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Although sensor technologies have allowed us to outperform the human senses of sight, 
hearing, and touch, the development of artificial noses is significantly behind their 
biological counterparts. This largely stems from the sophistication of natural olfaction, 
which relies on both fluid dynamics within the nasal anatomy and the response patterns 
of hundreds to thousands of unique molecular-scale receptors. We designed a sensing 
approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us 
to extract information from a single sensor (here, the reflectance spectra from a meso-
porous one-dimensional photonic crystal) rather than relying on a large sensor array. By 
accentuating differences in the nonequilibrium mass-transport dynamics of vapors and 
training a machine learning algorithm on the sensor output, we clearly identified polar 
and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, 
and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of 
a number of volatile liquids, including several that had not been used for training the 
model. We further implemented a bioinspired active sniffing approach, in which the 
analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling 
an additional modality of differentiation and reducing the duration of data collection 
and analysis to seconds. Our results outline a strategy to build accurate and rapid 
artificial noses for volatile compounds that can provide useful information such as the 
composition and physical properties of chemicals, and can be applied in a variety of 
fields, including disease diagnosis, hazardous waste management, and healthy building 
monitoring.

sensors | machine learning | artificial noses | photonic crystals

The ability to sense a wide variety of volatile compounds and mixtures is essential to a 
broad range of industries, including agriculture (1); air, water, and food quality monitoring 
(2, 3); healthcare (4, 5); and hazardous material management (6, 7). Recent high-profile 
accidents involving toxic chemicals transport (e.g., hazardous spill in East Palestine, Ohio 
in 2023) motivate the need for increased safety and monitoring measures, in particular 
the development of small and inexpensive sensors that can rapidly and accurately identify 
analyte compositions and determine their physical and chemical properties on site. 
Although portable sensors are employed in practice, they tend to either be accurate for a 
specific subset of analytes (e.g., personal toxic gas safety monitors) or respond nondiscrim-
inately to a range of analytes (e.g., chemiresistive sensors). Most of these are also unable 
to discern complex mixtures of components. This can be done with portable spectrometers; 
however, they have not yet reached the necessary maturity for operation by nonexperts 
due to the complexity of setting the sample-dependent measurement parameters (8).

Given these limitations, dogs are still employed in many practical scenarios such as 
following tracks, detection of bomb threats, and reclamation of contraband, highlighting 
the impressive capabilities of the natural olfactory system. Nature has indeed produced a 
versatile chemical sensor: The human nose can distinguish numerous odors at concentra-
tions as low as 0.2 parts per billion (9). A variety of approaches have thus been proposed 
to create nose-inspired chemical sensors. The earliest designs mimicked biology’s combi-
natorial approach in which odorants bind with differing strengths to more than one of 
the millions of odorant receptors (ORs), leading to odorant-specific patterns of OR excita-
tion that the brain then interprets (10). Artificial implementations of this approach typ-
ically entail sensor arrays in which each sensor produces a distinct output for each odorant 
(11–13), or multivariable sensors (14), where one sensing element produces multiple 
independent outputs in response to each odorant. Each category has its own set of benefits 
and limitations, as depicted in Fig. 1A. Single sensors are the simplest to fabricate and 
relatively cheap, but they are usually unable to accurately discriminate different volatiles 
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due to the limited amount of information obtained from the sen-
sor. The sensor array architecture works well in biology due to the 
molecular size of the receptors and their ability to regenerate, but 
artificial sensors tend to employ a small number of components 
that over time drift at different rates, thus requiring frequent 
sensor-specific recalibrations (15). Some recent approaches inte-
grate molecular sensors directly, taking advantage of their small 
size to produce arrays with a small footprint (16–18), or —at a 
slightly larger length scale— employ arrays of advanced nanofab-
ricated devices (19). In contrast, it is possible to account for and 
therefore reduce the effects of drift in multivariable sensors (20) 
though they can be difficult to fabricate (21). On their own, all 
of these types of sensors struggle to quantitatively characterize 
even simple mixtures of volatiles or require a complex and expen-
sive fabrication procedure (21).

Hitherto, various techniques for unsupervised and supervised 
machine learning (ML) have been successfully applied to identify 
analytes from their intrinsic chemical spectra (e.g., NMR, 
Fourier-transform infrared spectroscopy, ultraviolet–visible spec-
troscopy, and Raman spectroscopy) (22–24).To further boost the 
performance of even simple single sensors, such as those depicted 
in Fig. 1, using ML, it is critical to provide the model with more 
nuanced input data. For example, in the biological olfactory sys-
tem, information is provided to the brain not only from the equi-
librium but also the transient response of the nose, namely, due 
to the unique mass transport dynamics exhibited by different 
odorants (25, 26). As described in Craven et al., mass transport 
of odorants to and within the nose comprises a combination of 
1) intranasal fluid dynamics within nasal cavities, convoluted nasal 
passageways, and a mucus layer, each of which embodies a passive 
transport modality, and 2) external aerodynamics in the form of 
active sniffing. In this spirit, artificial sensors have begun to use 
time-dependent dynamics of vapors interacting with the sensor 
to differentiate volatile compounds, for example, based on their 

rate of condensation or adsorption onto the sensing elements (27, 
28). Porous photonic sensors with colorimetric readout or spectral 
shifts resulting from vapor adsorption can report on the dynamics 
characteristic to specific analytes (29–31). The time-dependent 
odor signatures are a result of the inherent physicochemical prop-
erties of odorants and their interaction with the porous material. 
Thus, by accentuating the differences in those properties, it is 
possible to improve the ability of the sensor to discriminate the 
odorants. In addition to extracting time-dependent signals from 
passive transport processes, mimicking biology’s active control of 
odor transport in the form of sniffing has been used to reduce 
response time by guiding vapors towards the sensor and measuring 
the response to the onset, saturation, and periodic odor exposure 
(32–35). This unlocks the possibility to apply different sniffing 
sequences to actively modulate the dynamics of analyte delivery to 
the sensor, as well as to effectively gate its adsorption and desorp-
tion. Such an approach presents the opportunity to augment the 
discrimination between different odorants, as has recently been 
shown for the TruffleBot e-nose based on metal-oxide-semiconductor 
sensors to distinguish various alcohols (36).

