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Drylands exert a strong influence over global interannual variability in carbon and water
cycling due to their substantial heterogeneity over space and time. This variability in ecosystem
fluxes presents challenges for understanding their primary drivers. Here, we quantify the
sensitivity of dryland gross primary productivity and evapotranspiration to various
hydrometeorological drivers by synthesizing eddy covariance data, remote sensing products, and
land surface model output across the western US. We find that gross primary productivity and
evapotranspiration derived from eddy covariance are most sensitive to soil moisture fluctuations,
with lesser sensitivity to vapor pressure deficit and little to no sensitivity to air temperature or
light. We find that remote sensing data accurately captures the sensitivity of eddy covariance
fluxes to soil moisture, but largely over-predicts sensitivity to atmospheric drivers. In contrast,
CMIP6 land surface models underestimate sensitivity of gross primary productivity to soil
moisture fluctuations by approximately 45%. Amidst debates about the role of increasing vapor
pressure deficit in a changing climate, we conclude that soil moisture is the primary driver of US
dryland carbon-water fluxes. It is thus imperative to both improve model representation of soil
water limitation and more realistically represent how atmospheric drivers affect dryland

vegetation in remotely-sensed flux products.

Main text

Dryland ecosystems exert a substantial influence on the global climate system, in part by
mediating interannual variability in the strength of the land carbon sink!>. However, drylands are
warming faster than the global mean® and are expected to continue aridifying in the coming
decades*>, which could trigger feedbacks that alter or dampen their crucial role in mediating

global carbon-water cycling.
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These ongoing and future changes to drylands necessitate a robust assessment of the
drivers of their carbon and water cycles. However, studying drylands at the necessary spatial and
temporal scales to accurately characterize carbon-water fluxes is notoriously challenging. Field
research campaigns, for example, typically do not operate at spatial scales large enough to
account for the topographical and hydrological variability present in most drylands, and seldom
last for more than a few consecutive years. Land surface models, while generating spatially
continuous estimates of carbon-water fluxes, generally operate at coarse spatial scales and
underestimate both the magnitude and variability of dryland fluxes®’. Many remote sensing
products also perform poorly in drylands de to the limited ability of existing satellites to capture
dryland heterogeneity, noise introduced from inactive vegetation or soils, and weak linkages
between vegetation activity and reflectance®. As such, important ecological questions remain
unresolved: 1) Are dryland fluxes more sensitive to fluctuations in atmospheric drivers (e.g.,
temperature, light, evaporative demand) or soil moisture? And, 2) how sensitive are dryland
fluxes to variation in shallow versus deep soil moisture pools? Answering these questions is
increasingly pertinent as air temperature and atmospheric water demand rises’ and soil moisture
decreases!'’. If atmospheric aridity or temperature is the primary driver of dryland fluxes, climate
change may accelerate dryland aridification or amplify feedback mechanisms that diminish their

capacity to absorb atmospheric CO,'!.

A multi-scale, multi-method synthesis holds promise towards characterizing dryland
fluxes at frequent temporal scales and small spatial scales. In particular, eddy covariance (EC)
data are valuable for linking hydrometeorological drivers to ecosystem function'? given their
long-term monitoring capability, high temporal frequency, and coverage across numerous

dryland biome types. Existing networks of EC observations now contain multi-decadal datasets
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of ecosystem fluxes and meteorological conditions, enabling an assessment of ecosystem fluxes
across a wide range of interannual weather variability. However, the degree to which the drivers
of EC fluxes are accurately represented in remotely-sensed or modeled data products remains
unknown, which limits our ability to understand linkages between hydrometeorological drivers

and dryland ecosystem function at regional or global scales.

Here, we characterized the drivers of dryland carbon and water cycling, including their
relative sensitivities to atmospheric drivers versus soil moisture pools at different depths, by
leveraging a network of EC towers across the western United States (Extended Data Figure 1,
Extended Data Table 1). Efforts to quantify the drivers of ecosystem fluxes at such a high
frequency are relatively rare, despite the outsized importance of meteorological ‘hot moments’
in driving dryland carbon-water cycling broadly'?. We then evaluated the ability of multiple
remotely-sensed data products and a suite of land surface models to capture these dynamics. This
cross-scale evaluation of dryland ecosystem function can help pinpoint regions most susceptible

to current and future changes in climate.

