

1 **Title**

2 Dominant role of soil moisture in mediating carbon and water fluxes in dryland ecosystems

3

4 **Author list**

5 Steven A. Kannenberg^{1,2,*}, William R.L. Anderegg^{3,4}, Mallory L. Barnes⁵, Matthew P.

6 Dannenberg⁶, Alan K. Knapp²

7 *Corresponding author: steven.kannenberg@mail.wvu.edu

8

9 **Affiliations**

10 ¹Department of Biology, West Virginia University, Morgantown, WV, USA

11 ²Department of Biology and Graduate Degree Program in Ecology, Colorado State University,
12 Fort Collins, CO, USA

13 ³School of Biological Sciences, University of Utah, Salt Lake City, UT, USA

14 ⁴Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT, USA

15 ⁵O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA

16 ⁶Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA

17 52245, USA

18

19 **Abstract**

20 Drylands exert a strong influence over global interannual variability in carbon and water
21 cycling due to their substantial heterogeneity over space and time. This variability in ecosystem
22 fluxes presents challenges for understanding their primary drivers. Here, we quantify the
23 sensitivity of dryland gross primary productivity and evapotranspiration to various
24 hydrometeorological drivers by synthesizing eddy covariance data, remote sensing products, and
25 land surface model output across the western US. We find that gross primary productivity and
26 evapotranspiration derived from eddy covariance are most sensitive to soil moisture fluctuations,
27 with lesser sensitivity to vapor pressure deficit and little to no sensitivity to air temperature or
28 light. We find that remote sensing data accurately captures the sensitivity of eddy covariance
29 fluxes to soil moisture, but largely over-predicts sensitivity to atmospheric drivers. In contrast,
30 CMIP6 land surface models underestimate sensitivity of gross primary productivity to soil
31 moisture fluctuations by approximately 45%. Amidst debates about the role of increasing vapor
32 pressure deficit in a changing climate, we conclude that soil moisture is the primary driver of US
33 dryland carbon-water fluxes. It is thus imperative to both improve model representation of soil
34 water limitation and more realistically represent how atmospheric drivers affect dryland
35 vegetation in remotely-sensed flux products.

36

37 **Main text**

38 Dryland ecosystems exert a substantial influence on the global climate system, in part by
39 mediating interannual variability in the strength of the land carbon sink^{1,2}. However, drylands are
40 warming faster than the global mean³ and are expected to continue aridifying in the coming
41 decades^{4,5}, which could trigger feedbacks that alter or dampen their crucial role in mediating
42 global carbon-water cycling.

43 These ongoing and future changes to drylands necessitate a robust assessment of the
44 drivers of their carbon and water cycles. However, studying drylands at the necessary spatial and
45 temporal scales to accurately characterize carbon-water fluxes is notoriously challenging. Field
46 research campaigns, for example, typically do not operate at spatial scales large enough to
47 account for the topographical and hydrological variability present in most drylands, and seldom
48 last for more than a few consecutive years. Land surface models, while generating spatially
49 continuous estimates of carbon-water fluxes, generally operate at coarse spatial scales and
50 underestimate both the magnitude and variability of dryland fluxes^{6,7}. Many remote sensing
51 products also perform poorly in drylands due to the limited ability of existing satellites to capture
52 dryland heterogeneity, noise introduced from inactive vegetation or soils, and weak linkages
53 between vegetation activity and reflectance⁸. As such, important ecological questions remain
54 unresolved: 1) Are dryland fluxes more sensitive to fluctuations in atmospheric drivers (e.g.,
55 temperature, light, evaporative demand) or soil moisture? And, 2) how sensitive are dryland
56 fluxes to variation in shallow versus deep soil moisture pools? Answering these questions is
57 increasingly pertinent as air temperature and atmospheric water demand rises⁹ and soil moisture
58 decreases¹⁰. If atmospheric aridity or temperature is the primary driver of dryland fluxes, climate
59 change may accelerate dryland aridification or amplify feedback mechanisms that diminish their
60 capacity to absorb atmospheric CO₂¹¹.

61 A multi-scale, multi-method synthesis holds promise towards characterizing dryland
62 fluxes at frequent temporal scales and small spatial scales. In particular, eddy covariance (EC)
63 data are valuable for linking hydrometeorological drivers to ecosystem function¹² given their
64 long-term monitoring capability, high temporal frequency, and coverage across numerous
65 dryland biome types. Existing networks of EC observations now contain multi-decadal datasets

66 of ecosystem fluxes and meteorological conditions, enabling an assessment of ecosystem fluxes
67 across a wide range of interannual weather variability. However, the degree to which the drivers
68 of EC fluxes are accurately represented in remotely-sensed or modeled data products remains
69 unknown, which limits our ability to understand linkages between hydrometeorological drivers
70 and dryland ecosystem function at regional or global scales.

71 Here, we characterized the drivers of dryland carbon and water cycling, including their
72 relative sensitivities to atmospheric drivers versus soil moisture pools at different depths, by
73 leveraging a network of EC towers across the western United States (Extended Data Figure 1,
74 Extended Data Table 1). Efforts to quantify the drivers of ecosystem fluxes at such a high
75 frequency are relatively rare, despite the outsized importance of meteorological ‘hot moments’
76 in driving dryland carbon-water cycling broadly¹³. We then evaluated the ability of multiple
77 remotely-sensed data products and a suite of land surface models to capture these dynamics. This
78 cross-scale evaluation of dryland ecosystem function can help pinpoint regions most susceptible
79 to current and future changes in climate.

