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Abstract 19 



Drylands exert a strong influence over global interannual variability in carbon and water 20 

cycling due to their substantial heterogeneity over space and time. This variability in ecosystem 21 

fluxes presents challenges for understanding their primary drivers. Here, we quantify the 22 

sensitivity of dryland gross primary productivity and evapotranspiration to various 23 

hydrometeorological drivers by synthesizing eddy covariance data, remote sensing products, and 24 

land surface model output across the western US. We find that gross primary productivity and 25 

evapotranspiration derived from eddy covariance are most sensitive to soil moisture fluctuations, 26 

with lesser sensitivity to vapor pressure deficit and little to no sensitivity to air temperature or 27 

light. We find that remote sensing data accurately captures the sensitivity of eddy covariance 28 

fluxes to soil moisture, but largely over-predicts sensitivity to atmospheric drivers. In contrast, 29 

CMIP6 land surface models underestimate sensitivity of gross primary productivity to soil 30 

moisture fluctuations by approximately 45%. Amidst debates about the role of increasing vapor 31 

pressure deficit in a changing climate, we conclude that soil moisture is the primary driver of US 32 

dryland carbon-water fluxes. It is thus imperative to both improve model representation of soil 33 

water limitation and more realistically represent how atmospheric drivers affect dryland 34 

vegetation in remotely-sensed flux products. 35 

 36 

Main text 37 

 Dryland ecosystems exert a substantial influence on the global climate system, in part by 38 

mediating interannual variability in the strength of the land carbon sink1,2. However, drylands are 39 

warming faster than the global mean3 and are expected to continue aridifying in the coming 40 

decades4,5, which could trigger feedbacks that alter or dampen their crucial role in mediating 41 

global carbon-water cycling. 42 



These ongoing and future changes to drylands necessitate a robust assessment of the 43 

drivers of their carbon and water cycles. However, studying drylands at the necessary spatial and 44 

temporal scales to accurately characterize carbon-water fluxes is notoriously challenging. Field 45 

research campaigns, for example, typically do not operate at spatial scales large enough to 46 

account for the topographical and hydrological variability present in most drylands, and seldom 47 

last for more than a few consecutive years. Land surface models, while generating spatially 48 

continuous estimates of carbon-water fluxes, generally operate at coarse spatial scales and 49 

underestimate both the magnitude and variability of dryland fluxes6,7. Many remote sensing 50 

products also perform poorly in drylands de to the limited ability of existing satellites to capture 51 

dryland heterogeneity, noise introduced from inactive vegetation or soils, and weak linkages 52 

between vegetation activity and reflectance8. As such, important ecological questions remain 53 

unresolved: 1) Are dryland fluxes more sensitive to fluctuations in atmospheric drivers (e.g., 54 

temperature, light, evaporative demand) or soil moisture? And, 2) how sensitive are dryland 55 

fluxes to variation in shallow versus deep soil moisture pools? Answering these questions is 56 

increasingly pertinent as air temperature and atmospheric water demand rises9 and soil moisture 57 

decreases10. If atmospheric aridity or temperature is the primary driver of dryland fluxes, climate 58 

change may accelerate dryland aridification or amplify feedback mechanisms that diminish their 59 

capacity to absorb atmospheric CO2
11. 60 

 A multi-scale, multi-method synthesis holds promise towards characterizing dryland 61 

fluxes at frequent temporal scales and small spatial scales. In particular, eddy covariance (EC) 62 

data are valuable for linking hydrometeorological drivers to ecosystem function12 given their 63 

long-term monitoring capability, high temporal frequency, and coverage across numerous 64 

dryland biome types. Existing networks of EC observations now contain multi-decadal datasets 65 



of ecosystem fluxes and meteorological conditions, enabling an assessment of ecosystem fluxes 66 

across a wide range of interannual weather variability. However, the degree to which the drivers 67 

of EC fluxes are accurately represented in remotely-sensed or modeled data products remains 68 

unknown, which limits our ability to understand linkages between hydrometeorological drivers 69 

and dryland ecosystem function at regional or global scales.  70 

 Here, we characterized the drivers of dryland carbon and water cycling, including their 71 

relative sensitivities to atmospheric drivers versus soil moisture pools at different depths, by 72 

leveraging a network of EC towers across the western United States (Extended Data Figure 1, 73 