Soil moisture is the dominant driver of carbon-water fluxes

To quantify the drivers of dryland gross primary productivity (GPP) and
evapotranspiration (ET), we calculated the sensitivity of daily fluxes to various
hydrometeorological drivers using Pearson’s and Spearman’s correlation coefficients, along with
relative weight analysis (RWA)!*. These analyses revealed that GPP was highly sensitive to
fluctuations in soil water availability across the entire soil profile (Figure 1a). At most sites, GPP

significantly increased in concert with soil moisture (mean correlation coefficient ranging from
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0.33 and 0.49 across soil layers), while it significantly decreased with increasing VPD (mean
coefficient of —0.22). GPP responded much less strongly to air temperature (TA) and light
(photosynthetic photon flux density, PPFD), with mean coefficients of —0.08 and —0.01,
respectively. Indeed, at the sites where soil moisture was measured, only the wettest site had a
higher sensitivity of GPP to any atmospheric driver than to soil moisture (Extended Data Figure
2). ET was also highly responsive to fluctuations in soil moisture and was weakly associated
with variability in atmospheric drivers (Figure 1a, Extended Data Figure 3). However, ET was
more sensitive to soil moisture in shallow layers than in deep layers, likely due to evaporation
from the soil surface being a sizeable component of ET'S. The high sensitivity of GPP and ET to
soil moisture was also evident at half-hourly (Figure 2a), weekly (Figure 2b), and monthly
(Figure 2c) timescales (Figure 2a). We found similar results when using RWA which accounts
for collinearity in predictor variables (Extended Data Figure 4, Methods), and the Spearman’s
correlation coefficient which better assesses the strength of non-linear relationships (Extended
Data Figure 5). Together, these analyses provide robust evidence of the high sensitivity of

dryland GPP and ET to soil moisture across temporal scales.

While soil moisture was the largest driver of GPP and ET across these dryland sites,
atmospheric drivers may become more important during periods when water supply is abundant.
This is because the alleviation of soil moisture constraints can lead to: 1) light becoming more
limiting than water for photosynthesis, 2) greater stomatal conductance, which in turn leads to a
greater dependence of leaf-level fluxes on atmospheric demand, or 3) an increased capacity for
transpiration, which can influence leaf temperature through evaporative cooling. To test this
hypothesis, we conducted the same analysis during only the 10% wettest observations of mean

soil moisture across all layers (Figure 1b). During these periods, the correlation coefficient
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between GPP/ET and soil moisture was, as expected, reduced, and in many cases was not
statistically distinguishable from zero. However, the correlations between fluxes and atmospheric
drivers during these periods were still generally smaller than the correlation between GPP and
soil moisture calculated over the entire data record. Notably, the correlation between fluxes and
VPD switched from negative during the entire data record to positive during the wettest
conditions. This indicates that increased atmospheric demand during periods of low soil moisture
limitation can increase diffusive gradients and drive greater ET'®, while also potentially

providing a thermal environment conducive to higher rates of photosynthesis.

Ongoing debates center around the role of atmospheric drivers versus soil moisture in
driving ecosystem function, with a growing recognition of the importance of VPD in mediating
vegetation activity'®!”. We highlight here that VPD exerted a smaller role than soil moisture in
driving daily variability in dryland fluxes, and provide robust evidence of the important role of
soil moisture for dryland GPP and ET over space and time. The importance of soil moisture at
daily and half-hourly scales is quite notable, given that soil moisture dynamics generally tend to
change much more slowly than fluctuations in VPD. Reasons for this could include: 1) dryland
vegetation is highly adapted to rapidly respond to the fluctuations in soil water availability, given
the frequently transient precipitation dynamics present in many xeric ecosystems'®!°, and 2) the
seasonality of atmospheric aridity versus soil moisture is decoupled in some regions of the
western US due to monsoon-driven seasonality, whereby water availability frequently peaks in
both the cooler springtime and the hotter late summer'*. No matter the mechanism, the
importance of soil water in drylands should elicit expanded monitoring of soil moisture and a

greater recognition of the role that transient precipitation dynamics play for sustaining dryland



133 ecosystem function, especially given observed and projected changes in the frequency, intensity,

134  and variability of precipitation with warming?’.
135
136 Can remote sensing capture the drivers of fluxes

