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Abstract

The Pacific Decadal Oscillation has been suggested to play an important role in driving marine
heatwaves in the Northeast Pacific during recent decades. Here we combine observations and
climate model simulations to show that marine heatwaves became longer, stronger and more
frequent off the Northeast Pacific coast under a positive Pacific Decadal Oscillation scenario,
unlike what is found during a negative Pacific Decadal Oscillation scenario. This primarily
results from the different mean-state sea surface temperatures between the two Pacific Decadal
Oscillation phases. Compared to the cool (negative) phase of the Pacific Decadal Oscillation,
warmer coastal sea surface temperatures occur during the positive Pacific Decadal Oscillation
phase due to reduced coastal cold upwelling and increased net downward surface heat flux.
Model results show that, relative to the background anthropogenic global warming, the positive
Pacific Decadal Oscillation in the period 2013-2022 prolongs marine heatwaves duration by up
to 43% and acts to increase marine heatwaves annual frequency by up to 32% off the Northeast
Pacific coast.

Introduction

Heatwaves in the ocean, dubbed marine heatwaves (MHWs), are characterized by prolonged
periods of extreme warm sea surface temperatures (SSTs) and are well known for adverse
ecological and socio-economic impacts' ™. Notable MHWSs have recently been reported from
various regions of the globe”'?. In particular, a prominent MHW event developed during the
winter of 2013—-2014 in the Northeast Pacific, featuring unusually high SSTs in a “Blob-like”
pattern in the Gulf of Alaska'>'*
from the Gulf of Alaska toward the coastal regions'>'°. Off the southern California coast, the
maximum SST anomalies exceeded 5°C relative to the 1982-2011 climatology. This MHW had

. . . . . 18 .
significant impacts on marine ecosystems'’ including harmful algal blooms'® and dramatic range
19,20

. During the following winter, the patch of warm water shifted

shifts of species at all trophic levels
Northeast Pacific”'

. More recently, warm SST anomalies intensified in the
in the summer of 2019.

A variety of physical mechanisms have been proposed to explain the occurrences of
Northeast Pacific MHWs>?*?’; for example, changes in the North Pacific high pressure
system'">*', the presence of El Nifio conditions in the tropical Pacific'>**>' and the North Pacific
Gyre Oscillation (NPGO)"*. We note here that both MHW events occurred since 2013 when the
Pacific Decadal Oscillation (PDO)***? became positive®*, whereas few MHW events were
reported in the prior decade or the so-called global warming hiatus period when the PDO was in
a negative phase® ™. This fact suggests the potential importance of the PDO for decadal
variations of Northeast Pacific MHWs**®, especially when considering an inherent coupling
between the NPGO and the subsequent development of PDO conditions®. Although the
importance of the PDO for the development of MHWs was previously discussed on the basis of

26,38,39

statistical analysis , the role of the PDO in modulating decadal variations of Northeast
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Pacific MHWs and the associated physical mechanisms have not yet been explicitly investigated
within fully coupled Earth’s system models. These aspects are then the focus of the current study.

Results
Observed decadal variations of Northeast Pacific MHWs

To explore the effect of the PDO on decadal variations of MHWs in the Northeast Pacific, we
first examine the observed MHW changes (see Methods) over this region averaged over two
positive PDO periods (1982-1998 and 2013-2022) and during a negative PDO period (1998-
2013). We find that MHWSs show generally longer (shorter) duration, higher (lower) annual
frequency and larger (smaller) intensity off the Northeast Pacific coast during positive (negative)
PDO periods (Fig. 1b-j). These robust MHW variations potentially reflect the effect of the PDO,
but could also be influenced by many other factors. For example, the extent of background
anthropogenic global warming could be different between 1982-1998 and 1998-2013, or between
1998-2013 and 2013-2022. We also note that negative PDO conditions appeared during 2020-
2022 (Fig. 1a, Supplementary Figure 1), suggesting that the positive PDO phase during 2013-
2022 may have been short-lived. Finally, given that these results are based on only two positive
PDO phases and one negative PDO phase, a more robust sample size is needed to confirm the
relationships seen in Fig. 1.