Extended Data Table 1). Efforts to quantify the drivers of ecosystem fluxes at such a high 74 

frequency are relatively rare, despite the outsized importance of meteorological ‘hot moments’  75 

in driving dryland carbon-water cycling broadly13. We then evaluated the ability of multiple 76 

remotely-sensed data products and a suite of land surface models to capture these dynamics. This 77 

cross-scale evaluation of dryland ecosystem function can help pinpoint regions most susceptible 78 

to current and future changes in climate. 79 

 80 

Soil moisture is the dominant driver of carbon-water fluxes 81 

 To quantify the drivers of dryland gross primary productivity (GPP) and 82 

evapotranspiration (ET), we calculated the sensitivity of daily fluxes to various 83 

hydrometeorological drivers using Pearson’s and Spearman’s correlation coefficients, along with 84 

relative weight analysis (RWA)14. These analyses revealed that GPP was highly sensitive to 85 

fluctuations in soil water availability across the entire soil profile (Figure 1a). At most sites, GPP 86 

significantly increased in concert with soil moisture (mean correlation coefficient ranging from 87 



0.33 and 0.49 across soil layers), while it significantly decreased with increasing VPD (mean 88 

coefficient of −0.22). GPP responded much less strongly to air temperature (TA) and light 89 

(photosynthetic photon flux density, PPFD), with mean coefficients of −0.08 and −0.01, 90 

respectively. Indeed, at the sites where soil moisture was measured, only the wettest site had a 91 

higher sensitivity of GPP to any atmospheric driver than to soil moisture (Extended Data Figure 92 

2). ET was also highly responsive to fluctuations in soil moisture and was weakly associated 93 

with variability in atmospheric drivers (Figure 1a, Extended Data Figure 3). However, ET was 94 

more sensitive to soil moisture in shallow layers than in deep layers, likely due to evaporation 95 

from the soil surface being a sizeable component of ET15. The high sensitivity of GPP and ET to 96 

soil moisture was also evident at half-hourly (Figure 2a), weekly (Figure 2b), and monthly 97 

(Figure 2c) timescales (Figure 2a). We found similar results when using RWA which accounts 98 

for collinearity in predictor variables (Extended Data Figure 4, Methods), and the Spearman’s 99 

correlation coefficient which better assesses the strength of non-linear relationships (Extended 100 

Data Figure 5). Together, these analyses provide robust evidence of the high sensitivity of 101 

dryland GPP and ET to soil moisture across temporal scales.  102 

While soil moisture was the largest driver of GPP and ET across these dryland sites, 103 

atmospheric drivers may become more important during periods when water supply is abundant. 104 

This is because the alleviation of soil moisture constraints can lead to: 1) light becoming more 105 

limiting than water for photosynthesis, 2) greater stomatal conductance, which in turn leads to a 106 

greater dependence of leaf-level fluxes on atmospheric demand, or 3) an increased capacity for 107 

transpiration, which can influence leaf temperature through evaporative cooling. To test this 108 

hypothesis, we conducted the same analysis during only the 10% wettest observations of mean 109 

soil moisture across all layers (Figure 1b). During these periods, the correlation coefficient 110 



between GPP/ET and soil moisture was, as expected, reduced, and in many cases was not 111 

statistically distinguishable from zero. However, the correlations between fluxes and atmospheric 112 

drivers during these periods were still generally smaller than the correlation between GPP and 113 

soil moisture calculated over the entire data record. Notably, the correlation between fluxes and 114 

VPD switched from negative during the entire data record to positive during the wettest 115 

conditions. This indicates that increased atmospheric demand during periods of low soil moisture 116 

limitation can increase diffusive gradients and drive greater ET16, while also potentially 117 

providing a thermal environment conducive to higher rates of photosynthesis. 118 

Ongoing debates center around the role of atmospheric drivers versus soil moisture in 119 

driving ecosystem function, with a growing recognition of the importance of VPD in mediating 120 

vegetation activity16,17. We highlight here that VPD exerted a smaller role than soil moisture in 121 

driving daily variability in dryland fluxes, and provide robust evidence of the important role of 122 

soil moisture for dryland GPP and ET over space and time. The importance of soil moisture at 123 