137 Given the importance of capturing soil moisture sensitivity across the extensive dryland
138  regions of the world and the relative paucity of EC towers in these biomes (especially outside of
139  the US), there is a pressing need for long-term and spatially extensive data sources that can

140  properly represent dryland ecosystem function. We therefore tested the ability of remotely-

141  sensed estimates of GPP and ET to accurately capture the sensitivity of drylands to various

142 hydrometeorological drivers. We selected widely used GPP and ET products that span a range of
143  methods (from purely empirical machine learning upscaling to semi-empirical models based on
144  simplified process representations; see Methods and Extended Data Table 2), and calculated their
145  correlation coefficients with in situ meteorological measurements from the network of EC

146  towers. These products generally replicated the eddy covariance-derived soil moisture

147  coefficients (Figure 3c-e, Extended Data Figure 6¢-¢); in the aggregate only the correlation

148  between MODIS ET and deep soil moisture fluctuations was incorrectly represented (Figure 3f,
149  Extended Data Figure 6f). Remotely-sensed soil moisture coefficients were thus correlated with
150  EC-derived coefficients (R? between 0.33 and 0.49) for all soil layers except the 10 — 20 cm

151  layer (Extended Data Figure 7).

152 Despite the ability of remotely-sensed data to capture soil moisture correlation
153  coefficients consistent with EC observations, they generally overpredicted the correlations

154  between fluxes and atmospheric drivers (Figure 3a-b), especially VPD. For example, the



155  correlation coefficients between remotely-sensed GPP/ET products and VPD was on average
156  35% more negative than the VPD coefficient observed at flux tower sites (Extended Data Figure
157  6a). As a result, the VPD coefficient for 4 out 5 flux products significantly deviated from EC

158  coefficients (Figure 3a), and the linkage between remotely-sensed and EC coefficients was weak
159  (R?=0.14, Extended Data Figure 7a-b). Two data products also showed sizeable negative

160 relationships between PPFD and fluxes, whereas that coefficient tended to be around zero (or
161  positive) when calculated using flux tower data (Figure 1a, Figure 3b, Extended Data Figures 2-
162  3). Given that the most consistent impact of climate change is increasing air temperature and thus
163  increases in vapor pressure deficit, remotely-sensed GPP and ET estimates that overrepresent the
164  role of VPD could incorrectly capture ecosystem responses to climate change and climate

165  extremes such as drought or heat waves. Our results point to the need for satellite-based flux

166  models to reconsider the role of atmospheric drivers in mediating dryland ecosystem fluxes,

167  perhaps by directly incorporating information on soil moisture availability?!~2>.

168 Despite some shortcomings representing the role of atmospheric drivers, these results
169  highlight the striking ability of remote sensing approaches to capture the role of soil moisture in
170  mediating dryland fluxes. These findings are particularly surprising considering that only

171  GLEAM ET and Soil Moisture Active Passive (SMAP) L4C GPP directly include soil moisture
172 constraints. This implies either: 1) that land surface greenness (the basis for optical remote

173  sensing of vegetation function) is sufficiently coupled to soil moisture in drylands to correctly
174  capture the sensitivity of carbon and water fluxes to soil moisture, or 2) the coupling between
175  soil moisture and VPD is strong enough that the simplified VPD scalars included in many of
176  these data products can indirectly simulate flux sensitivity to soil moisture. However, with

177  relatively few exceptions, the relationship between remotely-sensed flux products and soil
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moisture is still largely indirect, and thus developing products that can correctly capture in situ

soil moisture dynamics is a pressing research need.

Given the success of the SMAP L4C GPP product in replicating EC-derived correlation

coefficients, we next tested the ability of a SMAP-based soil moisture product**

to capture daily
fluctuations in surface and root-zone soil moisture. SMAP soil moisture estimates were indeed
linked to in situ soil moisture measurements, though the R? between remotely-sensed and in situ
soil moisture decreased substantially with increasing soil depth, from 0.45 for surface soils to
0.13 at > 50 cm depths (Extended Data Table 3). The correspondence between remotely-sensed
soil moisture and daily in situ soil moisture, combined with improvements in remotely sensed ET
model performance when SMAP data are included®!"??, indicates that SMAP-based data products
could be important tools to help constrain estimates of carbon-water cycling in land surface
models through validation, benchmarking, or data assimilation. In this regard, microwave remote
sensing products show great promise for real-time monitoring of ecosystem function in arid and
semiarid regions and for improving our understanding of how climate change (including the
ongoing megadrought in the southwestern US?) is impacting dryland ecosystems. However,

given the large reliance of vegetation on deep soil moisture found here and elsewhere?®?’

