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Although sensor technologies have allowed us to outperform the human senses of sight,
hearing, and touch, the development of artificial noses is significantly behind their
biological counterparts. This largely stems from the sophistication of natural olfaction,
which relies on both fluid dynamics within the nasal anatomy and the response patterns
of hundreds to thousands of unique molecular-scale receptors. We designed a sensing
approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us
to extract information from a single sensor (here, the reflectance spectra from a meso-
porous one-dimensional photonic crystal) rather than relying on a large sensor array. By
accentuating differences in the nonequilibrium mass-transport dynamics of vapors and
training a machine learning algorithm on the sensor output, we clearly identified polar
and nonpolar volatile compounds, determined the mixing ratios of binary mixtures,
and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of
a number of volatile liquids, including several that had not been used for training the
model. We further implemented a bioinspired active sniffing approach, in which the
analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling
an additional modality of differentiation and reducing the duration of data collection
and analysis to seconds. Our results outline a strategy to build accurate and rapid
artificial noses for volatile compounds that can provide useful information such as the
composition and physical properties of chemicals, and can be applied in a variety of
fields, including disease diagnosis, hazardous waste management, and healthy building
monitoring,

sensors | machine learning | artificial noses | photonic crystals

The ability to sense a wide variety of volatile compounds and mixtures is essential to a
broad range of industries, including agriculture (1); air, water, and food quality monitoring
(2, 3); healthcare (4, 5); and hazardous material management (6, 7). Recent high-profile
accidents involving toxic chemicals transport (e.g., hazardous spill in East Palestine, Ohio
in 2023) motivate the need for increased safety and monitoring measures, in particular
the development of small and inexpensive sensors that can rapidly and accurately identify
analyte compositions and determine their physical and chemical properties on site.
Although portable sensors are employed in practice, they tend to either be accurate for a
specific subset of analytes (e.g., personal toxic gas safety monitors) or respond nondiscrim-
inately to a range of analytes (e.g., chemiresistive sensors). Most of these are also unable
to discern complex mixtures of components. This can be done with portable spectrometers;
however, they have not yet reached the necessary maturity for operation by nonexperts
due to the complexity of setting the sample-dependent measurement parameters (8).
Given these limitations, dogs are still employed in many practical scenarios such as
following tracks, detection of bomb threats, and reclamation of contraband, highlighting
the impressive capabilities of the natural olfactory system. Nature has indeed produced a
versatile chemical sensor: The human nose can distinguish numerous odors at concentra-
tions as low as 0.2 parts per billion (9). A variety of approaches have thus been proposed
to create nose-inspired chemical sensors. The earliest designs mimicked biology’s combi-
natorial approach in which odorants bind with differing strengths to more than one of
the millions of odorant receptors (ORs), leading to odorant-specific patterns of OR excita-
tion that the brain then interprets (10). Artificial implementations of this approach typ-
ically entail sensor arrays in which each sensor produces a distinct output for each odorant
(11-13), or multivariable sensors (14), where one sensing element produces multiple
independent outputs in response to each odorant. Each category has its own set of benefits
and limitations, as depicted in Fig. 14. Single sensors are the simplest to fabricate and
relatively cheap, but they are usually unable to accurately discriminate different volatiles
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Volatile compounds are used as
markers of disease and food
spoilage, indicators of the quality of
indoor and outdoor air, and
beacons for hazardous waste
management. However, standard
methods to determine and quantify
the composition of gaseous
samples rely on bulky and
expensive equipment, while
state-of-the-art portable sensors
are still unable to accurately
analyze a diversity of analytes and
their mixtures. Here, we accentuate
the differences between vapors by
passively or actively controlling
their delivery to a single
mesoporous photonic sensor. The
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temporal signal collection, and
machine learning allows us to
classify volatile compounds,
determine the composition of
mixtures, and predict the
properties of unknown volatiles.
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due to the limited amount of information obtained from the sen-
sor. The sensor array architecture works well in biology due to the
molecular size of the receptors and their ability to regenerate, but
artificial sensors tend to employ a small number of components
that over time drift at different rates, thus requiring frequent
sensor-specific recalibrations (15). Some recent approaches inte-
grate molecular sensors directly, taking advantage of their small
size to produce arrays with a small footprint (16-18), or —at a
slightly larger length scale— employ arrays of advanced nanofab-
ricated devices (19). In contrast, it is possible to account for and
therefore reduce the effects of drift in multivariable sensors (20)
though they can be difficult to fabricate (21). On their own, all
of these types of sensors struggle to quantitatively characterize
even simple mixtures of volatiles or require a complex and expen-
sive fabrication procedure (21).

Hitherto, various techniques for unsupervised and supervised
machine learning (ML) have been successfully applied to identify
analytes from their intrinsic chemical spectra (e.g., NMR,
Fourier-transform infrared spectroscopy, ultraviolet—visible spec-
troscopy, and Raman spectroscopy) (22-24).To further boost the
performance of even simple single sensors, such as those depicted
in Fig. 1, using ML, it is critical to provide the model with more
nuanced input data. For example, in the biological olfactory sys-
tem, information is provided to the brain not only from the equi-
librium but also the transient response of the nose, namely, due
to the unique mass transport dynamics exhibited by different
odorants (25, 26). As described in Craven ez al., mass transport
of odorants to and within the nose comprises a combination of
1) intranasal fluid dynamics within nasal cavities, convoluted nasal
passageways, and a mucus layer, each of which embodies a passive
transport modality, and 2) external acrodynamics in the form of
active sniffing. In this spirit, artificial sensors have begun to use
time-dependent dynamics of vapors interacting with the sensor
to differentiate volatile compounds, for example, based on their

rate of condensation or adsorption onto the sensing elements (27,
28). Porous photonic sensors with colorimetric readout or spectral
shifts resulting from vapor adsorption can report on the dynamics
characteristic to specific analytes (29-31). The time-dependent
odor signatures are a result of the inherent physicochemical prop-
erties of odorants and their interaction with the porous material.
Thus, by accentuating the differences in those properties, it is
possible to improve the ability of the sensor to discriminate the
odorants. In addition to extracting time-dependent signals from
passive transport processes, mimicking biology’s active control of
odor transport in the form of sniffing has been used to reduce
response time by guiding vapors towards the sensor and measuring
the response to the onset, saturation, and periodic odor exposure
(32-35). This unlocks the possibility to apply different sniffing
sequences to actively modulate the dynamics of analyte delivery to
the sensor, as well as to effectively gate its adsorption and desorp-
tion. Such an approach presents the opportunity to augment the
discrimination between different odorants, as has recently been
shown for the TruffleBot e-nose based on metal-oxide-semiconductor
sensors to distinguish various alcohols (36).

