

~ 02T m (6%) - 1 < 01:6%) 91(6¢)
8y — 7N 7 gy — _
A = ——prnger and B(Q)_n; 368 9081’
and
~ RV; — Ak (69))2
To0) = ¢ Ak (65))
o
2 7L 2
(6 = Xpic? = (1= DEEED))

+

éL ’

and ’l;{{ 0%), 71\1L (0%) are defined in (3.1) and (3.2), respectively.
Under some stationary condition, we can establish its consis-
tency. Then, using the proposed Z-statistics Ty, in (3.8), we
can conduct the hypothesis tests based on the standard normal
distribution.

4. A Simulation Study

We conducted simulations to check the finite sample perfor-
mance of the proposed estimation methods. We generated the
log-prices for n days with frequency 1/m?! for each day and let
tgj=d— 14j/md=1,...,nj=0,...,m We chose the
closed time X as 6.5/24, which corresponds to 6.5 trading hours.
The true log-price follows the OGI model in Definition 1. The
parameter setup is presented in the supplementary materials. To
generate the jump, we simply set the jump size as |J;| = 0.05
and the signs of the jumps were randomly generated. A; was
generated using a Poisson distribution with mean 10 during the
open-to-close period. For the open-to-close period, we gener-
ated the noisy observations. The detail setup can be found in
the supplementary materials. To generate the true process, we
chose m?!! = 43,200, which equals the number of every 2 sec in
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Table 1. Mean absolute errors (MAE) for the WLSE estimates with n = 100, 200, 500
and m = 390, 1170, 2340 and the true vol.

MAE x 102

n m wz wf y az aLg ﬁz /3?
100 390 0.0383 0.0497 0.2329 0.1627 0.2145 0.0455 0.1014
1170 0.0383 0.0498 0.2325 0.1626 0.2141 0.0453 0.1013
2340 0.0291 0.0484 0.1696 0.1064 0.2307 0.0299 0.1024
Truevol 0.0231 0.0447 0.1483 0.0817 0.2143 0.0233 0.1023
200 390 0.0247 0.0338 0.1619 0.1444 0.1593 0.0380 0.0685
1170 0.0247 0.0338 0.1615 0.1445 0.1593 0.0378 0.0685
2340 0.0191 0.0343 0.1091 0.0781 0.1645 0.0229 0.0730
Truevol 0.0136 0.0307 0.0880 0.0513 0.1583 0.0164 0.0749
500 390 0.0159 0.0230 0.1191 0.1329 0.1171 0.0329 0.0446
1170 0.0159 0.0230 0.1191 0.1330 0.1173 0.0328 0.0446
2340 0.0134 0.0235 0.0726 0.0586 0.1079 0.0190 0.0490
Truevol 0.0082 0.0212 0.0545 0.0330 0.1053 0.0095 0.0519

a one-day period. We varied #n from 100 to 500 and m from 390
to 11,700, which correspond to the numbers of 1 min and every
2 sec in the open-to-close period, respectively. We repeated the
whole procedure 500 times. R

Table 1 reports the mean absolute errors (MAE), |6 — 6|
of the WLSE estimates with n = 100,200,500 and m =
390,1170,11,700 and the true vol. From Table 1, we find
that the mean absolute errors usually decrease as the num-
ber of high-frequency observations or low-frequency observa-
tions increases. The close-to-open period parameters, w{, af,
ﬂf, are mainly dependent on the number of low-frequency
observations, whereas the open-to-close period parameters, a)i,
¥, a3, By, are dependent on the number of both the high-
and low-frequency observations. This is because the close-to-
open period parameters are estimated based on only the low-
frequency data, whereas the open-to-close period parameters,
a)‘Ig{, Vs ai, ,Bf{, are estimated based on both the high-frequency
and low-frequency data. This result supports the theoretical
findings in Section 3.

To check the asymptotic normality of the GARCH param-
eters (8, y,a8, B8), we calculated the Z-statistics defined in
Section 3.3. Figure 1 draws the standard normal quantile-
quantile plots of the Z-statistics estimates of »?, y, &8, and B¢
for n = 500 and m = 390,1170,11,700 and true volatility.
Figure 1 shows that, as the realized volatility closes to the
true integrated volatility, the Z-statistics close to the standard
normal distribution. This result agrees with the theoretical con-
clusions in Section 3. Thus, based on the proposed Z-statistics,
we can conduct hypothesis tests using the standard normal
distribution.