Northeast Pacific MHWs during positive and negative PDO phases

To compare MHW:s between two distinct PDO phases from many different samples, we
calculate the frequency, duration and intensity of MHWs in the Northeast Pacific during 2013-
2022 for the positive and negative PDO groups obtained from the large ensemble simulations of
five climate models (see Methods, Supplementary Figure 2). While internal variability in each
ensemble member has its own phase, here we consider the ensemble members which are in either
a positive or negative PDO phase during 2013-2022 (see Methods). Like in observations, the
MHW statistics from either group include the signals due to background anthropogenic forcing,
whereas the difference between the two groups excludes the influence of background
anthropogenic global warming (Fig. 2). Compared to the negative PDO group, the duration and
annual frequency of MHWs in the Northeast Pacific significantly increase in the positive PDO
group. From the Gulf of Alaska to off the California coast, MHW duration increases by about 3
days to 13 days (Fig. 2c) and MHW frequency enhances by about 0.4 to 1.1 times per year (Fig.
2f). MHWs also become significantly stronger off the coast of the Northeast Pacific in the
positive PDO phase, except at a few sites in the Gulf of Alaska and close to Baja California (Fig.
2i). These model results, which are based on the comparison of robustly defined positive and
negative PDO phases, are consistent with observations, indicating a role for the PDO in
modulating Northeast Pacific MHWs during the recent decade, even if the PDO did not remain
positive for the entire 2013-2022 period. Furthermore, we repeat our model analysis over two
earlier decades, 1986-2005 (representing the positive PDO period of 1982-1998) and 1998-2007
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(representing the negative PDO period of 1998-2013) and find that the PDO effects on MHWs
during these two periods (Supplementary Figures 3 and 4) are generally consistent with those in
the period 2013-2022 (Fig. 2).

We also elucidate the PDO effect on warm SST extremes in the Northeast Pacific coastal
region in terms of probability density functions (PDFs). We first calculate the PDF of daily SSTs
over 2013-2022 with an interval of 0.1°C for all ensemble members that exhibit either a positive
or negative PDO during that period across the five climate models (Fig. 3a). We find that the
SST PDF of all ensemble members has a mean of 15.4 °C. The PDF shows the SST pattern under
background anthropogenic global warming, since the simulated PDO phase is random in the
large ensemble simulations so that all of the internal variability in the different ensemble
members cancels out. As a result, the PDF based on all the ensembles shows SST variations
without preferred PDO phase (Supplementary Figure 2a). On the other hand, the daily SSTs in
the negative and positive PDO groups show mean changes of -0.8 °C and 0.9 °C, with PDFs
skewed toward their lower and higher tails (the skewnesses are -0.44 °C> and 0.37 °C),
respectively. These PDF patterns reflect the characteristics of SST changes due to anthropogenic
global warming plus a preferred negative or positive PDO. The difference of the PDFs of the two
PDO groups accordingly manifests the role of the PDO in modulating the daily SSTs in this
region. By defining warm SST extremes here as those that exceed the 90th percentile, we find
that the positive PDO phase significantly increases the likelihood of a warm extreme, or
potentially, a MHW occurrence off the Northeast Pacific coast (Fig. 3a). However, the duration
criterion also needs to be met. This result is consistent with observations at Monterey Bay™,
indicating that different PDO phases can alter the temperature and fertilization of near-shore
surface water and potentially induce dramatic but distinct changes in coastal ecosystems and

fisheries in the California Current region*' ™.

The physical mechanisms of the PDO in modulating MHWs

The distinct MHW statistics during positive and negative PDOs from SST PDF analysis can
be attributed to different mean-state SSTs between the two PDO phases. This dependence of
MHWs characteristics on decadal-mean SSTs during different phases of climate variability is
consistent with the MHW dependence on the long-term SST state under climate change**. Here,
we calculate the difference of the 2013-2022 SST trend between the positive and negative PDO
groups (Fig. 3b) and find contrasting SST changes in the western and central Pacific and along
the coast of the Northeast Pacific. The coastal SSTs exhibit an anomalous warming trend of 0.6-
2.3 °C per year during a positive PDO phase as compared to a negative PDO phase.

