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Conical surfaces pose an interesting challenge to crystal growth: A crystal growing on a cone can wrap around
and meet itself at different radii. We use a disk-packing algorithm to investigate how this closure constraint
can geometrically frustrate the growth of single crystals on cones with small opening angles. By varying the
crystal seed orientation and cone angle, we find that—except at special commensurate cone angles—crystals
typically form a seam that runs along the axial direction of the cone, while near the tip, a disordered particle
packing forms. We show that the onset of disorder results from a finite-size effect that depends strongly on the
circumference and not on the seed orientation or cone angle. This finite-size effect occurs also on cylinders, and
we present evidence that on both cylinders and cones, the defect density increases exponentially as circumference
decreases. We introduce a simple model for particle attachment at the seam that explains the dependence on the
circumference. Our findings suggest that the growth of single crystals can become frustrated even very far from
the tip when the cone has a small opening angle. These results may provide insights into the observed geometry
of conical crystals in biological and materials applications.
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I. INTRODUCTION

The growth of a crystal can be frustrated by interactions
with a curved surface such as a spherical or hyperbolic
substrate [1–4]. When the surface has nonzero Gaussian cur-
vature, the frustration stems from variations in the surface
metric, which lead to stretching of the crystal lattice. This type
of geometrical frustration has been well studied, particularly
in colloidal systems [5–13].

Less well studied is frustration arising on surfaces with
no Gaussian curvature but on which crystals can form loops,
such as cylinders. Although such surfaces do not stretch the
lattice, they can nonetheless frustrate a crystal by imposing
a closure constraint. As observed in experiments and simula-
tions on colloidal crystals on cylindrical fibers [14], crystals
with orientations that are incommensurate with the closure
constraint form seams. These seams, which are stable on
cylinders but not on flat surfaces unconstrained by periodic
boundary conditions, break the translational symmetry of the
crystal.

*Corresponding author: vnm@seas.harvard.edu

Here we examine how the closure constraint affects
crystallization on a cone, which, unlike a cylinder, has a
spatially varying circumference. As a consequence, a seam
must form with a width that varies in the axial direction
whenever the cone angle does not permit the crystal to
wrap perfectly around the cone (for a triangular lattice,
such commensurate wrappings can be achieved by plac-
ing, for example, a 60◦ disclination at the cone apex).
The seam is similar to a tilt grain boundary between
two misoriented crystals on a flat substrate [15,16], ex-
cept that it is a boundary between the misoriented edges
of a single crystal that has wrapped around the cone.
This seam can break both the translational and rotational
symmetry of the crystal. We seek to understand how the
closure constraint geometrically frustrates crystal growth on
a cone.

There are few previous studies of crystallization on a cone.
Basin-hopping simulations of colloidal crystals showed that
interacting particles on a cone form seams or scar-like defects
[17,18]. The aim of these simulations was to understand the
defect structure and how it changes with the cone geometry.
An experimental study of an atomic system, WS2, showed
that crystals on a cone form a distinct seam [19]. The cone
in this work had a large opening angle, and the size of the
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WS2 crystal was orders of magnitude larger than the size of
the atoms. The main aim of this study was to demonstrate the
existence of the seam, which the authors refer to as a tilt grain
boundary.

Our aim is to examine the growth process, and in partic-
ular how conical crystals grow after closure. In contrast to
the basin-hopping simulations [17,18], which reveal energy-
minimizing crystal structures, we aim to determine how an
out-of-equilibrium growth process leads to disorder. Further-
more, we focus on particles with short-ranged attractions, as
seen in previous experimental studies of crystallization on a
flat surface [20], sphere [11], and cylinder [14].

To isolate the consequences of geometrical frustration
on the crystal structure—and avoid complications associated
with multiple nucleation sites and kinetics—we use a greedy
algorithm to simulate the idealized growth of a crystal on a
conical surface. Our approach, based on an algorithm devel-
oped by Bennett to study metallic glasses [21], is inspired
by previous work on understanding the effects of geometrical
frustration in metallic glasses, and on spherical or hyperbolic
surfaces [22,23]. Because we aim to understand effects in the
quasi-two-dimensional colloidal systems realized experimen-
tally, we simulate disk packings rather than sphere packings
to simplify the computation.

Our simulation is designed to model the slow, reaction-
limited growth of a single crystal from a fixed nucleus. Briefly,
we initialize the simulation with three disks placed in a trian-
gular configuration with a defined orientation and position on
the surface [Fig. 1(a)]. At each subsequent step, the algorithm
places a single disk in a position that maximally reduces the
energy of the crystal interface. We do not allow the particles
to rearrange following placement. On a flat surface, this al-
gorithm produces a perfect crystal. Therefore, any deviation
from a perfect crystal on a conical surface is the direct result
of geometric frustration, due to a δ function of Gaussian
curvature at the cone apex [24]. Although this algorithm does
not account for the effects of temperature or kinetics, it is a
simple and effective way to model the effects of the closure
constraint on crystal growth. The details of the method are
given in Sec. II.