daily and half-hourly scales is quite notable, given that soil moisture dynamics generally tend to 124 

change much more slowly than fluctuations in VPD. Reasons for this could include: 1) dryland 125 

vegetation is highly adapted to rapidly respond to the fluctuations in soil water availability, given 126 

the frequently transient precipitation dynamics present in many xeric ecosystems18,19, and 2) the 127 

seasonality of atmospheric aridity versus soil moisture is decoupled in some regions of the 128 

western US due to monsoon-driven seasonality, whereby water availability frequently peaks in 129 

both the cooler springtime and the hotter late summer14. No matter the mechanism, the 130 

importance of soil water in drylands should elicit expanded monitoring of soil moisture and a 131 

greater recognition of the role that transient precipitation dynamics play for sustaining dryland 132 



ecosystem function, especially given observed and projected changes in the frequency, intensity, 133 

and variability of precipitation with warming20. 134 

 135 

Can remote sensing capture the drivers of fluxes 136 

 Given the importance of capturing soil moisture sensitivity across the extensive dryland 137 

regions of the world and the relative paucity of EC towers in these biomes (especially outside of 138 

the US), there is a pressing need for long-term and spatially extensive data sources that can 139 

properly represent dryland ecosystem function. We therefore tested the ability of remotely-140 

sensed estimates of GPP and ET to accurately capture the sensitivity of drylands to various 141 

hydrometeorological drivers. We selected widely used GPP and ET products that span a range of 142 

methods (from purely empirical machine learning upscaling to semi-empirical models based on 143 

simplified process representations; see Methods and Extended Data Table 2), and calculated their 144 

correlation coefficients with in situ meteorological measurements from the network of EC 145 

towers. These products generally replicated the eddy covariance-derived soil moisture 146 

coefficients (Figure 3c-e, Extended Data Figure 6c-e); in the aggregate only the correlation 147 

between MODIS ET and deep soil moisture fluctuations was incorrectly represented (Figure 3f, 148 

Extended Data Figure 6f). Remotely-sensed soil moisture coefficients were thus correlated with 149 

EC-derived coefficients (R2 between 0.33 and 0.49) for all soil layers except the 10 – 20 cm 150 

layer (Extended Data Figure 7).  151 

 Despite the ability of remotely-sensed data to capture soil moisture correlation 152 

coefficients consistent with EC observations, they generally overpredicted the correlations 153 

between fluxes and atmospheric drivers (Figure 3a-b), especially VPD. For example, the 154 



correlation coefficients between remotely-sensed GPP/ET products and VPD was on average 155 

35% more negative than the VPD coefficient observed at flux tower sites (Extended Data Figure 156 

6a). As a result, the VPD coefficient for 4 out 5 flux products significantly deviated from EC 157 

coefficients (Figure 3a), and the linkage between remotely-sensed and EC coefficients was weak 158 

(R2 = 0.14, Extended Data Figure 7a-b). Two data products also showed sizeable negative 159 

relationships between PPFD and fluxes, whereas that coefficient tended to be around zero (or 160 

positive) when calculated using flux tower data (Figure 1a, Figure 3b, Extended Data Figures 2-161 

3). Given that the most consistent impact of climate change is increasing air temperature and thus 162 

increases in vapor pressure deficit, remotely-sensed GPP and ET estimates that overrepresent the 163 

role of VPD could incorrectly capture ecosystem responses to climate change and climate 164 

extremes such as drought or heat waves. Our results point to the need for satellite-based flux 165 

models to reconsider the role of atmospheric drivers in mediating dryland ecosystem fluxes, 166 

perhaps by directly incorporating information on soil moisture availability21–23. 167 

 Despite some shortcomings representing the role of atmospheric drivers, these results 168 

highlight the striking ability of remote sensing approaches to capture the role of soil moisture in 169 

mediating dryland fluxes. These findings are particularly surprising considering that only 170 