In this work, we demonstrate discrimination of odors, deter-
mination of ratios of binary mixtures, and prediction of physical 
properties of analytes using time-dependent signals from a single 
mesoporous, one-dimensional photonic crystal (PhC) consisting 
of alternating layers of spun-coated silica and titania nanoparticles. 
We implement two different nonequilibrium approaches of ana-
lyte delivery: i) a passive approach, where the system is built to 
accentuate the differences in the mass transport of vapors ema-
nating from a liquid drop in analogy to intranasal fluid causing 
concentration gradients in the nose, and ii) an active approach, 
where, inspired by sniffing, vapors are delivered to the sensor in 
short bursts (Fig. 1B, Step 1). As vapors enter the PhC pores, the 
reflection spectrum progressively redshifts due to an increase in 
effective refractive index of the layers (37–39). Time-dependent 
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Fig. 1. Overview of sensor systems for volatile component detection. (A) Comparison of the typical performance of single sensors, combinatorial arrays, and 
multivariable sensors. (B) Our approach encompasses four steps: (Step 1) introduction of an analyte delivery modality that operates either i) passively or ii) 
actively, (Step 2) use of temporal signal processing, and (Step 3) implementation of machine learning analysis. Combining these three aspects greatly enhances 
the discriminatory power of any sensor system and allows for (Step 4) the differentiation of single component and multicomponent mixtures, and the prediction 
of their physical properties.D
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processing of this signal using Fourier-transform feature (Fig. 1B, 
Step 2) and support vector machines (Fig. 1B, Step 3) allows us 
to successfully classify and quantify the composition of unary and 
binary mixtures with over 88% accuracy and R2 of up to 0.95, 
respectively (Fig. 1B, Step 4).

By using ML, we also show the capability of predicting physical 
properties such as the boiling point, flash point, viscosity, and 
vapor pressure of organic compounds with low error in- and 
out-of-distribution. We demonstrate that modulating vapor injec-
tion in deliberate sniffing patterns accelerates odor detection and 
enables the utilization of desorption dynamics that can further 
improve delineation between similar odors. These capabilities will 
potentially further the detection of volatile compounds in chal-
lenging areas including the identification of unknown hazardous 
waste, contaminated liquids, oil samples, and disease diagnosis 
using a real-time sensor system.

Results

Passive Vapor Delivery. The passive analyte delivery system is 
shown schematically in Fig. 2A and presented in more detail in 
SI Appendix, Fig. S1 and Note S1. It consisted of a glass chamber 
with a blunt-tipped needle attached to its top to deposit the analyte 
liquid. Our optical sensor, here a mesoporous one-dimensional 
PhC (Bragg stack), was attached to the inner surface of the top of 
the chamber. The PhC was prepared by spin-coating 11 alternating 
layers of silica and titania nanoparticles (39). It displays bright 
coloration due to the large refractive index (n) contrast between 
the materials comprising the different layers (silica nanoparticles 
n ~ 1.5 and titania nanoparticles n ~ 1.9, Fig. 2B, see Materials 

and Methods for the PhC fabrication). The gaps between the 
PhC nanoparticles form small pores of ~10 nm, promoting 
condensation of the analyte vapors (40, 41). The thickness of 
the adsorbed layer depends on a variety of factors, notably the 
relationship between the disjoining pressure, which describes the 
attractive forces between the liquid and the surface, and the partial 
pressure of the vapor (42).

Early work in photonic VOC sensing predominantly involved 
static analysis in which the presence of a gas was determined by 
analyzing the reflection spectrum before and after adsorption (i.e., 
snapshots of the spectra). However, differences in reflection spectra 
between different gases after adsorption tend to be too small to 
discern, as their refractive indices differ only slightly (SI Appendix, 
Table S1), and vapor concentrations in the PhC are low. In con-
trast, the dynamics of adsorption can be quite distinct due to 
differences in equilibrium vapor pressure, thus driving capillary 
condensation at different pressures and therefore at different times 
in the diffusion process. We intentionally magnified these differ-
ences by spatially separating the liquid injection site from the PhC, 
thus delaying the time between stabilization of the vapor concen-
tration in the chamber and adsorption reaching steady state, 
defined here as the time beyond which the reflection spectrum of 
the crystal no longer changes appreciably. Schlieren imaging was 
used to observe the vapor transport within the chamber leveraging 
the ability of this technique to detect slight differences in refractive 
index (as shown for pentane in Fig. 2C, red line denotes the cal-
culated diffusion front; details of the imaging and image analysis 
are provided in SI Appendix, Note S1). We found that the vapor 
front transport corresponds to a dominantly diffusion-based trans-
port (SI Appendix, Fig. S2). In each experiment, we dispensed  
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Fig. 2. Sensor design and temporal analysis for volatile liquids with passive analyte delivery. (A) Schematic of the sensor system consisting of a syringe to 
dispense the volatile liquid, a glass chamber, and photonic crystal (PhC); a white light source and spectrophotometer (not depicted) collect the time-dependent 
reflection spectrum from the PhC. Arrows indicate the diffusive-convective vapor transport from the bottom of the chamber to the optical sensor at the top. 
(B) Schematic illustration (B, Top) and scanning electron microscopy (SEM) image (B, Bottom) of a cross-section of the PhC, showing its alternating silica and 
titania layers. Here, the PhC consists of 5.5 bilayers. (C) Schlieren microscopy images show the initial time-resolved vapor transport of pentane (appears as a 
dark area) in the chamber. The red lines indicate the diffusion lengths at 5 and 10 s, corresponding to the vapor front in a diffusion model. (D) River plot of the 
PhC reflectance spectrum recorded over a 10-min experiment with pentane as the volatile liquid. The dotted line superimposed on the river plot illustrates the 
evolution of the redshift over time and was obtained from the feature (Ψ) used to train the ML algorithm.D
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1 mL of the liquid analyte at a constant rate of 6 mL min−1 for 
10 s, ensuring that the liquid formed a thin layer rather than a 
droplet, preventing an evaporation gradient that would result from 
curvature at the liquid–air interface. Liquid dispensed by the 
syringe impinges on the bottom of the chamber where its spread-
ing rate depends on its surface tension and the surface energy of 
the chamber bottom. Following spreading, the liquid partly evap-
orates, resulting in vapor which diffuses and spreads through the 
chamber, gradually infiltrating the PhC, and therefore producing 
a redshift of the reflection spectrum over time as the quantity of 
vapor condensed within the PhC pores continues to increase 
(Fig. 2D).

