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ABSTRACT

Corners concentrate elastic fields and often initiate fracture. For small deformations, it is well established that the elastic
field around a corner is power-law singular. For large deformations, we show here that the elastic field around a corner is
concentrated but bounded. We conduct computation and an experiment on the lap shear of a highly stretchable material. A
rectangular sample was sandwiched between two rigid substrates, and the edges of the stretchable material met the substrates at
90° corners. The substrates were pulled to shear the sample. We computed the large-deformation elastic field by assuming
several models of elasticity. The theory of elasticity has no length scale, and lap shear is characterized by a single length, the
thickness of the sample. Consequently, the field in the sample was independent of any length once the spatial coordinates were
normalized by the thickness. We then lap sheared samples of a polyacrylamide hydrogel of various thicknesses. For all samples,
fracture initiated from corners, at a load independent of thickness. These experimental findings agree with the computational
prediction that large-deformation elastic fields at corners are concentrated but bounded. [doi:10.5254/rct.2376991]

INTRODUCTION

Many structures and devices contain corners, which concentrate elastic fields and often initiate
fracture. For small deformations, linear elasticity predicts that elastic fields around corners are power-
law singular.'? Analogous to singular elastic fields around crack tips, the singular elastic fields around
corners correlate the critical conditions of fracture for various sample geometries and load types.*

Many elastomers and gels are highly stretchable before fracture. For large deformations, the
elastic field around a corner in a neo-Hookean material has been recently analyzed.”® The near-
corner elastic field under large deformations obtained by an asymptotic analysis is not power-law
singular. This result is in contrast to the singular elastic field predicted by linear elasticity. Steck et
al.® believed that the large deformation field around the corner obtained by finite element analysis is
bounded, but Hui et al.” believed it to be logarithmically singular. A soft material with a corner was
also previously simulated,” but the focus was not to examine the field around the corner, and the
mesh used was too coarse to show whether the corner field was singular or not. Incidentally, at crack
tips in both linear and nonlinear elastic materials, the energy density is inversely proportional to the
distance from the crack tip.® Whether the near-corner fields are bounded or logarithmically singular
may deserve further investigation. But a logarithmic singularity is weak and may as well be
indistinguishable from a bounded field in experiments. How do bounded (or weakly singular) fields
affect fracture from corners?

Here we compute the elastic field around a corner using a mesh of a higher resolution, applied
strains of larger magnitude, and various material models. These simulations confirm that the elastic
field at a corner is concentrated but bounded. We consider lap shear of a highly stretchable material
sandwiched between two rigid substrates (Figure 1). The stretchable material is rectangular and
meets the substrates at 90° corners. The length of the stretchable material L is taken to be much larger
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FIG. 1. — Lap shear in the (a) undeformed state and (b) deformed state.

than the thickness H. The width of the stretchable material B is much larger than the thickness, such
that, when the substrates are pulled relative to each other by distance d, the stretchable material
deforms under the plane strain condition. The magnitude of the bounded field at the corner is
amplified from that of the applied field. Experimentally, we lap shear samples of a polyacrylamide
hydrogel of various thicknesses. For all samples, fracture initiates from corners, at a critical load
independent of thickness. These experimental findings agree with the computational predictions
that large-deformation elastic fields at corners are concentrated but bounded.

VARIOUS MATERIAL MODELS
A neo-Hookean material is specified by the energy density function:
W:%(F,-kF,-ka), (1)

where Fj; is the deformation gradient and p is the shear modulus. The material is taken to be
incompressible.
A homogeneous shear strain y corresponds to the deformation gradient:

I v O
F={0 1 0 (2)
0 0 1
Consequently, the energy density is
W= /2. (3)

This result of the neo-Hookean material undergoing large deformation coincides with that of a
linear elastic material undergoing infinitesimal deformation.
The components of true stress are given by

Cij = WFiFjr — pdjj, (4)

where p is the Lagrange multiplier that enforces incompressibility and corresponds to a hydrostatic
pressure. A direct calculation gives

R1+7y)—p  wy 0
c = Ry p—p 0 . (5)
0 0 p-—p

In simple shear, the hydrostatic pressure is undetermined, and all normal stress components are
nonzero. The differences in normal stresses are given by G| — G, =G| - G33= mlz. The shear
stress components are given by 61,=G,; =Y. The nonzero normal stresses are called the Poynting
effect.’
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FIG. 2. — Stress—strain curves of several models of elasticity under simple shear. For the Yeoh model, we take C,/C,=—4 X
1075 and C5/C; =4 X 107°. For the Gent model, we set J,, = 1089.