GLEAM ET and Soil Moisture Active Passive (SMAP) L4C GPP directly include soil moisture 171 

constraints. This implies either: 1) that land surface greenness (the basis for optical remote 172 

sensing of vegetation function) is sufficiently coupled to soil moisture in drylands to correctly 173 

capture the sensitivity of carbon and water fluxes to soil moisture, or 2) the coupling between 174 

soil moisture and VPD is strong enough that the simplified VPD scalars included in many of 175 

these data products can indirectly simulate flux sensitivity to soil moisture. However, with 176 

relatively few exceptions, the relationship between remotely-sensed flux products and soil 177 



moisture is still largely indirect, and thus developing products that can correctly capture in situ 178 

soil moisture dynamics is a pressing research need.  179 

Given the success of the SMAP L4C GPP product in replicating EC-derived correlation 180 

coefficients, we next tested the ability of a SMAP-based soil moisture product24 to capture daily 181 

fluctuations in surface and root-zone soil moisture. SMAP soil moisture estimates were indeed 182 

linked to in situ soil moisture measurements, though the R2 between remotely-sensed and in situ 183 

soil moisture decreased substantially with increasing soil depth, from 0.45 for surface soils to 184 

0.13 at > 50 cm depths (Extended Data Table 3). The correspondence between remotely-sensed 185 

soil moisture and daily in situ soil moisture, combined with improvements in remotely sensed ET 186 

model performance when SMAP data are included21,22, indicates that SMAP-based data products 187 

could be important tools to help constrain estimates of carbon-water cycling in land surface 188 

models through validation, benchmarking, or data assimilation. In this regard, microwave remote 189 

sensing products show great promise for real-time monitoring of ecosystem function in arid and 190 

semiarid regions and for improving our understanding of how climate change (including the 191 

ongoing megadrought in the southwestern US25) is impacting dryland ecosystems. However, 192 

given the large reliance of vegetation on deep soil moisture found here and elsewhere26,27, more 193 

work needs to be done to develop and validate data products that can provide relevant 194 

information on deeper stores of plant-available water. 195 

 196 

Can land surface models capture the drivers of fluxes 197 

The tight coupling between soil moisture and ecosystem fluxes observed here could at 198 

least partly explain the poor performance of many land surface models in drylands, as properly 199 



representing soil moisture dynamics, along with vegetation responses to water stress, are 200 

frequently one of the largest modeling uncertainties28–30. Thus, we explored the degree to which 201 

a suite of CMIP6 land surface models (see Methods) captured the sensitivity of GPP and ET to 202 

soil moisture in the flux tower network by calculating their correlation with shallow and deep 203 

soil moisture fluctuations. We found that models generally underestimated the correlation 204 

between GPP and shallow soil moisture by 42% and to deep soil moisture by 49% (Figure 4a). 205 

This underestimation likely arose from: 1) challenges in modeling highly dynamic soil moisture 206 

fluctuations in biomes characterized by substantial belowground heterogeneity28,29, and 2) error 207 

in the shape and slope of the ‘beta functions’ that downregulate modeled photosynthesis as a 208 

function of soil water availability, which are often poorly constrained or unconstrained by data30. 209 

Variability in CMIP6 correlation coefficients was also extremely large (spanning nearly the 210 

entire range of possible values), which was not reflected in the flux tower data. Negative 211 

relationships between GPP and soil moisture were also frequently predicted, though this 212 

directionality was largely absent in the flux tower data. Many (but not all) of these negative 213 

correlations were from the CanESM model, which is known to have a reduced ability to 214 

accurately simulate dryland GPP compared to many other models31. Differences between CMIP6 215 

and EC-derived soil moisture coefficients were still statistically different when this model was 216 

excluded from the ensemble, indicating that the inclusion of this model did not drive our 217 

conclusion that CMIP6 models underestimate the sensitivity of GPP to soil moisture.  218 

In contrast, the soil moisture coefficients for ET in the CMIP6 models did not differ 219 

significantly from EC-derived values (Figure 4b). However, given that the drastic 220 

underestimation of modeled GPP coefficients is also likely to indicate a lower coefficient for 221 

transpiration, this may indicate that the similarities between modeled and flux tower ET 222 



coefficients are driven by compensating errors (i.e., an underestimation of transpiration 223 

sensitivity is offset by an overestimation of evaporation sensitivity). There are many 224 

uncertainties regarding partitioning ET into its constituent components32, but future efforts to do 225 

so across dryland ecosystems could shed light on the discrepancies between how different 226 

models represent the sensitivity of ET to hydrometeorological drivers. While the poor 227 

representation of soil moisture sensitivity in land surface models reflects shortcomings in our 228 