In this work, we demonstrate discrimination of odors, deter-
mination of ratios of binary mixtures, and prediction of physical
properties of analytes using time-dependent signals from a single
mesoporous, one-dimensional photonic crystal (PhC) consisting
of alternating layers of spun-coated silica and titania nanoparticles.
We implement two different nonequilibrium approaches of ana-
lyte delivery: i) a passive approach, where the system is built to
accentuate the differences in the mass transport of vapors ema-
nating from a liquid drop in analogy to intranasal fluid causing
concentration gradients in the nose, and ii) an active approach,
where, inspired by sniffing, vapors are delivered to the sensor in
short bursts (Fig. 1B, Step 1). As vapors enter the PhC pores, the
reflection spectrum progressively redshifts due to an increase in
effective refractive index of the layers (37-39). Time-dependent

B Step 1 * Non-equilibrium analyte delivery
A Multi- i. Passive ii. Active
Single Arra i
J Y variable Augment . _ Sensor
{ BN .
® differences % |
44 in analytes o
Drift LOW HIGH LOW Liquid A =
Step 2 l * Temporal % S
Noise LOW HIGH LOW Process data . Signal 3
\/ analysis % ,,gmm
T Wavelength
Fabrication EASY HARD HARD Step 3 l - Machine
Analyze data ! l€arning
Accuracy LOW MEDIUM HIGH \/ framework
Cost LOW MEDIUM MEDIUM Step 4 * Analyte distinction HIGH

Fig. 1.

Perform tasks

* Prediction of properties HIGH

Overview of sensor systems for volatile component detection. (A) Comparison of the typical performance of single sensors, combinatorial arrays, and

multivariable sensors. (B) Our approach encompasses four steps: (Step 1) introduction of an analyte delivery modality that operates either i) passively or ii)
actively, (Step 2) use of temporal signal processing, and (Step 3) implementation of machine learning analysis. Combining these three aspects greatly enhances
the discriminatory power of any sensor system and allows for (Step 4) the differentiation of single component and multicomponent mixtures, and the prediction

of their physical properties.
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processing of this signal using Fourier-transform feature (Fig. 1B,
Step 2) and support vector machines (Fig. 15, Step 3) allows us
to successfully classify and quantify the composition of unary and
binary mixtures with over 88% accuracy and R of up to 0.95,
respectively (Fig. 1B, Step 4).

By using ML, we also show the capability of predicting physical
properties such as the boiling point, flash point, viscosity, and
vapor pressure of organic compounds with low error in- and
out-of-distribution. We demonstrate that modulating vapor injec-
tion in deliberate sniffing patterns accelerates odor detection and
enables the utilization of desorption dynamics that can further
improve delineation between similar odors. These capabilities will
potentially further the detection of volatile compounds in chal-
lenging areas including the identification of unknown hazardous
waste, contaminated liquids, oil samples, and disease diagnosis
using a real-time sensor system.

Results

Passive Vapor Delivery. The passive analyte delivery system is
shown schematically in Fig. 24 and presented in more detail in
SI Appendix, Fig. S1 and Note S1. It consisted of a glass chamber
with a blunt-tipped needle attached to its top to deposit the analyte
liquid. Our optical sensor, here a mesoporous one-dimensional
PhC (Bragg stack), was attached to the inner surface of the top of
the chamber. The PhC was prepared by spin-coating 11 alternating
layers of silica and titania nanoparticles (39). It displays bright
coloration due to the large refractive index (7) contrast between
the materials comprising the different layers (silica nanoparticles
n ~ 1.5 and titania nanoparticles » ~ 1.9, Fig. 2B, sece Materials
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and Methods for the PhC fabrication). The gaps between the
PhC nanoparticles form small pores of ~10 nm, promoting
condensation of the analyte vapors (40, 41). The thickness of
the adsorbed layer depends on a variety of factors, notably the
relationship between the disjoining pressure, which describes the
attractive forces between the liquid and the surface, and the partial
pressure of the vapor (42).

Early work in photonic VOC sensing predominantly involved
static analysis in which the presence of a gas was determined by
analyzing the reflection spectrum before and after adsorption (i.e.,
snapshots of the spectra). However, differences in reflection spectra
between different gases after adsorption tend to be too small to
discern, as their refractive indices differ only slightly (S/ Appendix,
Table S1), and vapor concentrations in the PhC are low. In con-
trast, the dynamics of adsorption can be quite distinct due to
differences in equilibrium vapor pressure, thus driving capillary
condensation at different pressures and therefore at different times
in the diffusion process. We intentionally magnified these differ-
ences by spatially separating the liquid injection site from the PhC,
thus delaying the time between stabilization of the vapor concen-
tration in the chamber and adsorption reaching steady state,
defined here as the time beyond which the reflection spectrum of
the crystal no longer changes appreciably. Schlieren imaging was
used to observe the vapor transport within the chamber leveraging
the ability of this technique to detect slight differences in refractive
index (as shown for pentane in Fig. 2C, red line denotes the cal-
culated diffusion front; details of the imaging and image analysis
are provided in S7 Appendix, Note S1). We found that the vapor
front transport corresponds to a dominantly diffusion-based trans-
port (8] Appendix, Fig. S2). In each experiment, we dispensed
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Fig. 2. Sensor design and temporal analysis for volatile liquids with passive analyte delivery. (A) Schematic of the sensor system consisting of a syringe to
dispense the volatile liquid, a glass chamber, and photonic crystal (PhC); a white light source and spectrophotometer (not depicted) collect the time-dependent
reflection spectrum from the PhC. Arrows indicate the diffusive-convective vapor transport from the bottom of the chamber to the optical sensor at the top.
(B) Schematic illustration (B, Top) and scanning electron microscopy (SEM) image (B, Bottom) of a cross-section of the PhC, showing its alternating silica and
titania layers. Here, the PhC consists of 5.5 bilayers. (C) Schlieren microscopy images show the initial time-resolved vapor transport of pentane (appears as a
dark area) in the chamber. The red lines indicate the diffusion lengths at 5 and 10 s, corresponding to the vapor front in a diffusion model. (D) River plot of the
PhC reflectance spectrum recorded over a 10-min experiment with pentane as the volatile liquid. The dotted line superimposed on the river plot illustrates the
evolution of the redshift over time and was obtained from the feature (¥) used to train the ML algorithm.
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1 mL of the liquid analyte at a constant rate of 6 mL min™" for
10 s, ensuring that the liquid formed a thin layer rather than a
droplet, preventing an evaporation gradient that would result from
curvature at the liquid—air interface. Liquid dispensed by the
syringe impinges on the bottom of the chamber where its spread-
ing rate depends on its surface tension and the surface energy of
the chamber bottom. Following spreading, the liquid partly evap-
orates, resulting in vapor which diffuses and spreads through the
chamber, gradually infiltrating the PhC, and therefore producing
a redshift of the reflection spectrum over time as the quantity of
vapor condensed within the PhC pores continues to increase
(Fig. 2D).

Temporal Data Analysis. The time-dependent reflection
spectrum of the PhC was collected over 10 min for each analyte.
We found that tracking the wavelength corresponding to the
highest intensity peak, Apear(2), provides meaningful differences

between the compounds. As the peak is rather broad, 4,,,, was

ed,
determined at each time point by applying a discrete Fourier
Transform (FT) in reciprocal wavelength space to the intensity
[I(4, #)] and using ¥(t), defined as the sine of the phase of the
lowest nonzero frequency component of the FT scaled to the
wavelength (S Appendix, Figs. S3 and S4 and Note S2 provide
the definition of ¥ and additional details of the data processing
pipeline). Previously a wavelet transform, which transforms
features localized in both frequency and time, has been used
to analyze the evolving reflection spectrum from a mesoporous
silicon PhC in response to imposed temperature changes (36, 43).
Although the wavelet transform is well-suited to detect changes in
the spectrum over time, we found the transformed data become
challenging to interpret when the experimental variance is high,
e.g., in the case of nonuniformities of a PhC created using standard
laboratory-scale methods such as spin-coating, where the layer
thickness can vary across the sensor.