80

81 *Soil moisture is the dominant driver of carbon-water fluxes*

82 To quantify the drivers of dryland gross primary productivity (GPP) and
83 evapotranspiration (ET), we calculated the sensitivity of daily fluxes to various
84 hydrometeorological drivers using Pearson’s and Spearman’s correlation coefficients, along with
85 relative weight analysis (RWA)¹⁴. These analyses revealed that GPP was highly sensitive to
86 fluctuations in soil water availability across the entire soil profile (Figure 1a). At most sites, GPP
87 significantly increased in concert with soil moisture (mean correlation coefficient ranging from

88 0.33 and 0.49 across soil layers), while it significantly decreased with increasing VPD (mean
89 coefficient of -0.22). GPP responded much less strongly to air temperature (TA) and light
90 (photosynthetic photon flux density, PPFD), with mean coefficients of -0.08 and -0.01 ,
91 respectively. Indeed, at the sites where soil moisture was measured, only the wettest site had a
92 higher sensitivity of GPP to any atmospheric driver than to soil moisture (Extended Data Figure
93 2). ET was also highly responsive to fluctuations in soil moisture and was weakly associated
94 with variability in atmospheric drivers (Figure 1a, Extended Data Figure 3). However, ET was
95 more sensitive to soil moisture in shallow layers than in deep layers, likely due to evaporation
96 from the soil surface being a sizeable component of ET¹⁵. The high sensitivity of GPP and ET to
97 soil moisture was also evident at half-hourly (Figure 2a), weekly (Figure 2b), and monthly
98 (Figure 2c) timescales (Figure 2a). We found similar results when using RWA which accounts
99 for collinearity in predictor variables (Extended Data Figure 4, Methods), and the Spearman's
100 correlation coefficient which better assesses the strength of non-linear relationships (Extended
101 Data Figure 5). Together, these analyses provide robust evidence of the high sensitivity of
102 dryland GPP and ET to soil moisture across temporal scales.

103 While soil moisture was the largest driver of GPP and ET across these dryland sites,
104 atmospheric drivers may become more important during periods when water supply is abundant.
105 This is because the alleviation of soil moisture constraints can lead to: 1) light becoming more
106 limiting than water for photosynthesis, 2) greater stomatal conductance, which in turn leads to a
107 greater dependence of leaf-level fluxes on atmospheric demand, or 3) an increased capacity for
108 transpiration, which can influence leaf temperature through evaporative cooling. To test this
109 hypothesis, we conducted the same analysis during only the 10% wettest observations of mean
110 soil moisture across all layers (Figure 1b). During these periods, the correlation coefficient

111 between GPP/ET and soil moisture was, as expected, reduced, and in many cases was not
112 statistically distinguishable from zero. However, the correlations between fluxes and atmospheric
113 drivers during these periods were still generally smaller than the correlation between GPP and
114 soil moisture calculated over the entire data record. Notably, the correlation between fluxes and
115 VPD switched from negative during the entire data record to positive during the wettest
116 conditions. This indicates that increased atmospheric demand during periods of low soil moisture
117 limitation can increase diffusive gradients and drive greater ET¹⁶, while also potentially
118 providing a thermal environment conducive to higher rates of photosynthesis.

119 Ongoing debates center around the role of atmospheric drivers versus soil moisture in
120 driving ecosystem function, with a growing recognition of the importance of VPD in mediating
121 vegetation activity^{16,17}. We highlight here that VPD exerted a smaller role than soil moisture in
122 driving daily variability in dryland fluxes, and provide robust evidence of the important role of
123 soil moisture for dryland GPP and ET over space and time. The importance of soil moisture at
124 daily and half-hourly scales is quite notable, given that soil moisture dynamics generally tend to
125 change much more slowly than fluctuations in VPD. Reasons for this could include: 1) dryland
126 vegetation is highly adapted to rapidly respond to the fluctuations in soil water availability, given
127 the frequently transient precipitation dynamics present in many xeric ecosystems^{18,19}, and 2) the
128 seasonality of atmospheric aridity versus soil moisture is decoupled in some regions of the
129 western US due to monsoon-driven seasonality, whereby water availability frequently peaks in
130 both the cooler springtime and the hotter late summer¹⁴. No matter the mechanism, the
131 importance of soil water in drylands should elicit expanded monitoring of soil moisture and a
132 greater recognition of the role that transient precipitation dynamics play for sustaining dryland

133 ecosystem function, especially given observed and projected changes in the frequency, intensity,
134 and variability of precipitation with warming²⁰.

135

136 *Can remote sensing capture the drivers of fluxes*

137 Given the importance of capturing soil moisture sensitivity across the extensive dryland
138 regions of the world and the relative paucity of EC towers in these biomes (especially outside of
139 the US), there is a pressing need for long-term and spatially extensive data sources that can
140 properly represent dryland ecosystem function. We therefore tested the ability of remotely-
141 sensed estimates of GPP and ET to accurately capture the sensitivity of drylands to various
142 hydrometeorological drivers. We selected widely used GPP and ET products that span a range of
143 methods (from purely empirical machine learning upscaling to semi-empirical models based on
144 simplified process representations; see Methods and Extended Data Table 2), and calculated their
145 correlation coefficients with *in situ* meteorological measurements from the network of EC
146 towers. These products generally replicated the eddy covariance-derived soil moisture
147 coefficients (Figure 3c-e, Extended Data Figure 6c-e); in the aggregate only the correlation
148 between MODIS ET and deep soil moisture fluctuations was incorrectly represented (Figure 3f,
149 Extended Data Figure 6f). Remotely-sensed soil moisture coefficients were thus correlated with
150 EC-derived coefficients (R^2 between 0.33 and 0.49) for all soil layers except the 10 – 20 cm
151 layer (Extended Data Figure 7).

