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Abstract—Unmanned aerial vehicles (UAVs), e.g., drones, have
become crucial assets in the military’s fleet of vehicles. UAVs
can provide limited bandwidth for tactical communications and
can act as relays over battlefields. Modern drones provide much
higher bandwidth than their legacy predecessors with dynamic
antenna capabilities that would be useful in communicating
around obstacles, such as urban corridors formed by rows of
tall buildings that limit terrestrial lines of sight and attenuate
high frequencies. While it is still more likely that one UAV is
used for this purpose, a well-managed cluster of UAVs could
increase the functionality of the entire terrestrial-drone network.
Software-defined networking (SDN) is recognized as an effective
way to manage distributed wireless networks. Our work proposed
the use of a software-defined UAV (SD-UAV) network to provide
well-coordinated, secure communication resources, and relaying
capabilities to on-the-ground soldiers, military vehicles, and
assets in an urban, signal-challenged environment. This paper
contributes a queueing analysis of the framework in order
for the network operator to derive the expected theoretical
values of the network under normal conditions. With this, the
network operator can create a normal baseline for comparison
and detection of the presence of cyberattacks. We conduct a
simulation, analysis, and discussion of our results and present
our findings in this paper. Our analysis is validated by our
simulation results for interarrival times, transmission delay, and
packet count for our network allowing, the network operator to
generate predicted values during the operation of our framework.

Keywords—software-defined networking (SDN), cybersecurity,
UAVs, machine learning

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), also known as drones,
have proven to be extremely useful for both military and com-
mercial applications, including communication relay, surveil-
lance, network mobilization, and disaster relief. By 2035, it
is anticipated that the number of UAVs used for defense
will increase by 25% to 75% percent [1]. UAVs have been
employed by the Army, Navy, and Air Force as relay nodes
in tactical deployments to enhance communication quality in
a variety of geographic regions to improve communication
quality [2], [3], an increasing concern, as shown recently
in Ukraine. Although Starlink’s low-earth orbit (LEO) con-
stellation has offered reliable communications to the area,
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military operations may potentially be impeded by a private,
proprietary service [4].

Drones and other UAVs have been the subject of recent
research that has examined their capabilities [5]. Despite the
ongoing advancements in UAV capabilities, they nevertheless
have constraints in terms of range and operational energy,
and therefore can only remain airborne for a limited duration.
Traditionally, a single UAV is typically used because of its
efficient control and mobility. Mechanisms for managing and
controlling a network of UAVs in a dynamic and adaptable
manner are required in order to deliver the network as a
communications service. Software-defined networking (SDN)
can be utilized to control the dynamic behavior and capabilities
of UAV clusters deployed tactically [6]. SDN is a networking
concept that separates the data plane and control plane of
networking forwarding devices, such as switches and routers
and consolidates the controller into the SDN controller(s).
Compared to conventional, or legacy, networking approaches,
it enables more management/oversight, visibility, and security
[7].

Researchers have conducted studies on the utilization of
software-defined UAVs (SD-UAVs) and satellite communica-
tion (SATCOM) to enhance combat communications through
the implementation of relay networks, multi-path Transmission
Control Protocol (TCP) solutions, or autonomous configura-
tions of UAV swarms in disaster relief zones, e.g., [8]–[10].
The military is currently engaged in continuous endeavors to
employ UAVs for the establishment and operation of relay
networks [11], [12]. Nevertheless, the aforementioned efforts
fail to take into account SD-UAV networks operating within
urban settings, and they also neglect to address the issue
of safeguarding against potential security threats such as
jamming, black hole, and gray hole assaults perpetrated by
criminal entities.

To address this concern, our previous work [13] proposed
the utilization of SD-UAVs to offer efficiently coordinated
and secure communication resources and relaying capabili-
ties to soldiers, military vehicles, and assets situated in an
urban setting with limited signal availability as shown in
Figure 1a. Our previous work completed an analysis to assess
the mobility and packet delivery for the architecture within
a simulated network. The architecture design featured SD-



UAVs that functioned as non-preemptive dual-priority (NPDP)
queueing forwarding devices. The utilization of NPDP queues
facilitates the prioritization of priority packets, enabling them
to bypass the queue of regular packets and be serviced quickly
after the completion of processing of the current regular
packet in the service module. This process ensures that priority
packets experience reduced waiting time within the forwarding
SD-UAVs’ queues and are expedited through the SD-UAV
network faster than regular packets. This faster behavior will
allow network operators and the SDN controller to respond to
cyber threats to the network much faster than ordinary M/M/1
queueing models because their prioritized messages will prop-
agate faster through the network. Additionally, a proposed
multi-cyberattack detection model was introduced to safeguard
communication by mitigating jamming, black hole, and gray
hole attacks with the aid of the Light Gradient Boosting
(LightBGM) machine learning (ML) algorithm. Through the
utilization of a labeled dataset consisting of primarily queueing
theory metrics such as interarrival time (IAT), transmission
delay (TD), and packet count (PC), our model was trained
and afterward yielded an average detection and classification
accuracy of 98% for jamming, gray hole, and black hole
attacks.

However, a constraint of our previous study is the necessity
of pre-labeled data of IAT, TD, and PC, as the LightGBM
algorithm is a supervised learning algorithm. The ability to
acquire prelabeled data for utilization in critical operational
domains may not always be feasible. Moreover, in the event of
a zero-day cyberattack, which refers to an attack that exploits
a vulnerability unknown to the public or network operators,
the machine learning model trained on prelabeled data will
be inadequate as it has not been previously exposed to such
an attack. One potential approach to address these issues
involves the implementation of a ground truth or baseline of
the network’s queueing metrics of IAT, TD, and PC under non-
adversarial circumstances. Conducting a queueing analysis of
the system would allow the establishment of this baseline for
the expected behavior, hence facilitating the development of
an appropriate solution for the network operator.