Temporal Data Analysis. The time-dependent reflection 
spectrum of the PhC was collected over 10 min for each analyte. 
We found that tracking the wavelength corresponding to the 
highest intensity peak, �peak(t ) , provides meaningful differences 
between the compounds. As the peak is rather broad, �peak was 
determined at each time point by applying a discrete Fourier 
Transform (FT) in reciprocal wavelength space to the intensity 
[I(�, t )] and using Ψ(t), defined as the sine of the phase of the 
lowest nonzero frequency component of the FT scaled to the 
wavelength (SI Appendix, Figs. S3 and S4 and Note S2 provide 
the definition of Ψ and additional details of the data processing 
pipeline). Previously a wavelet transform, which transforms 
features localized in both frequency and time, has been used 
to analyze the evolving reflection spectrum from a mesoporous 
silicon PhC in response to imposed temperature changes (36, 43). 
Although the wavelet transform is well-suited to detect changes in 
the spectrum over time, we found the transformed data become 
challenging to interpret when the experimental variance is high, 
e.g., in the case of nonuniformities of a PhC created using standard 
laboratory-scale methods such as spin-coating, where the layer 
thickness can vary across the sensor.

Ψ(t) is plotted as a dashed line in Fig. 2D, and it indeed follows 
the measured �peak(t ) . For analysis of passive sensing, the discrete 
time derivative of Ψ – hereafter, denoted as ΔΨ/Δt – was calcu-
lated to remove information regarding the exact location of the 
initial peak, i.e., �peak(t = 0 s) . It is interesting to note that ΔΨ/

Δt already qualitatively distinguishes polar vs. nonpolar volatiles 
as nonpolar analytes exhibited a smooth peak in ΔΨ/Δt between 
75 to 300 s (the small peak that can be seen occasionally just after 
~10 s is likely an artifact of the analyte injection before 15 s). ΔΨ/
Δt for the polar compounds (with the exception of water) exhib-
ited a sharper peak earlier on, reaching a maximum value between 
30 to 75 s, followed by a second broader maximum (Fig. 3A). We 
attribute the two peaks to the two-step adsorption process for 
polar compounds into the mesoporous PhC, in which their favora-
ble vapor–surface interactions with the hydrophilic surfaces of 
silica and titania of the crystal lead to 1) the formation of a mon-
olayer before 2) condensing into a film, consistent with previous 
findings based on measurements of adsorption isotherms (44–46), 
as well as our own measurements for the nonpolar compounds 
(SI Appendix, Fig. S5 and Note S3). The latter, due to relatively 
weak adsorbent–adsorbate interactions, feature a single-step 
adsorption isotherm shape, likely due to a competition between 
monolayer and multilayer formation or molecular cluster forma-
tion en route to multilayers. Water, in contrast to other polar 
compounds, produced a unique profile consisting of a single peak 
with a left shoulder. There is evidence that water is adsorbed simul-
taneously within titania and silica pores at lower partial pressures 
(below 0.4), as opposed to preferential and gradual adsorption of 
polar hydrocarbons first onto the titania smaller pore walls, with 
subsequent adsorption to both layers at higher pressures (above 
0.7) (38). Note that if the change of reflectance is compared only 
between the initial and final timepoints, as in static analysis, the 
curves are practically indistinguishable (SI Appendix, Note S4), 
and thus would not allow the discrimination between the liquids, 
confirming a significant benefit of using time-resolved analysis for 
vapor sensors.

ML for Classification of Analytes. We trained a Support Vector 
Machine (SVM) for classification and regression tasks using 
the normalized input vectors (ΔΨ/Δt)norm for different vapors. 
An SVM is a ML algorithm that determines a hyperplane 
that maximally separates unique classes, in this case volatile 
compounds. Each of the vectors contains 600 elements (one 
per second in the 10-min interval over which experiments were 
recorded) and was normalized using the L2-norm. The dataset 
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consisted of ten pure volatile organic compounds (VOCs) and 
water: seven nonpolar compounds (linear alkanes from pentane 
to decane and toluene), as well as four polar compounds (water, 
ethanol, acetone, and acetonitrile), ΔΨ/Δt profiles depicted in 
Fig. 3A. We performed a total of 76 experiments with the number 
of experiments per compound varying between 3 and 10 and split 
the dataset into 50 training and 26 testing examples (Materials 
and Methods and SI  Appendix, Table  S2). The SVM correctly 
identified 23 out of 26 test examples (88% prediction accuracy, 
Fig. 3B, see cross-validation analysis in SI Appendix, Fig. S6). The 
model confidently distinguished polar from nonpolar compounds, 
highlighting the observation that the shape of the ΔΨ/Δt depends 
on the physicochemical properties of the compound. As a control 
procedure, when using the same train-test-split approach and 
using only the change in reflectance between the initial point 
and the steady state, we observed that the accuracy dropped by 
more than half (38% prediction accuracy, SI Appendix, Fig. S7), 
reiterating the usefulness of temporal data collection and analysis.