152 Despite the ability of remotely-sensed data to capture soil moisture correlation
153 coefficients consistent with EC observations, they generally overpredicted the correlations
154 between fluxes and atmospheric drivers (Figure 3a-b), especially VPD. For example, the

155 correlation coefficients between remotely-sensed GPP/ET products and VPD was on average
156 35% more negative than the VPD coefficient observed at flux tower sites (Extended Data Figure
157 6a). As a result, the VPD coefficient for 4 out 5 flux products significantly deviated from EC
158 coefficients (Figure 3a), and the linkage between remotely-sensed and EC coefficients was weak
159 ($R^2 = 0.14$, Extended Data Figure 7a-b). Two data products also showed sizeable negative
160 relationships between PPFD and fluxes, whereas that coefficient tended to be around zero (or
161 positive) when calculated using flux tower data (Figure 1a, Figure 3b, Extended Data Figures 2-
162 3). Given that the most consistent impact of climate change is increasing air temperature and thus
163 increases in vapor pressure deficit, remotely-sensed GPP and ET estimates that overrepresent the
164 role of VPD could incorrectly capture ecosystem responses to climate change and climate
165 extremes such as drought or heat waves. Our results point to the need for satellite-based flux
166 models to reconsider the role of atmospheric drivers in mediating dryland ecosystem fluxes,
167 perhaps by directly incorporating information on soil moisture availability²¹⁻²³.

168 Despite some shortcomings representing the role of atmospheric drivers, these results
169 highlight the striking ability of remote sensing approaches to capture the role of soil moisture in
170 mediating dryland fluxes. These findings are particularly surprising considering that only
171 GLEAM ET and Soil Moisture Active Passive (SMAP) L4C GPP directly include soil moisture
172 constraints. This implies either: 1) that land surface greenness (the basis for optical remote
173 sensing of vegetation function) is sufficiently coupled to soil moisture in drylands to correctly
174 capture the sensitivity of carbon and water fluxes to soil moisture, or 2) the coupling between
175 soil moisture and VPD is strong enough that the simplified VPD scalars included in many of
176 these data products can indirectly simulate flux sensitivity to soil moisture. However, with
177 relatively few exceptions, the relationship between remotely-sensed flux products and soil

178 moisture is still largely indirect, and thus developing products that can correctly capture *in situ*
179 soil moisture dynamics is a pressing research need.

180 Given the success of the SMAP L4C GPP product in replicating EC-derived correlation
181 coefficients, we next tested the ability of a SMAP-based soil moisture product²⁴ to capture daily
182 fluctuations in surface and root-zone soil moisture. SMAP soil moisture estimates were indeed
183 linked to *in situ* soil moisture measurements, though the R² between remotely-sensed and *in situ*
184 soil moisture decreased substantially with increasing soil depth, from 0.45 for surface soils to
185 0.13 at > 50 cm depths (Extended Data Table 3). The correspondence between remotely-sensed
186 soil moisture and daily *in situ* soil moisture, combined with improvements in remotely sensed ET
187 model performance when SMAP data are included^{21,22}, indicates that SMAP-based data products
188 could be important tools to help constrain estimates of carbon-water cycling in land surface
189 models through validation, benchmarking, or data assimilation. In this regard, microwave remote
190 sensing products show great promise for real-time monitoring of ecosystem function in arid and
191 semiarid regions and for improving our understanding of how climate change (including the
192 ongoing megadrought in the southwestern US²⁵) is impacting dryland ecosystems. However,
193 given the large reliance of vegetation on deep soil moisture found here and elsewhere^{26,27}, more
194 work needs to be done to develop and validate data products that can provide relevant
195 information on deeper stores of plant-available water.

196

197 *Can land surface models capture the drivers of fluxes*

198 The tight coupling between soil moisture and ecosystem fluxes observed here could at
199 least partly explain the poor performance of many land surface models in drylands, as properly

representing soil moisture dynamics, along with vegetation responses to water stress, are frequently one of the largest modeling uncertainties^{28–30}. Thus, we explored the degree to which a suite of CMIP6 land surface models (see Methods) captured the sensitivity of GPP and ET to soil moisture in the flux tower network by calculating their correlation with shallow and deep soil moisture fluctuations. We found that models generally underestimated the correlation between GPP and shallow soil moisture by 42% and to deep soil moisture by 49% (Figure 4a). This underestimation likely arose from: 1) challenges in modeling highly dynamic soil moisture fluctuations in biomes characterized by substantial belowground heterogeneity^{28,29}, and 2) error in the shape and slope of the ‘beta functions’ that downregulate modeled photosynthesis as a function of soil water availability, which are often poorly constrained or unconstrained by data³⁰. Variability in CMIP6 correlation coefficients was also extremely large (spanning nearly the entire range of possible values), which was not reflected in the flux tower data. Negative relationships between GPP and soil moisture were also frequently predicted, though this directionality was largely absent in the flux tower data. Many (but not all) of these negative correlations were from the CanESM model, which is known to have a reduced ability to accurately simulate dryland GPP compared to many other models³¹. Differences between CMIP6 and EC-derived soil moisture coefficients were still statistically different when this model was excluded from the ensemble, indicating that the inclusion of this model did not drive our conclusion that CMIP6 models underestimate the sensitivity of GPP to soil moisture.