, more
work needs to be done to develop and validate data products that can provide relevant

information on deeper stores of plant-available water.

Can land surface models capture the drivers of fluxes

The tight coupling between soil moisture and ecosystem fluxes observed here could at

least partly explain the poor performance of many land surface models in drylands, as properly



200 representing soil moisture dynamics, along with vegetation responses to water stress, are

201 frequently one of the largest modeling uncertainties?® >°. Thus, we explored the degree to which
202  asuite of CMIP6 land surface models (see Methods) captured the sensitivity of GPP and ET to
203  soil moisture in the flux tower network by calculating their correlation with shallow and deep
204  soil moisture fluctuations. We found that models generally underestimated the correlation

205  between GPP and shallow soil moisture by 42% and to deep soil moisture by 49% (Figure 4a).
206  This underestimation likely arose from: 1) challenges in modeling highly dynamic soil moisture

207  fluctuations in biomes characterized by substantial belowground heterogeneity?*°

, and 2) error
208 in the shape and slope of the ‘beta functions’ that downregulate modeled photosynthesis as a

209  function of soil water availability, which are often poorly constrained or unconstrained by data.
210  Variability in CMIP6 correlation coefficients was also extremely large (spanning nearly the

211  entire range of possible values), which was not reflected in the flux tower data. Negative

212 relationships between GPP and soil moisture were also frequently predicted, though this

213 directionality was largely absent in the flux tower data. Many (but not all) of these negative

214  correlations were from the CanESM model, which is known to have a reduced ability to

215  accurately simulate dryland GPP compared to many other models*!. Differences between CMIP6
216  and EC-derived soil moisture coefficients were still statistically different when this model was

217  excluded from the ensemble, indicating that the inclusion of this model did not drive our

218  conclusion that CMIP6 models underestimate the sensitivity of GPP to soil moisture.

219 In contrast, the soil moisture coefficients for ET in the CMIP6 models did not differ
220  significantly from EC-derived values (Figure 4b). However, given that the drastic
221 underestimation of modeled GPP coefficients is also likely to indicate a lower coefficient for

222 transpiration, this may indicate that the similarities between modeled and flux tower ET
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coefficients are driven by compensating errors (i.e., an underestimation of transpiration
sensitivity is offset by an overestimation of evaporation sensitivity). There are many
uncertainties regarding partitioning ET into its constituent components®?, but future efforts to do
so across dryland ecosystems could shed light on the discrepancies between how different
models represent the sensitivity of ET to hydrometeorological drivers. While the poor
representation of soil moisture sensitivity in land surface models reflects shortcomings in our
ability to simulate water-limited ecosystems, this finding also points to the value of ongoing
modeling efforts towards better representing heterogeneous soil hydrology across depths?®, and
the physiological responses of vegetation to water stress by mechanistically simulating plant

hydraulics®**.

Soil moisture sensitivity in a changing climate

Our study provides compelling evidence that soil moisture is the primary driver of
dryland carbon-water fluxes, though atmospheric drivers (especially VPD) were important
factors during infrequent wet periods. We found GPP was particularly responsive to deeper soil
moisture pools, emphasizing their importance in sustaining dryland vegetation through dry and
hot summer conditions'#*>3¢. While recent increases in temperature and vapor pressure deficit
are driving changes across many ecosystems, our results imply that the future functioning of
drylands will be tied to local precipitation patterns, changes in snow accumulation, and potential
warming-enhanced depletion of soil moisture!?. It is concerning, therefore, that drylands in the
western US have experienced drastic reductions in winter precipitation in recent decades, which
is the source of moisture that primarily recharges deep soil layers?®*7%, The ramifications of

deep soil moisture losses are severe, and likely underpin many of the major plant mortality
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events observed across the region in recent years®> 2. These decreases in water availability*
might indicate US drylands are becoming more dependent on the inconsistent and transient
fluctuations in shallow soil moisture that are derived from summer rainfall. A shift in the
seasonality of water availability is an underappreciated dimension of climate change with

consequences that remain to be evaluated**.

