PHYSICAL REVIEW E 106, L033001 (2022)

Beyond quality and quantity: Spatial distribution of contact encodes frictional strength
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Classically, the quantity of contact area Ag between two bodies is considered a proxy for the force of friction.
However, bond density across the interface—quality of contact—is also relevant, and contemporary debate often
centers around the relative importance of these two factors. In this work, we demonstrate that a third factor,
often overlooked, plays a significant role in static frictional strength: The spatial distribution of contact. We
perform static friction measurements, 1, on three pairs of solid blocks while imaging the contact plane. By using
linear regression on hundreds of image-u pairs, we are able to predict future friction measurements with three
to seven times better accuracy than existing benchmarks, including total quantity of contact area. Our model has
no access to quality of contact, and we therefore conclude that a large portion of the interfacial state is encoded
in the spatial distribution of contact, rather than its quality or quantity.
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Static friction, the force required to initiate sliding between
two solid bodies, is an illusive quantity that is famously
difficult to predict precisely. This reflects the fact that this
force is a single scalar which is the outcome of a complex
spatiotemporal process of slip nucleation across a typically
heterogeneous interface, and as a result depends on a large va-
riety of factors, both controlled [1-10] and uncontrolled (such
as wear) [9,10]. Even in well-designed, rigorous laboratory
experiments static friction can vary significantly and unpre-
dictably between successive measurements with the same two
bodies [9,11]. This stochasticity largely stems from one in-
convenient truth about frictional interfaces: Even using the
same bulk solids, a new system is formed after each slide.
Each such interfacial system contains the ensemble of contact
points between two rough bodies, which typically covers a
small fraction of the interface due to surface roughness. The
frictional strength is classically considered a linear function
of the total real contact area of an interface Ag, as the two
quantities generally evolve in tandem [1,5,12-16].

Several exceptions to the proportionality between Ag and
W, the static coefficient of friction, were demonstrated recently
in the context of frictional aging (strengthening over time)
[2,17]. Typically, these works conclude that time-dependent
quality of contact—the density of chemical bonding across the
interface—explains the discrepancy [18,19]; that is, frictional
strength can still be thought of as a function of integrated
contact area, albeit appropriately weighted by contact quality.
This framework is appealing, as it reduces the relevant state
of the entire contact ensemble to a handful of numbers, con-
sistent with the state-of-the-art predictive model for friction,
known as rate and state friction laws [20-22]. However, a
growing body of evidence suggests that the relevant inter-
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facial state is in fact more complex than a single number
can describe [8-10,23,24]. Rate and state friction laws are
therefore a reasonable but crude approximation of static fric-
tional strength and its details remain the subject of continual
debate [25], while the degree of complexity required to model
frictional strength is still an open question.

Predicting a single number, such as u, from a complex
data set is a canonical problem in data science. Noteworthy
progress has recently been made in predicting laboratory or
real earthquakes by utilizing machine learning methods such
as convolutional neural networks or boosted decision trees
[26-29]. In closely related works, similar methods were used
to predict mechanical failure of rocks [30] and amorphous
solids [31]. Most work utilizes signals that do not provide di-
rect measurement of the internal interfacial state, meaning that
even successful predictions are difficult to interrogate. Some
prediction work has been done using direct measurements
from bimaterial model faults [29], but with equally complex
algorithms, and it is unclear if and how these results may
apply to single material, multicontact interfaces. Together,
these exciting results indicate that friction is more predictable
than previously thought.

Here we use linear regression to predict the static friction
coefficient of a multicontact interface undergoing frictional
aging using spatially resolved images of its real area of contact
and no other inputs. This method is three to seven times more
accurate than the benchmark methods of prediction using the
total area of contact and experimental parameters. Our results
indicate that frictional strength is encoded in the spatial distri-
bution of the real area of contact.

The biaxial compression and translation stage used to mea-
sure the friction coefficient is described in detail in a previous
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FIG. 1. Experimental setup and benchmark parameters. (a) Left:
Schematic of the biaxial compression/translation stage. Right: Em-
bedded optical setup to image the contact ensemble. (b) Three typical
images of interfacial contact for after a few dozen, a few hundred,
and nearly 1000 experiments, respectively. All data in (b)-(e) is for
block pair 1. (¢) u vs experiment number. Colors (shading) in (c)—(e)
indicate experimental parameter hold time 7. The final 18% of data,
indicated with shading on the right, is to be used as the test set for
predictions. (d) u for the highest (40 N) and lowest (0 N) hold shears
Sy for block pair 1, separated and color (shade) once again represents
hold time. Circles are individual experiments, squares are means, and
error bars are standard deviations for unique (Sy, Ty) pairs. (e) u as
a function of real area of contact Ag (sum of image intensities). Solid
line is a linear fit to all data [cf. (3)].