In contrast, the soil moisture coefficients for ET in the CMIP6 models did not differ significantly from EC-derived values (Figure 4b). However, given that the drastic underestimation of modeled GPP coefficients is also likely to indicate a lower coefficient for transpiration, this may indicate that the similarities between modeled and flux tower ET

223 coefficients are driven by compensating errors (i.e., an underestimation of transpiration
224 sensitivity is offset by an overestimation of evaporation sensitivity). There are many
225 uncertainties regarding partitioning ET into its constituent components³², but future efforts to do
226 so across dryland ecosystems could shed light on the discrepancies between how different
227 models represent the sensitivity of ET to hydrometeorological drivers. While the poor
228 representation of soil moisture sensitivity in land surface models reflects shortcomings in our
229 ability to simulate water-limited ecosystems, this finding also points to the value of ongoing
230 modeling efforts towards better representing heterogeneous soil hydrology across depths²⁸, and
231 the physiological responses of vegetation to water stress by mechanistically simulating plant
232 hydraulics^{33,34}.

233

234 *Soil moisture sensitivity in a changing climate*

235 Our study provides compelling evidence that soil moisture is the primary driver of
236 dryland carbon-water fluxes, though atmospheric drivers (especially VPD) were important
237 factors during infrequent wet periods. We found GPP was particularly responsive to deeper soil
238 moisture pools, emphasizing their importance in sustaining dryland vegetation through dry and
239 hot summer conditions^{14,35,36}. While recent increases in temperature and vapor pressure deficit
240 are driving changes across many ecosystems, our results imply that the future functioning of
241 drylands will be tied to local precipitation patterns, changes in snow accumulation, and potential
242 warming-enhanced depletion of soil moisture¹⁰. It is concerning, therefore, that drylands in the
243 western US have experienced drastic reductions in winter precipitation in recent decades, which
244 is the source of moisture that primarily recharges deep soil layers^{20,37,38}. The ramifications of
245 deep soil moisture losses are severe, and likely underpin many of the major plant mortality

246 events observed across the region in recent years^{39–42}. These decreases in water availability⁴³
247 might indicate US drylands are becoming more dependent on the inconsistent and transient
248 fluctuations in shallow soil moisture that are derived from summer rainfall. A shift in the
249 seasonality of water availability is an underappreciated dimension of climate change with
250 consequences that remain to be evaluated⁴⁴.

251 In the face of ongoing climatic changes, our findings point to the need for an evolving
252 understanding of dryland ecosystem function. Tools that properly represent the sensitivity of
253 fluxes to both atmospheric drivers and soil moisture are essential to this process. We found that
254 widely used land surface models (in their current iteration) seem unsuited for this task, though
255 advances in modeling soil hydrology and vegetation hydraulics are potentially promising in this
256 regard. Although previous model-based analyses have found that soil moisture plays a critical
257 role in mediating global carbon uptake⁴⁵; our results suggest that these models may still be
258 underestimating how important soil water is for vegetation function. This underestimation
259 becomes even more critical given projections of increasing drought frequency and intensity in
260 drylands⁴⁶. Although land surface models fell short in quantifying the sensitivity of GPP to soil
261 moisture, remote sensing products generally succeeded, despite the large mismatch in spatial
262 scale between satellite data products and flux towers. This result was also surprising considering
263 the inherent challenges in measuring ecosystems from satellites in biomes that are characterized
264 by large day-to-day variability in ecosystem fluxes (i.e., “hot moments”¹³). Data products
265 derived from microwave remote sensing, in particular, seem very promising for generating
266 accurate estimates of ecosystem fluxes and shallow soil moisture. However, the finding that
267 remote-sensing approaches tend to overestimate the sensitivity of fluxes to atmospheric drivers
268 poses a challenge for properly representing dryland ecosystem dynamics in an aridifying climate.

269 Ultimately, our findings highlight the importance of long-term *in situ* monitoring of
270 ecosystem dryland fluxes. Committing resources to this area will be crucial to validate the
271 newest generation of remote sensing products and land surface models that include a more
272 physiologically-informed view of how carbon and water flows through dryland ecosystems. Such
273 advances will set the stage for an improved understanding of water-limited biomes in the face of
274 climate change, as well as improve the accuracy of near-term ecological drought monitoring.

275

276 **Acknowledgements**

277 We sincerely thank all flux tower site PIs for contributing flux data and the AmeriFlux
278 Management Project team for making these data openly available. Funding for the AmeriFlux
279 data portal was provided by the US Department of Energy. SAK and MLB were supported by
280 the US Department of Energy Environmental System Science program grant #DE-SC0022052.
281 WRLA acknowledges support from the David and Lucille Packard Foundation, US National
282 Science Foundation grants 1802880, 2003017, 2044937, and IOS-2325700 from the Alan T.
283 Waterman Award. MPD and MLB were supported by NASA SMAP Science Team grant
284 #80NSSC20K1805.

285

286 **Author contributions statement**

287 SAK initially conceived of the research, with subsequent contributions from all authors. WRLA,
288 MLB, and MPD assisted with data extraction. SAK performed all data analysis and wrote the
289 first draft of the manuscript. All authors contributed to subsequent manuscript revisions.

290

291 **Competing interests statement**

292 The authors declare no competing interests.

293

294 **Figure legends/captions**

295 Figure 1. Correlation coefficients between daily GPP/ET and environmental drivers, calculated
296 using the full dataset (a) and only the 10% wettest mean soil moisture observations (b).

297 Environmental drivers include air temperature (TA), vapor pressure deficit (VPD),
298 photosynthetic photon flux density (PPFD), and various layers of volumetric water content
299 (VWC, see Methods for the depths included in each layer). Panels represent correlation
300 coefficients when considering all data (top panel) and only the observations within the top 10%
301 of shallow soil moisture observations (bottom panel). Asterisks indicate where coefficients are
302 significantly different from zero ($\alpha = 0.05$). Box plot lines represent the interquartile range and
303 median, while the whiskers represent 1.5 times the interquartile range.