Support Vector Regression (SVR) to Quantify Binary Mixtures. 
To go beyond classification of pure compounds, we tested our 
ability to predict the composition of binary mixtures using the 
passive sensor delivery together with SVM. We chose to focus 
on the alkanes as they readily mix and the behaviors of their 
mixtures depend predominantly on differences in molecular 
lengths. For example, pentane and hexane form nearly ideal 
mixtures, as determined by the nearly linear change in the 
vapor pressure as a function of the mixing ratio (47), whereas 
pentane–octane mixtures deviate more from ideality, and there 
is a significantly higher relative proportion of pentane in the 
vapors of the latter than the former (48).

The training data for the SVR consisted of (ΔΨ/Δt)norm for 
each of the binary mixtures of n-alkanes. (ΔΨ/Δt)norm for the 
pentane-hexane mixtures showed a monotonic decrease in the 
time to reach steady state with increasing pentane concentration 

(Fig. 4A). In contrast, the change in time to steady state for 
pentane–octane mixtures was nonmonotonic (Fig. 4B), likely 
related to the differences in vapor condensation in the pores of 
the photonic crystal. Specifically, published isotherms (40) and 
our measurements (SI Appendix, Fig. S5C) for alkanes indicate 
that heavier compounds condense in the pores of the photonic 
crystal at lower relative pressures than lighter ones, reported for 
octane vs. hexane. We hypothesize that as the heavier alkane, 
octane, condenses at lower relative pressures, it could induce 
faster kinetics of the adsorption-driven spectrum shift than the 
mixture with the lighter alkane, hexane. The presence of octane 
would thus lead to the observed increased diversity of shapes of 
(ΔΨ/Δt)norm, which in turn may contribute to a higher R2 of 
the SVRs: R2 of 0.76 for pentane–hexane (Fig. 4C) vs. 0.95 
(Fig. 4D) for pentane–octane. Overall, we observed a high sen-
sitivity to slight changes in composition of binary mixtures on 
the order of a few parts-per-million (SI Appendix, Fig. S8 and 
Note S5). This sensitivity underlines the richness of information 
that can be obtained from temporal analysis of the porous PhC 
sensor adsorption dynamics.

Prediction of Physical Properties of Volatiles. In addition to 
identifying the composition of binary mixtures, this approach also 
enables the assessment of physicochemical properties of volatiles. 
We demonstrated this by predicting the boiling point, flash point, 
viscosity, and vapor pressure for the pure alkanes tested above 
(SI Appendix, Note S6) through training four instances of SVRs 
(one for each physical property) using a radial basis function kernel 
on the (ΔΨ/Δt)norm of the alkane data (pentane, hexane, heptane, 
octane, nonane, and decane; 38 experiments total). The data 
were labeled with the true value of the relevant physical property 
(SI  Appendix, Table  S3). The training set contained 25 out of 
the 38 measurements with 2 to 6 examples for each alkane. The 
model was then tested on separate experimental measurements 
of the same compounds using a random split. We were able to 
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predict the physical properties of the remaining 13 measurements 
with extremely high accuracy, yielding R2 values of 0.94, 0.94, 
0.81, and 0.92, for boiling point, flash point, viscosity, and vapor 
pressure, respectively (Fig. 5A). The four physical properties were 
chosen due to their relationship to the vapor dynamics, which 
are essentially encoded in (ΔΨ/Δt)norm. The ability of the SVR to 
reliably predict flash point is consistent with Vidal et al in which 
it was shown that for pure liquids, the prediction of flash point 
can be related to the vapor–liquid equilibrium and mass transfer 
in the apparatus (49).

We further explored the possibility to characterize volatiles 
‘unknown’ to the SVR, i.e., they were not part of the training set 
(Fig. 5B). Specifically, we predicted the physical properties of tol-
uene, cyclohexane, dichloromethane, and the polar compounds 
based on training on the alkane feature vectors only. Toluene and 
cyclohexane were of particular interest as they have molecular 
weights (MWs) in the range of the alkanes used for training and 
all of their physical properties are contained within the range of 
values seen by the ML model in training. Their molecular structure 
is, however, sufficiently different from the linear alkanes, causing 
the intermolecular forces (IMFs), and therefore the vapor dynam-
ics, to be different. For example, as a cyclic aromatic hydrocarbon, 
toluene’s IMFs are strengthened by π-π interactions, resulting in 
slower evaporation and prolonged condensation in the PhC. 
Toluene is thus an excellent test candidate, being dissimilar enough 
from the alkanes to demonstrate that the prediction is not a simple 
interpolation from the training data. Meanwhile, the cyclic alkane, 

cyclohexane, experiences the same types of IMFs as the linear 
alkanes (London dispersion forces), yet is slightly less volatile than 
its linear counterpart, hexane, due to the differences in the geom-
etries of the two molecules and therefore the strength of the IMFs. 
Using the trained SVR from Fig. 5A, we predicted the physical 
properties of toluene: boiling point to be 118.3 ± 8.1 °C (vs. 
published value of 110.6 °C); flash point to be 7.1 ± 5.3 °C (vs. 
4.4 °C); viscosity to be 0.47 ± 0.02 mPa·s (vs. 0.56 mPa·s); and 
vapor pressure to be 11.2 ± 3.5 kPa (vs. 3.4 kPa). For cyclohexane 
we predicted: boiling point to be 80.8 ± 6.7 °C (vs. published 
value of 81.0 °C); flash point to be −17.0 ± 4.7 °C (vs. −20.0 °C); 
viscosity to be 0.38 ± 0.01 mPa·s (vs. 0.89 mPa·s); and vapor 
pressure to be 16.6 ± 1.7 kPa (vs.11.9 kPa).