In this study, we utilize an adaptation of the Jackson net-
work open (JNO) queueing model to generate more accurate
network metrics [14]. The JNO model is characterized by
interconnected queues, where the output of one queue is
directly linked to the input of another queue. Furthermore, the
JNO model is known to possess a product form solution, which
allows for efficient, comprehensible analysis and evaluation of
the network performance [15].

To the best of our knowledge, there are no prior studies
that have that have used JNO data to perform network metric
prediction. Therefore, this study makes the following contri-
butions:

• A study is conducted to analyze the queueing dynamics
of a non-preemptive dual priority Jackson open queueing
SD-UAV network designed for tactical and urban deploy-
ment scenarios.

• In this study, we use JNO as a baseline for the expected
behavior of a SD-UAV controller network.

• This study uses advanced queuing models as a novel way
to reduce ML training delays for zero-day cyber-attack
detection.

The rest of this paper is organized as follows. Section II
provides a discussion of related work. Next, Section III
provides a background of SDN, relay UAVs, and queueing
modeling for UAVs. Section IV describes the SD-UAV net-
work system architecture that the queueing analysis is based
on and Section V describes the queueing model analysis.
Section VI presents the findings of the simulation results.
Lastly, Section VII concludes the paper.

II. RELATED WORK

To study the network behavior in SD-UAV networks, we
utilize queueing performance analysis. Most SD-UAV studies
that employ queueing models focus on the M/M/1 queueing
approach, which does not capture the traffic demands of
the network architecture. Some prior work considers mul-
tiple queueing models beyond M/M/1, as discussed below.
However, these studies do not involve using these models
as a way to reduce ML training delays for zero-day cyber-
attack detection. This section presents a discussion of the
relevant literature pertaining to queueing analysis studies in
the context of SD-UAVs. We analyze prior solutions, with a
particular emphasis on demonstrating the distinctions between
this research study and the aforementioned earlier studies.

A. Literature Review of Queueing Analysis for SD-UAV Net-
works

[17] concentrates on addressing the upcoming demands
of sixth-generation wireless communication, specifically per-
taining to high network availability, enhanced communication
convergence, and intelligent features for SD-UAV wireless
communication networks. It presents three hierarchical SDN
controllers (1 primary, 2 secondary) to address the single-
point-of-failure problems commonly associated with classic
singular–controller approaches for SD-UAV networks. The
study presents a load-balancing algorithm and a robust hybrid
routing algorithm as potential solutions to address issues
related to controller overhead and cascading failure. The
researchers additionally do a mathematical model study, em-
ploying M/M/1 and M/M/c queueing analysis for their primary
and secondary controllers, respectively. They used MATLAB
”SimEvents” module [18] to perform their simulations. The
simulation results presented in their study illustrate a signifi-
cant decrease of 60%, 40%, and 25% in the packet arrival rate,
service rate, and utilization factor, respectively, as compared
to alternative control-domain adjustment algorithms that are
currently in use. However, their modeling analysis primarily
focuses on their controller framework and makes little to
no mention of the data plane layer (forwarding SD-UAVs).
Furthermore, their work does not consider cascaded queues in
forwarding drones and how it affects the performance of the
controller drone, which is prevalent in SD-UAV systems.
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Fig. 1: (a) Envisioned SD-UAV Network Deployment in an Urban Environment (b) General SDN Architecture [16]

[19] concentrates on the advancement of digital twin tech-
nology for SD-UAV networks through the use of performance
and queueing analysis for digital twin technology. The objec-
tive is to enable real-time monitoring, analysis, and virtual-
ization of network performance through rapid prototyping and
testing. This technique incorporates a routing flow adjustment
algorithm to optimize network performance. The effectiveness
of this methodology is demonstrated through the use of an
M/M/1 queueing model also using the aforementioned MAT-
LAB ”SimEvents” module [18]. The findings of their study
indicate that the framework they proposed exhibits superior
performance compared to conventional queueing models that
do not incorporate SDN and Dynamic Time integration. This
benefit is observed in terms of the efficiency, reliability,
and agility of UAV networks. Additionally, their framework
offers a network analysis platform with real-time monitoring
capabilities, along with improved packet processing time at
the forwarding drones and controller, and enhanced scalability.
Furthermore, their work does not consider cascaded queues
in the forwarding drones and their effects on the controller
drones, which is prevalent in SD-UAV systems.

[20] aims to address the challenges that arise while de-
ploying an SD-UAV network in regions where a ground base
station may not be accessible, but WiFi access points (APs) are
still available. Hence, the researchers are primarily concerned
with the creation of a SD-UAV-mounted base station (UBS)
and WiFi APs. They examine the queueing delay patterns by
analyzing the UBS positioning and the AP traffic offloading.
The user population can be categorized into two groups:
cellular subscribers (CSs) and WiFi subscribers (WSs). A
CS is linked to the UBS and may be provided simultaneous
access to the APs in order to facilitate WiFi traffic offloading.
By utilizing the SDN controller and its global view, the
primary objective of the SDN controller is to reduce the
average M/M/1 queueing delay of the CSs. This is achieved
by optimizing various factors such as spectrum allocation,
user equipment, base station position, CSs association with

the AP, and CS traffic offloading. Additionally, the SDN
controller ensures that the delay performance for the WSs
is maintained within the desired parameters. The researchers
conducted a queueing analysis on the traffic arrival rate, λ,
for each subscriber. In this analysis, the subscribers are treated
as independent parallel M/M/1 queues. The findings of their
study indicate that the SDN controller effectively minimizes
the average queueing delay of CSs, while also ensuring that
the maximum tolerable queueing delay of WSs is maintained.
This optimization is achieved by considering factors such as
the allocation of licensed spectrum portions, the position of
UAVs, the association of CSs to WiFi, and the rate at which
CS traffic is offloaded to the WiFi access point. Although
their work considers delay optimization for M/M/1 queues,
the network traffic models are limited to M/M/1 approach
and do not consider predicting network behavior for security
purposes. Furthermore, their M/M/1 approach omits M/M/C
analysis which is more representative of multiple end-users in
tactical network operations.