work [10,23], and shown schematically in Fig. 1(a). Exper-
iments are performed separately on three pairs of laser-cut
PMMA (polymethyl-methacrylate) blocks with 1-2.5 cm?
of nominal contact area. The bottom samples are original,
extruded PMMA (11 nm rms), approximately 60 x 100 x
4 mm, which are directly contacted by the horizontal force
sensor. The top samples are lapped with 1000 grit polishing

paper (~800 nm rms), and are the main source of variance
between interfacial systems. While the samples are in contact,
the interface is imaged using a total internal reflection (TIR)
technique: Single-wavelength (473 nm) light is injected into
the bottom sample where it remains trapped though TIR,
except at points of actual contact with the top sample. As
a result, when imaged from above, the brightness of the in-
terface corresponds to points of real contact, as shown for
three examples in Fig. 1(b). The camera position is fixed in
relation to the top (smaller, rougher) block, and thus images
in subsequent experiments contain common features. Images
are grayscale with 8-bit intensity resolution, 5 megapixels, and
have a spatial resolution of approximately 1 pixel per 10 pum,
the same order of magnitude as one contact point. Because
(summed) pixel intensity is used as our measurement of the
real area of contact, this lack of subcontact resolution does not
affect our results. This imaging technique is also described in
detail in previous work [10].

Static friction measurements are taken via the standard
slide-hold-slide protocol: Under constant normal load, Fy =
90 N, samples are slid at 0.33 m/s to create a new contact
ensemble. The interface is then held static for hold time Ty
under constant hold shear force Sy. At the last moment the
interface is held static, the image of the contact plane is taken.
Subsequently the horizontal motor switches to position con-
trol and loads the interface at a rate of 0.33 mm/s (~33 N/s)
until the initiation of slip, accompanied by a sharp drop in the
measured shear force. We define p as the highest shear force
prior to slip, or the “static peak,” divided by the normal load.

Over the course of hundreds of experiments, repeated slid-
ing slowly wears the surfaces of our samples. This effect
manifests in changing of the contact ensemble, and generates
a slow, and nonmonotonic, drift of the friction coefficient, as
shown in Figs. 1(b) and 1(c). This effect is most rapid with a
fresh sample, and thus the first several dozen experiments are
discarded from our data set (“wear in”). Regardless, to avoid
conflating the effect of wear with the effects of changing hold
time Ty or hold shear Sy, the experiments are ordered such
that every possible combination of experimental variables is
performed once in a random order, then again in a different
random order and so on. At least five unique values of Sy and
of Ty are used for each block (see [32] for details).

Static frictional strength p has a systematic but noisy de-
pendence on several factors in our data. For example, it is well
established that static friction “ages,” that is, it is correlated
with both the logarithm of the hold time log(¢) [1,20,22], and
this logarithmic rate is dependent on hold shear Sy [23,33].
Our data shows this expected dependence, as demonstrated
in Figs. 1(c) and 1(d). u is also correlated with real area
of contact Ag, as shown in Fig. 1(e). Note that the classi-
cal relationships are present in aggregate; Ag, log(?), and u
are all positively correlated. However, these correlations are
swamped by noise, and do relatively little to predict fric-
tional strength for an individual experiment. In previous works
with this experimental setup [10,23], wear was treated as a
confounding variable, and its resulting slow nonmonotonic
trend was subtracted from p to highlight the effect of exper-
imental parameters. This technique is discussed later in this
report as another benchmark outperformed by our method;
however, a true prediction of u should not involve any such
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FIG. 2. Image processing and weights. (a) Example raw image
(top) from block pair 1, and 1 mm? section (bottom) after 2 x 2
max pooling. (b) Visualization of the resulting w;; with a zoom in
on 1 mm? section from (a). Red is positive, white is zero, and blue is
negative.

modification of the data. With or without such detrending,
there is a large variance in w that is not accounted for by
experimental parameters and Ag, but, as we show, is in large
part predictable from the spatial contact distribution.

We now turn to images of the contact plane to capture
this variance. Like most physical (nondigital) systems, our
data collection is limited by real-world constraints [34]. Block
pairs can be used for only a few hundred to 1000 experi-
ments before they are worn beyond use. Since each image
contains millions of pixels (“features”), but each block can
only provide ~1000 examples, the problem is massively un-
derconstrained, and we reduce the complexity of our model
slightly by square-kernel max pooling by a factor of 4. This
reduction speeds computation, and smooths out small-scale
details, as shown in Fig. 2(a).