ability to simulate water-limited ecosystems, this finding also points to the value of ongoing 229 

modeling efforts towards better representing heterogeneous soil hydrology across depths28, and 230 

the physiological responses of vegetation to water stress by mechanistically simulating plant 231 

hydraulics33,34.  232 

 233 

Soil moisture sensitivity in a changing climate 234 

Our study provides compelling evidence that soil moisture is the primary driver of 235 

dryland carbon-water fluxes, though atmospheric drivers (especially VPD) were important 236 

factors during infrequent wet periods. We found GPP was particularly responsive to deeper soil 237 

moisture pools, emphasizing their importance in sustaining dryland vegetation through dry and 238 

hot summer conditions14,35,36. While recent increases in temperature and vapor pressure deficit 239 

are driving changes across many ecosystems, our results imply that the future functioning of 240 

drylands will be tied to local precipitation patterns, changes in snow accumulation, and potential 241 

warming-enhanced depletion of soil moisture10. It is concerning, therefore, that drylands in the 242 

western US have experienced drastic reductions in winter precipitation in recent decades, which 243 

is the source of moisture that primarily recharges deep soil layers20,37,38. The ramifications of 244 

deep soil moisture losses are severe, and likely underpin many of the major plant mortality 245 



events observed across the region in recent years39–42. These decreases in water availability43 246 

might indicate US drylands are becoming more dependent on the inconsistent and transient 247 

fluctuations in shallow soil moisture that are derived from summer rainfall. A shift in the 248 

seasonality of water availability is an underappreciated dimension of climate change with 249 

consequences that remain to be evaluated44.  250 

In the face of ongoing climatic changes, our findings point to the need for an evolving 251 

understanding of dryland ecosystem function. Tools that properly represent the sensitivity of 252 

fluxes to both atmospheric drivers and soil moisture are essential to this process. We found that 253 

widely used land surface models (in their current iteration) seem unsuited for this task, though 254 

advances in modeling soil hydrology and vegetation hydraulics are potentially promising in this 255 

regard. Although previous model-based analyses have found that soil moisture plays a critical 256 

role in mediating global carbon uptake45; our results suggest that these models may still be 257 

underestimating how important soil water is for vegetation function. This underestimation 258 

becomes even more critical given projections of increasing drought frequency and intensity in 259 

drylands46. Although land surface models fell short in quantifying the sensitivity of GPP to soil 260 

moisture, remote sensing products generally succeeded, despite the large mismatch in spatial 261 

scale between satellite data products and flux towers. This result was also surprising considering 262 

the inherent challenges in measuring ecosystems from satellites in biomes that are characterized 263 

by large day-to-day variability in ecosystem fluxes (i.e., “hot moments”13). Data products 264 

derived from microwave remote sensing, in particular, seem very promising for generating 265 

accurate estimates of ecosystem fluxes and shallow soil moisture. However, the finding that 266 

remote-sensing approaches tend to overestimate the sensitivity of fluxes to atmospheric drivers 267 

poses a challenge for properly representing dryland ecosystem dynamics in an aridifying climate.  268 



Ultimately, our findings highlight the importance of long-term in situ monitoring of 269 

ecosystem dryland fluxes. Committing resources to this area will be crucial to validate the 270 

newest generation of remote sensing products and land surface models that include a more 271 

physiologically-informed view of how carbon and water flows through dryland ecosystems. Such 272 

advances will set the stage for an improved understanding of water-limited biomes in the face of 273 

climate change, as well as improve the accuracy of near-term ecological drought monitoring. 274 

 275 

Acknowledgements 276 

We sincerely thank all flux tower site PIs for contributing flux data and the AmeriFlux 277 

Management Project team for making these data openly available. Funding for the AmeriFlux 278 

data portal was provided by the US Department of Energy. SAK and MLB were supported by 279 

the US Department of Energy Environmental System Science program grant #DE-SC0022052. 280 

WRLA acknowledges support from the David and Lucille Packard Foundation, US National 281 

Science Foundation grants 1802880, 2003017, 2044937, and IOS-2325700 from the Alan T. 282 

Waterman Award. MPD and MLB were supported by NASA SMAP Science Team grant 283 

#80NSSC20K1805. 284 

 285 

Author contributions statement 286 

SAK initially conceived of the research, with subsequent contributions from all authors. WRLA, 287 