[21] aims to develop a mission-critical software-defined
wireless sensor network (MC-SDWSN) that can effectively
collect information in diverse and intricate situations. Ad-
ditionally, the network aims to facilitate numerous mission-
essential applications, including industrial automation and
security surveillance. The proposed MC-SDWSN seeks to
address the challenges associated with conventional Wireless
Sensor Networks (WSNs), including resource usage, data
processing, system compatibility, and stringent latency re-
quirements. The design employed in their system incorporates
SDN topologies, which integrate the hierarchical cloud and
edge computing technologies. A unique centralized computing
offload strategy is proposed in this study, based on the MC-
SDWSN architecture, to demonstrate its feasibility in sensor
network applications. The researchers performed a queueing
study on their architecture, using the forwarding devices as
M/M/1 queues. The simulation findings illustrate the enhanced
offloading percentage of periodic computing tasks and latency



of various computing systems, as well as a superior delay
guarantee compared to previous approaches. Furthermore, the
forwarding agents and controller employed in their system are
hardware switches as opposed to SD-UAVs, and their queueing
analysis lacks the incorporation of JNO analysis that would be
used for predictive network behavior for security purposes.

B. Summary

The aforementioned studies illustrate a subset of the ad-
vancements made in analyzing queueing systems for SD-
UAV networks. The majority of research focuses on the
analysis of standard M/M/1 queueing systems while neglecting
the investigation of using queueing analysis for enhanced
network metric prediction for ML-based cyber security of
SD-UAVs. Furthermore, present research focuses primarily
on the development of queueing analysis for the controller
layer of SD-UAVs, with little regard for the forwarding layer
queueing analysis and its effects on the controller’s queueing
performance.

III. BACKGROUND

SDN has gained traction for UAV networking research
and has begun to shift its networking management paradigm.
SD-UAV networks exhibit distinct traits and characteristics
in contrast to conventionally managed UAV networks. This
section discusses the background of SDN for SD-UAVs and
the application of queueing theory for SD-UAV security.

A. Software Defined Networking for SD-UAVs

SDN is a network management framework that facilitates
user-driven control over the forwarding process in network
nodes. The development of SDN spanned multiple decades and
was ultimately achieved by a team of researchers at Stanford
University [22]–[24]. SDN has the following characteristics,
illustrated in figure 1b:

• The control plane and data plane are distinct entities that
are decoupled from each other.

• The controller functions as the primary decision-making
and coordinating entity, both internally and externally.
The primary function of this entity is to facilitate the
routing of traffic within the network and ensure the
overall stability and operational state of the network.

• The determination of forwarding decisions depends upon
flow policies rather than the ultimate destination. A flow
can be defined as a standardized sequence of instructions
that controls the transmission and reception of data pack-
ets between a specific source and destination. SDN con-
trollers facilitate the establishment of flow tables through
the implementation of policies. The implementation of
flow tables is carried out through forwarding devices.

• The network possesses the capability to undergo program-
ming via software programs that operate on the SDN
controller.

• Application programming interfaces (APIs) are utilized
for the purpose of transmitting data between different
layers of the SDN infrastructure.

As depicted in Figure 1b, the infrastructure layer comprises
routers, switches, and access points. This layer represents
the network’s actual network equipment (e.g. relay/forwarding
SD-UAVs), and it creates the data plane. The controller
establishes communication with the data plane by transmitting
instructions to the switches and routers (relay/forwarding SD-
UAVs). This is achieved through the utilization of southbound
programming interfaces, commonly referred to as Southbound
APIs: OpenFlow [25], ForCES [26], PCEP [27], NetConf [28],
or I2RS [29]. The SDN controller UAV would monitor the
forwarding SD-UAVs and use southbound APIs to forward the
instructions. In the scenario where multiple controller UAVs
are present, intercommunication between these controllers is
facilitated through the utilization of Eastbound and Westbound
APIs, commonly referred to as East/West APIs: ALTO [30] or
Hyperflow [31].

This feature enables the controllers to effectively manage
and monitor the network at a global scale. The highest
layer is referred to as the application plane. Within this
layer, the network operator at the central station possesses
the capability to establish network policies, contingent upon
functional applications, to address diverse tasks including
energy efficiency, access control, mobility management, and/or
security management. The application layer facilitates the
transmission of policies to the network by means of the
control layer, employing Northbound APIs as a means of
communication such as FML [32], Procera [33], Frenetic [34],
and RESTful [30]. The network operator has the ability to
transmit the required modifications to the controller SD-UAV
through the use of these APIs, enabling the controller to
implement the necessary adjustments within the infrastructure
layer, depending on the desired outcomes.

In contrast with SDN, the forwarding agents of conven-
tional networks control their own forwarding logic. To alter
the network, the forwarding devices individually need to be
reconfigured. Due to the presence of these obstacles, network
management rules in conventional networks exhibit limited
dynamism and pose challenges in terms of scalability for SD-
UAV networks. SDN provides the network operator with the
capability to swiftly modify data flows of forwarding SD-
UAVs, hence facilitating the adaptation to fluctuating traffic
demands and security threats.