304 Figure 2. Correlation coefficients between GPP/ET and environmental drivers at half-hourly (a),
305 weekly (b), and monthly (c) timescales. Environmental drivers include air temperature (TA),
306 vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and various layers of
307 volumetric water content (VWC, see Methods for the depths included in each layer). Each point
308 represents the Pearson's R between environmental drivers and fluxes, calculated over the entire
309 growing season and daytime data record. Asterisks indicate where coefficients are significantly
310 different from zero ($\alpha = 0.05$). Box plot lines represent the interquartile range and median, while
311 the whiskers represent 1.5 times the interquartile range.

312 Figure 3. Differences between hydrometeorological flux coefficients derived from remotely-
313 sensed versus EC approaches (Δ coefficient) for key atmospheric drivers (panels a-b) and soil
314 moisture depths (panels c-f). Values not significantly different from zero indicate the remotely-
315 sensed product replicates the EC-derived coefficient across sites. The presence of an asterisk
316 indicate that Δ coefficient is significantly different from zero ($\alpha = 0.05$). Box plot lines represent
317 the interquartile range and median, while the whiskers represent 1.5 times the interquartile range.

318 Figure 4. Correlation coefficients between fluxes and shallow/deep soil moisture, as derived
319 from flux tower data versus CMIP6 models. Panel a represents correlation coefficients for GPP
320 while panel b represents correlation coefficients for ET. Each point represents the Pearson's R
321 between each environmental driver and flux, calculated over the growing season. Asterisks
322 indicate where CMIP6 coefficients are significantly different than those from flux towers ($\alpha =$
323 0.01). Box plot lines represent the interquartile range and median, while the whiskers represent
324 1.5 times the interquartile range.

325

326 **References**

327 1. Ahlstrom, A. *et al.* The dominant role of semi-arid ecosystems in the tren and variability of
328 the land CO₂ sink. *Science* **348**, 4503–4518 (2015).

329 2. Poulter, B. *et al.* Contribution of semi-arid ecosystems to interannual variability of the global
330 carbon cycle. *Nature* **509**, 600–603 (2014).

331 3. Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions
332 observed since 1979. *Environ. Res. Lett.* **10**, 064012 (2015).

333 4. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the
334 American Southwest and Central Plains. *Sci. Adv.* **1**, (2015).

335 5. Cook, B. *et al.* Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil
336 Moisture Drought in Southwestern North America. *Earths Future* **9**, e2021EF002014 (2021).

337 6. Barnes, M. L. *et al.* Improved dryland carbon flux predictions with explicit consideration of
338 water-carbon coupling. *Commun. Earth Environ.* **2**, 248 (2021).

339 7. MacBean, N. *et al.* Dynamic global vegetation models underestimate net CO₂ flux mean and
340 inter-annual variability in dryland ecosystems. *Environ. Res. Lett.* **16**, (2021).

341 8. Smith, W. K. *et al.* Remote sensing of dryland ecosystem structure and function: Progress,
342 challenges, and opportunities. *Remote Sens. Environ.* **233**, 111401 (2019).

343 9. Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit
344 suggest a continental-scale drying of the United States atmosphere. *J. Geophys. Res.* **122**,
345 2061–2079 (2017).

346 10. Cook, B. *et al.* Twenty-first century drought projections in the CMIP6 forcing scenarios.
347 *Earths Future* **8**, e2019EF001461 (2020).

348 11. Lian, X. *et al.* Multifaceted characteristics of dryland aridity changes in a warming world.
349 *Nat. Rev. Earth Environ.* **2**, 232–250 (2021).

350 12. Thompson, S. E. *et al.* Comparative hydrology across AmeriFlux sites: The variable roles of
351 climate, vegetation, and groundwater. *Water Resour. Res.* **47**, 1–17 (2011).

352 13. Kannenberg, S. A., Bowling, D. R. & Anderegg, W. R. L. Hot moments in ecosystem fluxes:
353 High GPP anomalies exert outsized influence on the carbon cycle and are differentially
354 driven by moisture availability across biomes. *Environ. Res. Lett.* **15**, (2020).

355 14. Kannenberg, S. A. *et al.* Quantifying the drivers of ecosystem fluxes and water potential
356 across the soil-plant-atmosphere continuum in an arid woodland. *Agric. For. Meteorol.* **329**,
357 109269 (2023).

358 15. Sun, X., Wilcox, B. P. & Zou, C. B. Evapotranspiration partitioning in dryland ecosystems:
359 A global meta-analysis of in situ studies. *J. Hydrol.* **576**, 123–136 (2019).

360 16. Novick, K. A. *et al.* The increasing importance of atmospheric demand for ecosystem water
361 and carbon fluxes. *Nat. Clim. Change* **6**, 1023–1027 (2016).

362 17. Grossiord, C. *et al.* Plant responses to rising vapor pressure deficit. *New Phytol.* **226**, 1550–
363 1566 (2020).

364 18. Huxman, T. E. *et al.* Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
365 *Oecologia* **141**, 254–268 (2004).

366 19. Schwinnig, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid
367 ecosystems. *Oecologia* **141**, 211–220 (2004).

368 20. Zhang, F. *et al.* Five Decades of Observed Daily Precipitation Reveal Longer and More
369 Variable Drought Events Across Much of the Western United States. *Geophys. Res. Lett.* **48**,
370 1–11 (2021).

371 21. Brust, C. *et al.* Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration
372 over the contiguous USA. *Remote Sens. Environ.* **255**, 112277 (2021).