MLB, and MPD assisted with data extraction. SAK performed all data analysis and wrote the 288 

first draft of the manuscript. All authors contributed to subsequent manuscript revisions. 289 



 290 

Competing interests statement 291 

The authors declare no competing interests. 292 

 293 

Figure legends/captions 294 

Figure 1. Correlation coefficients between daily GPP/ET and environmental drivers, calculated 295 

using the full dataset (a) and only the 10% wettest mean soil moisture observations (b). 296 

Environmental drivers include air temperature (TA), vapor pressure deficit (VPD), 297 

photosynthetic photon flux density (PPFD), and various layers of volumetric water content 298 

(VWC, see Methods for the depths included in each layer). Panels represent correlation 299 

coefficients when considering all data (top panel) and only the observations within the top 10% 300 

of shallow soil moisture observations (bottom panel). Asterisks indicate where coefficients are 301 

significantly different from zero (α = 0.05). Box plot lines represent the interquartile range and 302 

median, while the whiskers represent 1.5 times the interquartile range. 303 

Figure 2. Correlation coefficients between GPP/ET and environmental drivers at half-hourly (a), 304 

weekly (b), and monthly (c) timescales. Environmental drivers include air temperature (TA), 305 

vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and various layers of 306 

volumetric water content (VWC, see Methods for the depths included in each layer). Each point 307 

represents the Pearson’s R between environmental drivers and fluxes, calculated over the entire 308 

growing season and daytime data record. Asterisks indicate where coefficients are significantly 309 

different from zero (α = 0.05). Box plot lines represent the interquartile range and median, while 310 

the whiskers represent 1.5 times the interquartile range. 311 



Figure 3. Differences between hydrometeorological flux coefficients derived from remotely-312 

sensed versus EC approaches (∆ coefficient) for key atmospheric drivers (panels a-b) and soil 313 

moisture depths (panels c-f). Values not significantly different from zero indicate the remotely-314 

sensed product replicates the EC-derived coefficient across sites. The presence of an asterisk 315 

indicate that ∆ coefficient is significantly different from zero (α = 0.05). Box plot lines represent 316 

the interquartile range and median, while the whiskers represent 1.5 times the interquartile range. 317 

Figure 4. Correlation coefficients between fluxes and shallow/deep soil moisture, as derived 318 

from flux tower data versus CMIP6 models. Panel a represents correlation coefficients for GPP 319 

while panel b represents correlation coefficients for ET. Each point represents the Pearson’s R 320 

between each environmental driver and flux, calculated over the growing season. Asterisks 321 

indicate where CMIP6 coefficients are significantly different than those from flux towers (α = 322 

0.01). Box plot lines represent the interquartile range and median, while the whiskers represent 323 

1.5 times the interquartile range. 324 
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 432 

Methods 433 

Site selection and flux data processing 434 

 To characterize the sensitivity of ecosystem fluxes to hydrometeorological drivers, we 435 

synthesized data from all AmeriFlux towers in the western United States with at least 4 years of 436 

data, an aridity index (the ratio of mean annual precipitation to potential evapotranspiration) of 437 

<0.65, <500 mm mean annual precipitation, and no active management or manipulation (Figure 438 

1, Extended Data Table 1). All sites except one (US-Rls) had a mean aridity index of less than 439 

0.5. Our sites were constrained to the western US due to the paucity of dryland flux towers that 440 

meet our criteria in other regions. However, these sites represent a wide diversity of climates, 441 

topographies, and vegetation types, and are thus relevant for understanding dryland functioning 442 

globally. Atmospheric drivers—photosynthetic photon flux density (PPFD), air temperature 443 

(TA), and vapor pressure deficit (VPD)—were measured at most sites, as were measurements of 444 

soil volumetric water content (VWC) of at least one depth. VPD was derived from relative 445 



humidity when not provided. The depths of soil moisture measurements were attained from site 446 

Principal Investigators. When not directly measured, PPFD was considered to be proportional to 447 

incoming shortwave radiation47. In order to compare soil moisture dynamics across sites, soil 448 

volumetric water content measurements were binned (averaged) into 4 depths at each site, when 449 

present: a ‘shallow’ layer from 0 to ≤ 10 cm, a ‘shallow-mid’ layer from > 10 to ≤ 20 cm, a 450 

