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ABSTRACT

Corners concentrate elastic fields and often initiate fracture. For small deformations, it is well established that the elastic

field around a corner is power-law singular. For large deformations, we show here that the elastic field around a corner is

concentrated but bounded. We conduct computation and an experiment on the lap shear of a highly stretchable material. A

rectangular sample was sandwiched between two rigid substrates, and the edges of the stretchable material met the substrates at

908 corners. The substrates were pulled to shear the sample. We computed the large-deformation elastic field by assuming

several models of elasticity. The theory of elasticity has no length scale, and lap shear is characterized by a single length, the

thickness of the sample. Consequently, the field in the sample was independent of any length once the spatial coordinates were

normalized by the thickness. We then lap sheared samples of a polyacrylamide hydrogel of various thicknesses. For all samples,

fracture initiated from corners, at a load independent of thickness. These experimental findings agree with the computational

prediction that large-deformation elastic fields at corners are concentrated but bounded. [doi:10.5254/rct.2376991]

INTRODUCTION

Many structures and devices contain corners, which concentrate elastic fields and often initiate

fracture. For small deformations, linear elasticity predicts that elastic fields around corners are power-

law singular.1,2 Analogous to singular elastic fields around crack tips, the singular elastic fields around

corners correlate the critical conditions of fracture for various sample geometries and load types.3,4

Many elastomers and gels are highly stretchable before fracture. For large deformations, the

elastic field around a corner in a neo-Hookean material has been recently analyzed.5,6 The near-

corner elastic field under large deformations obtained by an asymptotic analysis is not power-law

singular. This result is in contrast to the singular elastic field predicted by linear elasticity. Steck et

al.6 believed that the large deformation field around the corner obtained by finite element analysis is

bounded, but Hui et al.5 believed it to be logarithmically singular. A soft material with a corner was

also previously simulated,7 but the focus was not to examine the field around the corner, and the

mesh used was too coarse to show whether the corner field was singular or not. Incidentally, at crack

tips in both linear and nonlinear elastic materials, the energy density is inversely proportional to the

distance from the crack tip.8 Whether the near-corner fields are bounded or logarithmically singular

may deserve further investigation. But a logarithmic singularity is weak and may as well be

indistinguishable from a bounded field in experiments. How do bounded (or weakly singular) fields

affect fracture from corners?

Here we compute the elastic field around a corner using a mesh of a higher resolution, applied

strains of larger magnitude, and various material models. These simulations confirm that the elastic

field at a corner is concentrated but bounded. We consider lap shear of a highly stretchable material

sandwiched between two rigid substrates (Figure 1). The stretchable material is rectangular and

meets the substrates at 908 corners. The length of the stretchable materialL is taken to be much larger
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than the thicknessH. The width of the stretchable materialB is much larger than the thickness, such

that, when the substrates are pulled relative to each other by distance d, the stretchable material

deforms under the plane strain condition. The magnitude of the bounded field at the corner is

amplified from that of the applied field. Experimentally, we lap shear samples of a polyacrylamide

hydrogel of various thicknesses. For all samples, fracture initiates from corners, at a critical load

independent of thickness. These experimental findings agree with the computational predictions

that large-deformation elastic fields at corners are concentrated but bounded.

VARIOUS MATERIAL MODELS

A neo-Hookean material is specified by the energy density function:

W ¼ l
2
ðFikFik � 3Þ; ð1Þ

where Fik is the deformation gradient and l is the shear modulus. The material is taken to be

incompressible.

A homogeneous shear strain c corresponds to the deformation gradient:

F ¼
1 c 0

0 1 0

0 0 1

0
@

1
A: ð2Þ

Consequently, the energy density is

W ¼ lc2=2: ð3Þ

This result of the neo-Hookean material undergoing large deformation coincides with that of a

linear elastic material undergoing infinitesimal deformation.

The components of true stress are given by

rij ¼ lFikFjk � qdij; ð4Þ

where q is the Lagrange multiplier that enforces incompressibility and corresponds to a hydrostatic

pressure. A direct calculation gives

r ¼
lð1 þ c2Þ � q lc 0

lc l� q 0

0 0 l� q

0
@

1
A: ð5Þ

In simple shear, the hydrostatic pressure is undetermined, and all normal stress components are

nonzero. The differences in normal stresses are given by r11�r22¼r11 - r33¼lc2. The shear

stress components are given byr12¼r21¼lc. The nonzero normal stresses are called the Poynting

effect.9
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FIG. 1. — Lap shear in the (a) undeformed state and (b) deformed state.
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A Mooney–Rivlin material model10 is specified by the energy density:

W ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ; ð6Þ

where C1 and C2 are material constants and I1 and I2 are related to the three principal stretches as

I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3: ð7Þ

In plane strain, k3¼1, and for an incompressible material, k1k2k3¼1. Under these conditions,

I1¼ I2¼k12þk22þ1. The Mooney–Rivlin material model becomes

W ¼ ðC1 þ C2ÞðI1 � 3Þ: ð8Þ

This expression is identical to that of an incompressible neo-Hookean material, in which the

shear modulus is related to the Mooney–Rivlin constants as l¼ 2(C1þC2).