W(¢) is plotted as a dashed line in Fig. 2D, and it indeed follows
the measured 4,,,,(#). For analysis of passive sensing, the discrete
time derivative of ¥ — hereafter, denoted as AW/At — was calcu-
lated to remove information regarding the exact location of the
initial peak, i.e., /lpmk(t =0 s). It is interesting to note that A/

Injection Injection
A béglins er/1’ds

At already qualitatively distinguishes polar vs. nonpolar volatiles
as nonpolar analytes exhibited a smooth peak in AW/At between
75 to 300 s (the small peak that can be seen occasionally just after
~10 s is likely an artifact of the analyte injection before 15 s). AW/
At for the polar compounds (with the exception of water) exhib-
ited a sharper peak earlier on, reaching a maximum value between
30 to 75 s, followed by a second broader maximum (Fig. 34). We
attribute the two peaks to the two-step adsorption process for
polar compounds into the mesoporous PhC, in which their favora-
ble vapor—surface interactions with the hydrophilic surfaces of
silica and titania of the crystal lead to 1) the formation of a mon-
olayer before 2) condensing into a film, consistent with previous
findings based on measurements of adsorption isotherms (44-46),
as well as our own measurements for the nonpolar compounds
(81 Appendix, Fig. S5 and Note S3). The latter, due to relatively
weak adsorbent—adsorbate interactions, feature a single-step
adsorption isotherm shape, likely due to a competition between
monolayer and multilayer formation or molecular cluster forma-
tion en route to multilayers. Water, in contrast to other polar
compounds, produced a unique profile consisting of a single peak
with a left shoulder. There is evidence that water is adsorbed simul-
taneously within titania and silica pores at lower partial pressures
(below 0.4), as opposed to preferential and gradual adsorption of
polar hydrocarbons first onto the titania smaller pore walls, with
subsequent adsorption to both layers at higher pressures (above
0.7) (38). Note that if the change of reflectance is compared only
between the initial and final timepoints, as in static analysis, the
curves are practically indistinguishable (S7 Appendix, Note S4),
and thus would not allow the discrimination between the liquids,
confirming a significant benefit of using time-resolved analysis for
vapor sensors.

ML for Classification of Analytes. We trained a Support Vector
Machine (SVM) for classification and regression tasks using
the normalized input vectors (AW/A¢),, ., for different vapors.
An SVM is a ML algorithm that determines a hyperplane
that maximally separates unique classes, in this case volatile
compounds. Each of the vectors contains 600 elements (one
per second in the 10-min interval over which experiments were
recorded) and was normalized using the L2-norm. The dataset
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Fig.3. Temporal analysis and training of a Support Vector Machine (SVM) to distinguish volatile compounds. (A) A¥/At is calculated from the temporal evolution
of the reflectance spectrum of the PhC upon exposure to one of 11 volatile compounds, with the liquid injection occurring at ~15 s, and ending at ~25 s, as
indicated by the two dashed vertical lines. The solid and dotted curves indicate nonpolar and polar solvents, respectively. For each, the line represents the mean
of the dataset and the shaded region represents the standard deviation (SD). (B) Confusion matrix for temporal analysis demonstrates 23 correct predictions

out of 26 test samples.
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consisted of ten pure volatile organic compounds (VOCs) and
water: seven nonpolar compounds (linear alkanes from pentane
to decane and toluene), as well as four polar compounds (water,
ethanol, acetone, and acetonitrile), AW/At profiles depicted in
Fig. 34. We performed a total of 76 experiments with the number
of experiments per compound varying between 3 and 10 and split
the dataset into 50 training and 26 testing examples (Materials
and Methods and SI Appendix, Table S2). The SVM correctly
identified 23 out of 26 test examples (88% prediction accuracy,
Fig. 3B, see cross-validation analysis in S/ Appendix, Fig. S6). The
model confidently distinguished polar from nonpolar compounds,
highlighting the observation that the shape of the AW/At depends
on the physicochemical properties of the compound. As a control
procedure, when using the same train-test-split approach and
using only the change in reflectance between the initial point
and the steady state, we observed that the accuracy dropped by
more than half (38% prediction accuracy, SI Appendix, Fig. S7),
reiterating the usefulness of temporal data collection and analysis.

Support Vector Regression (SVR) to Quantify Binary Mixtures.
To go beyond classification of pure compounds, we tested our
ability to predict the composition of binary mixtures using the
passive sensor delivery together with SVM. We chose to focus
on the alkanes as they readily mix and the behaviors of their
mixtures depend predominantly on differences in molecular
lengths. For example, pentane and hexane form nearly ideal
mixtures, as determined by the nearly linear change in the
vapor pressure as a function of the mixing ratio (47), whereas
pentane—octane mixtures deviate more from ideality, and there
is a significantly higher relative proportion of pentane in the
vapors of the latter than the former (48).

The training data for the SVR consisted of (AW/At) for

each of the binary mixtures of n-alkanes. (AW/At) rﬁ;r; the

norm

pentane-hexane mixtures showed a monotonic decrease in the
time to reach steady state with increasing pentane concentration

(Fig. 44). In contrast, the change in time to steady state for
pentane—octane mixtures was nonmonotonic (Fig. 4B), likely
related to the differences in vapor condensation in the pores of
the photonic crystal. Specifically, published isotherms (40) and
our measurements (S/ Appendix, Fig. S5C) for alkanes indicate
that heavier compounds condense in the pores of the photonic
crystal at lower relative pressures than lighter ones, reported for
octane vs. hexane. We hypothesize that as the heavier alkane,
octane, condenses at lower relative pressures, it could induce
faster kinetics of the adsorption-driven spectrum shift than the
mixture with the lighter alkane, hexane. The presence of octane
would thus lead to the observed increased diversity of shapes of
(AW/At), ., which in turn may contribute to a higher R* of
the SVRs: R? of 0.76 for pentane—hexane (Fig. 4C) vs. 0.95
(Fig. 4D) for pentane—octane. Overall, we observed a high sen-
sitivity to slight changes in composition of binary mixtures on
the order of a few parts-per-million (87 Appendix, Fig. S8 and
Note S5). This sensitivity underlines the richness of information
that can be obtained from temporal analysis of the porous PhC
sensor adsorption dynamics.

Prediction of Physical Properties of Volatiles. In addition to
identifying the composition of binary mixtures, this approach also
enables the assessment of physicochemical properties of volatiles.
We demonstrated this by predicting the boiling point, flash point,
viscosity, and vapor pressure for the pure alkanes tested above
(81 Appendix, Note S6) through training four instances of SVRs
(one for each physical property) using a radial basis function kernel
on the (AY/A¢v),,., of the alkane data (pentane, hexane, heptane,
octane, nonane, and decane; 38 experiments total). The data
were labeled with the true value of the relevant physical property
(SI Appendix, Table S3). The training set contained 25 out of
the 38 measurements with 2 to 6 examples for each alkane. The
model was then tested on separate experimental measurements
of the same compounds using a random split. We were able to
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Fig. 4. Predictability of chemical composition from temporal data (A¥/At), . for (A) pentane-hexane mixtures showing a monotonic decrease in the duration
of the adsorption process with increasing pentane content (vol./vol.) and for (B) pentane-octane mixtures showing a pronounced nonmonotonic behavior.
(C, D) SVR prediction performance for (C) pentane-hexane and (D) pentane-octane mixtures based on training on (AY/At),.,, in A and B, respectively. The number
of points in C and D differ due to the different sizes of the datasets for pentane-hexane vs. pentane-octane mixtures.
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predict the physical properties of the remaining 13 measurements
with extremely high accuracy, yielding R* values of 0.94, 0.94,
0.81, and 0.92, for boiling point, flash point, viscosity, and vapor
pressure, respectively (Fig. 5A4). The four physical properties were
chosen due to their relationship to the vapor dynamics, which
are essentially encoded in (AW/At),,,. The ability of the SVR to
reliably predict flash point is consistent with Vidal et al in which
it was shown that for pure liquids, the prediction of flash point
can be related to the vapor-liquid equilibrium and mass transfer
in the apparatus (49).