‘middle’ layer from >20 to ≤ 50 cm, and a ‘deep’ layer consisting of measurements > 50 cm. 451 

 Net ecosystem exchange (NEE), TA, PPFD, and VPD were gap-filled using a look-up 452 

table approach and NEE was partitioned into GPP and ecosystem respiration using the nighttime 453 

partitioning method48, as implemented in the R package REddyProc49. Evapotranspiration (ET) 454 

was calculated by dividing the latent heat flux by the latent heat of vaporization. Since our goal 455 

was to quantify the drivers of vegetation activity, we then limited our dataset to daytime 456 

observations during the growing season. We defined start and end of the growing season of each 457 

site-year using smoothed curves of GPP13,50. First, at each site, winter was defined as the time 458 

before DOY 70 and after DOY 330. Next, for each site-year we constructed smoothed curves of 459 

seasonal GPP and daily curves of incoming shortwave radiation using the loess function in R 460 

with a span of 0.5. The start of the growing season was considered to be the first time point at 461 

which this curve crossed a threshold of mean winter GPP +30% of the maximum smoothed GPP 462 

amplitude, and the end of the growing season was considered to be the last time point when it 463 

fell below this threshold. Start and end of season dates were then averaged for each site. For 464 

weekly and monthly analyses, growing seasons were defined as the next week or month 465 

following the start date until the week or month prior to the end date. Daytime was defined as 9 466 

am to 5 pm at each site, based on the mean diurnal cycle of solar radiation. All daytime and 467 



growing season flux and meteorological data were then summed (fluxes) or averaged (all other 468 

variables) to the daily timescale. 469 

 470 

Remotely-sensed data products 471 

We next compared the sensitivity of EC fluxes to several common satellite-based GPP 472 

and ET models. To do so, we amassed five different data products that operate at fast temporal 473 

scales (8-day or less) and span a wide range of methods (Extended Data Table 251–55). We used 474 

two GPP products — the gap-filled MODIS product (MOD17A2GF51) and the Soil Moisture 475 

Active Passive (SMAP) Level 4 Carbon (L4C) product52 — that are based on light-use efficiency 476 

theory, in which GPP is proportional to absorbed photosynthetically active radiation. In both 477 

products, a biome-specific “optimal” light-use efficiency is down-regulated under non-optimal 478 

temperature and/or moisture conditions. The MODIS GPP model down-regulates GPP under 479 

both low minimum temperatures and high VPD, while the SMAP GPP model also includes 480 

responses to low rootzone (0-100 cm) soil moisture and frozen ground. As a complement to these 481 

semi-empirical GPP products, we also use the empirical FluxSat GPP product53, which upscales 482 

global eddy covariance GPP estimates with a neural network based on MODIS multispectral 483 

surface reflectance and top-of-atmosphere radiation. For ET, we used two products based on 484 

physical evapotranspiration models: the gap-filled Penman-Monteith-based MODIS product 485 

(MOD16A2GF54) and the Priestley-Taylor-based GLEAM product55. In both cases, potential 486 

evapotranspiration from the physical models is reduced under moisture stress, which is defined 487 

based on VPD in the MODIS model and based on vegetation optical depth and root-zone soil 488 

moisture (from a multi-layer water balance model) in the GLEAM model. For these data 489 

products, we extracted the grid cell that contained the flux towers for all analyses. 490 



To assess the degree to which in situ soil moisture dynamics can be remotely-sensed, we 491 

also obtained surface and root-zone soil moisture data for each flux tower site from the L-band 492 

microwave NASA-USDA Enhanced SMAP dataset24. Remotely-sensed soil moisture estimates 493 

were smoothed from 3-day to a daily time scale in order to be directly comparable with flux 494 

tower data using a loess smoothing spline with a span of 0.05. These data were then constrained 495 

to the same growing seasons and years as the flux tower data. The error in remotely-sensed soil 496 

moisture correlation coefficients (∆ coefficient) was quantified as the soil moisture coefficient 497 

derived from remotely-sensed data products minus the EC-derived coefficient. 498 

 499 

CMIP6 model output 500 

 We extracted monthly GPP, ET, and soil moisture data from the grid cell corresponding 501 

to our flux tower locations from a single ensemble member (r1i1p1f1) for a suite of 11 CMIP6 502 

land surface models: ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2-WACCM, 503 