B. Cyberattacks

The primary objective of attackers is to intentionally disrupt
UAV networks in order to achieve personal benefits. Research
on UAVs has explored a range of potential hazards posed by
cyberattacks targeting UAV networks. Network operators must
remain vigilant in order to mitigate the potential impact of
various cyberattacks on their SD-UAV network. Zhenhua et a.
[35] define the threats to UAVs network security as follows:

• Injection Attacks: Injection attacks can be classified as
integrity attacks, wherein the perpetrators manipulate the
sensitive information of UAVs by introducing false data.
This malicious act aims to deceive by causing incorrect



data to be present in data streams, which subsequently
are transmitted to the central station.

• Fabrication Attacks: Fabrication attacks are categorized
as a subset of integrity attacks, frequently employed in
conjunction with other attack methods to target UAVs.
The attack procedure involves the utilization of a mislead-
ing identity by an attacker in order to acquire sensitive
information pertaining to the UAVs and, subsequently, the
attacker proceeds to transmit inaccurate data back to the
central station.

• Denial-of-Service (DoS) Attacks: The objective of a
DoS attack is to impede the connectivity of a UAV
by flooding it with a substantial volume of fabricated
packets, resulting in the depletion of the UAV’s internal
resources.

• Jamming Attacks: Jamming attacks are deliberate at-
tempts to disrupt wireless communication connections
and communication signals using technical methods. By
transmitting an identical signal frequency, one may create
interference in the UAV and interrupt its communication
with the central station.

• Network Eavesdropping Attacks: Network eavesdrop-
ping attacks can be classified as passive attacks. Typically,
perpetrators employ malicious devices with the intention
of intercepting the communication between UAVs and
air traffic control, thereby gaining insight into the aerial
environment and detecting the presence of UAVs.

• Man-in-the-middle Attacks: In the context of a man-
in-the-middle attack, the attacker strategically positions
themselves between two UAVs engaged in communi-
cation. By impersonating either of the UAVs to each
other, the attacker manipulates the flow of information,
forcing the two UAVs to inadvertently transmit data to
the attacker before it reaches its intended destination.

• Replay Attacks: Replay attacks compromise the integrity
of UAVS. The perpetrator employs network surveillance
or similar techniques to covertly acquire authentication
credentials, which are subsequently transmitted to a re-
cipient with the intention of misleading UAVs.

• Worm hole and Black Hole Attacks: Two adversarial
UAVs, situated in distinct geographical positions, alter
their flight paths in order to intercept and acquire commu-
nications from an alternative channel. Subsequently, they
transmit these signals to an additional malevolent node
over a specialized communication channel. When UAVs
are subjected to attacks, a malevolent node intercepts
a packet containing the UAV’s position and afterward
transmits it to another remote malevolent node via a
tunnel. As a result, the manipulated data packet is then
forwarded to neighboring nodes.

• Sybil Attacks: Sybil attacks encompass the act of trans-
mitting messages through many peer identities in order
to control UAV networks. Sybil attacks encompass three
distinct dimensions, namely communication, participa-
tion, and identification. The communication component
encompasses attacks that establish a connection between

Sybil nodes and legitimate nodes within networks. In
order to disrupt network operations, an attacker engages
in communication with authentic nodes via established
connections. In the context of participatory dimension
attacks, attackers employ two distinct methods to intro-
duce Sybil nodes into the network, either concurrently
or sequentially, with the objective of gradually acquiring
control. Identity dimension attacks refer to the malicious
act of spoofing Sybil node identities. There are two
distinct methodologies that attackers can employ in order
to assume an individual’s identity. The act of identity theft
can be perpetrated by an attacker targeting a legitimate
node that is either offline or has completely depleted its
battery. An alternative approach involves the creation of
fictitious identities that are not present within the network.

• Hijacking Attacks: UAVs depend on the visual data
obtained by a camera in order to perform target tracking
and avoid collisions. The procedure entails flight con-
trollers making a request for the acquired videos from
the kernel of the computer operating system through the
issuance of a system call. In the event that an individual
with malicious intent possesses knowledge of the system
parameters and gains unauthorized access to the flight
controller, it is possible for this individual to initiate a
hijacking attack on the system call. This attack involves
substituting a genuine camera with a virtual camera
and relocating the UAV beyond its intended destination,
therefore intentionally hijacking it.

C. Queueing Modeling for SD-UAVs Cybersecurity

Network monitoring can be used to detect cyberattacks;
however, due to the random nature of network traffic, data
collection, and training can be time-consuming [36], [37].
This paper proposes that the NPDP JNO queueing model is
sufficient for training and reducing the associated delays. The
application of queueing theory (QT) enables the mathematical
evaluation and formulation of models for SD-UAV networks
[17]. QT is a branch of mathematics that focuses on the
analysis and modeling of waiting lines or queues. From a
networking perspective, forwarding devices can be classified
as servers, while packets can be referred to as customers.
Network operators can derive several performance measures
from a network, such as interarrival time (IAT), transmission
delay (TD), and packet count of packets received at a server,
by assessing the queueing of packets at the forwarding device.
For SD-UAV networking, the UAVs are interpreted as servers,
while the packets they handle can be regarded as customers.
The network status may be inferred by analyzing the observed
average arrival rate (λ) and service rate (µ) of packets, as well
as the aforementioned metrics. By utilizing these metrics, the
detection of cyberattacks within a SD-UAV network can be
achieved by training a ML model on non-attack (normal) and
attack network samples. As seen in Figure 2, the consequences
of a DoS attack on a server are depicted. The victim node
experiences a high influx of packets, resulting in a cascading
impact on the system. This leads to an elevated arrival rate



(λ1) at the victim node, as well as a reduction in both the
service rate (µ1) at the victim node and the arrival rate (λ2)
at the destination node.