373 22. Purdy, A. J. *et al.* SMAP soil moisture improves global evapotranspiration. *Remote Sens.*
374 *Environ.* **219**, 1–14 (2018).

375 23. Stocker, B. D. *et al.* Quantifying soil moisture impacts on light use efficiency across biomes.
376 *New Phytol.* **218**, 1430–1449 (2018).

377 24. Mladenova, I. E., Bolten, J. D., Crow, W., Sazib, N. & Reynolds, C. Agricultural Drought
378 Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water
379 Balance Model. *Front. Big Data* **3**, 10 (2020).

380 25. Williams, A. P., Cook, B. I. & Smerdon, J. E. Rapid intensification of the emerging
381 southwestern North American megadrought in 2020–2021. *Nat. Clim. Change* **12**, 232–234
382 (2022).

383 26. Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation.
384 *Nature* **598**, 624–628 (2021).

385 27. McCormick, E. L. *et al.* Widespread woody plant use of water stored in bedrock. *Nature*
386 **597**, 225–229 (2021).

387 28. MacBean, N. *et al.* Testing water fluxes and storage from two hydrology configurations
388 within the ORCHIDEE land surface model across US semi-arid sites. *Hydrol. Earth Syst.
389 Sci.* **24**, 5203–5230 (2020).

390 29. Qiao, L., Zuo, Z. & Xiao, D. Evaluation of Soil Moisture in CMIP6 Simulations. *J. Clim.* **35**,
391 779–800 (2022).

392 30. Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil Moisture Stress as a
393 Major Driver of Carbon Cycle Uncertainty. *Geophys. Res. Lett.* **45**, 6495–6503 (2018).

394 31. Collier, N. *et al.* The International Land Model Benchmarking (ILAMB) System: Design,
395 Theory, and Implementation. *J. Adv. Model. Earth Syst.* **10**, 2731–2754 (2018).

396 32. Stoy, P. C. *et al.* Reviews and syntheses: Turning the challenges of partitioning ecosystem
397 evaporation and transpiration into opportunities. *Biogeosciences* **16**, 3747–3775 (2019).

398 33. Kennedy, D. *et al.* Implementing plant hydraulics in the Community Land Model , version 5.
399 *J. Adv. Model. Earth Syst.* **11**, 485–513 (2019).

400 34. Sperry, J. S. *et al.* Predicting stomatal responses to the optimization of
401 photosynthetic gain and hydraulic cost. *Plant Cell Environ.* **40**, 816–830 (2017).

402 35. Samuels-Crow, K. E., Ogle, K. & Litvak, M. E. Atmosphere-Soil Interactions Govern
403 Ecosystem Flux Sensitivity to Environmental Conditions in Semiarid Woody Ecosystems
404 Over Varying Timescales. *J. Geophys. Res. Biogeosciences* **125**, 1–16 (2020).

405 36. Ripullone, F., Camarero, J. J., Colangelo, M. & Voltas, J. Variation in the access to deep soil
406 water pools explains tree-to-tree differences in drought-triggered dieback of Mediterranean
407 oaks. *Tree Physiol.* **40**, 591–604 (2020).

408 37. Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack
409 in the western US. *Npj Clim. Atmospheric Sci.* **1**, 2 (2018).

410 38. Siirila-Woodburn, E. *et al.* A low- to- no snow future and its impacts on water resources in
411 the western United States. *Nat. Rev. Earth Environ.* (2021) doi:10.1038/s43017-021-00219-
412 y.

413 39. Breshears, D. D. *et al.* Regional vegetation die-off in response to global-change-type
414 drought. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15144–15148 (2005).

415 40. Kannenberg, S. A., Driscoll, A. W., Malesky, D. & Anderegg, W. R. L. Rapid and surprising
416 dieback of Utah juniper in the southwestern USA due to acute drought stress. *For. Ecol.
417 Manag.* **480**, 118639 (2021).

418 41. Ganey, J. L. & Vojta, S. C. Tree mortality in drought-stressed mixed-conifer and ponderosa
419 pine forests, Arizona, USA. *For. Ecol. Manag.* **261**, 162–168 (2011).

420 42. Hantson, S., Huxman, T. E., Kimball, S., Randerson, J. T. & Goulden, M. L. Warming as a
421 Driver of Vegetation Loss in the Sonoran Desert of California. *J. Geophys. Res.
422 Biogeosciences* **126**, (2021).

423 43. Lal, P., Shekhar, A., Gharun, M. & Das, N. N. Spatiotemporal evolution of global long-term
424 patterns of soil moisture. *Sci. Total Environ.* **867**, 161470 (2023).

425 44. Hajek, O. L. & Knapp, A. K. Shifting seasonal patterns of water availability: ecosystem
426 responses to an unappreciated dimension of climate change. *New Phytol.* **233**, 119–125
427 (2022).

428 45. Green, J. K. *et al.* Large influence of soil moisture variability on long-term terrestrial carbon
429 uptake. *Nature* **565**, 476–479 (2019).

430 46. Li, H. *et al.* Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios.
431 *Environ. Res. Lett.* **16**, 114004 (2021).