One of our main goals in this article is to predict
future volatility. We therefore examined the out-of-sample
performance of estimating the one-day-ahead GARCH
volatility h,41(6p). To estimate future GARCH volatility, we
employed the proposed conditional GARCH volatility estimator
hnt1(0), realized GARCH volatility estimator (Hansen, Huang,
and Shek 2012; Song et al. 2020) with only the open-to-close
high-frequency observations, discrete GARCH(1,1) volatility
estimator with the open-to-open log-returns, and sample
variance of the open-to-open log-returns using the in-sample
data. For example, the realized GARCH volatility has the
following GARCH form:
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Figure 1. Standard normal quantile-quantile plots of the Z-statistics estimates of w9, y, o9, and B9 for n = 500 and m = 370,1170, 11,700 and true volatility. The red
real line denotes the best linear fit line, which illustrates perfect standard normal distribution.

hn(e) =w+ th—l(e) + aRV,_4,
and the discrete GARCH(1,1) has the following GARCH form:
ha(0) = @ + yhp_1(0) + B(Xn1 — Xn2)”.

We then adopted the QMLE method with the Gaussian quasi-
likelihood function to estimate their GARCH parameters.
Because the realized GARCH volatility estimator only covers
the open-to-close period, we magnified the estimator by mul-
tiplying it with (1 + mean[OV /RV]) to match the magnitude,
where OV is the overnight return squares and RV is the open-
to-close realized volatility. We call this the adjusted realized
GARCH volatility. Finally, we also consider other estimation

procedures based on Theorem 1(a). For example, we estimate
the open-to-close and close-to-open separately, as described
in the first step in Section 3. That is, without the common y
assumption, we make inferences for hf (0) and hf;l (0) separately,
using the QMLE method with the normal likelihood function.
We call this the separate OGI (S-OGI) model. In contrast, we
estimate the open-to-open conditional volatility h, () directly.
Specifically, Theorem 1(a) shows that the conditional volatility is

ol
hn(eg) = (Dg‘l’yhn—l(e)'i'?

pe 2
X RV,_1+ T (Xn-1 _X)»+n—2) .

Then we estimate the GARCH parameter («f, y, a8, 88) using
the QMLE method with RV + OV as the proxy. We call this



Table 2. Mean absolute errors (MAE) for the OGlI, S-OGlI, A-OGl, realized GARCH,
adjusted realized GARCH, GARCH, and sample variance with respect to the OGI with
n = 100, 200, 500, and m = 390, 1170, 11700, and true volatility.
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Table 3. Average of the jump proportion, and mean and standard deviations for
pre-averaging realized volatility (PRV), overnight volatility (OV), and conditional
GARCH.

MAEx 10
n m 0GI  S-0OGI A-OGI Adj-Realized Realized GARCH Sample
100 390 0.3828 0.4877 0.4346 0.8357 14920 0.7644 1.5040
1170 03612 0.4500 0.4224 0.4574 14287 0.7644 1.4415
2340 0.3328 0.4196 0.4038 0.3531 1.3775 0.7644 1.3968
Truevol 0.2991 04165 03712  0.2966 14079 07644 1.4320
200 390 03090 03561 0.3356  0.8186 14986 0.5170 1.5027
1170  0.2847 0.3385 0.3228 0.4567 14325 0.5170 1.4386
2340 0.2570 0.3033 0.2909 0.3365 1.3821 0.5170 1.3873
Truevol 0.2353 0.2881 0.2674  0.2855 1.4086 0.5170 1.4163
500 390 0.2460 0.2527 0.2542  0.7983 15168 0.4298 1.5295
1170  0.2083 0.2271 0.2280 0.4270 14526 0.4298 1.4566
2340 0.1762 0.1984 0.2004 0.3270 14013 0.4298 1.4029
Truevol 0.1462 0.1735 0.1744 0.2840 14271 0.4298 1.4316

the aggregated OGI (A-OGI) model. We note that this model
can be considered as the realized GARCH model with the
additional overnight innovation term. We measure the mean
absolute errors with the one-day-ahead sample period over 500
samples as follows:

500

1 —
— Z [Var,q1,i — hpy1,i(60)|s
500 &

where var,,11; is one of the above future volatility estimators at
the ith sample path given the available information at time #.