Fig. 2: Victim Representation of a Cyberattack [38]

The aforementioned metrics can be captured by the forward-
ing UAVs and subsequently transmitted to the controller for
onward transmission to the network operator, who will then
proceed to conduct further analysis. Based on the measure-
ments obtained, the network operator can infer the type of
attack that has occurred and assess the extent of its impact
on the network. Unique to SDN, the operator has the ability
to utilize the SDN controller in order to redirect network
traffic away from a compromised UAV. This allows for the
maintenance of network connectivity and throughput within
the network. In order to make informed decisions based
on QT analysis, it is crucial that the accuracy of the QT
measurements is maximized to ensure appropriate actions are
taken. Hence, it is imperative to take into account the design of
the QT modeling. QT utilizes Markovian queues. Markovian
queues are distinguished by their adherence to the Poisson
process for arrival rates and exponential distribution for service
rates, hence facilitating memoryless arrival and service rates.
There exists a variety of Markovian models, including but
not limited to M/M/1, M/M/c, M/M/c/K, M/G/1, and M/M/∞
[39]. Hence, it is essential for the network operator to consider
the queueing dynamics of the SD-UAVs within their network,
as it significantly impacts the metrics they will obtain and
afterward utilize for the purpose of cyberattack detection.

Fig. 3: Non-Preemptive Dual Priority M/M/1 Queue

The suggested model, as depicted in Figure 1a, presents
the SD-UAVs as a modified Jackson open network of non-
preemptive dual priority (NPDP) M/M/1 queues. According
to Chen et.al, [14], Jackson networks are often based on
the concept that numerous queues are interconnected, with
the input of one queue being forwarded to another with all
traffic having equal priority, and the network has a product

form solution. However, our model adheres to these identical
assumptions, with the exception that not all packets have the
same priority and that the model incorporates two distinct
packet types: priority and regular. As depicted in Figure 3,
priority and regular packets enter the UAV as λ and then
queue into different queues according to their labeling. Then
they are serviced at the service module, µ, then exit the UAV
as λ/. Priority packets are processed in a non-preemptive,
faster manner over regular packets at the service module. This
implies that if a packet arrives in the priority queue while the
server is currently processing a regular packet, the server will
complete the processing of the regular packet before attending
to all the priority packets. Only after servicing all the priority
packets will the server resume processing the regular packets
which is discussed further in section V.

IV. SD-UAV NETWORK SYSTEM ARCHITECTURE

A. Overview

The architecture depicted in Figure 1(a) comprises 40 relay
drones, 1 master controller/drone, and 1 central station (CS)
situated in an urban battlefield. The network operator has the
capability to monitor the network and deploy supplementary
drones at the central station. Each drone functions as NPDP
JNO queue. The packets that are received at a node that
originates from the master controller are equipped with a
priority tag in its packet header and are placed in a distinct
queue that possesses a higher priority compared to the regular
packet queue. In addition, emergency signals or messages from
the leaders on the ground can also utilize the priority tags to
send their messages faster in the network. The prioritization
of command traffic from the controller or CS will facilitate
expedited network reconfiguration and enhance the speed of
reaction to threats as those commands are propagated through
the network faster than regular traffic.

As depicted in Figure 1(a), the aerial drones are positioned
above the structures in order to serve as relay nodes for
transmitting data from ground assets. The master controller
is responsible for supervising the forwarding drones and
implementing flow installations in the forwarding UAVs to
effectively direct traffic toward the desired destination inside
the cluster. If the master controller experiences a failure, the
relay drones will transition to legacy ad-hoc routing until a
new master controller can be deployed from the CS.

The role of the CS involves the supervision of network traf-
fic and the application of ML techniques to identify potential
cyber threats within the network. Upon detection of an attack,
the CS establishes communication with the master controller,
directing it to issue mitigation commands to the relay drones
in the form of isolating compromise SD-UAVs allowing for
subsequent investigation of these devices before readmittance
into the network. In order to achieve this objective, the initial
step involves the retrieval of network statistics from the relay
drones by the master controller. Subsequently, this data is
transmitted to the CS for the purpose of processing and
labeling for future training of models.



Supervised machine learning models are rendered ineffec-
tive in scenarios involving zero-day attacks or the absence of
prelabeled data, as aforementioned in section I. This is due
to the unavailability of labeled instances of the attack and
inadequate data for model training purposes. The mathemat-
ical analysis presented in this research can be employed by
network operators to compare the existing network operation
metrics with the anticipated metrics derived from the analysis
provided in this study. Subsequently, the network operator will
possess the ability to implement proactive defensive measures
in order to safeguard the integrity of the network against
potential cyber threats.

B. Controller Functionality

The SDN controller is constructed using various applica-
tions that operate autonomously and harmoniously. Preexisting
applications are essential for the functionality of the controller.
The OpenFlow protocol is an essential application for the
controller since it enables access to the forwarding plane of
network switches or routers. This access is necessary for the
controller to compute network pathways.

The subsequent requisite application entails the implemen-
tation of a forwarding app, which serves the purpose of
determining the optimal path selection and calculating the
corresponding paths. In a static network, it is advantageous to
proactively compute and select paths, hence establishing the
optimal path options for each host prior to the transmission
of packages. In the current operational context involving
mobile UAVs, there is a pressing requirement for a responsive
approach to dynamically compute pathways as per immediate
demands. The ”Reactive Forwarding app” is proposed as an
optimal forwarding application for the controller. It operates by
computing and selecting the shortest available path, in terms of
hop count, for transmitting a package from a host. The appli-
cations are developed using the Java programming language,
and they possess the capability to be readily customized in
order to adapt their functionality to suit the requirements of
the controller and network. There are different ways to set up
a controller:

• Cloud based SDN controllers, which can be accessed,
monitored, modified and controlled from anywhere with
a connection in real-time, with the dependency on the
connectivity, losing functionality when there is no con-
nection.