A Mooney-Rivlin material model'? is specified by the energy density:
W=C(I) —3)+Ca(l, — 3), (6)
where C and C, are material constants and /; and I, are related to the three principal stretches as
I =M +05+ A3, L= MA3 4+ A3 + A3A5. (7)

In plane strain, A3 =1, and for an incompressible material, L, A,A3 = 1. Under these conditions,
Iy =1, =5+ Ay + 1. The Mooney—Rivlin material model becomes

W= (C, +Co)(I - 3). (8)

This expression is identical to that of an incompressible neo-Hookean material, in which the
shear modulus is related to the Mooney—Rivlin constants as L =2(C; + C5).
A Yeoh material'' is specified by the energy density:

W =C(I; —3)+Ca(l; —3)* + C3(I; — 3)°. (9)

The shear modulus is given by n=2Cy, and C; and C5 and are material constants. Under simple
shear I; =v*>+3, such that W=py*/2+ C,»y*+ C5Y°. For small strains, the higher-order terms can be
neglected, and the Yeoh model reduces to neo-Hookean.

A Gent material'? is specified by the energy density:

]me 11 -3
w > n( ) (10)

where [ is the shear modulus at small strain and J,,, is a fitting parameter. Under simple shear, W=
—/2 J,,In(1 — yz/Jm). When J,, — o, the Gent model reduces to neo-Hookean.

The stress—strain curves for the various material models agree at small strain but disagree at
large strain (Figure 2). As noted above, a Mooney—Rivlin material is indistinguishable from a neo-
Hookean material in plane strain. We will not consider the Mooney—Rivlin material further in this
article.

ASYMPTOTIC ANALYSIS OF A WEDGE

An asymptotic analysis of large deformation near a corner of a neo-Hookean material has been
recently reported.”®'® Here we reproduce results relevant to this article. A wedge of angle ® is
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FIG. 3. — A wedge bonded to a rigid substrate undergoing large deformation. (a) Undeformed state. (b) Deformed state.

bonded to a rigid substrate on one edge and is traction free on the other edge. In the undeformed
state, a material particle is labeled by polar coordinates (R,®) and rectangular coordinates (X1,X>)
(Figure 3a). The wedge deforms under the plane strain condition. In a deformed state, the same
material particle moves to coordinates (x,x,) (Figure 3b).

The asymptotic analysis assumes that the elastic field near the wedge tip is power-law singular.
To leading order, the field of deformation x,(R,0®) is given by

Xy = cyR'Zsin (@ — %), (11)

where indices labeled with Greek letters can be either 1 or 2, ¢, are coefficients, and m relates to the
wedge angle O as

e
=2——. 12
m=2-2 (12)
Later in this article, we will use the field of energy density W(R,®). With Eqs. 1, 11, and F,g=

9x4(X1,X5)/0Xp, the energy density is

W:g(chrc%)(l —%)21?*’". (13)

Observe that the asymptotic field of energy density is power-law singular, W ~ R, and has no
angular dependence. When the wedge angle is ®=m/2, the wedge becomes a 90° corner, m=0, and
the field of energy density is not power-law singular. The deformation and stress fields are also not
power-law singular.

When the near-corner field is not power-law singular, Eqs. 12 and 13 are invalid, because
neglecting terms in the asymptotic analysis can no longer be justified. Instead, a full-field solution
must be obtained to analyze the elastic field near the corner. The elastic field calculated by the finite
element method has been previously reported.”® Here, we compute the elastic field with a mesh of a
higher resolution and to applied strains of larger magnitude. For other material models, asymptotic
analyses of a corner are unavailable. In this article, we use neo-Hookean, Yeoh, and Gent materials
in finite element simulations.

FINITE ELEMENT SIMULATION

We use a commercial finite element software ABAQUS to determine the elastic field. The
incompressibility of the material is represented in ABAQUS using hybrid elements and a Poisson’s
ratio of 0.495. Hybrid elements are provided by ABAQUS. They are used when the material is
assumed to be incompressible or nearly incompressible. Since the pressure p is undetermined by the
displacement field, hybrid elements introduce an additional degree of freedom to calculate the
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FIG. 4. — Deformation in lap shear at an applied shear strain of Y =4. Contours of normalized energy density are plotted in
the entire sample as well as around a corner. The material is neo-Hookean.