By modeling crystal growth in this manner, we find a pro-
liferation of defects (defined here as particles with anomalous
coordination numbers) for a crystal growing towards the tip
of a cone with a small opening angle, as shown in Sec. III. As
we shall show, this onset of disorder results from a finite-size
effect that depends strongly on the local circumference and is
insensitive to the seed orientation and cone angle. Intuitively,
the disordered regions appear when a significant fraction of
the growing interface consists of the seam of the crystal.
We develop a theoretical model that explains the results in
Sec. IVA and discuss the influence of the crystal seed loca-
tion in Sec. IVB [the Appendices provide additional context,
including discussions about corrections due to the three-
dimensional (3D) nature of the particles, commensurate pack-
ings on cylinders, and a particularly interesting alternative
seed composed of a ring of particles]. We conclude by noting
that the transition to a disordered packing can occur surpris-
ingly far from the tip, which may give some insights into the
morphology of crystals seen in biology and materials (Sec. V).
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FIG. 1. Geometric parameters in the simulation. (a) Diagram of
a triangular crystal seed. The angle θ describes the orientation of
the lattice vector relative to the red cone circumference curve C. (b)
Rendering showing results of a Bennett-type simulation [21] for a
2D packing of disks. We initialize the crystal seed (marked in black)
on a 3D cone of angle β. The color of each particle indicates its
coordination number Nj . (c) Rendering showing a mapping of the 3D
cone in panel (b) to a 2D unrolled sector of angle φ = 2π sin(β/2),
where the seed is at a sector radius R from the apex. In this example,
θ = 30◦, φ = 20◦,C = 12 a0 and R = 54.4 a0. A seam consisting of
particles with coordination numberNj < 6 runs in the axial direction.

II. METHODS

Our algorithm is designed to simulate an idealized crys-
tallization process in which a crystal grows from a single
nucleus in a reaction-limited fashion. To create the nucleus,
we place three close-packed particles with diameter a0 in a
tangent plane at a radius R = C/φ from the sector vertex and
with an orientation θ with respect to the cone circumference
C [Fig. 1(a)]. We then add particles one by one, such that
each particle contacts the greatest number of other particles,
or, equivalently, forms the greatest number of “bonds.” A
bond is formed when the centers of two particles are less
than a0 apart with a tolerance of 10−4a0, representing an
interaction potential with a narrow attractive well, as is found
in a number of colloidal adsorption experiments [11,14]. If
there are several degenerate options for placing the particle,
we randomly select one option. We do not place particles
such that they form only one bond with the existing assembly
because the position of a dangling bond is not well-defined,
and a rotation of the dangling bond quickly leads to contact
with two particles. We also do not allow any previously placed
particles to move, nor do we let the entire crystal translate or
rotate.
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We choose 2D circular disks of diameter a0 to repre-
sent the effective shapes of 3D spherical particles adsorbed
onto a conical surface, and we neglect the anisotropic,
position-dependent stretching of particle projections onto a
conical surface. This approximation allows us to map the
three-dimensional (3D) cone of cone angle β into a flat two-
dimensional (2D) circular sector with a periodic boundary
condition and a sector angle φ = 2π sin(β/2). The mapping
is one-to-one because the circumferenceC of a circular cross-
section of the 3D cone [Fig. 1(b)] is equivalent to the arc
lengthC of the 2D sector at a given R [Fig. 1(c)]. The resulting
2D algorithm is computationally simpler, yet is still able to
capture the effects of the closure condition on frustration
(see Appendix A for a discussion of the limitations of this
approach).

We truncate the sector at a radial distance of 20 a0 from
the seed position to encourage growth into the sector tip,
where we expect to see interesting structures. A simulation
terminates when no more particles can be placed into the
sector or 1000 particles have been placed. For comparison,
the maximum number of particles that can pack into a φ = 5◦
sector is around 800.

Since our aim is to understand the effects of geometrical
frustration, we select conditions under which perfect trian-
gular crystals cannot form. Perfect crystals lack seams and
can form only when the sector angle is a “magic” angle
φ = 60◦P, where P is an integer [24–26]. For example, a
cylinder is a P = 0 magic cone with φ = 0◦. We therefore
restrict our study to cones with φ �= 60◦P. A seam on such
a cone is shown in Figs. 1(b) and 1(c). Particles at the crystal
self-boundary have coordination number Nj < 6. For particles
with Lennard-Jones-like pair potentials where the range of
attractive interaction is comparable to the defect hard-core
diameter, one might expect a grain boundary to form [5]. Our
simulations, however, have an interaction range of order 10−4

times the hard-core diameter, and the resulting seam, like a
stacking fault, maintains its integrity.