• Hardware installed controllers, installing its applications
and modifications manually, monitoring the network in
person, and not dependent on its connectivity to an
external source.

Our architecture employs a hardware master controller as
shown in Figure 1a. The master controller is responsible
for maintaining a comprehensive network perspective for the
forwarding drones and implements flow installations in the
forwarding UAVs to effectively direct traffic towards the
desired destination inside the cluster. If the master controller
experiences a failure, the relay drones will transition to
legacy ad-hoc routing until a new master controller can be

deployed from the control station. The master controller in
this architecture uses the Open Network Operating System
(ONOS) controller. As described in our prior work [5], our
customized ONOS controller employs reactive forwarding, the
shortest path algorithm, and code modification techniques to
dynamically establish the most efficient paths between hosts
as needed. Furthermore, the routing algorithm prioritizes paths
with reduced energy consumption in order to conserve the
batteries of the drones. Additionally, it selects routes that
circumvent network bottlenecks.

V. QUEUEING MODEL ANALYSIS

A. Categorization of Architecture Components

In the proposed SD-UAV network, the SD-UAVs consist of
the controller and the forwarding UAVs. The controller drone
is tasked with managing the SD-UAV network by controlling
the movement of packets in the network using installed flow
rules in the forwarding drones. The controller drone has a
global view of the network and can make forwarding decisions
based on the availability of links. The forwarding drones are
responses for receiving and moving packets based on the
instructions of the controller drone. In a tactical operation,
the drones are tasked with maintaining a dynamic nature of
communication and configuration needs since the network may
need to adapt in response to ground asset activity.

Figure 4 presents the queueing model of the different types
of SD-UAV in our model. Each UAV and the central station
can be generalized to the following labels:

• SD-UAVA: It is considered the first forwarding drone the
packet encounters in route to the final destination. If there
are no matching entries for the packet, this drone sends it
the controller as a packet-in message for it to analyze and
give the SD-UAVA drone additional to flow rules where
to send the packet. If there is an entry, the SD-UAVA
drone sends it to the next hop(s) (SD-UAVA+j).

• SD-UAVA+j: This is the next logical hop(s) after initial
reception of the message by SD-UAVA. Similarly, if there
is no matching rule for the packet, each drone forwards it
to the controller. If there is a matching rule, it forwards
it to the next hop, j, or the final destination shown as
qEXλA+j .

• SD-UAVC: This is the SDN controller of the network.
When receiving packets in the form of packet-in messages
from the forwarding drones, the SD-UAVC drone is
tasked with leveraging its global view of the network to
provide instructions flow rules to the forwarding drones
on where to send the packet next. The controller is also
responsible for providing movement and reconfiguration
commands to the forwarding drones based on changes in
the environment or commands from the central station.

• Central Station (CS): The central station (CS) is where
the network operator will be located. They will be
responsible for pulling network performance statistics
from the controller and leveraging ML techniques to
detect the presence of a cyberattack. The CS will then



Fig. 4: NPDP Open Network Jackson Model of SD-UAV

communicate the alert of an attack to the controller to
take the necessary actions for the network such as re-
configuring the topology.

B. Statistical Analysis

In this section, we present our statistical analysis of our
architecture. For the analysis, we have the following assump-
tions:

• We assume the SD-UAVs are in a steady state, and not
transient. In a steady state, the arrival rate of packets λ
is less than the service rate µ. Therefore, λ

µ < 1 , and
0 < λ < µ.

• There are only two priorities: priority and regular. Re-
gardless of priority, the service module on the SD-
UAV will service each packet with the same service
rate, µ. However, priority packets are serviced first non-
preemptively over regular packets.

• Since the network is assumed to be in a steady state,
λin to a UAV is equal to λout of SD-UAV according to
Burke’s theorem [40].

As mentioned in section I, we perform an NPDP JNO
analysis which means that our equations have a product-
form solution. Let the subscripts pr and r denote priority
and regular, respectively, and let service rate by the service
module we denote as µ. Subscript A, denote the first UAV
in the connection (SD-UAVA) and A+ j denotes the UAV(s)
that are/is j hops away from SD-UAVA (SD-UAVA+j). Let
subscripts CS and C denote the Central Station, and the SDN
controller, respectively.

The arrival rate of the packets that initially enter the network
from the ground asset is denoted as λin, where λin = λpr+λr.
The possibility that a packet is forwarded to the next hop is
denoted as qi, where i is the next hop. Therefore, λi for each
drone class can be denoted as follows:

λA = λin + qc(λA) (1)

λA+j = qA+jλA + qc(λA+j) (2)

λc = qAλA + qA+jλA+j + qcsλcs (3)

where in equations (1) and (2), SD-UAVA and SD-UAVA+j

will receive reply traffic from the controller that originally
originated from each respective UAV. The probability of such
traffic is denoted by qi. The probability density function for
λi is defined for t ≥ 0:

f(t) = λie
λit (4)

The average interarrival time (IAT) of packets experienced
at SD-UAV is defined:

IATi =
1

λi
(5)

The service time follows an exponential distribution with
parameter µi. The probability density function is:

g(s) = µie
−µis,∀ ≥ 0 (6)

where the average service time, T st, of a SD-UAV can be
denoted:

Tst =
1

µi
(7)

Let piint represent the traffic intensity of packets arriving at
SD-UAVi:

piint =
λi

µi
(8)

Utilizing Little’s law [41], the total waiting time is defined
as transmission delay (TD) for both priority and regular classes
by k:

Wk = TDk =
Lk

λk
(9)



where Lk is the average number of packets in the SD-UAVi.
It is defined as follows [39]:

Lk = Lque
k + pk (10)

where pk = λk

µ and Lque
k denote the average number of

packets for each class in the queues. They are represented
in equations (11) and (12) and the average total number for
both classes is defined in equation 13 [39]:

Lque
pr =

λprp

µ− λpr
(11)

Lque
r =

λrp

(µ− λpr)(1− p)
(12)

Lque
pr+r =

p2

1− p
(13)

where p =
λpr

µ + λr

µ . Therefore, regular packets wait in a
queue of UAVs longer than priority customers when p < 1 as
shown in equation 14 [39]:

W que
r =

p

(µ− λpr)(1− p)
=

p/(µ− λpr)

1− p
=

W que
pr

1− p
> W que

pr

(14)
From Little’s law, the average total waiting time, or trans-

mission delay (TDk) of SD-UAVi can be derived from equa-
tions (8),(9), and (10):

TDpr =
λr + µ

µ(µ− λpr)
(15)

TDr =
µ2 + λrλpr + λ2

pr − λprµ

µ(µ− λpr)(µ− λr − λpr)
(16)

Let T denote the time period of observation. The packet-
count (PC) for received or sent packets during steady state can
both be modeled as follows for SD-UAV class A and A+ j:

PCi = λiTi (17)

For class c, the SDN controller, the PC can be modeled as
follows:

PCci = T (qAλi + j(qiλi)) (18)

where j represents the number of hops necessary to reach
the final destination.

VI. SIMULATION RESULTS

The aim of this paper is to decrease the data collection and
training time necessary for network security of a SD-UAV
network deployed in an urban environment. The network traf-
fic of the SD-UAV was evaluated by utilizing SimComponents
[42], a network traffic simulation software developed based on
the SimPY process-based discrete event simulation framework.
The open source code of SimComponents was altered to
include a non-preemptive priority M/M/C queueing model, as
detailed in Section V. The simulation was designed based on
the UHF/VHF radio communication commonly employed in

military operations. The adjustment of port rate and queue size
parameters of the servers, as presented in Table I, allowed for
the attainment of packet inter-arrival times (IAT), transmission
delay (TD), and packet count (PC) of received packets. These
simulation parameters were derived from the military UAV
wireless communication standards STANAG 4586, MIL-STD-
6016, and relevant research [17], [19], [21].

In order to maintain the integrity of our analysis, we chose
the minimum subset of our network that included all four SD-
UAV classes, as described in Section V, such as the initial
forwarding drone, next logical hop drone, controller drone and
central station. This subset consisted of two drones designated
for forwarding (SD-UAVA and SD-UAVA+j), one controller
(SD-UAVc), and one central station. As demonstrated in
Algorithm 1 and Table I, the packet arrival rates λin and
λcs are first set to 100 packets/sec each. The simulation is
then executed for a duration of 60 seconds. The metrics IAT ,
TD, and PC values are recorded. Next, the values of λin and
λcs are increased by 100 packets/sec until λin and λcs reach
rates of 1000 packets/sec. As aforementioned, we assume and
simulate that the network has reached a steady state, therefore
0 < λ < µ for all SD-UAVs within the network.

Our analysis makes the assumption that the next hop (SD-
UAVi) is ready to receive a transmission once the current SD-
UAV has received all necessary fragments of the message and
does not consider the time necessary for the next j hop to be
ready for message reception, tj . We complete the simulation
on a desktop running Microsoft Windows 11 with an Intel®
12th Gen CoreTM i7-12700K CPU @ 3.6GHz with 16GB of
RAM. The subsequent section will provide the outcomes of
the simulation for each metric and offer an analysis of the
findings.

Algorithm 1 SD-UAVs Data Collection
1: Create arrays for the IAT , TD, and PC average values
2: for λin and λcs ≤ 1000 packets/sec do
3: Simulate SD-UAVs communication for 60 seconds for current λin

and λcs and parameters
4: Record IAT , TD, and PC over duration of simulation
5: Calculate and Append IAT , TD, and PC
6: Increment λin and λcs values by +100 packets/sec each
7: end for

TABLE I: Simulation Parameters

Parameter Value
Probability packet will be sent to the controller from forwarding SD-UAVs, qi 0.05

Probability packet will be sent to next j hop from SD-UAVA, qA+j 0.95

Probability packet will be sent from the central station to the controller, qcs 0.05

Probability controller will send packets to the central station 0.90

Probability of a priority packet for λi 0.35

Probability of a regular packets for λi 0.65

Average packet size 1400 Bytes

Average SD-UAVi service rate, µi 1100 packets/sec

Average arrival rate at SD-UAVi and controller
a1 = 100 packets/sec

an+1 = an + 100 packets/sec
an+1 ≤ 1000 packets/sec

Number of forwarding UAVs in the data plane 2

Number of controllers 1

Number of central stations 1

Simulation Time for each λin and λcs 60 seconds
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Fig. 5: Average interarrival times over increasing λin and λcs

A. Interarrival Time Performance Analysis

A network’s performance is greatly affected by the arrival
rate of received packets, λ. If λ ≥ µ > 0, then the network
is not considered in a steady state, and the service module
will not be able to service packets quickly enough to empty
the queues of incoming packets, resulting in packet drop.
Malicious entities may attempt to deliberately produce this
behavior by injecting malicious packets at a high rate, λattack.
Hence, it is imperative for the network operator to be aware of
the incoming packet arrival rate encountered by an SD-UAV.
The measurement of IAT packets by the network operator
is a suitable approach, as these values exhibit an inverse
relationship with the parameter λ. The magnitude of the IAT

values indicates the rate at which packets are being received
by an SD-UAV. Fluctuations in IAT readings may indicate the
emergence of a potential cyberattack as packets are arriving
faster than anticipated to the SD-UAV. The IAT experienced
by an SD-UAV can be calculated based on equation (5). To
calculate the expected IAT experienced at an SD-UAV in
the proposed architecture, the network operator can use the
expected arrival rate, λ, experienced at each SD-UAV which
we have derived in equations (1), (2) and (3).