CMCC-CM2-SR5, MPI-ESM1-2-LR, NorESM2-LM, NorESM2-MM, TaiESM1, E3SM-1-0, 504 

and MIROC6. For consistency with EC-derived measurements and microwave remote sensing 505 

products described below, we extracted the top 10 cm and the 1 m soil moisture variables. The 506 

10 cm CMIP6 soil moisture product is analogous to the ‘shallow’ in situ soil layer, while the 1 m 507 

soil moisture product is analogous to the ‘deep’ in situ soil layer. CMIP6 output only extends 508 

through the year 2014 while the EC data have variable dataset lengths. To maximize the 509 

comparability between EC and model-derived fluxes, we constrained the two datasets to the 510 

same time periods for this analysis. Differences in the spatial and temporal scales at which eddy 511 

covariance, remotely-sensed, and CMIP6 data operate could introduce noise into direct 512 

comparisons among them. Such mismatches in scale have the potential to ‘smooth out’ point-513 



scale variability, potentially leading to an apparent underestimation of variability. Regardless of 514 

whether this underestimation is due to spatial scaling or issues inherent to the coarser-scale data, 515 

it remains a critical concern. Comparisons between these products are essential for evaluating 516 

sensitivity across different data products and spatiotemporal scales, especially given the 517 

widespread use of LSMs for prediction.   518 

 519 

Statistical analyses 520 

 The sensitivity of carbon and water fluxes to various meteorological drivers was 521 

calculated as the Pearson’s R of the relationship between a given flux and hydrometeorological 522 

driver. Pearson’s R is indicative of the slope of the relationship between two standardized 523 

variables and is thus reflective of how strongly a flux responds to an environmental driver. The 524 

sign of the coefficient reflects the direction of the relationship, where a larger value (either 525 

positive or negative) indicates that a given flux responds more strongly to variability in a given 526 

variable. A coefficient near zero indicates that the flux was not responsive to a given variable. 527 

The relationship between hydrometeorological drivers and fluxes, though frequently linear in 528 

nature, can also take on a wide variety of functional forms. Therefore, we also computed the 529 

Spearman’s correlation coefficient, which does not assume linearity and instead assesses the 530 

strength of the relationship between two variables using a monotonic function. 531 

In order to quantify the influence of hydrometeorological drivers on GPP and ET while 532 

accounting for any predictor collinearity, we additionally performed a relative weight analysis 533 

(RWA)56
 using the R package rwa (cran.r-project.org/web/packages/rwa/rwa.pdf). RWA 534 

partitions the explained variance across multiple predictors by transforming correlated predictors 535 



into orthogonal variables, performing a linear model on the transformed variables, and then 536 

transforming the resulting coefficients back to the original metric. The resulting relative weights 537 

are only comparable across sites if the underlying model structure is the same (i.e., contains the 538 

same predictor variables), which is not the case across our sites. Therefore, we only conducted 539 

RWA on the sites that contained the predictors that were most commonly available (TA, VPD, 540 

PPFD, shallow soil moisture, and shallow-mid soil moisture).  541 

We used ordinary least squares regression to compare correlation coefficients quantified 542 

across different data sources as well as to compare microwave remote sensing soil moisture 543 

products to in situ soil moisture, after assessing the normality and heteroscedasticity of model 544 

residuals. Two-tailed t-tests were used to assess differences between soil moisture coefficients 545 

across data products, as well as to test if a coefficient was significantly different from zero. All 546 

analyses were conducted in R 4.2.2.257. 547 

 548 

Data availability statement 549 

All data used for our analyses are publicly available. Eddy covariance tower data are available at 550 

ameriflux.lbl.gov, CMIP6 model output are accessible from esgf-node.llnl.gov/search/cmip6/. 551 

SMAP L4C, MOD16, and MOD17 data were all obtained using the AppEEARS subsetting tool 552 

(https://appeears.earthdatacloud.nasa.gov/). FluxSat data were obtained from the ORNL DAAC 553 

(https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html), and GLEAM data 554 

were obtained from https://www.gleam.eu/. 555 
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