We choose to study near-cylindrical cones with small open-
ing angles of φ � 30◦ to facilitate comparison with results
of previous studies of crystals on cylinders [14,27]. When
simulating growth on a surface with φ = 0◦, corresponding to
a true cylinder, we select a seed orientation θ such that seams
are still geometrically required.

To characterize the structures, we calculate the bond orien-
tational order parameter ψ6, j for each particle j with nearest
neighbors indexed by k [28,29]:

ψ6, j = 1

Nj

Nj∑
k=1

ei6θ jk , (1)

where θ jk is the angle between the circumferential axis and
the vector from particle j to nearest neighbor k, and Nj is
the number of nearest neighbors, or coordination number, of
particle j. We consider only particles that are separated by
a0 ± 10−4a0 as nearest neighbors.

We also calculate the defect density ρ as a function of
distance R from the vertex. We define defects as particles that
have |ψ6, j | < 0.9. This definition allows us to distinguish de-
fects, which disrupt the order of the crystal, from particles on
the boundary of the seam, which are part of an ordered crystal.

(a)

(b)

Nj
2 3 4 5 6
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FIG. 2. Variation of particle packings with seed orientation θ

on cones with sector angle φ. (a) Rendering of simulation results
at unrolled cone angle φ = 5◦ shows that particles in the vicinity
of the seed placed at R = 114.59 a0 (C = 10 a0 ) are ordered. As
the crystal approaches the vertex, the packing becomes disordered.
(b) Plot of the defect density ρ as a function of radial distance R from
the tip, where ρ is the number fraction of particles with |ψ6, j | < 0.9
in a given R bin averaged over 100 trials at each seed orientation θ .
The defect density curves are similar for all θ at φ = 5◦. Note that
the defect density rises from the seed toward the tip and then drops
to zero at R ≈ 28.5 a0 because the particles are squeezed out of the
tip.

Since the same defect trends are preserved for different cutoff
values of |ψ6, j |, we choose a high cutoff value to obtain a
sensitive measure of the defect density (see Appendix B). To
calculate the defect density, we first bin the particles by R. We
then calculate the number of defects per number of particles
within each bin of width a0, averaged over 100 trials.

III. RESULTS

We first explore the effects of seed orientation on the struc-
ture of the system.We find that the crystal initially grows from
the seed as an ordered packing of particles, represented by
grey particles with Nj = 6 in Fig. 2(a). As the crystal wraps
around the cone, it meets itself to form a seam consisting
of particles with Nj < 6. However, as the seam approaches
smaller circumferences, these defects begin to dominate the
growth interface, leading to the formation of a disordered
region consisting primarily of defect particles with Nj < 6
[see Fig. 2(a), regions near tips of cones].

For all seed orientations, the defect density follows a sim-
ilar curve [Fig. 2(b)], tending to increase as R decreases. The
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FIG. 3. Variation of particle packings with unrolled sector angle
φ at fixed seed orientation θ . (a) Renderings of simulation results
show a long region of Nj < 6 particles at φ = 5◦, while the dis-
ordered regions are concentrated closer to the tip at φ = 10◦ and
φ = 15◦. The seed crystals are atC = 10 a0 with θ = 40◦. (b) Plot of
the defect density ρ as a function of R, averaged over 100 trials. The
distribution is broad for φ = 5◦ and becomes narrower for increasing
sector angles. (c) For each φ, ρ is mapped to C by C = Rφ. ρ

collapses as a function of C.

local minimum at approximately R = 40 a0 corresponds to
the location where a crystalline cluster three particles wide
can form. The defect density then increases again for smaller
R, until it reaches a maximum value and falls rapidly to ρ = 0
at approximately R = 28.5 a0. Note that R ≈ 23 a0 represents
the limit for packing two particles side by side on unrolled
cones of angle φ = 5◦. Overall, the tendency of the defect
density to increase as the cone narrows suggests that finite-
size effects are responsible for the disorder near the tip.

When we initialize crystals on cones with different sector
angles with fixed seed orientation θ = 40◦, we find that the
position at which the disordered region emerges also varies, as
seen for unrolled cones in Fig. 3(a). For small sector angles,
we find more disorder farther from the tip, while for larger
sector angles, the disordered region is found nearer the tip
[Fig. 3(b)]. These results show that cones with small angles
can have long disordered regions.

By rescaling R by Rφ = C, we find that the defect density
collapses as a function of cone circumference [Fig. 3(c)]. De-
fect proliferation therefore depends on the circumference and
not strongly on the sector angle or seed orientation. Although
the precise sector angle and seed orientation might alter the
details of the closure constraint at the single-particle scale, the
circumference at which closure occurs has a greater effect on
crystal growth.