pressure. The displacement field is used to calculate the deviatoric strains and stresses. Using hybrid
elements is a standard practice in analyzing hyperelastic materials under plane strain conditions.”
The substrates are meshed with rigid elements in the simulation. To represent the corner, we use a
combination of triangular and quadrilateral elements of quadratic order (CPE8H and CPE6H). We
use a refined mesh near the corner, where the mesh becomes 10 times finer for every decade in R.
The minimum mesh size near the corner is 2 X 107® H. A layout of the mesh can be found in our
previous work.® The top and bottom surfaces of the stretchable material meet rigid substrates, and
the left and right edges of the stretchable material are traction free. ABAQUS provides a rigid
element, for which the user can specify either rigid-body displacements or resultant forces, as well
as either rigid-body rotation or resultant moment. We use one rigid element to represent the top
substrate and another rigid element to present the bottom substrate. The bottom substrate is held
fixed by prescribing zero rigid-body displacements and zero rigid-body rotation. The top substrate
is prescribed with a horizontal rigid-body displacement d, zero vertical resultant force, and zero
rigid-body rotation. We set L/H =20 and vary d/H from 1 to 32. Thus, for large values of d/H, the
condition L > d is not satisfied. A consequence of this situation will be discussed later.

The stretchable material undergoes an inhomogeneous deformation, but the inhomogeneity
concentrates near the edges (Figure 4). In the undeformed state, we center a polar coordinate system
(R,0) at the corner. ABAQUS reports a value of energy density for each element. Here, we plot the
energy densities of elements in the bottom layer of the soft material for various applied shear strains
v (Figure 5a). For any applied strain, the energy density plateaus near the corner, indicating that the
elastic field is bounded. When the applied strain is small, the field at the corner is greatly amplified
from the applied field. For applied strains smaller than 1, the elastic field approaches that of the
linear elastic singularity.® When the applied strain is large, the field at the corner is comparable to the
applied field. The energy density has no angular dependence, which is consistent with a bounded
elastic field at the corner (Figure 5b). We further confirm that the near-corner field is concentrated
and bounded for other material models (Figure 5¢,d). We have varied the finite element mesh size to
ascertain the convergence of the simulations. Our results show that the magnitude of the energy
density near the corner changes negligibly with mesh size once the mesh size around the corner is
below 1 X 107 H.

Similar to the field of energy density, the field of stress is also bounded and concentrated
(Figure 6). The stress components 6, and G, are much larger than 65, and G33. This behavior is
perhaps unsurprising. Recall that a large portion of the sample is under homogeneous deformation
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FIG. 5 — Elastic fields are bounded and concentrated near a corner. (a) W/p as a function of R/H at ®=0 for the neo-Hookean

material and various applied strains. (b) W/u as a function of © at RZH = 10> for the neo-Hookean material and various

applied strains. (c) W/p as a function of R/H at ® =0 for the Yeoh material and various applied strains. (d) W/p as a function of

R/H at © =0 for the Gent material and various applied strains. The parameters for the Yeoh and Gent materials are the same as
those used in Figure 2.

of simple shear (Figure 4). As noted in the “Various Material Models™ section, this homogeneous
deformation of simple shear generates stresses G| — Gy =0 —G33= w/z and 61,=0,;=Ly. Near
the edge of the sample, however, the deformation is inhomogeneous. The near-corner field still has
large components of 6| and G1,. This behavior is also found in the simulations using the Yeoh and
Gent materials. We note that, by default, ABAQUS reports stress components at the integration
points in an element, which we use to plot Figure 6a,b. ABAQUS also provides an option to
interpolate stress values at the nodes, which we use to plot Figure 6¢,d to reduce scatter in the data.

The near-corner field is bounded but is amplified from the field far from the corner. We define a
concentration factor by

K = Wcomer/WOC- (14)

Here, W omer 1s the energy density at the corner and W.. is the energy density far from the
corner. Far from the corner, the sample is under homogeneous deformation of simple shear, so that
W..=py*/2 for the neo-Hookean material, W= py*/2+ C»y*+ C57® for the Yeoh material, and W..
=—1/2J,,In(1—7?/J,,) for the Gent material. Since the near-corner field is bounded, K is independent
of coordinates R and ®. When L > H and L > d, the boundary value problem has a single length
scale, the thickness H. The displacement d is represented by the applied strain, ¥ = d/H. Thus, the
concentration factor K is a function of the applied strain, K(Yy). Our finite element simulations show
that this function is insensitive to the material model (Figure 7). In our results, Weome, 1s taken at R/H
=10~ while W.. is taken at R/H =7. When v is small, the near-corner field approaches the linear
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FIG. 6 — The field of true stress near a corner at @ =0, plotted for strains y=1, 2, 4,8, 16,and 32. (a) 5,2/p, (b) 611/, (¢) 622/
1, and (d) o33/). The material is neo-Hookean.

elastic field, which is singular. Consequently, K — o as y — 0. As the applied strain increases, the
concentration factor decreases and plateaus.