Friction predictions ft are constructed using linear regres-
sion of grayscale pixel intensities p;; of these reduced images.
Explicitly

ﬂ(Pij)=C+ZPijwij, (D

v
where C and w;; are fitting parameters (weights) that are
constant for each block pair. These are found by standard

Ridge regression [35], i.e., a regularized minimization of the
prediction error,

argmin {Z [,u(”) - [L(pf?))]z +a Z wizj }, ()
ij

wij,C n

where u" and pgy) are the static friction coefficient and the
interfacial image of the nth experiment. « is a hyperparameter
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FIG. 3. Contact distribution encodes frictional strength. Test-set
mean-squared prediction error for three distinct block pairs. Our
linear regression method using the spatial distribution of contact (D)
is compared with four methods using global variables. Prediction
error for a linear fit to the total area of contact [Ag, Eq. (3)] is shown
in white. The errors of optimal experimental predictors [Eq. (4)]
using hold time 7y, hold shear Sy, and both parameters (P) are shown
in light gray. Error from predicting the mean value [0, Eq. (5)] is
shown in dark gray. Thin black bars indicate error when using these
benchmark methods on p with the slow trend from wear removed as
described in text. 10 x 10 max-pooled example images from each
block pair are shown below prediction errors, to scale with one
another. Scale bars are 5 mm.

that discourages overfitting. For each block, the first 82% of
experiments are used for training and cross validation (i.e.,
finding the optimal « through leave-one-out cross validation
[35]). All metrics reported below are evaluated on the last 18%
of the data, which were not used during training. Our model
produces w;; that have the size, shape, and granularity of the
reduced images, as shown for typical values in Fig. 2(b) for
block pair 1. These values are therefore not transferable from
pair to pair, as they relate to specific asperities of a single pair.
As our interfaces experience irreversible evolution through
wear, predicting future values of w is both more challenging
and meaningful than using an interspersed test set; a temporal
division of the test set requires w;; to be robust to substantial
changes in overall contact distribution, which will inevitably
occur in the final 18% of a data set. In contrast, an interspersed
train-test split reduces the error of our model, but some of this
improvement may be attributed to learning the wear trend, not
a true predictive connection between contact distribution and
. Thus we do not report results obtained in this manner.

Prediction using contact distribution performs strikingly
well, as shown in Fig. 3. The most obvious benchmark for
comparison is prediction using a linear fit to the fofal contact
area Ag,

fa(AR) = a+ bAg, Ar=Y_pij» 3)
ij

where a, b are fitting parameters. This gives an error three to
seven times higher than our distribution-based predictor. It is
worth emphasizing that our regression model is quite distinct
from the classical method of aggregating contact area; for our
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system, with only a single normal load, we find variations in
total Ag to only weakly predict variations in p. This is likely
primarily due to two factors: The lack of any change in normal
load, which would generate a larger signal in both friction and
Ag, and the substantial change in contact over hundreds of
experiments, which generates very distinct interfaces over one
sample’s lifetime. This is atypical for friction studies, which
more often aim to vary normal load and run a much smaller
number of experiments on a single sample. However, the fact
that our predictions outperform Ag in any regime, even one
which is not the most flattering for Ag, suggests that there is
information encoded in the spatial contact distribution which
is not present in its sum total area.

For completeness, we note that measurement errors might
affect the predictive accuracy of Ag as we report it here.
However, we expect these effects to be minor. Previous work
has shown that the rapid rise in shear force prior to slip (after
our images are taken) may modify the contact distribution
[6,17,23]. However, this effect would create systematically
larger variation for lower hold shear Sy values, which is not
the case; we see similar variation in (and covariation between)
u and Ay at all values of Sy, including at constant hold time
Ty. This is shown for u at the highest and lowest values of
Sy in Fig. 1(d). It is possible that measurement error in Ag,
e.g., from evanescent coupling of interfacial points nearly in
contact may also play a role [10], but due to the high number
of contact points (thousands) in our system, we expect any
such error to be systematic, without large variations between
individual experiments, which is not the case.

Another natural benchmark is the optimal predictor that
has access to all experimentally controlled parameters. That
is, a predictor that predicts the mean friction coefficient con-
ditioned on the protocol,

flexpi(s, 1) = n}ggn{u(”)}, %)

where the mean is taken only over experiments with the speci-
fied Sy and Ty. As seen in Fig. 3, flexp is only modestly better
than predicting the unconditioned mean value,

fto = mean{u™} 5

both generating at least four times higher error than our meth-
ods. As previously mentioned, these parameters, along with
Ag, do correlate with u; however, the signal is drowned in
noise for individual experiments, and the relationship between
these data and ; may evolve as the interface wears.

It is interesting to ask what the model is and is not learning
through regression. Unfortunately, we cannot directly inter-
pret w;; to “understand” the learned interfacial state: The
problem is largely overparametrized and therefore there are
many different w;; that give similar prediction metrics. For
example, using different weight regularization methods, such
as LASSO or similar techniques, provides vastly different
weights, with comparable predictive power. This makes the
weights themselves problematic to interpret directly. Nonethe-
less, the regression is learning aspects of this interfacial
system that apply beyond its training set, as seen by the low
error on the test set.