In the face of ongoing climatic changes, our findings point to the need for an evolving
understanding of dryland ecosystem function. Tools that properly represent the sensitivity of
fluxes to both atmospheric drivers and soil moisture are essential to this process. We found that
widely used land surface models (in their current iteration) seem unsuited for this task, though
advances in modeling soil hydrology and vegetation hydraulics are potentially promising in this
regard. Although previous model-based analyses have found that soil moisture plays a critical
role in mediating global carbon uptake*’; our results suggest that these models may still be
underestimating how important soil water is for vegetation function. This underestimation
becomes even more critical given projections of increasing drought frequency and intensity in
drylands*. Although land surface models fell short in quantifying the sensitivity of GPP to soil
moisture, remote sensing products generally succeeded, despite the large mismatch in spatial
scale between satellite data products and flux towers. This result was also surprising considering
the inherent challenges in measuring ecosystems from satellites in biomes that are characterized
by large day-to-day variability in ecosystem fluxes (i.e., “hot moments”!?). Data products
derived from microwave remote sensing, in particular, seem very promising for generating
accurate estimates of ecosystem fluxes and shallow soil moisture. However, the finding that
remote-sensing approaches tend to overestimate the sensitivity of fluxes to atmospheric drivers

poses a challenge for properly representing dryland ecosystem dynamics in an aridifying climate.
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Ultimately, our findings highlight the importance of long-term in situ monitoring of
ecosystem dryland fluxes. Committing resources to this area will be crucial to validate the
newest generation of remote sensing products and land surface models that include a more
physiologically-informed view of how carbon and water flows through dryland ecosystems. Such
advances will set the stage for an improved understanding of water-limited biomes in the face of

climate change, as well as improve the accuracy of near-term ecological drought monitoring.
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Figure legends/captions

Figure 1. Correlation coefficients between daily GPP/ET and environmental drivers, calculated
using the full dataset (a) and only the 10% wettest mean soil moisture observations (b).
Environmental drivers include air temperature (TA), vapor pressure deficit (VPD),
photosynthetic photon flux density (PPFD), and various layers of volumetric water content
(VWC, see Methods for the depths included in each layer). Panels represent correlation
coefficients when considering all data (top panel) and only the observations within the top 10%
of shallow soil moisture observations (bottom panel). Asterisks indicate where coefficients are
significantly different from zero (o = 0.05). Box plot lines represent the interquartile range and

median, while the whiskers represent 1.5 times the interquartile range.

Figure 2. Correlation coefficients between GPP/ET and environmental drivers at half-hourly (a),
weekly (b), and monthly (c¢) timescales. Environmental drivers include air temperature (TA),
vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and various layers of
volumetric water content (VWC, see Methods for the depths included in each layer). Each point
represents the Pearson’s R between environmental drivers and fluxes, calculated over the entire
growing season and daytime data record. Asterisks indicate where coefficients are significantly
different from zero (o = 0.05). Box plot lines represent the interquartile range and median, while

the whiskers represent 1.5 times the interquartile range.



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Figure 3. Differences between hydrometeorological flux coefficients derived from remotely-
sensed versus EC approaches (A coefficient) for key atmospheric drivers (panels a-b) and soil
moisture depths (panels c-f). Values not significantly different from zero indicate the remotely-
sensed product replicates the EC-derived coefficient across sites. The presence of an asterisk
indicate that A coefficient is significantly different from zero (o = 0.05). Box plot lines represent

the interquartile range and median, while the whiskers represent 1.5 times the interquartile range.

Figure 4. Correlation coefficients between fluxes and shallow/deep soil moisture, as derived
from flux tower data versus CMIP6 models. Panel a represents correlation coefficients for GPP
while panel b represents correlation coefficients for ET. Each point represents the Pearson’s R
between each environmental driver and flux, calculated over the growing season. Asterisks
indicate where CMIP6 coefficients are significantly different than those from flux towers (o =
0.01). Box plot lines represent the interquartile range and median, while the whiskers represent

1.5 times the interquartile range.
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Methods