The accuracy of the toluene and cyclohexane predictions is 
encouraging given that the SVR has only been trained on alkane 
data. In fact, the root-mean-squared errors for toluene and cyclohex-
ane predictions were almost identical to those for n-alkanes, with 
the exception of vapor pressure for toluene and viscosity for cyclohex-
ane. It is worth mentioning that since the IMFs —and therefore the 
vapor dynamics— of linear alkanes correlate with their MW 
(SI Appendix, Table S3), one could surmise that the prediction accu-
racies for cyclohexane and toluene would be expected since their 
MWs are between those of pentane and hexane, or those of hexane 
and heptane, respectively. However, our ML model was trained on 
the vapor dynamics and not on the the MW, chemical structure, or 
chemical formula. The discrepancy in predictions vs. true values for 
toluene’s vapor pressure and cyclohexane’s viscosity likely stem from 

known
Alkane

test

Alkane 
training

unknown

A
i - Boiling Point ii - Flash Point iii - Viscosity iv - Vapor Pressure

B

Alkane 
training

R2 = 0.94 R2 = 0.94 R2 = 0.81 R2 = 0.92
RMSE = 11.9 RMSE = 8.2

60

RMSE = 0.11 RMSE = 6.2

RMSEtoluene = 11.2
RMSEcyclohexane= 6.7

RMSEtoluene = 5.4
RMSEcyclohexane= 5.5

RMSEtoluene = 0.09
RMSEcyclohexane= 0.52

RMSEtoluene = 8.5
RMSEcyclohexane= 5.0

Toluene &
cyclohexane 

test True boiling point (˚C) True flash point (˚C) True viscosity (mPa·s) True vapor pressure (kPa)

True boiling point (˚C) True flash point (˚C) True viscosity (mPa·s) True vapor pressure (kPa)

Pr
ed

ic
te

d 
bo

ilin
g 

po
in

t (
˚C

)
Pr

ed
ic

te
d 

bo
ilin

g 
po

in
t (

˚C
)

Pr
ed

ic
te

d 
fla

sh
 p

oi
nt

 (˚
C

)
Pr

ed
ic

te
d 

fla
sh

 p
oi

nt
 (˚

C
)

Pr
ed

ic
te

d 
vi

sc
os

ity
 (m

Pa
·s

)
Pr

ed
ic

te
d 

vi
sc

os
ity

 (m
Pa

·s
)

Pr
ed

ic
te

d 
va

po
r p

re
ss

ur
e 

(k
Pa

)
Pr

ed
ic

te
d 

va
po

r p
re

ss
ur

e 
(k

Pa
)

Fig. 5. Prediction of physical properties from temporal reflectance data. (A, B) Regression plots showing results of SVR training on n-alkanes to predict the 
properties of (A) a test set of alkanes (● pentane, ■ hexane, ♦ heptane, ▲ octane, ► nonane, and ▼ decane) and (B) volatiles 'unknown' to the SVR such as 
toluene (red stars) and cyclohexane (red hexagons), where empty symbols signify alkane training data.D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.o

rg
 b

y 
H

A
R

V
A

R
D

 U
N

IV
ER

SI
TY

 C
A

B
O

T 
SC

IE
N

C
E 

LI
B

R
A

R
Y

 o
n 

Ja
nu

ar
y 

10
, 2

02
4 

fr
om

 IP
 a

dd
re

ss
 1

28
.1

03
.1

47
.1

49
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2303928120#supplementary-materials


PNAS  2023  Vol. 120  No. 31  e2303928120� https://doi.org/10.1073/pnas.2303928120   7 of 10

the natural limitation of the ML model trained only on the alkane 
dataset. We hypothesized that the trained SVR utilized the temporal 
information from the strongest shift between 50 and 250 s 
(SI Appendix, Fig. S9). In toluene’s case, the broad range of vapor 
pressure in the training data (spanning two orders of magnitude) 
and the comparatively low vapor pressure of toluene make the real 
value difficult to predict. The consistently higher predicted vapor 
pressure for toluene may be due to the elongated shape of its (ΔΨ/
Δt)norm relative to those of the alkanes (Fig. 3 and SI Appendix, 
Fig. S10). For cyclohexane, the problem stems from high similarity 
of its (ΔΨ/Δt)norm to the ones of hexane and heptane, especially in 
the region of highest feature weights of the SVR’s kernel (SI Appendix, 
Fig. S11). Given the limited training, the ML was unable to predict 
cyclohexane’s relatively high viscosity (0.89 mPa·s) that is much closer 
to decane’s viscosity (0.92 mPa·s) than to that of its closest structural 
analog, hexane (0.30 mPa·s). Last, we also evaluated the ability of 
the SVR only trained with n-alkanes to predict the properties of 
polar compounds, and found that the out-of-distribution accuracy 
was —unsurprisingly— further reduced, due to the highly dissimilar, 
typically dual-modality, shape of (ΔΨ/Δt)norm for the polar analytes 
(SI Appendix, Fig. S12). The model’s sensitivity to the unique shapes 
of (ΔΨ/Δt)norm (capturing information about the vapor dynamics) 
suggests that the SVRs identify correlations between the measured 
signal and the underlying molecular properties of the analyte, a com-
bination of its size, geometry, polarity, and other aspects.

