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Abstract—We present efficient algorithms to learn the pa-
rameters governing the dynamics of networked agents, given
equilibrium steady state data. A key feature of our methods
is the ability to learn without seeing the dynamics, using only
the steady states. A key to the efficiency of our approach is the
use of mean-field approximations to tune the parameters within
a nonlinear least squares (NLS) framework. Our results on real
networks demonstrate the accuracy of our approach in two ways.
Using the learned parameters, we can: (i) Recover more accurate
estimates of the true steady states when the observed steady states
are noisy. (ii) Predict evolution to new equilibrium steady states
after perturbations to the network topology.

Index Terms—parameter estimation, networked dynamical
systems, steady states

I. INTRODUCTION

Understanding the dynamics of networks is crucial in var-
ious domains such as ecology [1], [2], epidemiology [3],
[4]], gene regulatory networks [5S], [6], and energy supply
networks [[7]], [8]. Knowing the dynamics also allows one
to predict the new equilibrium when networks change. For
example whether one species extinction will result in another
species extinction [9]. Existing data-driven methods infer
dynamics from a time series of observed system-states [10]—
[16]. Unfortunately, observing a time-series of states can
be costly or impossible. Consider an ecology network in
which species interact. The ecological system has evolved over
millennia [[17], and we only observe the current steady state
abundance of each species. We can’t collect a time series of
species’ abundances. Or, consider a biomedical network in
which equilibration is at small time scales, making it difficult
for experimental devices to capture interim states [[18]]. Our
primary goal is to learn system dynamics when only a noisy
measurement of the final equilibrium state is available.

The process of learning network dynamics can be time-
consuming, especially when it involves repeated numerical
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integration. One approach to address this is fitting models
to the finite difference between time steps, but it may yield
inaccurate results with low-resolution data and is not appli-
cable when only the equilibrium state is available. In such
cases, the objective function aims to minimize the discrepancy
between observed states and those generated by the proposed
model using numerical integration techniques [[14]], [19], [20].
However, numerical integration of network states can be
computationally intensive for complex systems with nonlinear
and coupled dynamics.

The mean-field network reduction approach, introduced by
[21], offers a method to simplify coupled systems while
preserving their original dynamics. This approach involves
collapsing a high-dimensional network to a one-dimensional
representation, facilitating the exploration of the relationship
between topology and dynamics. Previous studies have evalu-
ated the accuracy of this approach [21]], [22] and extended it to
predict steady states from incomplete network topology [23]
and infer degrees from observed steady states [24]. Building
upon the mean-field approach, our work combines it with non-
linear least squares (NLS) to estimate unknown parameters.

In this study, we propose a surrogate objective function that
significantly reduces computational time while approximately
preserving the shape of the exact objective function. We
approximate parameter-specific steady states using a low-
dimensional, decoupled system of ordinary differential equa-
tions (ODEs). Through empirical demonstrations, we show
that NLS inference using the surrogate objective produces pa-
rameters that recover steady states more accurately compared
to the observed noisy steady states. Furthermore, our method
can predict the new steady states that the system reaches when
the network undergoes changes.

II. METHOD

A. Problem Setup

We work with a universal dynamics framework [25]. The
networked system is a graph G, with nodes {1,..., N} and
adjacency matrix A, where A;; = 1 if (4, ) is an edge in G.
Suppose the network contains M distinct degrees. We focus
on undirected and unweighted graphs. Let §; be the degree of
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TABLE I: Summary of the three dynamics analyzed in this paper.

node i. Each node i has a time dependent scalar state z;(t).
The states follow a general form of coupled ODE,

N
b= f(2i,0) + Y Aijg(wi, z;,0). e

j=1
The functions f and g give the intrinsic and interaction forces.
The interaction is modulated by A;;. The functions f, g and
the graph topology A are given, while the ODE parameters
6 are unknown and must be learned. We study cooperative
dynamics, where ‘7 > 0 and neighbor’s interaction positively
affects each component s survival [26]]. Since A;; > 0, nodes
with more neighbors have higher equilibria. The three specific
dynamics (ecology, gene regulatory, epidemic) which we use
in our experiments are summarized in Table [l The nodal state
x; stands for species abundance, gene expression level, and
probability of infection in the three dynamics respectively. The
ecological dynamics models a plant network projected from
plant-pollinator mutualistic relationships. Parameter B, K, C
represent the incoming migration rate, carrying capacity, and
the Allee constant, respectively [21]. The third term stands for
mutualistic interaction that saturate for large x;, z; [21], [22].
The gene regulatory dynamics is adapted from the Michaelis-
Menten model [6], [27]. The first term denotes degradation
(f = 1) or dimerization (f = 2). The Hill coefficient h repre-
sents the level of cooperation of the gene regulation [21], [26].
In the epidemic process, node ¢ is susceptible (0 < z; < 1) or
infected (z; = 1). Infected nodes spread the pathogen to their

neighbors at rate B € [0, 1] [26].