We propose two physical mechanisms that can potentially drive the warmer coastal SST
during a positive PDO. Compared to a negative PDO, anomalous surface southeasterly winds
prevail along the coast of the Northeast Pacific during a positive PDO (Fig. 3b), which produce
anomalous downward Ekman pumping (Fig. 3c), reduce the upwelling of cold water, and result
in warmer coastal SSTs. Note that climate variability over the tropical Pacific can also remotely
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affect this region via the propagation of coastal Kelvin waves ™", whose offshore scale

decreases with latitude. These coastal waves can excite westward propagating Rossby waves,
and thus affect the offshore regions, but the Rossby waves decay rapidly away from the coast®’,
especially at higher latitudes where their phase speed is lower. Besides, more atmospheric heat
enters through the ocean surface along the coast of the Northeast Pacific during a positive PDO
(Fig. 3d). This increased net downward surface heat flux is primarily due to enhanced downward
shortwave radiation and diminished upward sensible and latent heat fluxes (Supplementary
Figure 5). The latter, reduced turbulent sensible and latent heat fluxes, could be related to the
anomalous surface winds that weaken the climatological winds, and in turn, decrease the surface
wind speed. Noting here, relative to the negative phase of the PDO, changes in the Ekman
pumping and net surface heat flux amount to 28% and 24% in magnitude during the positive
phase of the PDO, which are sufficiently strong to alter the decadal-mean SSTs and impact the
characteristics of MHWs. To summarize, both surface heat flux changes and ocean dynamics are
important to the generation of warmer mean-state SST and hence longer, stronger and more
frequent MHW3s along the coast of the Northeast Pacific during a positive PDO.

We further quantify the PDO effect on Northeast Pacific MHWs during 2013-2022 by
comparing it against the relative background anthropogenic global warming (Fig. 4a-c; Egs. 1
and 2; also see Methods). We find that a positive PDO can prolong the MHW duration by up to
43%, increase the MHW annual frequency by up to 32%, and enlarge the MHW intensity by up
to 10% off the Northeast Pacific coast (Fig. 4d-f). On the other hand, a negative PDO can shorten
the MHW duration by up to 38%, decrease the MHW annual frequency by up to 29%, and
reduce the MHW intensity by up to 10% in this region (Fig. 4g-1).

Discussion

In this study, we have explored the role of the PDO in driving MHWSs in the Northeast
Pacific on decadal timescales using both observations and climate model simulations. We find
that, over recent decades, MHW s off the coast of the Northeast Pacific have become longer,
more intense and more frequent under a positive PDO scenario relative to what seen during a
negative PDO scenario. These results are confirmed by the comparison of MHW statistics during
positive and negative PDO conditions obtained from five climate models large ensembles.
Analyses of these climate models reveal that these distinct MHW characteristics primarily result
from the different mean-state SSTs between the two PDO phases. Compared to the negative
phase of the PDO, warmer SSTs occur along the Northeast Pacific coast during the positive
PDO, which are generated by suppressed coastal cold upwelling and enhanced net downward
surface heat flux. We further quantify the contributions of the PDO and background
anthropogenic global warming on Northeast Pacific MHWs over the past decade. Relative to
background anthropogenic global warming, the positive PDO can prolong MHW duration by as
much as 43% and act to increase MHW annual frequency by as much as 32% off the Northeast
Pacific coast.
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Our results suggest that periods of longer, stronger and more frequent Northeast Pacific
MHWs can last for several years due to the persistence of a positive PDO state. Nevertheless, the
characteristic MHW pattern induced by the positive PDO does not need to account for every
event. For example, the “Blob” in February 2014 featured a peak warming centered around
145°W as likely related to the NPGO mode, which also makes sense in light of the inherent
coupling between the NPGO and PDO?’. Moreover, besides the North Pacific, the PDO could
also have a remote effect on the SST in the Gulf of Maine during spring and summer through
atmospheric teleconnections™ and potentially affect MHW:s in the Northwest Atlantic.

The contribution of the PDO under the influence of background anthropogenic global
warming on Northeast Pacific MHWs may change. As our climate continues to warm, the PDO

is expected to weaken and to have a shorter period*™!

. The underlying cause is that global
warming enhances the ocean stratification in the North Pacific’, which leads to increased phase
speed but decreased magnitude of extratropical oceanic Rossby waves across the North

. 53
Pacific>"*

. The increased Rossby wave phase speed results in a shorter transit time and therefore
reduced periodicity of the PDO, while the reduced Rossby wave amplitude leads to a weaker
PDO relative to the present. This alteration in PDO characteristics may further affect the
predictability of the PDO’"°, It is also worth mentioning that, from an alternative point of view,
the PDO is not a physical mode of variability like the El Nifio-Southern Oscillation (ENSO).
Rather, it is the result of the superposition of different processes, including ENSO
teleconnections, re-emergence, and Rossby wave propagation in the North Pacific™. Given that
current global climate forecast systems have shown relatively limited skill in the prediction of
MHWs™® except for those linked to ENSO’’, improving the understanding of changes in ENSO
and PDO predictability under climate change will be fundamental for assessing the potential

predictability of MHWs on interannual to decadal timescales.