We report the mean absolute errors for the OGI, S-OGI,
A-OGI, realized GARCH, adjusted realized GARCH, GARCH,
and sample variance with respect to the OGI against vary-
ing the number, 1, of the low-frequency observations and the
number, m, of the high-frequency observations in Table 2.
In Table 2, we find that the OGI models can estimate the
one-day-ahead GARCH volatility h,1(6p) well, but the other
estimators cannot account for it well. This may be because,
under the OGI model, the market dynamics are explained by
the open-to-close high-frequency volatility and squared close-
to-open log-returns; however, the other models ignore one
of the factors. Compared to estimation methods for the OGI
models, the WLSE yields better performance than the others.
One possible explanation for this is that the WLSE procedure
gives more weight to the high-frequency observations, and this
helps reduce the estimation errors. From these results, we can
conjecture that modeling appropriate overnight processes helps
to not only account for market dynamics but also improve the
estimation accuracy.

5. An Empirical Study

We applied the OGI model to high-frequency data. We obtained
the top five trading volume assets (BAC, FCX, INTC, MSFT,
MU) intra-day data from January 2010 to December 2016
from the TAQ database in the Wharton Research Data Services
(WRDS) system, 1762 trading days in total. We defined the
trading hours from 9:30 to 16:00 as the open-to-close period and
the overnight period from 16:00 to the following-day 9:30 as the
close-to-open period, thatis, A = 6.5/24. We used the log-prices
and adopted the jump robust PRV estimation procedure in (A.1)

Mean x 10 SDx10%
Stock Jump PRV OV  GARCH PRV ov GARCH
BAC 0.148 1719 1139 3204 1577 3195 2,571
FCX 0.167 5423 3399 9080 8721 12438 11561
INTC 0158 1090 0750  1.906 0969 3675 1201
MSFT 0141 0996 0953 1893 1037 5254  1.088
MU 0171 4104 2336 6529 2990 11141 2732

in the supplementary materials document to estimate open-to-
close integrated volatility. We chose the tuning parameter ¢, as
10 times the sample standard deviation of pre-averaged prices
m'/83Y (t;1). We fixed the in-sample period as 500 days and used
the rolling window scheme to estimate the parameters.

To check the relative importance of each OGI model compo-
nent, we report the average proportion of jumps, and the mean
and standard deviation of the PRV, squared overnight return,
and estimated GARCH volatility from the OGI model in Table 3.
From Table 3, we find that the magnitude of squared overnight
returns is comparable to that of PRV, and the squared overnight
returns have a greater standard deviation. This result leads us
to conjecture that the overnight risk usually significantly affects
the volatility dynamics structure.

For a comparison, we calculated the OGI, S-OGI, A-OGI,
discrete GARCH(1,1), and adjusted realized GARCH volatilities
defined in Section 4 and the GJR GARCH (1,1) (Glosten, Jagan-
nathan, and Runkle 1993). To check the performance of the
ARFI-type model, we adopted the HAR-RV model (Corsi 2009)
and log-HAR-RV model with the bias correction (Demetrescu,
Golosnoy, and Titova 2020). For the log-HAR-RV model, we
apply the HAR model on the logarithm of the realized volatility
and multiply exp (32 / 2) to the forecast value, where 2 is the
consistent estimator of the error variance for the HAR model
on the log-realized volatility. Then, we magnified these two esti-
mators by multiplying (1 + mean[OV/RV]) to match the scale
of the whole day variation, which are called “adjusted HAR” and
“adjusted log-HAR,” respectively. To check the leverage effect,
we also considered some variations of the OGI model as follows:

ol + IH, a n—2+Ar
hn(6) = (wg + yhn1(6) + T’” f of (6)dt
n—2
pE+IE b
+ T)LI(XH_I - Xn—2+)»)2>,

where I} = 1(x, ;1 <enp> Iy = 10X, 15<au)> @ by e
and ¢y are additional parameters. To estimate the parameters, we
adopted the QMLE method, which is referred to as GJR-OGL
To measure the performance of the volatility, we used the
mean squared prediction errors (MSPE) and QLIKE (Patton