B. Mean Field Approach

One standard approach to learn the parameters is iterative
NLS. Let 7,;(0) be the steady states of the system for param-
eter 6. NLS finds parameters 6 that minimize the error

-yl = NZ (@3

(Boldface is used for vectors and ||-|| is the Euclidean norm.)
We define a steady state approximation #7%(6) ~ #;(0) based
on a decoupled version of Eq (I)) and seek the minimizer of
the following surrogate objective function

S(O,Y):*HX( )—yi)® @

N
1
mfa _ ~mfa \2
£ (&y)—NZ;(xi (8) = )*. 3)
The derivation of 2@ uses a reduction of the N-dimensional
ODEs (Eq (I)) to a 1-dimensional mean-field equation de-
scribed in [21]. We summarize the reduction process as
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follows. The derivation holds for any feasible parameter and
we temporarily drop the dependence on 6.

In a network with low degree correlation, the neighborhoods
of different nodes exhibit similarities. We assume that the
impact received from these neighborhoods is identical for all
nodes and consider the shared neighbor effect as a sum of
interaction terms weighted by the relative degree of each indi-
vidual node. We approximate the local neighborhood impact
Zévzl A;;g(z;, x;) by the following shared global impact:

i 67]9(

25,6
Note that Equation [4] is independent of A;;, which is the
specific incoming connections to ¢. The definition of the
global state is reasonable because in connected graphs, each
node’s information propagates throughout the entire network,

influencing every node. Furthermore, nodes with larger degrees
have a higher impact on other nodes.

i, ;) S

To simplify notation, we introduce an averaging linear
operator £ : RNV — R, which maps a vector x in RY to
a scalar:

B 17 Ax B JE
L) = T3 = ; S (5)

where 1 is a vector consisting of all ones. By replacing the
local averaging of neighbor effects with the global impact, we
obtain:

Ty ~ f(@i) + 0:L(g(wi, %)) (6)

where g(z;,x) = [g(xs,21),...,9(zi,xN
proximate the term L(g(z;,x)) by g(z;, £

)]. We further ap-
(x)):
L(x)). ()

This approximation is exact when g(x;, ;) is linear in ;. In
vector form, this system is

@y = f(w) + 0ig(xs,

%~ f(x) + 80 g(x, £(x)). ®)
where f(x) = [f(z1),...,flen)], 9(x) =
[g(x1,°),...,9(zN,-)], and o denotes entrywise product

between vectors. Applying £ on both sides reduces this
system to one dimension,

L(x) = LIf(x)] + £]8 0 g(x, L(x))]. )

Since £ is linear, £L(X) = E(.x). The following approximation
assumes f, g are linear and £ roughly preserves multiplication.

L(x) ~ f(L(x)) + L(8)g(L(x), L(x)). (10)

Define a global effective state z.s = £(x) and an effective
scalar representation of topology 8 = L(9). Then, from Eq
(10), x.gr approximately follows the dynamics

(11)
in Eq , we get the uncoupled ODE for

Tetr = f(Tetr) + BG(Tefr, Ter).-
Using e for £(x)



;.

& = fa;) + 0:g(xi, Tegr). (12)

To compute the steady states X(6) at an arbitrary param-

eter O, there are three steps. (i) Integrate the 1-dimensional
ODE (Eq ) with initial condition L£(y) to get Zg. This
biases e toward the “right” zero of f(x,0) + Bg(x,x,0).
(ii) Solve the uncoupled ODEs in Eq with initial condition
Tefr. Let z; denote the ultimate state value. (iii) Perform k&
numerical integration steps on the full coupled ODEs (Eq (I))
with initial condition z; to fine tune the mean-field steady
states. When no fine-tuning steps are performed in step (iii)
(k = 0), we get our mfa method, which is not only extremely
efficient, but only requires node-degrees and not full topology
to estimate the parameters, since the scalar topology /3 can be
written as:
1746 6'6
1741 §'1
Note that in mfa, one only needs to solve Eq (I2) for each
distinct node-degree, which reduces the system dimension to
M (M equals the number of unique degrees). An enhanced
method mfa+ (k > 0 in step (iii)) starts from the output of mfa
and simulates the exact ODEs (Eq (I)) to get more accurate
steady states. We refer to solving the original coupled ODE
from the given initial condition x(0) as the full algorithm.
Our empirical findings demonstrate that leveraging the mean-
field approximation significantly enhances the efficiency of
parameter estimation from steady states.