The density curves do not perfectly collapse because of
our discrete binning procedure, which results in a systematic
variation with the sector angle. As φ increases, the gradient of
C also increases. An annular bin of fixed width centered at C
will not only access larger circumferences but also have more
particles at the larger circumference, which are less likely to
be defects. Therefore, at a given C, the defect density for the
annular bin is biased towards a lower ρ as φ increases. It is
possible that the gradient of C could also affect the defect
density in other ways. Nonetheless, the near-collapse of the
density curves upon rescaling shows that the circumference,
rather than the gradient, is the most important parameter to
consider.

To show that defect proliferation can be understood as
a function of circumference, we examine crystal growth on
cylinders, which have a constant circumference. We find that
cylinders with large circumferences have lower defect densi-
ties than cylinders with small circumferences [Fig. 4(a)]. For
large cylinders, the crystal forms a seam, as expected, and
is ordered with few defects. As the circumference decreases,
however, the crystal becomes increasingly fragmented as
more defects are incorporated into the packing. For thin cylin-
ders, the packing is predominantly disordered.

We find that the defect densities on cylinders as a function
of circumference follow the same trend as the defect densi-
ties of cones [Fig. 4(b)], provided the orientation θ of the
triangular seed cluster is not tuned to the special phyllotactic
value that allows a commensurate tiling by a triangular crystal
[30–32]. Because our focus here is on seeds with random
orientations, we neglect the interesting regular tilings that
occur for commensurate seed orientations at fixed cylinder
radius, or commensurate cylinder radius at fixed seed orien-
tation (Appendix C). For seed orientations θ = 40◦, we find
that the defect density distributions appear exponential for
small R, regardless of whether the surfaces are conical or
cylindrical [Fig. 4(c)]. Crystals on cylinders therefore repro-
duce the finite-size effects seen in crystals on cones, if special
commensurate tilings are ignored [30,31].

IV. DISCUSSION

A. Circumference determines defect density

To provide some intuition for exponential defect prolifera-
tion observed in our simulations at small cone circumferences,
we introduce a simple theoretical model for slow, reaction-
limited growth on a cylindrical substrate. We expect our
algorithm to simulate slow, reaction-limited growth because
particles attach one-by-one to the growing crystal, and each
added particle minimizes the local energy of the crystal inter-
face. We use a cylindrical substrate to simplify our theoretical
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FIG. 4. Particle packings on 2D cylinders of different circumfer-
ences, measured in units of the hard core diameter a0. (a) Rendering
of representative results for simulations. At C = 10 a0, the crystal
consists of primarily Nj = 6 particles. As C decreases, the crystal
becomes fragmented and disordered. The seed orientation is fixed
at θ = 40◦. (b) Plot of defect density of cylinders (circles) super-
imposed on the plot for cones from Fig. 3(c) (lines). The cylinder
defect densities are calculated as the number fraction of defects
relative to the total number of particles, averaged over 100 trials at
each circumference. (c) As the circumference decreases, the defect
density grows exponentially at small circumferences for both cones
and cylinders. The chosen circumferential values C/a0 = 2, 4, 6, 8,
and 10 in this figure do not include any of the special values that
would result in perfect packings for θ = 40◦ (Appendix C) [32].

arguments because, as shown above, cylinders reproduce the
finite-size effects seen on cones.

Given a crystal with a seam and smooth facets as in Fig. 5,
we consider the types of lattice sites that an additional particle
can diffuse to in the context of a 2D terrace-ledge-kink model,

(a) (b)

FIG. 5. Illustration of the defect growth process at a seam. Parti-
cles in the preexisting crystal are shown as filled gray circles. When
all candidate sites result in the formation of two bonds, a particle can
attach randomly at (a) a ledge site that initiates a new crystal row
or (b) a seam site that creates more sites that break the symmetry
of the preexisting crystal. Dark open circles show new particle loca-
tions, with lighter open circles emphasizing candidate sites created
by attachment of the new particle. Note that this schematic depicts
growth on a cylinder—the crystal rows on either side of the seam are
parallel.

used to describe ideal surface crystal growth [33]. Particles
sitting at the crystalline edges form the ledges where new
particles can adsorb. Kinks describe missing particles along
the ledge. In our simulation of slow ideal growth, kinks, which
have three or more dangling bonds by definition, are higher-
energy sites than the smooth ledges, which have two dangling
bonds. Therefore, a particle diffusing to the crystal will adsorb
to kinks first.

Once the kink sites have been filled, a particle can attach to
two types of energetically equivalent lattice sites. The first, a
ledge site, is continuous with the preexisting crystal [Fig. 5(a),
dark blue circle]. The second, a seam site, is incompatible with
the preexisting crystal [Fig. 5(b), dark red circle].

Particle attachment to a ledge site results in on-lattice
growth, meaning that the symmetry of the preexisting crystal
is preserved. Particle attachment to a seam site results in
off-lattice growth, meaning that the symmetry of the preex-
isting crystal is broken. We expect the density of disordered
defects to be related to the proportion of seam sites to ledge
sites. Crucially, off-lattice growth increases the probability
of further off-lattice growth because adsorption of a seam
particle increases the number of off-lattice candidate states
overall (light red circles in Fig. 5). Thus, if off-lattice growth
is likely, then this argument predicts that it will only become
more likely as growth proceeds, initiating the formation of a
disordered region as we see in our simulations.