To validate our analysis, we perform the aforementioned
simulation and compare our theoretical results from our anal-
ysis in Section V with the simulation results in as shown in
Figure 5. We provide results for IAT for SD-UAVA, SD-
UAVA+j , and SD-UAVc for Figures 5(a)(b)(c), respectively.
As the λ increases, the average IAT decreases as packets
naturally flow faster into the SD-UAV network at each UAV.
The simulation matches the theoretical values very precisely
validating our equations.

B. Transmission Delay Performance Analysis

Transmission delay can be defined as the amount of time it
takes for a packet to be serviced at the service module of a
packet and sent to the next j hop. The magnitude or fluctuation
of the TD values of an SD-UAV could indicate the presence
of a cyberattack as shown in Figure 2. Utilizing little’s law, the
TD can be derived from the number of items in the system, L
and the arrival rate, λ. To validate our analysis, we complete
the aforementioned SD-UAVs simulation and record the TD
of packets as they leave the SD-UAV for each increasing λ.
Acting as a NPDP JNO network, each packet in the simulation
receives a label of priority or regular during creation and
transmission and is queued and transmitted as such through
the network in accordance to its label.

Figure 6(a) and Figure 6(d) represent priority and regu-
lar packets TD at SD-UAVA, respectively; Figure 6(b) and
Figure 6(e) represent priority and regular packets TD at SD-
UAVA+j , respectively; and Figure 6(c) and Figure 6(f) repre-
sent priority and regular packets TD at SD-UAVc, respectively.
For each figure, the simulation and theoretical values closely
follow each other. Notably, there exists a fluctuation in the
simulation value, wherein it alternates between slowing and
mimicking the theoretical value. This phenomenon arises as a
result of natural functions of the device processing speed of
the simulation is tested on. However, each simulation value
closely follows its theoretical value. Overall, all the figures
demonstrate a positive correlation between the TD values and
the increasing λ of incoming packets. This relationship occurs
due to the queues of the SD-UAVs being more congested,
leading to longer service times for the incoming traffic. Also
notably, for Figures 6 (a)(b)(c) of the priority packets have
significantly less exponential curvature compared to Figures
(d)(e)(f) of the regular packets at SD-UAVi. Although these
figures are still exponential, they have less curvature compared
to the regular figures because these packets spend significantly
less time in the queue, W que

k , as the λin and λcs increases than
regular packets due to them being served non-preemptively as
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Fig. 6: Average transmission delay over increasing λin and λcs

(a) (b) (c)

(d) (e) (f)

Fig. 7: Average packet count over increasing λin and λcs

well as there being naturally fewer priority packets to fill the
queues since the probability of a priority packet occurrence is
35%. However, if λpr = 1.0 and λr = 0.0, the NPDP queue

would act as standard M/M/1 queue and the TD values would
exhibit a more exponential curvature as the priority packets
would spend more time in the queue waiting to be serviced



as each packet has wait for the priority packet in front of it
to complete. Overall, Figure 6 validates our analysis.

C. Packet Count Performance Analysis

The average amount of packets received at SD-UAV can de-
noted as PC. Abnormal PC can indicate normal or malicious
activity is occurring within the network. Malicious actors can
flood an SD-UAV or cause its neighbors to drop packets to
affect the behavior of an SD-UAV. Therefore, it is imperative
that the network operator be able to determine the expected
PC values that should be received at each SD-UAV. From
our analysis, the expected packet count of packet received is
demonstrated in equations (17)(18).

To validate our analysis, we complete the aforementioned
simulation for each λin and λcs value and record the packet
count of packets received at each SD-UAVi. The results of
our simulation can be seen in Figure 7. Figure 7(a) and
Figure 7(d) represent priority and regular packets PC at SD-
UAVA, respectively; Figure 7(b) and Figure 7(e) represent
priority and regular packets PC at SD-UAVA+j , respectively;
and Figure 7(c) and Figure 7(f) represent priority and regular
packets PC at SD-UAVc, respectively. For each figure, the
simulation and theoretical values closely follow each other. In
Figure 7(c), there are some slightly notable separation of the
simulation and theoretical values as λin and λcs continues to
increase which is due to system functions during simulation
that is slightly present in the other sub figures as well.
Furthermore, the figures do not exhibit exponential growth
like the other figures due to the linear relationship shown
in equations (17)(18). Overall, the simulation values closely
follow the theoretical values and validate our analysis.

VII. CONCLUSION

This study presents an enhanced network metric prediction
for machine learning-based cybersecurity of a SD-UAV relay
network. In our recent study [13], we presented findings that
highlighted the efficacy of collecting queueing data, including
interarrival times (IAT), transmission delay (TD), and packet
count (PC) queueing performance metrics, for the purpose of
training and detecting cyberattacks such as jamming, black
hole, and gray hole attacks. This study aimed to build upon
previous research by showing a comprehensive queueing anal-
ysis. This study will provide network operators with the capa-
bility to reliably forecast the different aforementioned metrics
within our framework, thus enabling network operators to
proactively implement defensive measures in order to limit the
impact of cyberattacks. To validate our results, we conducted
a simulation utilizing a modified version SimComponent, a
Python toolkit based on the open-source SimPy framework.
Subsequently, we compared the projected values obtained from
our analysis with the simulation. The analysis was validated
by the simulation findings. This will serve as a way to speed
up ML-based training to do identification for cyberattack risks.

Future work will seek to integrate our analysis with an
intrusion detection system (IDS) for rapid real-time data

generation, training, and threat mitigation within a SD-UAV
network.
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