B= (13)

III. EMPIRICAL EVALUATION

We evaluate the learned parameters based on their ability to
reproduce the noiseless ground truth steady states x*. This
choice is motivated by two factors. First, in the case of
noiseless data, reproducing the steady states is equivalent to
reproducing the ground truth parameters. Second, when the
observed data is noisy, the minimizer deviates from the ground
truth parameter. Therefore, we prioritize the reproduction of
noiseless steady states in evaluating the learned parameters.
To make a standardized comparison across different networks
with varying steady state ranges, we use the mean relative
error {|(%(@) — x*)/x*|), where (-) represents the mean of
the elements in the enclosed vector.

We use the same ground truth parameters and initial condi-
tions as in previous studies [21]], [23]]. For ecological networks,
the true parameters are set to B = 0.1, K = 5C =
1,D =5FE = 09,H = 0.1. The true parameters for gene
regulatory networks are B = f = 1, h = 2, and for epidemic
networks, B = 0.5. The initial conditions of the states are
Vi€V, x; =6 for ecological and gene regulatory dynamics
and Vi € V, z; = 0.5 for epidemic networks.

Table [[I|lists the network data used in our experiments. The
networks include two mutualistic networks (Net8,Net6) [21]],
two transcription networks of Saccharomyces -cerevisiae
(TYA,MEC) [21]], a human contact network (Dublin) [28]|], and
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an email communication network (Email) [29], [30]. We an-
alyze two types of synthetic networks: Erdds-Rényi (ER) and
scale-free (SF). Their degree distribution follow Poisson and
power distribution respectively. We use SciPy’s ODEINT [31]]
to numerically integrate ODEs and compute steady states. We
consider a simulated state x(6) as the network equilibrium
under parameter 6 if {|d%(0)/dt|) < 1078.

TABLE II: The real network data analyzed in the paper. For each
network, we show its number of nodes and edges, dynamics, and the
mean ((x*)) and standard deviation (o) of the ground truth steady
states.

Net Dynamics  # nodes # edges (x*)+o
Net8 Ecology 97 972 114 £ 2.7
Net6 Ecology 270 8074 9.5 + 0.74
TYA Regulatory 662 1062 2.8 +43
MEC  Regulatory 2268 5620 11.48 £ 3.36
Dublin Epidemic 410 2765 0.78 + 0.14
Email  Epidemic 1133 5451 0.82 £ 0.05
A. Efficiency

We compare the performance of two variants of our method
and the full algorithm using real networks in Table We
generate observations from a normal distribution with a mean
a7 and a standard deviation 0.1|x|. When the initial parameter
guess was randomly sampled from a uniform distribution,
our mfa method demonstrated superior efficiency compared
to the other approaches, while maintaining a small loss of
accuracy for ecological and epidemic networks. Furthermore,
our enhanced variant, mfa+, achieved comparable accuracy to
the full algorithm in a slightly shorter time frame. In cases
where the initial parameter guess was sampled from a normal
distribution N (6*,0.20%), both mfa and mfa+ exhibited sig-
nificantly improved speed over the full algorithm, with mfa+,
maintaining the same quality as full in reproducing ground
truth steady states. When applied to ecological networks,
optimizing the full objective with the initial parameter guess
obtained from mfa achieves the same performance as directly
optimizing the full objective, but in half the time.

The accuracy of the mean-field objective function approx-
imation relies on the dynamics and topology of the sys-
tem. Specifically, the surrogate objective function effectively
captures the exact objective for networks characterized by
linear dynamics and homogeneous degree distributions. Con-
sequently, the relative steady-state error is lower for ecological
and epidemic networks compared to gene regulatory networks.

Additionally, we study the capability of the learned pa-
rameters to recover steady states after topology changes. We
randomly rewire 10% edges to obtain new network topology
and assume the new network is governed by the same ground
truth parameters 8. Fig. |1 shows that the parameters learned
using noisy steady states of the old network can predict the
new equilibria.



TABLE III: This table shows the runtime and relative steady-
state error of parameters learned through three different methods to
compute steady states in the objective function. We sample initial
parameter guess from a distribution P(8(”)), either uniform or
normal. Distribution A stands for A'(8*,0.260™).

Net P(G(O)) Runtime (s) Relative error (%)
Sfull mfa+ mfa full mfa+ mfa
N UNI0] 267 221 29 24 24 25
N 280 2 10 1.9 1.9 2.1
Net6 U[0,10] 8558 6516 107 1.6 1.6 2.4
N 5257 34 23 1.8 1.8 2.2
TYA Ul0, 3] 369 373 67 33 3.6 9.8
N 210 165 29 37 37 6.8
MEC Ulo, 3] 2456 1161 97 5 6.7 12.9
N 1656 993 82 47 4.7 6.2
. Ul0,1] 4 1 05 05 05 2.5
Dublin — / 3 09 04 05 05 25
Email Ul0,1] 19 6 06 034 034 39
N 16 1.2 05 034 034 39
100 -
80 — i
S 60— 0-s
g 1 /A Net6
S 404 TYA
A MEC
O Net8
204 Dublin
O Email
0 N T T T T
0 50 100
True

Fig. 1: Predicting steady state using learned parameters compared
to true steady state after rewiring 10% of the edges. The prediction
determined by 8 approaches ground truth steady state computed using
0™ on the perturbed topology.