432

433 **Methods**

434 *Site selection and flux data processing*

435 To characterize the sensitivity of ecosystem fluxes to hydrometeorological drivers, we
436 synthesized data from all AmeriFlux towers in the western United States with at least 4 years of
437 data, an aridity index (the ratio of mean annual precipitation to potential evapotranspiration) of
438 <0.65, <500 mm mean annual precipitation, and no active management or manipulation (Figure
439 1, Extended Data Table 1). All sites except one (US-Rls) had a mean aridity index of less than
440 0.5. Our sites were constrained to the western US due to the paucity of dryland flux towers that
441 meet our criteria in other regions. However, these sites represent a wide diversity of climates,
442 topographies, and vegetation types, and are thus relevant for understanding dryland functioning
443 globally. Atmospheric drivers—photosynthetic photon flux density (PPFD), air temperature
444 (TA), and vapor pressure deficit (VPD)—were measured at most sites, as were measurements of
445 soil volumetric water content (VWC) of at least one depth. VPD was derived from relative

446 humidity when not provided. The depths of soil moisture measurements were attained from site
447 Principal Investigators. When not directly measured, PPFD was considered to be proportional to
448 incoming shortwave radiation⁴⁷. In order to compare soil moisture dynamics across sites, soil
449 volumetric water content measurements were binned (averaged) into 4 depths at each site, when
450 present: a ‘shallow’ layer from 0 to \leq 10 cm, a ‘shallow-mid’ layer from $>$ 10 to \leq 20 cm, a
451 ‘middle’ layer from $>$ 20 to \leq 50 cm, and a ‘deep’ layer consisting of measurements $>$ 50 cm.

452 Net ecosystem exchange (NEE), TA, PPFD, and VPD were gap-filled using a look-up
453 table approach and NEE was partitioned into GPP and ecosystem respiration using the nighttime
454 partitioning method⁴⁸, as implemented in the R package *REddyProc*⁴⁹. Evapotranspiration (ET)
455 was calculated by dividing the latent heat flux by the latent heat of vaporization. Since our goal
456 was to quantify the drivers of vegetation activity, we then limited our dataset to daytime
457 observations during the growing season. We defined start and end of the growing season of each
458 site-year using smoothed curves of GPP^{13,50}. First, at each site, winter was defined as the time
459 before DOY 70 and after DOY 330. Next, for each site-year we constructed smoothed curves of
460 seasonal GPP and daily curves of incoming shortwave radiation using the *loess* function in R
461 with a span of 0.5. The start of the growing season was considered to be the first time point at
462 which this curve crossed a threshold of mean winter GPP +30% of the maximum smoothed GPP
463 amplitude, and the end of the growing season was considered to be the last time point when it
464 fell below this threshold. Start and end of season dates were then averaged for each site. For
465 weekly and monthly analyses, growing seasons were defined as the next week or month
466 following the start date until the week or month prior to the end date. Daytime was defined as 9
467 am to 5 pm at each site, based on the mean diurnal cycle of solar radiation. All daytime and

468 growing season flux and meteorological data were then summed (fluxes) or averaged (all other
469 variables) to the daily timescale.

470

471 *Remotely-sensed data products*

472 We next compared the sensitivity of EC fluxes to several common satellite-based GPP
473 and ET models. To do so, we amassed five different data products that operate at fast temporal
474 scales (8-day or less) and span a wide range of methods (Extended Data Table 2^{51–55}). We used
475 two GPP products — the gap-filled MODIS product (MOD17A2GF⁵¹) and the Soil Moisture
476 Active Passive (SMAP) Level 4 Carbon (L4C) product⁵² — that are based on light-use efficiency
477 theory, in which GPP is proportional to absorbed photosynthetically active radiation. In both
478 products, a biome-specific “optimal” light-use efficiency is down-regulated under non-optimal
479 temperature and/or moisture conditions. The MODIS GPP model down-regulates GPP under
480 both low minimum temperatures and high VPD, while the SMAP GPP model also includes
481 responses to low rootzone (0–100 cm) soil moisture and frozen ground. As a complement to these
482 semi-empirical GPP products, we also use the empirical FluxSat GPP product⁵³, which upscales
483 global eddy covariance GPP estimates with a neural network based on MODIS multispectral
484 surface reflectance and top-of-atmosphere radiation. For ET, we used two products based on
485 physical evapotranspiration models: the gap-filled Penman-Monteith-based MODIS product
486 (MOD16A2GF⁵⁴) and the Priestley-Taylor-based GLEAM product⁵⁵. In both cases, potential
487 evapotranspiration from the physical models is reduced under moisture stress, which is defined
488 based on VPD in the MODIS model and based on vegetation optical depth and root-zone soil
489 moisture (from a multi-layer water balance model) in the GLEAM model. For these data
490 products, we extracted the grid cell that contained the flux towers for all analyses.

491 To assess the degree to which *in situ* soil moisture dynamics can be remotely-sensed, we
492 also obtained surface and root-zone soil moisture data for each flux tower site from the L-band
493 microwave NASA-USDA Enhanced SMAP dataset²⁴. Remotely-sensed soil moisture estimates
494 were smoothed from 3-day to a daily time scale in order to be directly comparable with flux
495 tower data using a *loess* smoothing spline with a span of 0.05. These data were then constrained
496 to the same growing seasons and years as the flux tower data. The error in remotely-sensed soil
497 moisture correlation coefficients (Δ coefficient) was quantified as the soil moisture coefficient
498 derived from remotely-sensed data products minus the EC-derived coefficient.