We further explored the possibility to characterize volatiles
‘unknown’ to the SVR, i.e., they were not part of the training set
(Fig. 5B). Specifically, we predicted the physical properties of tol-
uene, cyclohexane, dichloromethane, and the polar compounds
based on training on the alkane feature vectors only. Toluene and
cyclohexane were of particular interest as they have molecular
weights (MWs) in the range of the alkanes used for training and
all of their physical properties are contained within the range of
values seen by the ML model in training. Their molecular structure
is, however, sufficiently different from the linear alkanes, causing
the intermolecular forces (IMFs), and therefore the vapor dynam-
ics, to be different. For example, as a cyclic aromatic hydrocarbon,
toluene’s IMFs are strengthened by n-n interactions, resulting in
slower evaporation and prolonged condensation in the PhC.
Toluene is thus an excellent test candidate, being dissimilar enough
from the alkanes to demonstrate that the prediction is not a simple
interpolation from the training data. Meanwhile, the cyclic alkane,

cyclohexane, experiences the same types of IMFs as the linear
alkanes (London dispersion forces), yet is slightly less volatile than
its linear counterpart, hexane, due to the differences in the geom-
etries of the two molecules and therefore the strength of the IMFs.
Using the trained SVR from Fig. 54, we predicted the physical
properties of toluene: boiling point to be 118.3 + 8.1 °C (vs.
published value of 110.6 °C); flash point to be 7.1 + 5.3 °C (vs.
4.4 °C); viscosity to be 0.47 + 0.02 mPa-s (vs. 0.56 mPa-s); and
vapor pressure to be 11.2 + 3.5 kPa (vs. 3.4 kPa). For cyclohexane
we predicted: boiling point to be 80.8 + 6.7 °C (vs. published
value of 81.0 °C); flash point to be -17.0 £ 4.7 °C (vs. -20.0 °C);
viscosity to be 0.38 + 0.01 mPa-s (vs. 0.89 mPa-s); and vapor
pressure to be 16.6 + 1.7 kPa (vs.11.9 kPa).

The accuracy of the toluene and cyclohexane predictions is
encouraging given that the SVR has only been trained on alkane
data. In fact, the root-mean-squared errors for toluene and cyclohex-
ane predictions were almost identical to those for n-alkanes, with
the exception of vapor pressure for toluene and viscosity for cyclohex-
ane. It is worth mentioning that since the IMFs —and therefore the
vapor dynamics— of linear alkanes correlate with their MW
(81 Appendix, Table S3), one could surmise that the prediction accu-
racies for cyclohexane and toluene would be expected since their
MWs are between those of pentane and hexane, or those of hexane
and heptane, respectively. However, our ML model was trained on
the vapor dynamics and not on the the MW, chemical structure, or
chemical formula. The discrepancy in predictions vs. true values for
toluene’s vapor pressure and cyclohexane’s viscosity likely stem from
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Fig. 5. Prediction of physical properties from temporal reflectance data. (A, B) Regression plots showing results of SVR training on n-alkanes to predict the
properties of (A) a test set of alkanes (@ pentane, ll hexane, ¢ heptane, A octane, » nonane, and ¥ decane) and (B) volatiles 'unknown' to the SVR such as
toluene (red stars) and cyclohexane (red hexagons), where empty symbols signify alkane training data.
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the natural limitation of the ML model trained only on the alkane
dataset. We hypothesized that the trained SVR utilized the temporal
information from the strongest shift between 50 and 250 s
(81 Appendix, Fig. S9). In toluene’s case, the broad range of vapor
pressure in the training data (spanning two orders of magnitude)
and the comparatively low vapor pressure of toluene make the real
value difficult to predict. The consistently higher predicted vapor
pressure for toluene may be due to the elongated shape of its (AW/
A0, relative to those of the alkanes (Fig. 3 and S/ Appendix,
Fig. S$10). For cyclohexane, the problem stems from high similarity
of its (AW/A¢),,,,m to the ones of hexane and heptane, especially in
the region of highest feature weights of the SVR’s kernel (S Appendix,
Fig. S11). Given the limited training, the ML was unable to predict
cyclohexane’s relatively high viscosity (0.89 mPa-s) that is much closer
to decane’s viscosity (0.92 mPa-s) than to that of its closest structural
analog, hexane (0.30 mPa-s). Last, we also evaluated the ability of
the SVR only trained with n-alkanes to predict the properties of
polar compounds, and found that the out-of-distribution accuracy
was —unsurprisingly— further reduced, due to the highly dissimilar,
typically dual-modality, shape of (AW/At),,., for the polar analytes
(81 Appendix, Fig. $12). The model’s sensitivity to the unique shapes
of (AY/Av),,, (capturing information about the vapor dynamics)
suggests that the SVRs identify correlations between the measured
signal and the underlying molecular properties of the analyte, a com-
bination of its size, geometry, polarity, and other aspects.

Active Control of the Vapor Dynamics for Faster Sensing
Using Sniffing. The experiments described thus far had not
incorporated sniffing behaviors used by animals to accelerate the
delivery of vapors to the sensory receptors (50), which reputedly
provides additional information to aid odor discrimination (51).
We assembled a separate system to demonstrate artificial sniffing
(SI Appendix, Fig. S13 and Note S7). The PhC was attached to
the top of a chamber, and vapor was delivered via pressurized
nitrogen carrier gas injection whose flow was controlled
by solenoid valves, with the opening and closing of valves
mimicking different sniffing patterns composed of inhalation
of duration t;, (dry nitrogen was passed through a vial containing
the analyte), short waiting periods for time t,, (inlet flow was
stopped), and exhalation over time t, (dry nitrogen without
analyte was passed continuously through the chamber containing
the sensor, promoting analyte desorption). The schematic above
the plot in Fig. 64 shows an example sniffing sequence consisting
of five repetitions of “short sniffs” (t,, = 1 s, t, = 0.5 s) followed
by an exhale (t,, = 5 s). We compared the results of this sniffing
sequence for the different alkanes, from pentane to decane, as
a proof of concept (Fig. 64, plot). Because the outlet of the
chamber was open over the duration of the experiment, the
concentration of the vapor in the chamber slightly decreased
during the waiting steps and never fully equilibrated, reminiscent
of the phenomenon of “breath stacking” observed in the sniffing
of dogs, in which they take in more air than they expel during
cach sniff (26). We also separately validated the ability of
the PhC sensor to respond with a time scale of less than one
second (SI Appendix, Fig. S14) to ensure that we can capture all
significant spectral changes within the acquisition time.