2011) as follows:

1 — 2
MSPE = — 3 (Vo — (RV; + (X; = Xy4i-1)%)"
i=1
RV + (X; — X54i-1)*
VOli ’

l n
QLIKE = — > " log Vol; +

i=1
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where Vol; is one of the OGI, S-OGI, A-OGI, GJR-OGI, GJR
GARCH, discrete GARCH, adjusted realized GARCH, adjusted
HAR, and adjusted log-HAR volatilities, and we used RV; +
(X; — Xy+i—1)* as the nonparametric daily volatility estimator.
We predicted the one-day-ahead conditional expected volatility
using the in-sample period data. Also, to check the significance
of the difference in performances, we conducted the Diebold
and Mariano (DM) test (Diebold and Mariano 1995) for the
MSPE and QLIKE. We compared the OGI with other models.
Table 4 reports the average rank and the number of the first rank
of MSPEs and QLIKEs for the nine models over the five assets.
Table 5 reports the full MSPEs and QLIKEs results, and Table 6
shows the p-values for the DM tests. From Tables 4 and 5, we
find that incorporating the squared overnight returns as a new
innovation helps explain the market dynamics. From Tables 4-6,
we find that the OGI model shows the best performance overall.
This may be because the weighted least squared estimation
method helps improve the volatility prediction accuracy.

To check the benefit of using the overnight information, we
employed a utility based framework (Fleming, Kirby, and Ost-
diek 2003; Bollerslev, Patton, and Quaedvlieg 2018; Demetrescu,
Golosnoy, and Titova 2020). Specifically, we assume that there is

a risk-averse person who invests part of his wealth x; € [0, 1] in
specified asset and holds the remaining part 1 — x; at time i — 1.
The mean-variance utility function is defined as

EU(R,‘) =E [x,-Ri’F,-,l] — gvar [xiR,“]Fl;l] s

where £ > 0 is the risk aversion coefficient and R; is the daily
log-return. Then, the optimal allocation has the following form:

1 E[Ri|Fi_]
xl = T 1=
Svar [Ri|]Fi_1]

where E [Ri|]P‘i_1] and var [Ri|]P‘i_1] are replaced by their fore-
casts. Since it is difficult to predict the expectation E [R,- }Fi_l] in
practice, we replace it with the previous day’s log-return based
on the martingale assumption on the daily return process. Also,
the variance var [R,- |]F‘i_1] is replaced by one of the OGI, S-OGI,
A-OGI, GJR-OGI, GJR, discrete GARCH, realized GARCH,
HAR, and log-HAR volatilities. For the OGI, S-OGI, A-OGI,
GJR-OGI, GJR, and GARCH, we used the open-to-open returns
for R;, while the open-to-close returns were used for the realized
GARCH, HAR, and log-HAR. Then, we obtained %; and set

Table 4. Average rank of MSPEs and QLIKEs for the OGlI, S-OGlI, A-OGl, GJR-OGI, GJR, discrete GARCH, adjusted realized GARCH, adjusted HAR, and adjusted log-HAR.