Incidentally, our calculations assume L/H = 20, which violates the condition L >> d for large
applied strains. In general, the concentration factor should be a function of both d/H and L/H. We
have not studied the effect of L/H.
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FIG. 7. — Field concentration factor as a function of applied shear strain. Weopme, is taken at R/H = 10 and @ =0. W., is
taken at R/H="7 and ® =0.



ELASTIC FIELDS AT CORNERS OF HIGHLY STRETCHABLE MATERIALS 485

100 T T

80 b

60 27 A

40 A :

20t :

Nominal stress, F/A (kPa)

1 5 10 15
Stretch, A

FIG. 8. — Uniaxial tension of a highly stretchable PAAm hydrogel (N = 1000). The dashed line represents an
incompressible neo-Hookean material with shear modulus p =4.84 kPa.

LAP SHEAR OF A HIGHLY STRETCHABLE POLYACRYLAMIDE HYDROGEL

We prepare polyacrylamide (PAAm) hydrogels by free radical polymerization of acrylamide
monomer (A8887, Sigma Aldrich, St. Louis, MO, USA), using N,N’-methylenebisacrylamide
crosslinker (M7279, Sigma Aldrich) and 2-hydroxy-4'(2-hydroxyethoxy)-2-methylpropiophe-
none photoinitiator (410896, Sigma Aldrich). The molar ratios of water, crosslinker, and initiator to
monomer are 25, 5 X 107, and 5 X 107, respectively. The resulting hydrogels are 86 wt% water.
The number of monomers between two crosslinks for these hydrogels is estimated as N ~ 1/2C,
where C s the molar ratio of crosslinker to monomer.'* The resulting hydrogels have N=1000. The
stress—stretch curve for the as-prepared hydrogel is measured in uniaxial tension (Figure 8). The
stress—stretch curve is fit well by the neo-Hookean model.

We next cut rectangular samples from a large sheet of hydrogel with arazor blade. A sample of
thickness H, length L, and width B is then glued between two polyester substrates (8567K92,
McMaster-Carr, Elmhurst, IL, USA) using cyanoacrylate (Krazy Glue). The edges of the hydrogel
meet the surfaces of the substrates to form 90° corners. The substrates are prepared with lengths
longer than L, and the unbonded sections of the substrates are clamped in grips of a tensile tester
(5966, Instron, Norwood, MA, USA). In the lap shear test, the tensile tester pulls the substrates
relative to each other by a distance d and measures the force F. The grips of the tensile tester are
positioned such that the two substrates are parallel prior to testing. During the test, the clamps do not
constrain the bending of the substrates near the gel, do not constrain the thickness of the gel, and do
not prevent rotation of the gel. The intention of a lap shear test is to subject the hydrogel to
homogeneous shear strain Y = d/H and homogeneous shear stress

t=F/BL. (15)

To maintain a plane strain deformation, we have fabricated the samples such that B > H.

The above homogeneous deformation does not apply to the hydrogel near the corners. To
ensure the homogeneous deformation prevails in a large portion of the hydrogel away from the
corners, we consider the following conditions. First, when the length of the hydrogel is extremely
long, the substrates can no longer be modeled as rigid materials. The elasticity of the substrates will
transmit shear in the hydrogel to tension in the substrates. This behavior, called shear lag, identifies

a length scale'>™'":
EHH
Lo=y—— (16)
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FIG. 9. — Lap shear of a highly stretchable PAAm hydrogel (N=1000). Shear stress—strain curves of samples of various
thicknesses.

where E, and H, are Young’s modulus and the thickness of the substrate, respectively, and p and H
are the shear modulus and thickness of the hydrogel, respectively. Taking H=1 mm, p=4.5 kPa, H;
=0.25 mm, and E;=3 GPa, we estimate Ly ~ 40 cm. We prepare samples such that H < L < L.
Second, when the relative displacement between the two substrates is too large, such that d is
comparable to or even larger than L, the flexibility of the substrates will cause the hydrogel to rotate.
These two considerations suggest that homogeneous shear deformation prevails in a large portion
of the hydrogel under the conditions H < L < Ly and d < L. When the dimensions are within this
range, lap shear generates a simple shear deformation in a large portion of the hydrogel away from
the corners.