A Yeoh material11 is specified by the energy density:

W ¼ C1ðI1 � 3Þ þ C2ðI1 � 3Þ2 þ C3ðI1 � 3Þ3: ð9Þ

The shear modulus is given byl¼2C1, andC2 andC3 and are material constants. Under simple

shear I1¼c2þ3, such thatW¼lc2/2þC2c
4þC3c

6. For small strains, the higher-order terms can be

neglected, and the Yeoh model reduces to neo-Hookean.

A Gent material12 is specified by the energy density:

W ¼ � lJm
2

ln 1 � I1 � 3

Jm

� �
; ð10Þ

where l is the shear modulus at small strain and Jm is a fitting parameter. Under simple shear, W¼
�l/2 Jmln(1�c2/Jm). When Jm � ‘, the Gent model reduces to neo-Hookean.

The stress–strain curves for the various material models agree at small strain but disagree at

large strain (Figure 2). As noted above, a Mooney–Rivlin material is indistinguishable from a neo-

Hookean material in plane strain. We will not consider the Mooney–Rivlin material further in this

article.

ASYMPTOTIC ANALYSIS OF A WEDGE

An asymptotic analysis of large deformation near a corner of a neo-Hookean material has been

recently reported.5,6,13 Here we reproduce results relevant to this article. A wedge of angle U is

FIG. 2. — Stress–strain curves of several models of elasticity under simple shear. For the Yeoh model, we takeC2/C1¼�43

10�5 and C3/C1¼4310�6. For the Gent model, we set Jm¼1089.
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bonded to a rigid substrate on one edge and is traction free on the other edge. In the undeformed

state, a material particle is labeled by polar coordinates (R,H) and rectangular coordinates (X1,X2)

(Figure 3a). The wedge deforms under the plane strain condition. In a deformed state, the same

material particle moves to coordinates (x1,x2) (Figure 3b).

The asymptotic analysis assumes that the elastic field near the wedge tip is power-law singular.

To leading order, the field of deformation xa(R,H) is given by

xa ¼ caR
1�m

2 sin H�Hm

2

� �
; ð11Þ

where indices labeled with Greek letters can be either 1 or 2, ca are coefficients, and m relates to the

wedge angle U as

m ¼ 2 � p
U
: ð12Þ

Later in this article, we will use the field of energy density W(R,H). With Eqs. 1, 11, and Fab¼
]xa(X1,X2)/]Xb, the energy density is

W ¼ l
2
ðc2

1 þ c2
2Þ 1 � m

2

� �2

R�m: ð13Þ

Observe that the asymptotic field of energy density is power-law singular,W~R�m, and has no

angular dependence. When the wedge angle isU¼p/2, the wedge becomes a 908 corner,m¼0, and

the field of energy density is not power-law singular. The deformation and stress fields are also not

power-law singular.

When the near-corner field is not power-law singular, Eqs. 12 and 13 are invalid, because

neglecting terms in the asymptotic analysis can no longer be justified. Instead, a full-field solution

must be obtained to analyze the elastic field near the corner. The elastic field calculated by the finite

element method has been previously reported.5,6 Here, we compute the elastic field with a mesh of a

higher resolution and to applied strains of larger magnitude. For other material models, asymptotic

analyses of a corner are unavailable. In this article, we use neo-Hookean, Yeoh, and Gent materials

in finite element simulations.

FINITE ELEMENT SIMULATION

We use a commercial finite element software ABAQUS to determine the elastic field. The

incompressibility of the material is represented in ABAQUS using hybrid elements and a Poisson’s

ratio of 0.495. Hybrid elements are provided by ABAQUS. They are used when the material is

assumed to be incompressible or nearly incompressible. Since the pressureq is undetermined by the

displacement field, hybrid elements introduce an additional degree of freedom to calculate the

FIG. 3. — A wedge bonded to a rigid substrate undergoing large deformation. (a) Undeformed state. (b) Deformed state.
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pressure. The displacement field is used to calculate the deviatoric strains and stresses. Using hybrid

elements is a standard practice in analyzing hyperelastic materials under plane strain conditions.5

The substrates are meshed with rigid elements in the simulation. To represent the corner, we use a

combination of triangular and quadrilateral elements of quadratic order (CPE8H and CPE6H). We

use a refined mesh near the corner, where the mesh becomes 10 times finer for every decade in R.