oGl S-0Gl A-0GlI GJR-0GI GJR GARCH Adj-Realized Adj-HAR Adj-log-HAR
MSPE 2.2(3) 2.8(1) 4.0 (0) 6.2 (0) 9.0 (0) 7.2(0) 5.0(0) 5.2(0) 3.4(1)
QLIKE 1.6 (4) 3.6 (0) 3.8(1) 3.4(0) 8.4 (0) 8.6 (0) 6.0 (0) 4.6 (0) 5.0 (0)
NOTE: In the parenthesis, we report the number of the first rank among competitors.
Table 5. MSPEs and QLIKEs for the OGlI, S-OGl, A-OGlI, GJR-OGI, GJR, discrete GARCH, adjusted realized GARCH, adjusted HAR, and adjusted log-HAR.
Stock oGl S-0Gl A-0GI GJR-0GI GJR GARCH Adj-Realized Adj-HAR Adj-log-HAR
BAC MSPE x 107 1.194 1.118 1.132 1.153 2.110 1.945 1.267 1.262 1.257
QLIKE —7.354 —7.375 —7.376 —7.366 —7.205 —7.260 —7.336 —7.334 —7.340
FCX MSPE x 108 1.753 1.894 1.898 2.024 5.883 4.212 2.362 2377 2.275
QLIKE —6.449 —6.384 —6.400 —6.387 —6.254 —6.311 —6.352 —6.359 —6.367
INTC MSPEx 107 1.499 1.504 1.540 1.586 1.592 1.548 1.492 1.495 1.464
QLIKE —7.676 —7.672 —7.666 —7.676 —7.644 —7.642 —7.671 —7.669 —7.668
MSFT MSPEx 107 2.905 2932 2.992 3.099 3.143 2971 2.945 2957 2.907
QLIKE —7.596 —7.588 —7.576 —7.590 —7.573 —7.547 —7.585 —7.595 —7.591
MU MSPE x 106 1.328 1.354 1.332 1.471 1.487 1.438 1371 1.358 1.356
QLIKE —6.375 —6.364 —6.367 —6.362 —6.312 —6.063 —6.358 —6.365 —6.360

Table 6. The p-values for the test statistic DM based on the MSPE and QLIKE for the S-OGl, A-OGlI, GJR-OGI, GJR, discrete GARCH, adjusted realized GARCH, adjusted HAR,

and adjusted log-HAR with respect to the OGI.

Stock $-0Gl A-OGI GJR-0G GR GARCH Adj-realized Adj-HAR Adj-log-HAR
BAC  MSPE 0.999 0.823 0.730 0.000%%* 0.000%** 0.245 0.265 0283
QLIKE 0.999 0.999 0.975 0.000%%* 0.000%** 0.072* 0.050* 0.148
FCX  MSPE 0.017% 0.035%* 0.059* 0.000%%* 0.000%%* 0.000%%* 0.000%%* 0.000%#*
QLIKE 0.000%%* 0.001%%* 0.021%* 0.000%%* 0.000%+* 0.000%%* 0.002%%* 0.004%%%
INTC  MSPE 0328 0.019%* 0.145 0.054* 0.159 0.563 0.542 0817
QLIKE 0.371 0.280 0479 0.010%* 0.013** 0379 0.238 0311
MSFT  MSPE 0.015%* 0.001%%* 0.020%* 0.004%%* 0.060* 0.112 0.170 0463
QLIKE 0.164 0.036** 0.343 0.158 0.000%** 0276 0.469 0395
MU MSPE 0.110 0.105 0.069* 0.000%%* 0.000%** 0.000%%* 0.004*¥* 0.003%**
QLIKE 0.191 0.185 0.063* 0.036** 0.122 0.029%* 0.091* 0.100

NOTE: Note that *, **, and *** indicate that the OGI model outperforms the corresponding model with 10%, 5%, and 1% significance levels, respectively.



xf = Xilzep0,17) + 1z >1) to make the investment feasible and
prevent the short-sellings. Finally, the resulting returns R} =x}R;
were used to measure the economic performances. Specifically,
with the mean R* and standard deviation S* of the returns R},
we calculated the Sharpe ratio SR* = R*/S* and expected utility

EU* = R* — % (S*)z. Table 7 reports the Sharpe ratios and

expected utilities for the nine models for § = 2.5,5 over the
five assets. As seen in Table 7, the models with the open-to-open
information show better performance than other models. This
may indicate that considering overnight period helps obtain the
additional economic gains. When comparing the models with
the open-to-open information, the OGI-based models do not
significantly outperform the GJR and GARCH models. This
may be because the future return estimator often has the huge
errors in practice. From this result, we can conjecture that the
overnight period is significant in terms of investing strategy.