Methods
Observations

We exploit the Daily Optimum Interpolation Sea Surface Temperature (OISST) version 2.1
(v2.1) from the National Oceanic and Atmospheric Administration®®, mapped onto a 0.25°x0.25°
grid and available since September 1, 1981. We adopt the OISST data from 1982 to 2022 to
investigate the observed MHWSs in the Northeast Pacific. To examine the historical PDO, we
leverage multiple reconstructed monthly SST datasets: COBE-SST*’, COBE-SSTv2%,
ERSSTv5°' and HadISST®, which are generally of a resolution of one or two degrees and cover
more than a century. For each dataset, we calculate the SST anomalies during the period from
1891-2022 by removing both the climatological annual cycle and the global-mean SST at each
grid point. We determine the PDO structure using the leading empirical orthogonal function
(EOF) of the SST anomalies in the North Pacific polewards of 20°N**% and compute the PDO
index as the corresponding principal component of the leading EOF. Despite slight differences,
all four reconstructed monthly SST datasets show consistent PDO structures and indices
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(Supplementary Figure 1). We hence use the average of the four PDO indices when examining
the historical PDO (Fig. 1a).

Climate model simulations

. - 326,27
Previous studies™

suggest that many physical drivers, including the PDO, operate under
background anthropogenic warming such that it is difficult to clearly isolate and quantify the
effect of each driver simply using short-record observational data. To this end, we leverage large
ensemble simulations with climate models to eliminate the influence of background
anthropogenic global warming and identify the effect of the PDO. The underlying rationale is
226493 50 that they

may not capture the same timing of internal decadal climate variability as observations®*. For

that the predictability horizon of climate models is at most one to two decades

example, during the recent decade, 2013-2022, climate models can simulate the PDO in different
phases among individual ensemble members but under the same anthropogenic forcing
(Supplementary Figure 2a). Thereby, the average of these large ensembles allows a cancellation
between positive and negative PDOs and hence a representation of background anthropogenic
global warming (Supplementary Figure 2a). Meanwhile, a comparison between these members
during different PDO phases will help uncover the role of the PDO in influencing various
climate elements, including MHWs.

In this study, we consider large ensemble simulations conducted with five climate models
that have daily SST outputs available: ACCESS-ESM1.5%, CanESM5%, CESM1%°, CESM27%7!,
and EC-Earth3”, i.e., we use 172 ensemble members in total (Supplementary Table 1). The
model PDO is calculated using the same approach as for the observed PDO. For each ensemble
member, we calculate its PDO index as the principal component of the leading EOF based on the
simulated SST anomalies over the period 1920-2022. We adopt a similar approach to that in ref.
66 by selecting the ensemble members that simulate a positive (negative) PDO during 2013-2022
into a positive (negative) PDO group (Supplementary Figure 2b, Supplementary Table 1). We
calculate the difference for the ensemble means between the positive and negative PDO groups
to explore the PDO effect on MHWs (Supplementary Figure 2). Here, it is worth noting that,
although the five models follow different future anthropogenic warming scenarios after 2005 or
2014 (Supplementary Table 1), the inter-model difference in external forcing between 2013-2022
is fairly small and seldom affects the result in the current study.

Besides 2013-2022, we also selected the ensemble members that simulated a positive
(negative) PDO during two earlier decades—1986-1995 and 1998-2007—into positive
(negative) PDO groups, respectively (Supplementary Figure 2¢ and d, Supplementary Table 2).
For either decade, we calculated the difference in the ensemble means between the positive and
negative PDO groups to explore the PDO effect on MHWs (Supplementary Figures 3 and 4).