Since the weights are not directly interpretable, we must
consider the possibility that the model is not learning anything
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FIG. 4. Experimentally controlled parameters can be extracted
from the contact distribution. The percentage of actual and predicted
Sy and Ty for block 2. Other blocks show qualitatively similar
results.

but the connection between p and the three variables that
account for much of its variance, Sy, Ty, and interfacial wear,
all of which are encoded in the contact distribution. If this
is so, predictions using these three factors should perform at
least as well as our model. To give our benchmarks access to
the evolution due to wear, we detrend the friction coefficient
by defining

B = p" — fn), (©6)

where f is a low-order polynomial fit to the training data
[different for each block; shown for block pair 1 in Fig. 1(c) as
a blue line]. This is similar to methods employed in previous
works to increase the signal-to-noise ratio of the evolution of
1 as a function of hold time [10,23].

When trained to predict fi the benchmarks flexp and fia
perform far better than when they are trained to predict w, as
shown by the thin black bars in Fig. 3. However, they are still
typically worse than our distribution-based predictor while
trained using the raw (. This suggests the connection between
the contact distribution and p found by our model is not solely
mediated by Sy, Ty, and wear. As further evidence, our model
is only passable at predicting these experimental parameters.
When trained using the same training/test split, but to predict
the values of Sy or log(7y) instead of w, our model predicts
Sy correctly £5 N in 99%, 74%, and 95% of cases, and Ty
within a factor of 2 in 62%, 73%, and 100% of cases for block
pairs 1, 2, and 3, respectively. The confusion matrix of block
2 is shown in Fig. 4 as a representative example.

Since experiments with the same Ty and Sy follow an
identical experimental protocol, the best naive prediction
that makes no use of the interfacial state is flexp, averaged
(“trained”) on the detrended friction coefficient. Two ex-
periments that are performed with the same protocol with
relatively close n are “experimentally identical” and thus
variation between them cannot be accounted for with con-
trol parameters. With access to interfacial data, however, our
model captures some of this variation, outperforming flexpt.
Interestingly, unlike the accuracy of the benchmarks, the ac-
curacy of our model does not improve by detrending the
data, and in some cases fairs slightly worse, depending on
the detrending protocol. This behavior is consistent with the
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idea that the contact distribution encodes the raw strength,
and therefore predicting the actual p values is actually easier
than learning the detrended fi. To predict a detrended value of
the friction coefficient, a model must simultaneously learn a
connection to u and the subtracted trend, which is not trivial
to project forward in time.

We have shown that the distribution of interfacial contact
encodes information about frictional strength. Using a sim-
ple linear model and direct measurements of the real area
of contact, we are able to predict future measurements of
static friction in an experimental system. These predictions
outperform more standard (averaging) predictions using Ag
and experimental parameters, and even typically outperform
these benchmarks when the overall trend of wear is subtracted
from the data.

It is possible that regions given high weight are regions
that contain weak contact or high residual stress likely to
nucleate slip, or regions that contain “barriers,” strong con-
tact regions that stop fledgling slips from propagating to the
entire system [36]. We tried several ways to tease out these
details. We could not obtain discernible improvements over
the linear model by using neural nets, neither terms of error
nor explainability (as expected). We also trained predictors
using only subsections of the interface, widely varying the size
and location of these regions. However, since these problems
are so overwhelmingly overparametrized we could not draw
any consistent conclusions from the results.

As it stands, our method does not provide a practical mean
to model the static friction in real settings. First, it requires
both blocks to be transparent and a whole optical appara-
tus, but more importantly, our regression weights w;; are not

transferable as they are based on the specific details of a
data set from a single pair of blocks. However, our results
show that the spatial contact distribution can be directly corre-
lated to frictional strength, and that this distribution contains
more information than traditional predictions including total
quantity of contact. As we cannot measure quality of contact
directly, building a quality of contact benchmark is not feasi-
ble. However, it is worth emphasizing that our model has no
obvious workaround to access to contact quality; pixels in our
images even prior to max pooling are on the scale of single
contacts, and our model is unable to reliably predict hold
time, a factor known to correlate with contact quality. Thus,
when our model uses the distribution of contact to eliminate
the majority of error produced when using total quantity of
contact as a predictor, it implies a strong connection between
contact distribution and frictional strength.

It would be interesting to generalize our approach to
encode physical knowledge, both in the model and the reg-
ularization. In addition, drawing insights from the weights in
order to inform coarse-grained friction models going beyond
“mean-field” descriptors such as total area, is also a promising
avenue for future work.
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