The minimum mesh size near the corner is 23 10�6 H. A layout of the mesh can be found in our

previous work.6 The top and bottom surfaces of the stretchable material meet rigid substrates, and

the left and right edges of the stretchable material are traction free. ABAQUS provides a rigid

element, for which the user can specify either rigid-body displacements or resultant forces, as well

as either rigid-body rotation or resultant moment. We use one rigid element to represent the top

substrate and another rigid element to present the bottom substrate. The bottom substrate is held

fixed by prescribing zero rigid-body displacements and zero rigid-body rotation. The top substrate

is prescribed with a horizontal rigid-body displacement d, zero vertical resultant force, and zero

rigid-body rotation. We set L/H¼20 and vary d/H from 1 to 32. Thus, for large values of d/H, the

condition L � d is not satisfied. A consequence of this situation will be discussed later.

The stretchable material undergoes an inhomogeneous deformation, but the inhomogeneity

concentrates near the edges (Figure 4). In the undeformed state, we center a polar coordinate system

(R,H) at the corner. ABAQUS reports a value of energy density for each element. Here, we plot the

energy densities of elements in the bottom layer of the soft material for various applied shear strains

c (Figure 5a). For any applied strain, the energy density plateaus near the corner, indicating that the

elastic field is bounded. When the applied strain is small, the field at the corner is greatly amplified

from the applied field. For applied strains smaller than 1, the elastic field approaches that of the

linear elastic singularity.6 When the applied strain is large, the field at the corner is comparable to the

applied field. The energy density has no angular dependence, which is consistent with a bounded

elastic field at the corner (Figure 5b). We further confirm that the near-corner field is concentrated

and bounded for other material models (Figure 5c,d). We have varied the finite element mesh size to

ascertain the convergence of the simulations. Our results show that the magnitude of the energy

density near the corner changes negligibly with mesh size once the mesh size around the corner is

below 1310�5 H.

Similar to the field of energy density, the field of stress is also bounded and concentrated

(Figure 6). The stress components r11 and r12 are much larger than r22 and r33. This behavior is

perhaps unsurprising. Recall that a large portion of the sample is under homogeneous deformation

FIG. 4. — Deformation in lap shear at an applied shear strain of c¼4. Contours of normalized energy density are plotted in

the entire sample as well as around a corner. The material is neo-Hookean.
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of simple shear (Figure 4). As noted in the ‘‘Various Material Models’’ section, this homogeneous

deformation of simple shear generates stressesr11�r22¼r11�r33¼lc2 andr12¼r21¼lc. Near

the edge of the sample, however, the deformation is inhomogeneous. The near-corner field still has

large components ofr11 andr12. This behavior is also found in the simulations using the Yeoh and

Gent materials. We note that, by default, ABAQUS reports stress components at the integration

points in an element, which we use to plot Figure 6a,b. ABAQUS also provides an option to

interpolate stress values at the nodes, which we use to plot Figure 6c,d to reduce scatter in the data.

The near-corner field is bounded but is amplified from the field far from the corner. We define a

concentration factor by

K ¼ Wcorner=W‘: ð14Þ

Here, Wcorner is the energy density at the corner and W‘ is the energy density far from the

corner. Far from the corner, the sample is under homogeneous deformation of simple shear, so that

W‘¼lc2/2 for the neo-Hookean material,W‘¼lc2/2þC2c
4þC3c

6 for the Yeoh material, andW‘

¼�l/2Jmln(1 –c2/Jm) for the Gent material. Since the near-corner field is bounded,K is independent

of coordinates R and H. When L� H and L� d, the boundary value problem has a single length

scale, the thickness H. The displacement d is represented by the applied strain, c¼d/H. Thus, the

concentration factor K is a function of the applied strain,K(c). Our finite element simulations show

that this function is insensitive to the material model (Figure 7). In our results,Wcorner is taken atR/H

¼ 10�4 while W‘ is taken at R/H¼7. When c is small, the near-corner field approaches the linear

FIG. 5 — Elastic fields are bounded and concentrated near a corner. (a)W/l as a function ofR/H atH¼0 for the neo-Hookean

material and various applied strains. (b) W/l as a function of H at R/H¼10�3.5 for the neo-Hookean material and various

applied strains. (c)W/l as a function ofR/H atH¼0 for the Yeoh material and various applied strains. (d)W/l as a function of

R/H atH¼0 for the Gent material and various applied strains. The parameters for the Yeoh and Gent materials are the same as

those used in Figure 2.
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elastic field, which is singular. Consequently, K� ‘ as c� 0. As the applied strain increases, the

concentration factor decreases and plateaus.