In this active delivery approach, we chose to train the SVM
using W ... rather than (AW/A¢), ., that had been used in the
passive delivery scenario. Our motivation stems from the differ-
ences in the vapor dynamics, described in detail in SI Appendix,
Fig. S15 and Note S8. Here, the vapor fills the chamber and begins
adsorption within the PhC during inhales which decreases and
ultimately transitions to desorption during wait steps and exhales,
the signatures of which are imposed on the shape of ¥

norm

PNAS 2023 Vol.120 No.31 e2303928120

(Fig. 64). Alkanes saturated the PhC in order of their chain length,
with the shortest, most volatile alkanes saturating the PhC most
quickly. Following saturation, ¥, oscillated near its maximum
value due to the slight loss of air from the chamber during the
wait periods. The heavier alkanes also took significantly longer to
desorb, as observed by their slower decay of ¥ during the exhale
period (8 to 12 s) than for the shorter alkanes. In contrast to the
case of passive experiments, which were conducted over 10 min,
the alkanes were distinguishable with high confidence, with the
exception of hexane, within the short experiment time of only
12.5 5 (95% accuracy, Fig. 6B). Based on prior findings of Spencer
et al regarding the effect of air flow on the sensitivity of chemical
detection, we hypothesize that future experiments with higher
frequency sniffing patterns (shorter sniffs, 7.e. shorter ¢, and t,)
could further improve differentiation between the more volatile
VOC:s (e.g., here: pentane, hexane, heptane) and their mixtures
by spreading out the total change in ¥, over smaller increments
and prolonging the time to saturation (35). Less volatile com-
pounds would be better detected when deeper sniffs (i.e., longer
t,,) are implemented, in order to accumulate those compounds at
the sensor to an appreciable concentration.

Thus, by adjusting the sniffing pattern, it is possible to tweak
the protocol for the specific task, and potentially could be applied
to sequentially pick out different components of a mixture. As a
demonstration of this approach, we showed the unique sensor
response to pentane and ethanol via different sniffing sequences
(Fig. 6 Cand D, respectively). For pentane, we saw a pronounced
difference when switching between short and deep sniffing
sequences (Fig. 6C). However, for ethanol, the same change in
sniffing sequence did not alter the sensor response. By screening
through a repertoire of possible sensing protocols (e.g., changing
times of each step, whether the system is open or closed, the total
duration of the measurement, etc.), we found that performing a
single short sniff followed by a longer exhale (t..= 10 s) led to a
clearly different signal (Fig. 6D). Last, utilizing five repetitions of
short sniffs (t,, = 1 s, ¢, = 0.5 s) followed by an exhale (¢, = 5 s),
we demonstrated the ability to determine the mixing ratio of
pentane-octane mixtures with R* of 0.88; an exceptional regression
given only a ~12 s detection period (S/ Appendix, Fig. S16 and
Note S9). Together, these results suggest a generalized approach
that increases the differences in response between analytes as elab-
orated in the discussion.

Discussion

This work takes steps toward addressing a challenge in the design
of artificial noses: obtaining feature-rich and interpretable infor-
mation from the vapor of an analyte using only one sensing device.
By recording the time-dependent response of a porous photonic
sensor to the passive transport of vapors or their actively controlled
delivery, we determined that the time-resolved feature ¥, or its
derivative AW/Avt, is sufficient to classify and make deterministic
predictions of the components and properties of vapors. Using
support vector machines, we were able to classify 10 volatile liquids
and water with 88% accuracy and predict the mixing ratios of
binary mixtures of pentane—hexane and pentane—octane (R* of
0.76 and 0.95, respectively), and even achieve parts-per-million
resolution in binary mixtures of ethanol-water.

Although sensor arrays have been demonstrated with accuracies
greater than 95% (52), it is important to highlight that our results
are all obtained from a single sensor. In addition, although our
classifier is currently limited to the detection of reference analytes
previously seen by the SVM, the regression models allow predict-
ing the boiling point, flash point, viscosity, and vapor pressure of
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Fig.6. Demonstration of sniffing protocols to accentuate alkane odor signatures. (A) Temporal analysis of active delivery using ¥,,.,, for linear alkanes. Blue solid
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and (D) ethanol.

some “unknown” compounds, e.g., toluene and cyclohexane, that
the model trained on alkanes had not seen before. This indicates
learning of the volatiles” physicochemical nature rather than the
model simply understanding a nonphysical feature description.
This enables adapting the approach to applications where a full
dataset of possible compounds cannot be cataloged, such as in
hazardous waste management. As shown by the limitations of the
approach to accurately predict the physical properties only of rel-
atively similar compounds to those used in training, it will be
important to include a sufficiently broad —but not necessarily
exhaustive— set of compounds in the training set to cover a wide
enough range of features for the target application. A potential
example of practicality of our approach would be to test the impor-
tant properties for safe handling of crude oil. Blended from dif-
ferent source wells before it is shipped, crude oil represents a
highly variable mixture with respect to physical properties and
hence the packing group (S Appendix, Note S10) and relevant
safety precautions (53). Quantification of the relationship between
the evaporation of highly volatile pentane-hexane and less volatile
pentane—octane liquid mixtures, as presented here using the tem-
poral signal from a mesoporous PhC, represents a proxy scenario
for a potential time-resolved sensor to categorize hazardous

80f 10 https://doi.org/10.1073/pnas.2303928120

flammable liquids by their relevant properties (e.g., vapor pressure,
boiling point, flash point) in a realistic environment.

There are many avenues for further improving the odor dis-
crimination power of our sensor for various applications.
Continuing in the spirit of this work, a particularly fruitful route
is to consider even more details of the natural olfactory system.
Biological olfaction employs numerous design features to promote
odor discrimination. The orientation of nostrils, as well as nasal
size and geometry, vary across animals and likely depend on how
critical this sensory modality is to the organism’s survival, as well
as on the environment to which it is exposed (e.g., marine, under-
ground, surface, and in-flight). The epithelium and mucus layers,
which cover the nasal passageways, warm and humidify the incom-
ing air (54, 55) and it is widely believed, based on the sorption
hypothesis, that these layers produce a chromatographic effect
such that the adsorption of different odorants varies within the
nasal passageway (51).

Like in the biological nose, multiple mass transport processes
are involved in the presented artificial sensor —here, spreading,
evaporation, convection, diffusion, and adsorption— each of
which can be modulated. We explored several parameters of our
sensor architecture. By changing the nanoparticle size in each
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layer, and thereby changing the overall PhC porosity, the
adsorption of vapors is affected, leading to a change in the
evolution of W and the signal strength over time (S Appendix,
Fig. S17 and Note S11) (41, 56). Both a higher sensitivity and
resolution can be achieved by varying the number of layers in
the PhC or their refractive index, as this would change the width
and intensity of the main reflectance peak (44). Altering the
interaction of the surface of the chamber bottom via either
chemical or physical modifications will affect spreading of the
liquid on the sensor bottom (87 Appendix, Fig. S18), which in
turn will affect evaporation due to its dependence on the cur-
vature of the dispensed drop and area over which the evapora-
tion occurs. Furthermore, variation of the porosity, surface
functionalization, material composition, or a combination of
those across one or multiple PhC sensors may further enhance
the chromatographic effect, i.e., the differences in rates of con-
densation of different vapors within the PhC’s porous layers.
The temporal sensor itself could also actively modulate the sig-
nal: for example, a PhC made from responsive materials would
exhibit changes in the pore sizes and layer spacing upon imposed
changes in humidity or temperature (57), resulting in dynamic
changes in absorption; this is similar to the swelling of the
epithelial lining of the nose, which is known to increase the
flow resistance in one nostril compared to another and may be
used to provide additional information to the brain (58).
Another aspect that can be changed is the geometry of the
chamber, similar to the role the size of nasal passageways and
cavities in nature play in odor discrimination. For example, by
increasing the chamber height, we provide a longer path length
for mass transport of the vapors, which, in turn, affects the
time-evolution of the reflection spectrum (S Appendix,
Fig. $19). As indicated in the results section, cosolvents can also
be added to increase the sensitivity to compounds contained in
mixtures; when water is used, this is akin to humidifying the
air as it passes through the nose of an organism. Likewise, for
alkanes, we observed that a small amount of octane could
increase the sensitivity of the sensor to pentane. Each of these
changes would be relevant to both the passive and active analyte
delivery modalities.