To check the volatility persistence of the nonparametric
volatility, we study regression residuals between the nonpara-
metric volatility and estimated conditional volatilities. Specifi-
cally, we fitted the following linear model

RVi+ (Xi — Xpti—1)?> = a+ b x Vol; + ¢;,

where Vol; is one of the predicted volatilities OGI, S-OGI,
A-OGI, GJR-OGI, GJR, discrete GARCH, adjusted realized
GARCH, adjusted HAR, and adjusted log-HAR. Then, we cal-
culated the regression residuals, €;, for each model and checked
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their auto-correlations over lag L = 1,...,30. Table 8 reports
the average rank and the number of the first rank for the first
and max absolute auto-correlations from the nine models. In the
supplementary materials, we draw the auto-correlation function
(ACF) of the regression residuals for each model and asset (see
Figure B.1). From Table 8 and Figure B.1, we find that the OGI,
S-OGI, A-OGI, and GJR-OGI models show better performance
than other estimators overall. That is, the OGI-based models can
explain the market dynamics in the volatility time series.

We examined the performance of the proposed method in
measuring one-day-ahead VaR. To evaluate VaR, we first pre-
dicted the one-day-ahead conditional expected volatility by the
OGIL, S-OGI, A-OGI, GJR-OGI, GJR, discrete GARCH, adjusted
realized GARCH, adjusted HAR, and adjusted log-HAR using
the in-sample period data. We then calculated the quantiles
by historical standardized daily returns. Specifically, we stan-
dardized the in-sample daily returns by the fitted conditional
volatilities. Then, we calculated the sample quantiles for 0.01,
0.02, 0.05, 0.1, 0.2 and with the sample quantile estimates and
predicted volatility, we obtained the one-day ahead VaR values.
We fixed the in-sample period as 500 days and used the rolling
window scheme.

To backtest the estimated VaR, we conducted the likeli-
hood ratio unconditional coverage (LRuc) test (Kupiec 1995),
the likelihood ratio conditional coverage (LRcc) Christoffersen
(1998), and the dynamic quantile (DQ) test with lag 4 (Engle
and Manganelli 2004). Table 9 reports the number of cases

Table 7. Sharpe ratios (SR*) and expected utilities (EU*) for the OGlI, S-OGl, A-OGl, GJR-OGlI, GJR, discrete GARCH, realized GARCH, HAR, and log-HAR for & = 2.5, 5 and five

assets.
Risk aversion Stock oGl S-0GlI A-0GlI GJR-0GI GJR GARCH Realized HAR Log-HAR
£=25 BAC SR* %102 3.974 3.952 3.944 3911 3.936 3.882 —5.173 —5.167 —5.166
EU* x10% 3.116 3.086 3.073 3.027 3.062 2.985 —6.864 —6.854 —6.855
FCX SR* x 102 —2.891 —2.993 —3.004 —3.002 —2.894 —2.869 —5.008 —5.002 —4.996
EU* x103 —1.333 —1.350 —1.352 —1.357 —1.318 —-1.312 —1.386 —1.386 —1.386
INTC SR* x 102 2.302 2.301 2.305 2307 2323 2.306 5.368 5370 5.363
EU* x10% 1.060 1.059 1.063 1.064 1.079 1.064 3.441 3.443 3.437
MSFT SR* x 102 2.857 2.909 2925 2.907 2.848 2.812 2.789 2.769 2.787
EU* x10% 1.588 1.639 1.654 1.637 1.579 1.543 1.375 1.360 1.374
MU SR* %102 5.875 5.932 5.878 5.839 5.642 5.651 0.007 —0.029 —0.038
EU* x10% 6.691 6.803 6.695 6.615 6.230 6.250 —2.875 —2.944 —2.955
£=5 BAC SR* x102 3.726 3.813 3.822 3.724 3.703 3.646 —5.018 —5.029 —5.027
EU* x10% 0.344 0.455 0.466 0.336 0.348 0.252 —8.023 —8.025 —8.032
FCX SR* %102 —2.937 —2.921 —2.998 —2.792 —2.891 —2.842 —5.108 —5.182 —5.182
EU* x103 —1.972 —1.940 —1.956 —1.924 —1.898 —1.893 —1.798 —1.818 —1.817
INTC SR* x 102 2483 2424 2436 2.466 2.492 2431 5.199 5.121 5.167
EU* x10% 0.177 0.120 0.131 0.161 0.183 0.127 2.535 2473 2510
MSFT SR* x 102 2.550 2.680 2.733 2.665 2477 2426 2492 2.502 2.498
EU* x10% 0.194 0.317 0.366 0.297 0.134 0.089 0.490 0.497 0.494
MU SR* x 102 5372 5.351 5314 5274 5372 5.162 0.172 0.178 0.169
EU* x10% 1.264 1.219 1.143 1.093 1.283 0.918 —5.260 —5.259 —5.277