Incidentally, our calculations assume L/H¼20, which violates the condition L� d for large

applied strains. In general, the concentration factor should be a function of both d/H and L/H. We

have not studied the effect of L/H.

FIG. 6 — The field of true stress near a corner atH¼0, plotted for strainsc¼1, 2, 4, 8, 16, and 32. (a)r12/l, (b)r11/l, (c)r22/

l, and (d) r33/l. The material is neo-Hookean.

FIG. 7. — Field concentration factor as a function of applied shear strain. Wcorner is taken at R/H¼10�4 and H¼0. W‘ is

taken at R/H¼7 and H¼0.
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LAP SHEAR OF A HIGHLY STRETCHABLE POLYACRYLAMIDE HYDROGEL

We prepare polyacrylamide (PAAm) hydrogels by free radical polymerization of acrylamide

monomer (A8887, Sigma Aldrich, St. Louis, MO, USA), using N,N0-methylenebisacrylamide

crosslinker (M7279, Sigma Aldrich) and 2-hydroxy-40(2-hydroxyethoxy)-2-methylpropiophe-

none photoinitiator (410896, Sigma Aldrich). The molar ratios of water, crosslinker, and initiator to

monomer are 25, 5310�3, and 5310�4, respectively. The resulting hydrogels are 86 wt% water.

The number of monomers between two crosslinks for these hydrogels is estimated as N ~ 1/2C,

whereC is the molar ratio of crosslinker to monomer.14 The resulting hydrogels haveN¼1000. The

stress–stretch curve for the as-prepared hydrogel is measured in uniaxial tension (Figure 8). The

stress–stretch curve is fit well by the neo-Hookean model.

We next cut rectangular samples from a large sheet of hydrogel with a razor blade. A sample of

thickness H, length L, and width B is then glued between two polyester substrates (8567K92,

McMaster-Carr, Elmhurst, IL, USA) using cyanoacrylate (Krazy Glue). The edges of the hydrogel

meet the surfaces of the substrates to form 908 corners. The substrates are prepared with lengths

longer than L, and the unbonded sections of the substrates are clamped in grips of a tensile tester

(5966, Instron, Norwood, MA, USA). In the lap shear test, the tensile tester pulls the substrates

relative to each other by a distance d and measures the force F. The grips of the tensile tester are

positioned such that the two substrates are parallel prior to testing. During the test, the clamps do not

constrain the bending of the substrates near the gel, do not constrain the thickness of the gel, and do

not prevent rotation of the gel. The intention of a lap shear test is to subject the hydrogel to

homogeneous shear strain c¼d/H and homogeneous shear stress

s ¼ F=BL: ð15Þ

To maintain a plane strain deformation, we have fabricated the samples such that B � H.

The above homogeneous deformation does not apply to the hydrogel near the corners. To

ensure the homogeneous deformation prevails in a large portion of the hydrogel away from the

corners, we consider the following conditions. First, when the length of the hydrogel is extremely

long, the substrates can no longer be modeled as rigid materials. The elasticity of the substrates will

transmit shear in the hydrogel to tension in the substrates. This behavior, called shear lag, identifies

a length scale15–17:

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EsHsH

l

s
; ð16Þ

FIG. 8. — Uniaxial tension of a highly stretchable PAAm hydrogel (N¼1000). The dashed line represents an

incompressible neo-Hookean material with shear modulus l¼4.84 kPa.
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where Es and Hs are Young’s modulus and the thickness of the substrate, respectively, and l and H
are the shear modulus and thickness of the hydrogel, respectively. TakingH¼1 mm,l¼4.5 kPa,Hs

¼0.25 mm, and Es¼3 GPa, we estimate L0 ~ 40 cm. We prepare samples such that H� L� L0.

Second, when the relative displacement between the two substrates is too large, such that d is

comparable to or even larger thanL, the flexibility of the substrates will cause the hydrogel to rotate.

These two considerations suggest that homogeneous shear deformation prevails in a large portion

of the hydrogel under the conditions H� L� L0 and d� L. When the dimensions are within this

range, lap shear generates a simple shear deformation in a large portion of the hydrogel away from

the corners.