Active Control of the Vapor Dynamics for Faster Sensing 
Using Sniffing. The experiments described thus far had not 
incorporated sniffing behaviors used by animals to accelerate the 
delivery of vapors to the sensory receptors (50), which reputedly 
provides additional information to aid odor discrimination (51). 
We assembled a separate system to demonstrate artificial sniffing 
(SI Appendix, Fig. S13 and Note S7). The PhC was attached to 
the top of a chamber, and vapor was delivered via pressurized 
nitrogen carrier gas injection whose flow was controlled 
by solenoid valves, with the opening and closing of valves 
mimicking different sniffing patterns composed of inhalation 
of duration tin (dry nitrogen was passed through a vial containing 
the analyte), short waiting periods for time tw (inlet flow was 
stopped), and exhalation over time tex (dry nitrogen without 
analyte was passed continuously through the chamber containing 
the sensor, promoting analyte desorption). The schematic above 
the plot in Fig. 6A shows an example sniffing sequence consisting 
of five repetitions of “short sniffs” (tin = 1 s, tw = 0.5 s) followed 
by an exhale (tex = 5 s). We compared the results of this sniffing 
sequence for the different alkanes, from pentane to decane, as 
a proof of concept (Fig.  6A, plot). Because the outlet of the 
chamber was open over the duration of the experiment, the 
concentration of the vapor in the chamber slightly decreased 
during the waiting steps and never fully equilibrated, reminiscent 
of the phenomenon of “breath stacking” observed in the sniffing 
of dogs, in which they take in more air than they expel during 
each sniff (26). We also separately validated the ability of 
the PhC sensor to respond with a time scale of less than one 
second (SI Appendix, Fig. S14) to ensure that we can capture all 
significant spectral changes within the acquisition time.

In this active delivery approach, we chose to train the SVM 
using Ψnorm rather than (ΔΨ/Δt)norm that had been used in the 
passive delivery scenario. Our motivation stems from the differ-
ences in the vapor dynamics, described in detail in SI Appendix, 
Fig. S15 and Note S8. Here, the vapor fills the chamber and begins 
adsorption within the PhC during inhales which decreases and 
ultimately transitions to desorption during wait steps and exhales, 
the signatures of which are imposed on the shape of Ψnorm 

(Fig. 6A). Alkanes saturated the PhC in order of their chain length, 
with the shortest, most volatile alkanes saturating the PhC most 
quickly. Following saturation, Ψnorm oscillated near its maximum 
value due to the slight loss of air from the chamber during the 
wait periods. The heavier alkanes also took significantly longer to 
desorb, as observed by their slower decay of Ψ during the exhale 
period (8 to 12 s) than for the shorter alkanes. In contrast to the 
case of passive experiments, which were conducted over 10 min, 
the alkanes were distinguishable with high confidence, with the 
exception of hexane, within the short experiment time of only 
12.5 s (95% accuracy, Fig. 6B). Based on prior findings of Spencer 
et al regarding the effect of air flow on the sensitivity of chemical 
detection, we hypothesize that future experiments with higher 
frequency sniffing patterns (shorter sniffs, i.e. shorter tin and tw) 
could further improve differentiation between the more volatile 
VOCs (e.g., here: pentane, hexane, heptane) and their mixtures 
by spreading out the total change in Ψnorm over smaller increments 
and prolonging the time to saturation (35). Less volatile com-
pounds would be better detected when deeper sniffs (i.e., longer 
tin) are implemented, in order to accumulate those compounds at 
the sensor to an appreciable concentration.

Thus, by adjusting the sniffing pattern, it is possible to tweak 
the protocol for the specific task, and potentially could be applied 
to sequentially pick out different components of a mixture. As a 
demonstration of this approach, we showed the unique sensor 
response to pentane and ethanol via different sniffing sequences 
(Fig. 6 C and D, respectively). For pentane, we saw a pronounced 
difference when switching between short and deep sniffing 
sequences (Fig. 6C). However, for ethanol, the same change in 
sniffing sequence did not alter the sensor response. By screening 
through a repertoire of possible sensing protocols (e.g., changing 
times of each step, whether the system is open or closed, the total 
duration of the measurement, etc.), we found that performing a 
single short sniff followed by a longer exhale (tex= 10 s) led to a 
clearly different signal (Fig. 6D). Last, utilizing five repetitions of 
short sniffs (tin = 1 s, tw = 0.5 s) followed by an exhale (tex = 5 s), 
we demonstrated the ability to determine the mixing ratio of 
pentane-octane mixtures with R2 of 0.88; an exceptional regression 
given only a ~12 s detection period (SI Appendix, Fig. S16 and 
Note S9). Together, these results suggest a generalized approach 
that increases the differences in response between analytes as elab-
orated in the discussion.

Discussion

This work takes steps toward addressing a challenge in the design 
of artificial noses: obtaining feature-rich and interpretable infor-
mation from the vapor of an analyte using only one sensing device. 
By recording the time-dependent response of a porous photonic 
sensor to the passive transport of vapors or their actively controlled 
delivery, we determined that the time-resolved feature Ψ, or its 
derivative ΔΨ/Δt, is sufficient to classify and make deterministic 
predictions of the components and properties of vapors. Using 
support vector machines, we were able to classify 10 volatile liquids 
and water with 88% accuracy and predict the mixing ratios of 
binary mixtures of pentane–hexane and pentane–octane (R2 of 
0.76 and 0.95, respectively), and even achieve parts-per-million 
resolution in binary mixtures of ethanol-water.