To further develop this simplified picture, we estimate
the probability of disordered growth. A perfect crystal with
rows composed of Nrow particles and a single seam as in
Fig. 5 has of order Nrow candidate sites that lead to on-lattice
growth, and only order one candidate sites that lead to off-
lattice growth. Therefore, the probability of on-lattice growth
occurring initially is P1(t = 0) ∼ (1 − 1/Nrow), and the proba-
bility of off-lattice growth is P2(t = 0) ∼ 1/Nrow. If on-lattice
growth occurs, P1 and P2 do not change. If off-lattice growth
occurs, then we expect that P2 increases by an amount that
scales with 1/Nrow. If P2 reaches some threshold value—say
P2 = 1/2, at which half of the candidate sites lead to off-
lattice growth—runaway off-lattice growth results, leading to
the formation of a disordered region.

What is the probability of P2(t ) increasing to this thresh-
old value? If on-lattice growth occurs following off-lattice
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growth, there may be some healing of the disordered seam
region, and P2 may decrease. We therefore make the simpli-
fying approximation that P2 increases only when off-lattice
growth occurs many times in a row, and P2 increases by 1/Nrow

every time off-lattice growth occurs consecutively. With these
assumptions, the probability of off-lattice growth occurring s
consecutive times scales as

Ps = P2(t = 0)P2(t = 1) . . .P2(t = s)

∼ 1

Nrow
× 2

Nrow
× . . . × s

Nrow
= s!

(Nrow)s
. (2)

To find the probability that P2 reaches 1/2, we let s = Nrow/2
and make Stirling’s approximation:

PNrow/2 = (Nrow/2)!

(Nrow)Nrow/2 ∼
√
Nrow

2Nrow/2
e−Nrow/2. (3)

Therefore, this simple model predicts that the probability of
a disordered region initiating increases exponentially as the
number of particles in a crystal row encircling the cylinder
decreases. The predicted exponential scaling is consistent
with the simulation results, which show that the defect den-
sity increases exponentially with decreasing circumference
[Fig. 4(c)]. The same argument can explain defect formation
on a cone, albeit with some subtleties, which we discuss in
Appendix D.

B. Seeds close to the tip

These results, all of which concern seeds placed far from
the tip of the cone, raise the question of whether placing seeds
closer to the tip of the cone might help prevent disorder near
the tip. We therefore examine simulations of crystallization
with seeds placed at different circumferences.

We find that while crystals seeded far from the tip (at
C = 9 a0) are able to grow normally towards the tip until the
onset of disorder, crystals that are seeded closer to the tip
(at C = 7 a0 and C = 5 a0) first form a small crystal before
disorder emerges [Fig. 6(a)]. The formation of these small
crystals is reflected in the defect density, which shows a dip
at the circumference corresponding to the seed location for all
seeds placed at C < 9 a0 [Fig. 6(b)].

We can explain these results using the model from
Sec. IVA. A crystal grows until the closure constraint de-
mands formation of a seam. But when the crystal is seeded
near the tip, the circumference is small, and hence Nrow is
small. Therefore, off-lattice growth is more probable at these
small circumferences, and the crystal becomes frustrated a
short distance from the seed.

Interestingly, in some cases we see that new crystals can
form at the wider part of the cone, as shown in the C =
7 a0 example. However, these new crystals quickly become
frustrated again as new seams and grain boundaries form.
Consequently, the defect density dips at the circumference of
the seed and then rises with increasing circumference, until
it exceeds the defect density for a seed placed at C = 10 a0
[Fig. 6(b)]. We conclude that crystals that are seeded near
the tip can temporarily escape the finite-size effect leading
to disorder near the tip, though at the expense of increased
disorder farther from the seed site.

(b)

(a)

C / a0

Nj
2 3 4 5 6

FIG. 6. Particle packings on sectors initialized at different seed
positions. (a) Rendering of simulation results for φ = 5◦ with seed
positions atC = 5 a0,C = 7 a0, andC = 9 a0 and a seed orientation
of θ = 40◦. (b) Plot of the defect density ρ as a function of C,
averaged over 100 trials. Crystals seeded at small circumferences
have dips in the defect density that correspond to the seed location.

V. CONCLUSION

We have shown that crystal growth on a cone is geo-
metrically frustrated. For any nonmagic cone angle, a seam
is required. A disordered region forms near the tip because
defects tend to appear at the seam, and the probability of these
defects proliferating increases exponentially as the circumfer-
ence decreases.