Detection of marine heatwaves
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We adopt the MHW definition from ref. 73 in which a MHW represents an event in which
daily SST exceeds the local seasonal threshold (i.e., the 90th percentile of daily SST for the same
day during the climatology period) for at least five consecutive days within a given area. Two
events with an interruption of less than three days are considered as one MHW event. For
observations, we probe the MHWs during 1982-2022 using OISSTv2.1 so that the climatological
period for MHW detection is 1982-2022. For climate model simulations, we focus on the PDO
effect on MHW:s during the recent decade. For each model, we use ensemble mean daily SST
climatology during 2013-2022 for MHW detections. Though this 2013-2022 climatology or the
neutral PDO state lasts only one decade, our ensemble mean approach in model simulations
helps capture the background anthropogenic warming and allows for a better representation of
daily SST climatology under global warming’®. Similarly, we use ensemble mean daily SST
climatology during 1986-1995 or 1998-2007 for MHW detections in either period. For all the
reference periods in both observations and model simulations, the daily SST climatology and the
90th percentile threshold corresponding to each day are calculated using the daily SST for all
years within 11 days centered on that day, and the results obtained are then smoothed for 31
days.

We explore MHW characteristics such as frequency, duration and intensity from
observations and model simulations. Frequency is defined as the number of events per year;
duration is defined as the time between the start date and end date of the event; and intensity is
defined as the maximum amplitude of each MHW, i.e., the maximum SST anomaly relative to
the seasonally varying climate mean over the duration of the event. We apply the Student's t-test
to the difference of MHW characteristics between positive and negative PDO groups to examine
the statistical significance of the PDO effect on MHW .

To quantify the PDO effect on Northeast Pacific MHWSs during 2013-2022, we first
calculate MHW duration, frequency and intensity averaged over all the ensembles of the five
models (MHW,,,), which reveals the effect of background anthropogenic global warming
during the decade. We then calculate MHW duration, frequency and intensity averaged over the
ensembles of the positive (MHW, 4, ) and negative (MHW,,4,,_) groups. Relative to the
background anthropogenic global warming, the effects of the positive and negative PDOs on
MHWs can be denoted by the ratios of 75,404 and 7,4, i.€.,

Tpdo+ = (MHWpdo+ - MHWagw)/MHWagW (1)
Tpdo— = (MHWpdo— - MHWagw)/MHWagW (2)
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Fig. 1: Observed decadal variations of North Pacific MHWs. (a) The monthly PDO index
from 1891-2022 for the average of COBE-SST, COBE-SSTv2, ERSSTv5 and HadISST. (b-d)
North Pacific MHW duration averaged over (b) 1998-2013 and averaged over the combined
periods of (c) 1982-1998 and 2013-2022 as well as (d) the difference between the two (c minus
b). The average is applied on each grid. (e-g) Same as (b-d) but for annual MHW frequency. (h-j)
Same as (b-d) but MHW intensity.
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Fig. 2: Positive and negative PDOs modulating North Pacific MHWs. (a-c) Composite

duration of Northeast Pacific MHW s for the ensemble mean of the (a) positive and (b) negative

PDO groups from the large ensemble simulations of five climate models during 2013-2022 as

well as (c) the difference between the two (a minus b). (d-f) Same as (a-c) but for annual MHW

frequency. (g-i) Same as (a-c) but for MHW intensity. Dotted indicates that the change is not
significantly different from zero at the 95% level of the Student's t-test.
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Fig. 3: The mean-state difference and the physical mechanisms. (a) Probability density
functions (PDFs) of SSTs in the coastal region of the Northeast Pacific (within the enclosed area
in panel b) during 2013-2022 for all ensemble members (gray), the positive (ensemble mean, red;
ensemble spread, light red) and negative (ensemble mean, blue; ensemble spread, light blue)
PDO groups from the five climate models simulations. The 90th percentile of the PDF from all
ensemble members is denoted by the black line. The ensemble spread is defined as one standard
deviation among the ensembles. (b) The differences of SST trend (shading) and surface wind
stress (vector) during 2013-2022 between the positive and negative PDO groups (positive minus
negative) for the ensemble mean of the five climate models. (¢,d) Same as (b) but for the
difference of Ekman pumping and net surface heat flux. Surface heat flux is downward positive.
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ses  Fig. 4: Quantifications of the PDO effect on North Pacific MHWs. (a-c) The ensemble mean
seo  of (a) duration, (b) annual frequency and (c) intensity of Northeast Pacific MHWSs during 2013-
s7o 2022 for all ensemble members from the five climate models simulations, which reveals the

571 effect of background anthropogenic global warming during the decade (WWagw, see Methods).
572 (d-f) The ensemble mean of 1,4, (see Methods) for (d) duration, (¢) annual frequency, and (f)
573 intensity of Northeast Pacific MHWs during 2013-2022 for the five climate models simulations.
s74  (g-i) Same as (d-f) but for the ensemble mean of 73,4, (see Methods).
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