In addition to modifying the sensor design, emphasis should
also be put on ML and signal processing. While we did limit our
discussion to SVMs due to the scope of the available training data,
different architectures for neural networks and deep learning can
be optimized for feature recognition and physical processes (59).
Using a larger training dataset, neural networks and automatic
feature extraction could prove superior (60). For example, one
approach may include artificial noses that implement biologically
inspired sniffing sequences and incorporate artificial intelligence
to analyze sensing results and optimize sniffing sequences in
real-time based on continuous feedback algorithms. This is similar
to the way dogs modify their sniffing frequency based on the types
of analytes they smell and the bits of information they piece
together in sequential breaths (61).

Many industries that require a simple, portable, low-cost sensor
could benefit from our approaches. Example applications include
identifying hazards on site, monitoring air quality, ensuring
healthy building spaces (62), and point-of-care breath analyzers
for rapid diagnosis of diseases for which characteristic volatiles
have been identified (63, 64). In fact, the need to acquire real-time
information about the air we breathe, both indoors and outdoors,
has been brought into the spotlight by recent events such as wild-
fires, the SARS-CoV-2 pandemic, large spills, and growing con-
cerns as well as regulations regarding air pollution (65). It has thus
become abundantly clear that sensing-based ventilation and
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cleaning will be the future to ensure healthier building spaces (62),
targeting both acute events as well as persistent issues such as
presence of mold and other pollutants. Using sniffing for sensing
is an exciting direction, opening doors to employing sniffing-related
behaviors seen in nature, such as adapting sniffing frequencies to
detect specific odorant types, for sensing capabilities and
applications.

Materials and Methods

The main aspects of each procedure are described in this section. Additional
details are provided in S/ Appendix, Note S12.

Liquid Analyte Delivery (Passive approach). The unary compounds or binary
mixtures consisted of pentane, anhydrous, =99%; hexane, anhydrous, 95%; hep-
tane anhydrous, =99%; octane, reagent grade, 98%; nonane, anhydrous, =99%;
decane, =295%; toluene, anhydrous, 99.8%; acetone, =99.5%; acetonitrile, anhy-
drous, 99.8% (Millipore Sigma, used without modification). Aliquots of 1.3 mL
of the analyte solvent were injected using a syringe pump (Harvard Apparatus,
Holliston, MA) and a 5-mL plastic syringe (Avantor, VWR Incorporation, Randor, PA)
atémLmin~"into a precleaned Hellma” glass chamber containing a Bragg stack.

Gas Analyte Delivery (Active Sniffing Approach). We constructed a custom
chamber (72.6 mm x 25.4 mm x 19.1 mm) consisting of an aluminum case
with glass plates at the top and bottom. On each side of the chamber, an inlet
and outlet were connected to a set of four 15-mL Falcon tubes and a fume hood,
respectively. Each Falcon tube was connected to a solenoid valve (Clippard,
Cincinnati, OH) attached to a pressurized nitrogen cylinder at 5 psi. The solenoid
valves were controlled via an Arduino board (Teensy 3.2 board with IDE 2.0.2,
New York, NY). Three of the four Falcon tubes were filled to the 12-mL mark and
one Falcon tube left empty to flow nitrogen. Before each experiment, the sensor
chamber was purged by dry nitrogen for 300 s.

Time-Dependent Reflectance Measurements. Reflectance measurements
between 400 and 800 nm were obtained with a USB2000+ Fiber Optic
Spectrometer (Ocean Optics, Dunedin, FL) and LS-1-CAL tungsten-halogen light
source (Ocean Optics) connected via a reflection probe, model R200-7-SR (Ocean
Optics), at normal incidence. Measurements were acquired at 1 Hz beginning
15 s before the chemical was injected and for a total of 10 min for the passive
delivery case, and at 20 Hz for a total of 12.5 s for the active delivery. Wavelengths
between 400 and 800 nm were used for analysis.

Fabrication of Photonic Crystals. The fabrication of the silica and titania Bragg
stack was previously described (39). All starting compounds were obtained from
Millipore Sigma. Titania nanoparticles were prepared through sol-gel hydrolysis by
slowly adding Titanium (V) ethoxide to 0.1 N HNO, and stirring at 80 °C for 8 h.
After sonication (Branson Ultrasonics, St. Louis, MI), the particles were filtered and
diluted with deionized water. Poly(ethylene oxide) (PEG 8,000-10,000) was added to
aid the spin-coating process. Si0, colloids (LUDOX SM30, 30 wt.% aq.) were diluted
with distilled water to a ratio of 2:5 using hydrophilic syringe filters (SPARTAN 13,
0.2 pm). Bragg stacks were assembled on microscopy slides (VWR Inc.) treated with
oxygen plasma (Diener Femto PCCE, Ebhausen, Germany) prior to assembly. The
slides were covered with 200 to 250 L of the silica suspension and spun-coated for
605t 2,500 to 5,500 rpm with an acceleration of 1,500 rpm s™" using spin coater
(WS-650-23, Laurell, North Wales, PA). Samples were then calcined for 30 min at 350
°C(Lindberg/Blue M BF51866A-1; Thermo Fisher Scientific, Waltham, MA). The proce-
dure was repeated for alternating layers of titania and silica fora total of 5.5 bilayers.

Data Processing. To calculate the feature P(t) for each spectrum, the following
steps were performed: a discrete FTwas applied to the spectrum, extracting the real
and imaginary components of the first nonzero component to calculate the sine of
the temporal phase. To reduce noise, a Savitzky-Golay filter with a window size of
31 and polynomial order of three was applied. In the case of passive vapor delivery,
the discrete time derivative of W(t), (AW/At), was calculated and then filtered using
a Savitzky-Golay filter with a window size of 31 and polynomial order of two. For
training ML models, ¥ was normalized using z-score normalization, and AW/At
was normalized using the L2-norm. For more details of the data preprocessing and
ML hyperparameters refer to S/ Appendix, Notes S2 and $12, respectively.
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Algorithms and Computer Codes. The source code and implementation
details of temporal analysis and SVMs are available on GitHub https://github.
com/soerenbrandt/sniffing-sensor.

Statistical Analysis. Errors in prediction are reported as SD, and all data are
represented as mean = SD, unless otherwise stated.

Data, Materials, and Software Availability. The data is available at (66) and
the software is available at https://github.com/soerenbrandt/sniffing-sensor.