This type of frustration has implications for slow, reaction-
limited crystal growth on cones. Near-cylindrical cones have
long sections in which defects form with high probability,
resulting in large areas of potentially disrupted crystallization.
In wider cones, the increase in defect probability is concen-
trated at the tip and can block tip closure, leading to holes at
the tips of conical shells.

These results may help explain tip-closure problems ob-
served in experimental systems. For example, the conical
capsids of HIV often exhibit large holes at the tip [26]. Also,
crystals of WS2 have been found to terminate unexpectedly
far from the tip [19]. Future experiments on colloidal systems,
such as the system described in Chapter 6 of Ref. [34], might
shed light on whether tip-closure failures are the result of the
frustration mechanism revealed by our simulations.

Our results also show that control over nucleation may be
crucial to fabricating conical crystals for applications. Dis-
ordered regions form near the tip of the crystal, regardless
of whether the seed is far or close to the tip. But a crystal
seeded near the tip can temporarily bypass the finite-size
effect, resulting in a locally reduced defect density. Therefore,
if the surface or interactions can be controlled such that nu-
cleation occurs close to the tip, then at least small crystals
can be formed in this region. Furthermore, if the geometry of
nucleation can be controlled, new crystalline structures might
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be realized experimentally. In Appendix E, we discuss how
a nucleus consisting of a ring of particles might grow, and
how the size of the resulting crystal depends on the elastic
modulus.

Our simulations used a greedy algorithm because our aim
was to reveal the geometric frustration faced by crystals grow-
ing on a conical surface. Our simulations do not account for
kinetics, thermal fluctuations, or vibrational entropy. Future
simulations and experiments are therefore needed to develop
a more complete physical understanding of conical crystal
growth. Nonetheless, our results show that, apart from the
special case of magic-angle cones, any conical crystal is sub-
ject to geometrical frustration that promotes disorder at small
circumferences.

Data for the simulations are openly available on the
Harvard Dataverse [35]. Code for the simulations is available
under the GNU General Public License v3 at Ref. [36].
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APPENDIX A: 3D CORRECTIONS TO EFFECTIVE
PARTICLE SHAPE

Using a constant particle shape simplifies our analysis
considerably. However, a position-dependent particle shape
would more accurately model 3D spheres assembling onto
a cone. Though we do not consider these corrections in this
work, we describe them briefly here.

To provide intuition, we first consider two circular parti-
cles tangent to each other and to the surface of a circle, as
shown in Fig. 7. The distance between particle centers is
dctr = 2 a0. However, measured along the surface, the dis-
tance between the two points at which the particles touch the
substrate is

dsurf = 2R sin−1

(
a0

R + a0

)

≈ 2 a0 − 2 a20
R

+ O
(
a30
R2

)
. (A1)

In the limit a0/R → 0, dctr = dsurf, while for finite R, dsurf <

dctr. This difference can be significant: for R = 3 a0, dsurf is
approximately 75% of dctr, for example. We can represent
this 2D assembly in 1D by “unwrapping” the circle to form
a line segment of length 2πR with periodic boundaries, upon
which we place two adjacent line segments of length dsurf. The
dimensional reduction creates an effective particle size that
depends on the surface curvature.

This idea can be straightforwardly extended to a cylin-
drical substrate with radius R, as described in Memet et al.
[37]. Two adjacent particles aligned with the axial direction

FIG. 7. Diagram showing that the distance between particles
along a surface differs from 2 a0 when the surface is curved

are separated by a distance dctr, while two adjacent particles
aligned with the circumferential direction are separated by a
distance dsurf measured along the surface. Upon unwrapping
the cylinder to form a flat 2D domain with periodic bound-
aries, we find that the effective particle shape is an extended,
ellipse-like shape. When centered at the origin of the xz plane,
this effective shape is described by the equation

(a0 + R)2 sin2(x/R) + z2 = a20. (A2)

Note that this is the equation of a circle in the limit R � a0, as
expected. Thus, we can simulate crystallization on a cylinder
using a flat 2D domain while taking into account the 3D
shape of the particles if we generalize our algorithm to use
the oblong shapes given by Eq. (A2) instead of circles.

For a cone, the effective particle shape is more compli-
cated. Far from the cone tip, curvature effects will be small,
and the effective particle shape will be approximately circular.
As we move closer to the tip, curvature along the circumfer-
ential direction increases, and the effective particle shape will
become more elongated.

We can solve for this position-dependent effective particle
shape by considering horizontal slices through the cone and a
tangent spherical particle. Effective particle shapes for differ-
ent locations on the domain are shown in Fig. 8.

Using a position-dependent effective particle shape will
likely further disrupt crystallization close to the sector
center/apex (where the particle shape is not approximately
circular). These 3D effects should be considered by simula-
tions that seek to more accurately model experiments. Though
solving explicitly for the effective particle shape in Fig. 8 is
useful for estimating the corrections to our model, simulating
the assembly process directly in three dimensions would be a
more straightforward way to incorporate this effect.
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FIG. 8. Diagram showing that the effective particle shape on
a cone is a tapered ellipse-like shape, pointing towards the sector
center. The correction is much more pronounced close to the tip.