Table 8. Average ranks in order from the smallest to the biggest for the first and max absolute auto-correlations overlag L = 1,.. .., 30 for the OGlI, S-0Gl, A-OGlI, GJR-OGlI,

GJR, discrete GARCH, adjusted realized GARCH, adjusted HAR, and adjusted log-HAR.

oal 5-0GI A-0GI GJR-0GI GIR GARCH Adj-realized Adj-HAR Adj-log-HAR
First 18(3) 3.8(0) 40(0) 3.0(1) 46(1) 6.4(0) 6.8(0) 6.6(0) 8.0(0)
Max 28(1) 30(2) 3.8(0) 5.6(0) 6.8(0) 6.4(0) 5.4(0) 48(1) 6.4(1)

NOTE: In the parenthesis, we report the number of the first rank among competitors.
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Table 9. Number of cases where p-value is bigger than 0.05 for the OGI, S-OGl, A-OGl, GJR-OGI, GJR, discrete GARCH, adjusted realized GARCH, adjusted HAR, and adjusted
log-HAR for the five assets and go = 0.01,0.02,0.05, 0.1, 0.2 based on the LRuc, LRcc and DQ tests.

oal s-0al A-OGI GJR-OGI GIR GARCH Adj-Realized Adj-HAR Adj-log-HAR
LRuc 25 17 20 18 2 21 21 21 18
LRcc 25 22 20 19 20 21 21 21 16
DQ 18 7 6 10 18 10 6 n 0
where p-value is bigger than 0.05 for the five assets and g0 = References

0.01,0.02,0.05,0.1,0.2 based on the LRuc, LRcc and DQ tests.
In the supplementary materials, Figure B.2 draw the scatterplots
for the p-values of LRuc, LRcc, and DQ tests for the nine models
with g 0.01,0.02,0.05,0.1,0.2. As seen in Table 9 and
Figure B.2, the OGI model shows the best performance for
all hypothesis tests. This result shows that the overnight risk
is important to account for whole-day market dynamics, and
the OGI process can exmplain market dynamics by using the
overnight risk information. In contrast, other OGI-based mod-
els show relatively worse performance. This finding prompts us
to speculate that it may help improve estimation accuracy by
estimating the open-to-close and close-to-open separately with
the WLSE method under the common y condition.

6. Conclusion

In this article, we introduce the diffusion process, which can
explain the whole-day volatility dynamics. Specifically, the pro-
posed OGI model can account for the different dynamic struc-
tures for the open-to-close and close-to-open periods. To do
this, we introduced the weighted QMLE procedure and showed
its asymptotic properties. In the empirical study, we found the
benefit of incorporating the overnight information. The models
with overnight innovation term perform better than other mod-
els for the prediction of daily volatility, utility based analysis, and
volatility persistence analysis. It suggests that incorporating the
overnight information helps account for the dynamic structure
of the daily total variation. On the other hand, the OGI model
outperforms other OGI-based models in terms of the prediction
of daily volatility, analysis of volatility persistence, and one-
day-ahead VaR measurement. It reveals that the weighted least
squared estimation method with the common y condition helps
obtain better estimation accuracy.

In practice, we often observe zero returns (Francq and Sucar-
rat 2021). However, the OGI model cannot account for the zero
return phenomena. Thus, it is an interesting future study to
develop a diffusion process, which can explain the zero returns,
and to investigate its effect.

Supplementary Materials

Supplementary materials include detailed simulation setup, additional
empirical results, proofs of Theorems 1-2, and R codes for the simulation
and empirical studies.
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