Although sensor arrays have been demonstrated with accuracies 
greater than 95% (52), it is important to highlight that our results 
are all obtained from a single sensor. In addition, although our 
classifier is currently limited to the detection of reference analytes 
previously seen by the SVM, the regression models allow predict-
ing the boiling point, flash point, viscosity, and vapor pressure of D
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some “unknown” compounds, e.g., toluene and cyclohexane, that 
the model trained on alkanes had not seen before. This indicates 
learning of the volatiles’ physicochemical nature rather than the 
model simply understanding a nonphysical feature description. 
This enables adapting the approach to applications where a full 
dataset of possible compounds cannot be cataloged, such as in 
hazardous waste management. As shown by the limitations of the 
approach to accurately predict the physical properties only of rel-
atively similar compounds to those used in training, it will be 
important to include a sufficiently broad —but not necessarily 
exhaustive— set of compounds in the training set to cover a wide 
enough range of features for the target application. A potential 
example of practicality of our approach would be to test the impor-
tant properties for safe handling of crude oil. Blended from dif-
ferent source wells before it is shipped, crude oil represents a 
highly variable mixture with respect to physical properties and 
hence the packing group (SI Appendix, Note S10) and relevant 
safety precautions (53). Quantification of the relationship between 
the evaporation of highly volatile pentane-hexane and less volatile 
pentane–octane liquid mixtures, as presented here using the tem-
poral signal from a mesoporous PhC, represents a proxy scenario 
for a potential time-resolved sensor to categorize hazardous 

flammable liquids by their relevant properties (e.g., vapor pressure, 
boiling point, flash point) in a realistic environment.

There are many avenues for further improving the odor dis-
crimination power of our sensor for various applications. 
Continuing in the spirit of this work, a particularly fruitful route 
is to consider even more details of the natural olfactory system. 
Biological olfaction employs numerous design features to promote 
odor discrimination. The orientation of nostrils, as well as nasal 
size and geometry, vary across animals and likely depend on how 
critical this sensory modality is to the organism’s survival, as well 
as on the environment to which it is exposed (e.g., marine, under-
ground, surface, and in-flight). The epithelium and mucus layers, 
which cover the nasal passageways, warm and humidify the incom-
ing air (54, 55) and it is widely believed, based on the sorption 
hypothesis, that these layers produce a chromatographic effect 
such that the adsorption of different odorants varies within the 
nasal passageway (51).

Like in the biological nose, multiple mass transport processes 
are involved in the presented artificial sensor —here, spreading, 
evaporation, convection, diffusion, and adsorption— each of 
which can be modulated. We explored several parameters of our 
sensor architecture. By changing the nanoparticle size in each 
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layer, and thereby changing the overall PhC porosity, the 
adsorption of vapors is affected, leading to a change in the 
evolution of Ψ and the signal strength over time (SI Appendix, 
Fig. S17 and Note S11) (41, 56). Both a higher sensitivity and 
resolution can be achieved by varying the number of layers in 
the PhC or their refractive index, as this would change the width 
and intensity of the main reflectance peak (44). Altering the 
interaction of the surface of the chamber bottom via either 
chemical or physical modifications will affect spreading of the 
liquid on the sensor bottom (SI Appendix, Fig. S18), which in 
turn will affect evaporation due to its dependence on the cur-
vature of the dispensed drop and area over which the evapora-
tion occurs. Furthermore, variation of the porosity, surface 
functionalization, material composition, or a combination of 
those across one or multiple PhC sensors may further enhance 
the chromatographic effect, i.e., the differences in rates of con-
densation of different vapors within the PhC’s porous layers. 
The temporal sensor itself could also actively modulate the sig-
nal: for example, a PhC made from responsive materials would 
exhibit changes in the pore sizes and layer spacing upon imposed 
changes in humidity or temperature (57), resulting in dynamic 
changes in absorption; this is similar to the swelling of the 
epithelial lining of the nose, which is known to increase the 
flow resistance in one nostril compared to another and may be 
used to provide additional information to the brain (58). 
Another aspect that can be changed is the geometry of the 
chamber, similar to the role the size of nasal passageways and 
cavities in nature play in odor discrimination. For example, by 
increasing the chamber height, we provide a longer path length 
for mass transport of the vapors, which, in turn, affects the 
time-evolution of the reflection spectrum (SI Appendix, 
Fig. S19). As indicated in the results section, cosolvents can also 
be added to increase the sensitivity to compounds contained in 
mixtures; when water is used, this is akin to humidifying the 
air as it passes through the nose of an organism. Likewise, for 
alkanes, we observed that a small amount of octane could 
increase the sensitivity of the sensor to pentane. Each of these 
changes would be relevant to both the passive and active analyte 
delivery modalities.

In addition to modifying the sensor design, emphasis should 
also be put on ML and signal processing. While we did limit our 
discussion to SVMs due to the scope of the available training data, 
different architectures for neural networks and deep learning can 
be optimized for feature recognition and physical processes (59). 
Using a larger training dataset, neural networks and automatic 
feature extraction could prove superior (60). For example, one 
approach may include artificial noses that implement biologically 
inspired sniffing sequences and incorporate artificial intelligence 
to analyze sensing results and optimize sniffing sequences in 
real-time based on continuous feedback algorithms. This is similar 
to the way dogs modify their sniffing frequency based on the types 
of analytes they smell and the bits of information they piece 
together in sequential breaths (61).