B. Denoising Observed Steady States

We assess the performance of our methods under various
types and levels of data distortion. Specifically, we consider
Gaussian noise, where the observations are generated accord-
ing to y; ~ N(zf, elzf]) (¢ € [0,0.3]). We evaluate the
effectiveness of the mfa method on ER and SF networks. For
ER networks, we observe that the predicted state error remains
smaller than the observation error even as the noise level
increases from O to 30%. However, for scale-free networks,
the steady state error is reduced compared to the observation
error only when the noise level exceeds 3% (see Fig. [2). In
cases where the noise level is minimal and the network is
heterogeneous, the parameters learned from mfa may require
fine-tuning using an enhanced version such as mfa+. It is
worth noting that despite the presence of Gaussian noise, the
approximation of the minima of the surrogate surface to the
exact error surface remains largely unaffected, indicating a
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robust alignment between the two surfaces.

We simulate mismeasuring of data by setting 5% of nodes
to zero and adding Gaussian-distributed noise N (0, 13%z7)
to other nodes. The NLS with mfa restores the states of
the contaminated nodes. The vanishing states are recovered,
and the relative state error is reduced from 16% to 5%.
The result guides a second round of learning by signifying
the mismeasured nodes whose measurement differs drastically
from prediction. We identify such nodes as the set V' = {i €
Vo |(yi — #i)/(y; + 1078)] > 1}. We discard the nodes in
V' and optimize the following objective ;.\, (£:(0) — vi)?.
The second round of learning lowers the state error to 2%.

304 ER (Epidemic)
e« SF (Epidemic)
— 7 — ER (Ecology)
=]
Q\/ 20 e=ss SF (Ecology)
g B ER (Regulatory,
= SF (Regulatofy)
M= | — Observed Krror
)
=
= 10+
[9p]
0 T T T T T T

Noise Level (%)

Fig. 2: The relative steady-state prediction error is evaluated for
synthetic networks under Gaussian noise. The black line represents
the observation error caused by the noise. The solid lines correspond
to an ER network with 200 nodes and 811 edges, while the dotted
lines correspond to a scale-free network with 200 nodes and 784
edges. We minimize the mean-field objective function using an
initial parameter guess sampled from N (6*,20%]|0*|). Despite the
increasing error in the observed equilibrium, the learned parameter
yields states that closely approximate the ground truth steady states.

C. Topology’s Role in Learning Parameters

We investigate the contribution of heterogeneity of degrees
and number of nodes with the same degree to the denoising
effect for BRNs and ER models. The performance is measured
using an improvement in steady-state reconstruction

(MSE(y) — MSE(%))
MSE(x)

where X is the steady state simulated by the learned parameter
6 and MSE(x) is the mean squared error of x in approximat-
ing the true states x*. The improvement ranges from —1 to
oo. If the value is in [—1,0], the estimation is worse than
the observation. A greater value reflects a larger denoising
effect. Fig. [3] shows that learned parameters offer a greater
improvement for more homogeneous networks. In particular,
ER networks with higher density or SF networks with smaller
power-law exponents are more homogeneous and have an
overall larger improvement.

Improvement = (14)
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Fig. 3: We use ecological dynamics as an example to investigate the
influence of network topology on the accuracy of learned parameters.
We sample network sizes from the range of [50,1000] and vary the
density p = (8)/(N —1) for ER networks and the power distribution
coefficient v for SF networks. For each network, we learn a parameter
from noisy steady states (with 10% noise level) using NLS with mfa.

IV. CONCLUSION

We presented an NLS framework learning dynamics in com-
plex systems. Our mean-field approach empirically achieves
much faster speed while preserving accuracy. We demonstrated
that the learned dynamics denoises erroneous observations.
By enforcing consistency between observed steady states and
learned dynamics, we can rectify significant mismeasurements.
This denoising feature has practical applications, such as cor-
recting ecological network species measurements or sentiment
reports in social networks. Additionally, the learned parameters
are also able to accurately predict the new final equilibrium
if the network undergoes topology changes. Our current work
leveraged prior knowledge of function forms and topology.
For future directions, our goal is to extend our approach to
efficiently infer network dynamics without the need for such
prior information. Simultaneously, we aim to improve the
method’s performance on networks with heterogeneous degree
distributions.
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