Site selection and flux data processing

To characterize the sensitivity of ecosystem fluxes to hydrometeorological drivers, we
synthesized data from all AmeriFlux towers in the western United States with at least 4 years of
data, an aridity index (the ratio of mean annual precipitation to potential evapotranspiration) of
<0.65, <500 mm mean annual precipitation, and no active management or manipulation (Figure
1, Extended Data Table 1). All sites except one (US-Rls) had a mean aridity index of less than
0.5. Our sites were constrained to the western US due to the paucity of dryland flux towers that
meet our criteria in other regions. However, these sites represent a wide diversity of climates,
topographies, and vegetation types, and are thus relevant for understanding dryland functioning
globally. Atmospheric drivers—photosynthetic photon flux density (PPFD), air temperature
(TA), and vapor pressure deficit (VPD)—were measured at most sites, as were measurements of

soil volumetric water content (VWC) of at least one depth. VPD was derived from relative
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humidity when not provided. The depths of soil moisture measurements were attained from site
Principal Investigators. When not directly measured, PPFD was considered to be proportional to
incoming shortwave radiation*’. In order to compare soil moisture dynamics across sites, soil
volumetric water content measurements were binned (averaged) into 4 depths at each site, when
present: a ‘shallow’ layer from 0 to < 10 cm, a ‘shallow-mid’ layer from > 10 to <20 cm, a

‘middle’ layer from >20 to < 50 cm, and a ‘deep’ layer consisting of measurements > 50 cm.

Net ecosystem exchange (NEE), TA, PPFD, and VPD were gap-filled using a look-up
table approach and NEE was partitioned into GPP and ecosystem respiration using the nighttime
partitioning method*®, as implemented in the R package REddyProc*. Evapotranspiration (ET)
was calculated by dividing the latent heat flux by the latent heat of vaporization. Since our goal
was to quantify the drivers of vegetation activity, we then limited our dataset to daytime
observations during the growing season. We defined start and end of the growing season of each
site-year using smoothed curves of GPP'*, First, at each site, winter was defined as the time
before DOY 70 and after DOY 330. Next, for each site-year we constructed smoothed curves of
seasonal GPP and daily curves of incoming shortwave radiation using the /oess function in R
with a span of 0.5. The start of the growing season was considered to be the first time point at
which this curve crossed a threshold of mean winter GPP +30% of the maximum smoothed GPP
amplitude, and the end of the growing season was considered to be the last time point when it
fell below this threshold. Start and end of season dates were then averaged for each site. For
weekly and monthly analyses, growing seasons were defined as the next week or month
following the start date until the week or month prior to the end date. Daytime was defined as 9

am to 5 pm at each site, based on the mean diurnal cycle of solar radiation. All daytime and
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growing season flux and meteorological data were then summed (fluxes) or averaged (all other

variables) to the daily timescale.

Remotely-sensed data products

We next compared the sensitivity of EC fluxes to several common satellite-based GPP
and ET models. To do so, we amassed five different data products that operate at fast temporal
scales (8-day or less) and span a wide range of methods (Extended Data Table 2°!5%). We used
two GPP products — the gap-filled MODIS product (MOD17A2GF?") and the Soil Moisture
Active Passive (SMAP) Level 4 Carbon (L4C) product™ — that are based on light-use efficiency
theory, in which GPP is proportional to absorbed photosynthetically active radiation. In both
products, a biome-specific “optimal” light-use efficiency is down-regulated under non-optimal
temperature and/or moisture conditions. The MODIS GPP model down-regulates GPP under
both low minimum temperatures and high VPD, while the SMAP GPP model also includes
responses to low rootzone (0-100 cm) soil moisture and frozen ground. As a complement to these

semi-empirical GPP products, we also use the empirical FluxSat GPP product™

, which upscales
global eddy covariance GPP estimates with a neural network based on MODIS multispectral
surface reflectance and top-of-atmosphere radiation. For ET, we used two products based on
physical evapotranspiration models: the gap-filled Penman-Monteith-based MODIS product
(MOD16A2GF>*) and the Priestley-Taylor-based GLEAM product®. In both cases, potential
evapotranspiration from the physical models is reduced under moisture stress, which is defined
based on VPD in the MODIS model and based on vegetation optical depth and root-zone soil

moisture (from a multi-layer water balance model) in the GLEAM model. For these data

products, we extracted the grid cell that contained the flux towers for all analyses.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

To assess the degree to which in situ soil moisture dynamics can be remotely-sensed, we
also obtained surface and root-zone soil moisture data for each flux tower site from the L-band
microwave NASA-USDA Enhanced SMAP dataset®*. Remotely-sensed soil moisture estimates
were smoothed from 3-day to a daily time scale in order to be directly comparable with flux
tower data using a loess smoothing spline with a span of 0.05. These data were then constrained
to the same growing seasons and years as the flux tower data. The error in remotely-sensed soil
moisture correlation coefficients (A coefficient) was quantified as the soil moisture coefficient

derived from remotely-sensed data products minus the EC-derived coefficient.