We have used thin polyester sheets as substrates based on the following considerations. First,
thin substrates are flexible. While bent, the substrate meets the surface of the gel at a line, such that
the substrate can be glued to the gel without trapping bubbles along the interface. Bubbles could
concentrate stress and should be avoided. Second, thin sheets are easily processed from bulk
material. Third, when L,y > L, flexible and inflexible substrates deform the gel similarly and
produce similar conditions at rupture.'”

We measure the shear stress—strain curves for samples of the polyacrylamide hydrogel of
various thicknesses (Figure 9). For each thickness, several samples are tested. For each sample, a
shear stress—strain curve is recorded up to fracture. These shear stress—strain curves are nonlinear,
indicating that the PAAm hydrogel deviates from the neo-Hookean material somewhat.

The shear stress—strain curves differ from sample to sample. To see this difference clearly, we
characterize the shear stress—strain curve of each sample with four properties. The slope of the curve
at small strains defines the shear modulus p.. The point of fracture defines the critical strain 7y, and
critical stress t... The area under the curve defines the energy density at fracture W..

For samples of any given thickness, each of the four properties has a comparable scatter from
sample to sample (Figure 10). For samples of different thicknesses, all four properties do not vary
much with thickness. Also included are data of a less stretchable PAAm hydrogel (N=100), which
were obtained in our previous work.® Whereas W, of the highly stretchable gel (N = 1000) is
independent of thickness, W, scales with thickness as W, ~ H *® when the gel has limited
stretchability (N = 100). We have previously explained this dependence for the brittle gel by
analyzing the linear elastic field near the corner.

Our experimental results demonstrate that, at fracture, the critical applied strain, stress, and
energy density are independent of the thickness of the material. We interpret this experimental
finding as follows. First, as shown in our finite element simulations, for highly stretchable materials,
the elastic field near the corner is bounded. Second, the energy density at the corner depends on the
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lines indicate the mean values. The data of W,. for the PAAm hydrogel of N=100 are replotted with permission from ref 6,
where the dashed line indicates the scaling W, ~ H %%,

applied energy density according to Wy er =KW, where K is a function of the applied strain y. Ata
fixed applied strain, the field around the corner is fixed in both its amplitude and type of
deformation. Third, fracture initiates from a corner when the energy density at the corner Weomer
reaches a critical value, called the work of fracture, W,. The work of fracture is assumed to be a
material property independent of thickness.'® The above considerations are consistent with the
experimental observation that the critical applied strain is independent of the thickness. Thus, the
critical applied shear stress and critical applied energy density should also be independent of
thickness. Consequently, our assumption that W, is a material property is consistent with the
experimental observation that the critical applied energy density is independent of the thickness.

The above discussion assumes that L > H and L >> d, so that the elastic field depends on
lengths through a single dimensionless ratio, the applied shear strain y = d/H. In our experiment,
these conditions are not always satisfied. For example, when the sample is thick and the applied
strain is large, using a very long sample has been experimentally inconvenient. Under such a
condition, because L is not long enough, the sample rotates somewhat when the substrates are
pulled. The field around the corner will vary with two dimensionless parameters, d/H and L/H. In
particular, at a fixed applied strain Y = d/H, both the amplitude and type of deformation near the
corner will vary with L/H. This effect may alter the results for samples of large thicknesses tested
here.
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In general, for a given material, the work of fracture W, varies with type of deformation. For
instance, the work of fracture under shear differs from that under uniaxial tension. Consequently,
the critical applied shear strain should vary with L/H, since varying L/H can alter the type of
deformation. In our experiment, we have not varied L/H systematically over a large range. Our
experiments do not show significant deviation from a constant critical applied strain.

CONCLUDING REMARKS

In summary, we have shown that the elastic field near a corner of a highly stretchable material is
concentrated but bounded. The theory of elasticity has no length scale. Under the condition that lap
shear is characterized by a single length, the thickness of the stretchable material, the elastic field is
independent of any length once the spatial coordinates are normalized by the thickness. We lap
shear samples of a highly stretchable hydrogel of various thicknesses. For all samples, fracture
initiates from the corners, at a critical load independent of thickness. These experimental findings
agree with the computational prediction that the large-deformation elastic field near the corner is
concentrated but bounded. Our findings have implications beyond lap shear. For example, the
findings also apply to a composite in which a crack in a stretchable material impinges on a rigid
material.
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