We have used thin polyester sheets as substrates based on the following considerations. First,

thin substrates are flexible. While bent, the substrate meets the surface of the gel at a line, such that

the substrate can be glued to the gel without trapping bubbles along the interface. Bubbles could

concentrate stress and should be avoided. Second, thin sheets are easily processed from bulk

material. Third, when L0 � L, flexible and inflexible substrates deform the gel similarly and

produce similar conditions at rupture.17

We measure the shear stress–strain curves for samples of the polyacrylamide hydrogel of

various thicknesses (Figure 9). For each thickness, several samples are tested. For each sample, a

shear stress–strain curve is recorded up to fracture. These shear stress–strain curves are nonlinear,

indicating that the PAAm hydrogel deviates from the neo-Hookean material somewhat.

The shear stress–strain curves differ from sample to sample. To see this difference clearly, we

characterize the shear stress–strain curve of each sample with four properties. The slope of the curve

at small strains defines the shear modulus l. The point of fracture defines the critical strain cc and

critical stress sc. The area under the curve defines the energy density at fracture Wc.

For samples of any given thickness, each of the four properties has a comparable scatter from

sample to sample (Figure 10). For samples of different thicknesses, all four properties do not vary

much with thickness. Also included are data of a less stretchable PAAm hydrogel (N¼100), which

were obtained in our previous work.6 Whereas Wc of the highly stretchable gel (N ¼ 1000) is

independent of thickness, Wc scales with thickness as Wc ~ H�0.8 when the gel has limited

stretchability (N ¼ 100). We have previously explained this dependence for the brittle gel by

analyzing the linear elastic field near the corner.

Our experimental results demonstrate that, at fracture, the critical applied strain, stress, and

energy density are independent of the thickness of the material. We interpret this experimental

finding as follows. First, as shown in our finite element simulations, for highly stretchable materials,

the elastic field near the corner is bounded. Second, the energy density at the corner depends on the

FIG. 9. — Lap shear of a highly stretchable PAAm hydrogel (N¼1000). Shear stress–strain curves of samples of various

thicknesses.
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applied energy density according toWcorner¼KW‘, whereK is a function of the applied strain c. At a

fixed applied strain, the field around the corner is fixed in both its amplitude and type of

deformation. Third, fracture initiates from a corner when the energy density at the corner Wcorner

reaches a critical value, called the work of fracture, Wf. The work of fracture is assumed to be a

material property independent of thickness.18 The above considerations are consistent with the

experimental observation that the critical applied strain is independent of the thickness. Thus, the

critical applied shear stress and critical applied energy density should also be independent of

thickness. Consequently, our assumption that Wf is a material property is consistent with the

experimental observation that the critical applied energy density is independent of the thickness.

The above discussion assumes that L � H and L � d, so that the elastic field depends on

lengths through a single dimensionless ratio, the applied shear strain c¼ d/H. In our experiment,

these conditions are not always satisfied. For example, when the sample is thick and the applied

strain is large, using a very long sample has been experimentally inconvenient. Under such a

condition, because L is not long enough, the sample rotates somewhat when the substrates are

pulled. The field around the corner will vary with two dimensionless parameters, d/H and L/H. In

particular, at a fixed applied strain c¼ d/H, both the amplitude and type of deformation near the

corner will vary with L/H. This effect may alter the results for samples of large thicknesses tested

here.

FIG. 10. — Mechanical properties of samples of a highly stretchable PAAm hydrogel (N¼1000) with various thicknesses.

(a) Shear modulusl. (b) Energy density at fractureWc. (c) Shear strain at fracturecc. (d) Shear stress at fracture sc. The dashed

lines indicate the mean values. The data of Wc for the PAAm hydrogel of N¼100 are replotted with permission from ref 6,

where the dashed line indicates the scaling Wc ~ H�0.8.
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In general, for a given material, the work of fracture Wf varies with type of deformation. For

instance, the work of fracture under shear differs from that under uniaxial tension. Consequently,

the critical applied shear strain should vary with L/H, since varying L/H can alter the type of

deformation. In our experiment, we have not varied L/H systematically over a large range. Our

experiments do not show significant deviation from a constant critical applied strain.

CONCLUDING REMARKS

In summary, we have shown that the elastic field near a corner of a highly stretchable material is

concentrated but bounded. The theory of elasticity has no length scale. Under the condition that lap

shear is characterized by a single length, the thickness of the stretchable material, the elastic field is

independent of any length once the spatial coordinates are normalized by the thickness. We lap

shear samples of a highly stretchable hydrogel of various thicknesses. For all samples, fracture

initiates from the corners, at a critical load independent of thickness. These experimental findings

agree with the computational prediction that the large-deformation elastic field near the corner is

concentrated but bounded. Our findings have implications beyond lap shear. For example, the

findings also apply to a composite in which a crack in a stretchable material impinges on a rigid

material.
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