Many industries that require a simple, portable, low-cost sensor 
could benefit from our approaches. Example applications include 
identifying hazards on site, monitoring air quality, ensuring 
healthy building spaces (62), and point-of-care breath analyzers 
for rapid diagnosis of diseases for which characteristic volatiles 
have been identified (63, 64). In fact, the need to acquire real-time 
information about the air we breathe, both indoors and outdoors, 
has been brought into the spotlight by recent events such as wild-
fires, the SARS-CoV-2 pandemic, large spills, and growing con-
cerns as well as regulations regarding air pollution (65). It has thus 
become abundantly clear that sensing-based ventilation and 

cleaning will be the future to ensure healthier building spaces (62), 
targeting both acute events as well as persistent issues such as 
presence of mold and other pollutants. Using sniffing for sensing 
is an exciting direction, opening doors to employing sniffing-related 
behaviors seen in nature, such as adapting sniffing frequencies to 
detect specific odorant types, for sensing capabilities and 
applications.

Materials and Methods

The main aspects of each procedure are described in this section. Additional 
details are provided in SI Appendix, Note S12.

Liquid Analyte Delivery (Passive approach). The unary compounds or binary 
mixtures consisted of pentane, anhydrous, ≥99%; hexane, anhydrous, 95%; hep-
tane anhydrous, ≥99%; octane, reagent grade, 98%; nonane, anhydrous, ≥99%; 
decane, ≥95%; toluene, anhydrous, 99.8%; acetone, ≥99.5%; acetonitrile, anhy-
drous, 99.8% (Millipore Sigma, used without modification). Aliquots of 1.3 mL 
of the analyte solvent were injected using a syringe pump (Harvard Apparatus, 
Holliston, MA) and a 5-mL plastic syringe (Avantor, VWR Incorporation, Randor, PA) 
at 6 mL min−1 into a precleaned Hellma® glass chamber containing a Bragg stack.

Gas Analyte Delivery (Active Sniffing Approach). We constructed a custom 
chamber (72.6 mm × 25.4 mm × 19.1 mm) consisting of an aluminum case 
with glass plates at the top and bottom. On each side of the chamber, an inlet 
and outlet were connected to a set of four 15-mL Falcon tubes and a fume hood, 
respectively. Each Falcon tube was connected to a solenoid valve (Clippard, 
Cincinnati, OH) attached to a pressurized nitrogen cylinder at 5 psi. The solenoid 
valves were controlled via an Arduino board (Teensy 3.2 board with IDE 2.0.2, 
New York, NY). Three of the four Falcon tubes were filled to the 12-mL mark and 
one Falcon tube left empty to flow nitrogen. Before each experiment, the sensor 
chamber was purged by dry nitrogen for 300 s.

Time-Dependent Reflectance Measurements. Reflectance measurements  
between 400 and 800 nm were obtained with a USB2000+ Fiber Optic 
Spectrometer (Ocean Optics, Dunedin, FL) and LS-1-CAL tungsten-halogen light 
source (Ocean Optics) connected via a reflection probe, model R200-7-SR (Ocean 
Optics), at normal incidence. Measurements were acquired at 1 Hz beginning 
15 s before the chemical was injected and for a total of 10 min for the passive 
delivery case, and at 20 Hz for a total of 12.5 s for the active delivery. Wavelengths 
between 400 and 800 nm were used for analysis.

Fabrication of Photonic Crystals. The fabrication of the silica and titania Bragg 
stack was previously described (39). All starting compounds were obtained from 
Millipore Sigma. Titania nanoparticles were prepared through sol-gel hydrolysis by 
slowly adding Titanium (IV) ethoxide to 0.1 N HNO3 and stirring at 80 °C for 8 h. 
After sonication (Branson Ultrasonics, St. Louis, MI), the particles were filtered and 
diluted with deionized water. Poly(ethylene oxide) (PEG 8,000-10,000) was added to 
aid the spin-coating process. SiO2 colloids (LUDOX SM30, 30 wt.% aq.) were diluted 
with distilled water to a ratio of 2:5 using hydrophilic syringe filters (SPARTAN 13, 
0.2 μm). Bragg stacks were assembled on microscopy slides (VWR Inc.) treated with 
oxygen plasma (Diener Femto PCCE, Ebhausen, Germany) prior to assembly. The 
slides were covered with 200 to 250 µL of the silica suspension and spun-coated for 
60 s at 2,500 to 5,500 rpm with an acceleration of 1,500 rpm s−1 using spin coater 
(WS-650-23, Laurell, North Wales, PA). Samples were then calcined for 30 min at 350 
°C (Lindberg/Blue M BF51866A-1; Thermo Fisher Scientific, Waltham, MA). The proce-
dure was repeated for alternating layers of titania and silica for a total of 5.5 bilayers.

Data Processing. To calculate the feature Ψ(t) for each spectrum, the following 
steps were performed: a discrete FT was applied to the spectrum, extracting the real 
and imaginary components of the first nonzero component to calculate the sine of 
the temporal phase. To reduce noise, a Savitzky–Golay filter with a window size of 
31 and polynomial order of three was applied. In the case of passive vapor delivery, 
the discrete time derivative of Ψ(t), (ΔΨ/Δt), was calculated and then filtered using 
a Savitzky–Golay filter with a window size of 31 and polynomial order of two. For 
training ML models, Ψ was normalized using z-score normalization, and ΔΨ/Δt 
was normalized using the L2-norm. For more details of the data preprocessing and 
ML hyperparameters refer to SI Appendix, Notes S2 and S12, respectively.D
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Algorithms and Computer Codes. The source code and implementation 
details of temporal analysis and SVMs are available on GitHub https://github.
com/soerenbrandt/sniffing-sensor.

Statistical Analysis. Errors in prediction are reported as SD, and all data are 
represented as mean ± SD, unless otherwise stated.

Data, Materials, and Software Availability. The data is available at  (66) and 
the software is available at https://github.com/soerenbrandt/sniffing-sensor.
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