APPENDIX B: DEFECT DEFINITION

We choose |ψ6, j | < 0.9 to define a defect. We use the
bond orientational order instead of the more commonly used
definition based on coordination number so that we can fil-
ter out dislocations that form along the seam, which have
|ψ6, j | � 0.9. These dislocations would otherwise contribute
a background defect density. Changing the cutoff value from
0.9 does not alter the shape of the defect density distribution,
as seen in Fig. 9.

APPENDIX C: COMMENSURATE PACKINGS ON
CYLINDERS

On a cone, perfect crystals can form only when the sector
angle is a “magic” angle φ = 60◦P, where P is an integer
[24–26]. The only magic angle in the range φ � 30◦ studied
here is φ = 0◦, corresponding to a cylinder. On a cylinder,
there are many commensurate packings, depending on the
circumference and angle of the crystal. These commensurate
packings are determined by a pair of phyllotactic indices

C / a0

FIG. 9. Plots of defect density for various choices of cutoff for
|ψ6, j |. The simulations were carried out for sectors with φ = 5◦ and
for seeds initiated atC = 10 a0 with orientation θ = 40◦. Each curve
is an average over 100 trials.

(a)

(b)

a

b

c

a

b

c

m/n

C

FIG. 10. Commensurate chiral and achiral particle packings on
cylinders. (a) Plot of Eq. (C1) which represents the circumferencesC
and seed orientations θ that should result in commensurate packings,
where θ is related to (m, n) by Eq. (C2). The blue vertical line
represents a seed orientation of θ = 40◦ as shown in Fig. 4 of the
main text, while the red vertical line represents a seed orientation
of θ = 59◦, as shown in Fig. 11. Note that the vertical lines do not
intersect any commensurate points for C < 20 a0. Here we show
commensurate points for C < 12 a0, which is the circumference
range studied. (b) Renderings of simulation results on an unrolled
cylinder with crystal seed parameters set at commensurate points.
We observe perfect packings even for chiral seed orientations and
small circumferences.

(m, n), where [32]

1

2π
|C| = a0

2π

√
m2 + n2 − mn, (C1)

and a0 is the lattice spacing. The integers m and n are related
to the crystal orientation by [32]

tan
(π

2
− θ

)
≈ 2√

3

(
m

n
− 1

2

)
, (C2)

where θ is the angle between the crystal lattice and circumfer-
ential axis.

The commensurate points in the (C,m/n) plane are plotted
in Fig. 10(a) according to Eq. (C1). The blue vertical line
represents the crystal orientation θ = 40◦. Along this line
there are no commensurate packings, at least for C < 20 a0.
The red vertical line represents crystal orientations θ = 59◦.
Along this line there are also no commensurate packings for
C < 20 a0. The circled points are visualized in Fig. 10(b). Our
simulations are able to reproduce the commensurate packings
at the expected phyllotactic values.

When the seed orientation is fixed at a near-commensurate
value of θ = 59◦, our simulations reveal interesting nonmono-
tonic behavior in the defect density plot (Fig. 11). While the
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(a)

(b)

C / a0

Nj
2
3
4
5
6

FIG. 11. Nonmonotonic defect density behavior of near-
commensurate cylinders. (a) Rendering of representative results for
simulations on an unrolled cylinder for seed orientation fixed at θ =
59◦. AsC decreases, the crystal becomes fragmented and disordered.
(b) Plot of the defect density of cylinders (circles) superimposed on
a plot for cones (lines) for simulations fixed at θ = 59◦. Note that
the cylinder defect densities are nonmonotonic, with local minima at
integerC values.

overall boundary of the sampled defect densities follows the
same profile as cones, we observe local dips at integer C
values, corresponding to values close to commensurate points
[Fig. 10(a)]. Therefore, while cylinders of different crystal
orientations manage to capture the general defect density
behavior of cones, we choose to analyze seed orientations
θ = 40◦, for which we encounter fewer nearby commensurate
points as cylinder circumference increases (see blue line in
Fig. 10).

APPENDIX D: CIRCUMFERENCE ARGUMENT APPLIED
TO CONES

We now seek to extend the growth probability argument
presented in Sec. IVA to a conical substrate. On a cone,
crystals grow along conical geodesics. The theory for cylin-
ders might need to be modified if the number of particles
along a geodesic interface were to differ significantly from the
number of particles that can fit around the cone circumference
at a given height, or if the interface/geodesic length were to
depend strongly on the crystal orientation.