ACKNOWLEDGMENTS. We thank Dr. lan Burgess, Theresa Kay, Dr. Elijah
Shirman, Dr.Victoria Hwang, and Dr. Michael Aizenberg for extensive discussions;
Tom Blough, Qin Ji, Jake Ferguson, Edrik Lin, and Adam Tetrault for experimen-
tal support; and Dr. Edward Soucy for helping design and build the casing for
the sniffing sensor chamber. This work was supported by the NSF through the

1. S.Li,A. Simonian, B.A. Chin, Sensors for agriculture and the food industry. Electrochem. Soc.
Interface 19,41(2010).

2. B.Szulezynski, J. Gebicki, Currently commercially available chemical sensors employed for detection
of volatile organic compounds in outdoor and indoor air. Environments 4,21 (2017).

3. FEBiasioli, F. Gasperi, C. Yeretzian, T. D. Mérk, PTR-MS monitoring of VOCs and BVOCs in food science
and technology. TrAC Trends Anal. Chem. 30, 968-977 (2011).

4. R.E.Amor, M. K. Nakhleh, 0. Barash, H. Haick, Breath analysis of cancer in the present and the
future. Eur. Respir. Rev. 28, 190002 (2019).

5. A.Amann et al., The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin
emanations, urine, feces and saliva. J. Breath Res. 8, 034001 (2014).

6. T.Wasilewski, J. Gebicki, Emerging strategies for enhancing detection of explosives by artificial
olfaction. Microchem. J. 164, 106025 (2021).

7. T.LAndrew,T. M. Swager, Detection of explosives via photolytic cleavage of nitroesters and
nitramines. J. Org. Chem. 76,2976-2993(2011).

8. H.Yan,B.Han, H.Siesler, Handheld near-infrared spectrometers: Reality and empty promises.
Spectroscopy 35, 15-18 (2020).

9. L. Sela, N. Sobel, Human olfaction: A constant state of change-blindness. Exp. Brain Res. 205, 13-29
(2010).

10. V. N. Murthy, Olfactory maps in the brain. Annu. Rev. Neurosci. 34, 233-258 (2011).

11. M.K.Balleretal., A cantilever array-based artificial nose. Ultramicroscopy 82, 1-9 (2000).

12. D.Zwicker, A. Murugan, M. P. Brenner, Receptor arrays optimized for natural odor statistics. Proc.
Natl. Acad. Sci. 113, 5570-5575(2016).

13. J.M.Schnorr, D.van der Zwaag, J. J. Walish, Y. Weizmann, T. M. Swager, Sensory arrays of covalently
functionalized single-walled carbon nanotubes for explosive detection. Adv. Funct. Mat. 23,
5285-5291(2013).

14. R.A. Potyrailo, N. Karker, M. A. Carpenter, A. Minnick, Multivariable bio-inspired photonic sensors for
non-condensable gases. J. Opt. 20, 024006 (2018).

15. R.A. Potyrailo et al., Towards outperforming conventional sensor arrays with fabricated individual
photonic vapour sensors inspired by morpho butterflies. Nat. Commun. 6,1-12 (2015).

16. R.Vishinkin, H. Haick, Nanoscale sensor technologies for disease detection via volatolomics. Small
11,6142-6164(2015).

17. Y.Y.Broza, R. Vishinkin, 0. Barash, M. K. Nakhleh, H. Haick, Synergy between nanomaterials and volatile
organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 47, 4781-4859 (2018).

18.  G. Konvalina, H. Haick, Sensors for breath testing: from nanomaterials to comprehensive disease
detection. Acc. Chem. Res. 47, 66-76(2014).

19. S.Kim etal., Nanoengineering approaches toward artificial nose. front. Chem. 9, 629329 (2021).

20. R.A.Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of
things and industrial internet. Chem. Rev. 116, 11877-11923 (2016).

21. M. Khatib, H. Haick, Sensors for volatile organic compounds. ACS Nano 16, 7080-7115 (2022).

22. A.G.StJames etal., Exploring machine learning in chemistry through the classification of spectra:
An undergraduate project. J. Chem. Educ. 100, 1343-1350(2023).

23. C.Y.Wang, T-S. Ko, C-C. Hsu, Interpreting convolutional neural network for real-time volatile
organic compounds detection and classification using optical emission spectroscopy of plasma.
Anal. Chim. Acta 1179, 338822 (2021).

24. H.Zhou,L.Xu,Z.Ren,J. Zhu, C. Lee, Machine learning-augmented surface-enhanced spectroscopy
toward next-generation molecular diagnostics. Nanoscale Adv. 5, 538-570(2023).

25. M. M. Mozell, Evidence for a chromatographic model of olfaction. J. General Physiol. 56, 46-63
(1970).

26. B.A.Craven, E.G. Paterson, G. S. Settles, The fluid dynamics of canine olfaction: Unique nasal airflow
patterns as an explanation of macrosmia. J. R. Soc. Interface 7,933-943 (2010).

27. T.LKelly,A. Garcia Sega, M. J. Sailor, Identification and quantification of organic vapors by time-
resolved diffusion in stacked mesoporous photonic crystals. Nano Lett. 11,3169-3173(2011).

28. S.E.Létant, M.J. Sailor, Molecular identification by time-resolved interferometry in a porous silicon
film. Adv. Mater. 13, 335-338 (2001).

29. Y.Zhang, Q. Fu, J. Ge, Photonic sensing of organic solvents through geometric study of dynamic
reflection spectrum. Nat. Commun. 6, 7510 (2015).

30. C.Xiong etal., Detection of homologue and isomer vapors through dynamic reflection spectra of
hollow mesoporous silica sphere photonic crystals. Chem. Asian J. 13, 3670-3675(2018).

31. V. Schroeder et al., Chemiresistive sensor array and machine learning classification of food. ACS
Sens. 4,2101-2108(2019).

32. |.Sasaki, J. Janata, A. Glezer, Fast gas sensing using an integrated synthetic jet actuator. IEEE Sens. J.
6,1728-1733(2006).

33. A Szczurek, M. Maciejewska, “Artificial Sniffing"” Based on induced temporary disturbance of gas
sensor response. Sens. Actuators B Chem. 186,109-116(2013).

34. S.Nakata, T. Nakamura, K. Kato, Y. Kato, K. Yoshikawa, Discrimination and quantification of
flammable gases with a Sn02 sniffing sensor. Analyst 125, 517-522 (2000).

10 0f 10  https://doi.org/10.1073/pnas.2303928120

Harvard University Materials Research Science and Engineering Center under
award DMR-2011754 and the Kavli Institute for Bionano Science & Technology
at Harvard University.

Author affiliations: ?John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Boston, MA 02134; ®Wyss Institute for Biologically Inspired Engineering,
Harvard University, Cambridge, MA 02138; “Max Planck Institute for Solid State Research,
Stuttgart 70569, Germany; “Department of Chemistry, Ludwig-Maximilians-Universitat
Miinchen, Muinchen 81377, Germany; °Department of Physics, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061; ‘Center for Soft Matter and Biological
Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
&Department of Thermal and Fluid Engineering, Faculty of Engineering Technology,
University of Twente, Enschede 7522 NB, Netherlands; "Department of Molecular and
Cellular Biology, Harvard University, Cambridge, MA 02138; 'Center for Brain Science,
Harvard University, Cambridge, MA 02138; and 'Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, MA 02138

35. T.L.Spencer,A. Clark, J. Fonollosa, E. Virot, D. L. Hu, Sniffing speeds up chemical detection by
controlling air-flows near sensors. Nat. Commun. 12,1232 (2021).