499

500 *CMIP6 model output*

501 We extracted monthly GPP, ET, and soil moisture data from the grid cell corresponding
502 to our flux tower locations from a single ensemble member (r1i1p1f1) for a suite of 11 CMIP6
503 land surface models: ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2-WACCM,
504 CMCC-CM2-SR5, MPI-ESM1-2-LR, NorESM2-LM, NorESM2-MM, TaiESM1, E3SM-1-0,
505 and MIROC6. For consistency with EC-derived measurements and microwave remote sensing
506 products described below, we extracted the top 10 cm and the 1 m soil moisture variables. The
507 10 cm CMIP6 soil moisture product is analogous to the ‘shallow’ *in situ* soil layer, while the 1 m
508 soil moisture product is analogous to the ‘deep’ *in situ* soil layer. CMIP6 output only extends
509 through the year 2014 while the *EC* data have variable dataset lengths. To maximize the
510 comparability between EC and model-derived fluxes, we constrained the two datasets to the
511 same time periods for this analysis. Differences in the spatial and temporal scales at which eddy
512 covariance, remotely-sensed, and CMIP6 data operate could introduce noise into direct
513 comparisons among them. Such mismatches in scale have the potential to ‘smooth out’ point-

514 scale variability, potentially leading to an apparent underestimation of variability. Regardless of
515 whether this underestimation is due to spatial scaling or issues inherent to the coarser-scale data,
516 it remains a critical concern. Comparisons between these products are essential for evaluating
517 sensitivity across different data products and spatiotemporal scales, especially given the
518 widespread use of LSMs for prediction.

519

520 *Statistical analyses*

521 The sensitivity of carbon and water fluxes to various meteorological drivers was
522 calculated as the Pearson's R of the relationship between a given flux and hydrometeorological
523 driver. Pearson's R is indicative of the slope of the relationship between two standardized
524 variables and is thus reflective of how strongly a flux responds to an environmental driver. The
525 sign of the coefficient reflects the direction of the relationship, where a larger value (either
526 positive or negative) indicates that a given flux responds more strongly to variability in a given
527 variable. A coefficient near zero indicates that the flux was not responsive to a given variable.
528 The relationship between hydrometeorological drivers and fluxes, though frequently linear in
529 nature, can also take on a wide variety of functional forms. Therefore, we also computed the
530 Spearman's correlation coefficient, which does not assume linearity and instead assesses the
531 strength of the relationship between two variables using a monotonic function.

532 In order to quantify the influence of hydrometeorological drivers on GPP and ET while
533 accounting for any predictor collinearity, we additionally performed a relative weight analysis
534 (RWA)⁵⁶ using the R package *rwa* (cran.r-project.org/web/packages/rwa/rwa.pdf). RWA
535 partitions the explained variance across multiple predictors by transforming correlated predictors

536 into orthogonal variables, performing a linear model on the transformed variables, and then
537 transforming the resulting coefficients back to the original metric. The resulting relative weights
538 are only comparable across sites if the underlying model structure is the same (i.e., contains the
539 same predictor variables), which is not the case across our sites. Therefore, we only conducted
540 RWA on the sites that contained the predictors that were most commonly available (TA, VPD,
541 PPFD, shallow soil moisture, and shallow-mid soil moisture).

542 We used ordinary least squares regression to compare correlation coefficients quantified
543 across different data sources as well as to compare microwave remote sensing soil moisture
544 products to *in situ* soil moisture, after assessing the normality and heteroscedasticity of model
545 residuals. Two-tailed t-tests were used to assess differences between soil moisture coefficients
546 across data products, as well as to test if a coefficient was significantly different from zero. All
547 analyses were conducted in R 4.2.2.2⁵⁷.

548

549 **Data availability statement**

550 All data used for our analyses are publicly available. Eddy covariance tower data are available at
551 ameriflux.lbl.gov, CMIP6 model output are accessible from esgf-node.llnl.gov/search/cmip6/.
552 SMAP L4C, MOD16, and MOD17 data were all obtained using the AppEEARS subsetting tool
553 (<https://appears.earthdatacloud.nasa.gov/>). FluxSat data were obtained from the ORNL DAAC
554 (https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html), and GLEAM data
555 were obtained from <https://www.gleam.eu/>.

556

557 **Methods-only references**

558 47. Britton, C. & Dodd, J. Relationships of photosynthetically active radiation and shortwave
559 irradiance. *Agric. Meteorol.* **17**, 1–7 (1976).

560 48. Reichstein, M. *et al.* On the separation of net ecosystem exchange into assimilation and
561 ecosystem respiration: Review and improved algorithm. *Glob. Change Biol.* **11**, 1424–1439
562 (2005).

563 49. Wutzler, T. *et al.* Basic and extensible post-processing of eddy covariance flux data with
564 REddyProc. *Biogeosciences* **15**, 5015–5030 (2018).

565 50. Keenan, T. F. *et al.* Net carbon uptake has increased through warming-induced changes in
566 temperate forest phenology. *Nat. Clim. Change* **4**, 598–604 (2014).

567 51. Running, S. W. *et al.* A Continuous Satellite-Derived Measure of Global Terrestrial Primary
568 Production. *BioScience* **54**, 547 (2004).

569 52. Jones, L. A. *et al.* The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–
570 Atmosphere CO₂ Exchange. *IEEE Trans. Geosci. Remote Sens.* **55**, 6517–6532 (2017).

571 53. Joiner, J. & Yoshida, Y. Global MODIS and FLUXNET-derived Daily Gross Primary
572 Production, V2. doi:10.3334/ORNLDAA/1835.

573 54. Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial
574 evapotranspiration algorithm. *Remote Sens. Environ.* **115**, 1781–1800 (2011).

575 55. Martens, B. *et al.* GLEAM v3: satellite-based land evaporation and root-zone soil moisture.
576 *Geosci. Model Dev.* **10**, 1903–1925 (2017).

577 56. Tonidandel, S. & LeBreton, J. M. Relative Importance Analysis: A Useful Supplement to
578 Regression Analysis. *J. Bus. Psychol.* **26**, 1–9 (2011).

579 57. R Core Team. R: A language and environment for statistical computing. (2022).

580