However, we find that if we restrict our attention to
geodesics that represent realistic crystal boundaries (for

FIG. 12. Diagram showing examples of geodesics on the circu-
lar sector that make permissible crystal boundaries. Three possible
starting points are shown (blue points) from which geodesics depart
toward the bottom at a range of angles, circle the cone once, and re-
turn within a distance a0 of the initial starting point (light blue disk).
The lengths of the geodesics that meet these conditions are well-
approximated by the circumference of a circular cross-section of the
cone at the initial points.

example, the geodesics that start at a particular point on
the cone, circle the cone once, and returns to within a0 of
the starting point) on cones with small angles, the length
of a geodesic is well-approximated by the circumference of
a circular cross-section. The simplest case is a geodesic at
an angle θ = 0. The geodesic length is 2R sin(φ/2), which
is the same as the circumference at that point, Rφ, in the
small-angle limit. Perhaps more surprisingly, varying θ leads
to only a minor correction. Only a narrow range of θ val-
ues produce curves that circle the apex one time, returning
to within a0 of their starting point, and these admissible
curves are also well-approximated by the circumference, as
we show graphically in Fig. 12. It is therefore a reasonable
approximation to set Nrow ≈ circumference/a0 and to explain
the dependence on circumference (and independence on seed
orientation and cone angle) in our cone simulations with our
simplified growth model developed for cylinders.

APPENDIX E: INITIALIZATIONWITH A RING OF
PARTICLES

In the main text, we investigate crystal growth initiated by a
seed of three particles in contact with one another [Fig. 1(a)].
In this Appendix, we provide a brief overview of the inter-
esting effects that occur when a crystal instead nucleates on
a ring of particles oriented parallel to the base of the cone
(Fig. 13). Such a ring-shaped crystal could be realized experi-
mentally by, for example, milling a shallow trench or placing
a metallic ring flush against the conical surface. Reliably
creating ring-shaped initial conditions in experiments is the
subject of ongoing work.

First, we consider a ring of particles initiating crystal
growth on a cylindrical substrate. A crystalline band of any
width is not strained on a cylinder provided that the initial
seeded ring is commensurate with the circumference of the
cylinder. The energy of a crystal of circumference C0 and
width w is given by

Ecylinder = Ebound + Ebulk, (E1)
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FIG. 13. Schematic of ring initial condition, defining the ring
circumference C0 and the banded crystal width w.

where

Ebound = 2σC0, (E2)

Ebulk = −
 fC0w, (E3)

where σ is the energy per unit length required to form a free
boundary in a crystalline bulk by breaking interparticle bonds,
and 
 f is the change in free energy of the noncrystalline
phase relative to the crystalline phase [38]. Note that 
 f > 0
is positive, as the disordered phase has higher energy than
the ordered crystalline phase. Since the energy in Eq. (E1)
decreases with increasing crystal width w for any w > 0,
crystal growth always lowers the energy of the system. There-
fore, the seeded crystal would nucleate and grow to cover the
entire cylindrical surface. Note that the lack of a nucleation
barrier here is specific to our ring seeding configuration. An
energy barrier is typically present for nucleation from a more
isotropic seed on a two-dimensional surface.

In contrast, on the surface of a cone, crystal growth from
an initially unstrained ring of particles can generate nonzero
elastic strain. In the limit of a small cone angle, a crystalline

band of width w centered about an initial commensurate ring
of circumference C0 has energy [39]

Econe = Ebound + Ebulk + Estrain, (E4)

where

Ebound = 2σC0, (E5)

Ebulk = −
 fC0w, (E6)

Estrain = Y tan2(π sin β/2)

6C0
w3, (E7)

where β is the cone angle defined in Figs. 1 and 13 and Y is
the two-dimensional Young’s modulus of the colloidal crystal.
Owing to the ∼w3 scaling of the strain energy in Eq. (E7), the
derivative of the total energy E with respect to w becomes
positive above a critical width wc given by

wc = 2C0

πβ

√
2
 f

Y
, (E8)

indicating the width at which colloidal crystallization is ar-
rested. Note that the nonzero Gaussian curvature of the conic
surface, which manifests as the varying circumference of the
cone cross-section, is an essential ingredient for this growth
arrest.

Interestingly, we can also leverage this crystallization
arrest phenomenon to propose an alternative method for mea-
suring the Young’s modulus of the colloidal crystal, a quantity
that has typically been extracted through various inference
methods [11,40]. On inverting Eq. (E8), we have

Y = 8
 f

(
C0

πβwc

)2

. (E9)

Since the critical width of a crystalline band on a cone is a
directly measurable quantity, we can use it to infer the Young’s
modulus Y through Eq. (E9).

In this calculation, and throughout the paper, we have
assumed that the triangular lattice is the most stable config-
uration. For longer-ranged interactions, however, it is possible
that the crystal could restructure itself to accommodate the
elastic strain. Future work might examine whether other lat-
tices, such as the rhombic lattice studied by Mughal and
Weaire [31] in the context of disk packings on cylinders, might
represent stable structures on the cone.
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