36. P.Shakya, E. Kennedy, C. Rose, J. K. Rosenstein, High-dimensional time series feature extraction for
low-cost machine olfaction. IEEE Sens. J. 21, 2495-2504 (2021).

37. S.Y.Choi, M. Mamak, G. Von Freymann, N. Chopra, G. A. Ozin, Mesoporous bragg stack color tunable
sensors. Nano Lett. 6, 2456-2461(2006).

38. S.Colodrero, M. Ocafia, A. R. Gonzalez-Elipe, H. Miguez, Response of nanoparticle-based one-
dimensional photonic crystals to ambient vapor pressure. Langmuir 24, 9135-9139 (2008).

39. 1. Pavlichenko et al., Humidity-enhanced thermally tunable TiO 2/SiO 2 bragg stacks. J. Phys. Chem.
€116,298-305(2012).

40. T.J.H.Vlugt, R. Krishna, B. Smit, Molecular simulations of adsorption isotherms for linear and
branched alkanes and their mixtures in silicalite. J. Phys. Chem. B103,1102-1118 (1999).

41. S.Lluo, J. L Lutkenhaus, H. Nasrabadi, Confinement-induced supercriticality and phase equilibria of
hydrocarbons in nanopores. Langmuir 32,11506-11513 (2016).

42. G.Y.Gor et al., Adsorption of n-pentane on mesoporous silica and adsorbent deformation. Langmuir
29,8601-8608(2013).

43. J.S.Murguia et al., Two-dimensional wavelet transform feature extraction for porous silicon
chemical sensors. Anal. Chim. Acta 785, 1-15(2013).

44. 1. Pavlichenko et al., Bringing one-dimensional photonic crystals to a new light: An electrophotonic
platform for chemical mass transport visualisation and cell monitoring. Mater. Horiz. 2, 299-308
(2015).

45. S.Inagaki, Y. Fukushima, Adsorption of water vapor and hydrophobicity of ordered mesoporous
silica, FSM-16. Microporous Mesoporous Mater. 21, 667-672 (1998).

46. Y. Matsumura, K. Yamabe, H. Takahashi, The effects of hydrophilic structures of active carbon on the
adsorption of benzene and methanol vapors. Carbon 23,263-271(1985).

47. F.G.Tenn, R.W. Missen, A study of the condensation of binary vapors of miscible liquids: Part I: The
equilibrium relations. Can. J. Chem. Eng. 41, 12-14 (1963).

48. P.Rice, A. EI-Nikheli, Isothermal vapour-liquid equilibrium data for the systems n-pentane with
n-hexane, n-octane and n-decane. Fluid Phase Equilibria 107, 257-267 (1995).

49. M.Vidal, W.J. Rogers, J. C. Holste, M. S. Mannan, A review of estimation methods for flash points
and flammability limits. Process Saf. Prog. 23, 47-55 (2004).

50. M. E. Staymates et al., Biomimetic sniffing improves the detection performance of a 3D printed nose
of adog and a commercial trace vapor detector. Sci. Rep. 6, 1-10(2016).

51. M. Wachowiak, All in a sniff: Olfaction as a model for active sensing. Neuron 71, 962-973 (2011).

52. P.Qin etal., VOC mixture sensing with a MOF film sensor array: detection and discrimination of
xylene isomers and their ternary blends. ACS Sens. 7, 1666-1675 (2022).

53. J.Frittelli, U.S. Rail Transportation of Crude Oil: Background and Issues for Congress. Congressional
Research Service, pp. 1-29 (2014).

54. V.E.Negus, Humidification of the air passages. Thorax 7, 148-151(1952).

55. D.Zwicker, R. Ostilla-Ménico, D. E. Lieberman, M. P. Brenner, Physical and geometric constraints
shape the labyrinth-like nasal cavity. Proc. Natl. Acad. Sci. U.S.A. 115, 2936-2941(2018).

56. P.A.Russo, M. M. L.R. Carrott, P.J. M. Carrott, Hydrocarbons adsorption on templated mesoporous
materials: Effect of the pore size, geometry and surface chemistry. New J. Chem. 35, 407-416
(2011).

57. Y.Yue, J. P.Gong, Tunable one-dimensional photonic crystals from soft materials. J. Photochem.
Photobiol. C Photochem. Rev. 23, 45-67 (2015).

58. R.Kahana-Zweig et al., Measuring and characterizing the human nasal cycle. PLOS One 11,
€0162918(2016).

59. Y.Liuetal., Materials discovery and design using machine learning. J. Materiomics 3, 159-177
(2017).

60. S.Vembu, A.Vergara, M. K. Muezzinoglu, R. Huerta, On time series features and kernels for machine
olfaction. Sens. Actuators B Chem. 174, 535-546 (2012).

61. A.D.Rygg, B.Van Valkenburgh, B.A. Craven, The influence of sniffing on airflow and odorant
deposition in the canine nasal cavity. Chem. Senses 42, 683-698 (2017).

62. N.Vadamalraj, K. Zingre, S. Seshadhri, P. Arjunan, S. Srinivasan, Hybrid ventilation system and
soft-sensors for maintaining indoor air quality and thermal comfort in buildings. Atmosphere 11,110
(2020).

63. M.Zhou et al., Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable
two-dimensional gas chromatography device. Anal. Bioanal. Chem. 411, 6435-6447 (2019).

64. Q.Liang et al., Ultrasensitive multispecies spectroscopic breath analysis for real-time health
monitoring and diagnostics. Proc. Natl. Acad. Sci. U.S.A. 118, 2105063118 (2021).

65. M.M.Y.R.Riad, Y. M. Sabry and D. Khalil, "On the Detection of Volatile Organic Compounds (VOCs)
Using Machine Learning and FTIR Spectroscopy for Air Quality Monitoring," 36th National Radio
Science Conference, IEEE, pp. 386-392,(2019) doi: 10.1109/NRSC.2019.8734644.

66. S.Brandt, etal., "Data for Non-Equilibrium Sensing of Volatile Compounds Using Active and Passive
Analyte Delivery [Data set]." Zenodo. https://doi.org/10.5281/zenodo.7710595 (2023).

pnas.org


https://github.com/soerenbrandt/sniffing-sensor
https://github.com/soerenbrandt/sniffing-sensor
https://github.com/soerenbrandt/sniffing-sensor
https://doi.org/10.1109/NRSC.2019.8734644
https://doi.org/10.5281/zenodo.7710595

	Nonequilibrium sensing of volatile compounds using active and passive analyte delivery
	Significance
	Results
	Passive Vapor Delivery.
	Temporal Data Analysis.
	ML for Classification of Analytes.
	Support Vector Regression (SVR) to Quantify Binary Mixtures.
	Prediction of Physical Properties of Volatiles.
	Active Control of the Vapor Dynamics for Faster Sensing Using Sniffing.

	Discussion
	Materials and Methods
	Liquid Analyte Delivery (Passive approach).
	Gas Analyte Delivery (Active Sniffing Approach).
	Time-­Dependent Reflectance Measurements.
	Fabrication of Photonic Crystals.
	Data Processing.
	Algorithms and Computer Codes.
	Statistical Analysis.

	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 29