CMIP6 model output

We extracted monthly GPP, ET, and soil moisture data from the grid cell corresponding
to our flux tower locations from a single ensemble member (rlilp1fl) for a suite of 11 CMIP6
land surface models: ACCESS-ESM1-5, BCC-CSM2-MR, CanESMS5, CESM2-WACCM,
CMCC-CM2-SR5, MPI-ESM1-2-LR, NorESM2-LM, NorESM2-MM, TaiESM1, E3SM-1-0,
and MIROCS6. For consistency with EC-derived measurements and microwave remote sensing
products described below, we extracted the top 10 cm and the 1 m soil moisture variables. The
10 cm CMIP6 soil moisture product is analogous to the ‘shallow’ in situ soil layer, while the 1 m
soil moisture product is analogous to the ‘deep’ in situ soil layer. CMIP6 output only extends
through the year 2014 while the EC data have variable dataset lengths. To maximize the
comparability between EC and model-derived fluxes, we constrained the two datasets to the
same time periods for this analysis. Differences in the spatial and temporal scales at which eddy
covariance, remotely-sensed, and CMIP6 data operate could introduce noise into direct

comparisons among them. Such mismatches in scale have the potential to ‘smooth out’ point-
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scale variability, potentially leading to an apparent underestimation of variability. Regardless of
whether this underestimation is due to spatial scaling or issues inherent to the coarser-scale data,
it remains a critical concern. Comparisons between these products are essential for evaluating
sensitivity across different data products and spatiotemporal scales, especially given the

widespread use of LSMs for prediction.

Statistical analyses

The sensitivity of carbon and water fluxes to various meteorological drivers was
calculated as the Pearson’s R of the relationship between a given flux and hydrometeorological
driver. Pearson’s R is indicative of the slope of the relationship between two standardized
variables and is thus reflective of how strongly a flux responds to an environmental driver. The
sign of the coefficient reflects the direction of the relationship, where a larger value (either
positive or negative) indicates that a given flux responds more strongly to variability in a given
variable. A coefficient near zero indicates that the flux was not responsive to a given variable.
The relationship between hydrometeorological drivers and fluxes, though frequently linear in
nature, can also take on a wide variety of functional forms. Therefore, we also computed the
Spearman’s correlation coefficient, which does not assume linearity and instead assesses the

strength of the relationship between two variables using a monotonic function.

In order to quantify the influence of hydrometeorological drivers on GPP and ET while
accounting for any predictor collinearity, we additionally performed a relative weight analysis
(RWA)*® using the R package rwa (cran.r-project.org/web/packages/rwa/rwa.pdf). RWA

partitions the explained variance across multiple predictors by transforming correlated predictors
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into orthogonal variables, performing a linear model on the transformed variables, and then
transforming the resulting coefficients back to the original metric. The resulting relative weights
are only comparable across sites if the underlying model structure is the same (i.e., contains the
same predictor variables), which is not the case across our sites. Therefore, we only conducted
RWA on the sites that contained the predictors that were most commonly available (TA, VPD,

PPFD, shallow soil moisture, and shallow-mid soil moisture).

We used ordinary least squares regression to compare correlation coefficients quantified
across different data sources as well as to compare microwave remote sensing soil moisture
products to in situ soil moisture, after assessing the normality and heteroscedasticity of model
residuals. Two-tailed t-tests were used to assess differences between soil moisture coefficients
across data products, as well as to test if a coefficient was significantly different from zero. All

analyses were conducted in R 4.2.2.2°7.

Data availability statement

All data used for our analyses are publicly available. Eddy covariance tower data are available at
ameriflux.lbl.gov, CMIP6 model output are accessible from esgf-node.llnl.gov/search/cmip6/.
SMAP L4C, MOD16, and MOD17 data were all obtained using the AppEEARS subsetting tool
(https://appeears.earthdatacloud.nasa.gov/). FluxSat data were obtained from the ORNL DAAC
(https://daac.ornl.gov/VEGETATION/guides/FluxSat GPP_FPAR.html), and GLEAM data

were obtained from https://www.gleam.eu/.
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