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ABSTRACT

Deep learning has emerged as a promising paradigm to give access to highly accurate predictions of molecular and material properties. A
common short-coming shared by current approaches, however, is that neural networks only give point estimates of their predictions and do
not come with predictive uncertainties associated with these estimates. Existing uncertainty quantification efforts have primarily leveraged the
standard deviation of predictions across an ensemble of independently trained neural networks. This incurs a large computational overhead
in both training and prediction, resulting in order-of-magnitude more expensive predictions. Here, we propose a method to estimate the
predictive uncertainty based on a single neural network without the need for an ensemble. This allows us to obtain uncertainty estimates with
virtually no additional computational overhead over standard training and inference. We demonstrate that the quality of the uncertainty esti-
mates matches those obtained from deep ensembles. We further examine the uncertainty estimates of our methods and deep ensembles across
the configuration space of our test system and compare the uncertainties to the potential energy surface. Finally, we study the efficacy of the
method in an active learning setting and find the results to match an ensemble-based strategy at order-of-magnitude reduced computational

cost.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136574
INTRODUCTION used to bootstrap simulations without the need for a training set

via an active learning loop.”’ In such an approach, the model’s
uncertainty is assessed at every integration step: if the uncertainty
is low, the model’s predictions are used. If, instead, the uncertainty
exceeds a certain threshold, high-accuracy quantum mechanical cal-
culations, such as density functional theory (DFT), are invoked, the
new data point is added to the dataset, and the model is re-trained.
Provided the uncertainty measure used is of high fidelity, such an
approach can greatly enhance the robustness, reliability, and ease-
of-use of ML-driven atomistic simulations. In this work, we present
a novel, computationally inexpensive method to obtain uncertainty
measures in deep learning interatomic potentials, evaluate its per-

Over the past decade, the construction of high-dimensional
potential energy surfaces (PES) based on machine learning (ML)
has become a promising avenue to enable linear-scaling and com-
putationally efficient molecular simulations that retain the quantum
chemical accuracy of their training data.' >’ A large variety of meth-
ods have been proposed to regress energies and forces obtained from
ab initio calculation as a function of atomic positions and chemi-
cal species, including kernel-based approaches, " linear models,
and neural networks (NNg).”” 2! Among these, deep NNs, in
particular, have shown remarkable accuracy and fast progress in

L0719} ¥20¢ YdielN 9z

their predictive accuracy.”'"**** The high accuracy of NN-based
approaches, however, comes at a cost: common to all existing neu-
ral approaches is that they provide only point estimates of their
predictions instead of the full predictive distribution. This differs
from Bayesian methods such as Gaussian Processes, which inher-
ently come with a measure of predictive uncertainty. Uncertainties
have been shown to be of tremendous value in ML-driven molec-
ular simulations.'”'***"*" In particular, uncertainties have been

formance compared to existing approaches, and demonstrate that it
produces order-of-magnitude faster uncertainty estimates.

Related work

Given the high impact reliable uncertainty estimates would
have on the usefulness of NN-based machine learning interatomic
potentials (MLIPs), great effort has gone into the development of
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techniques that enhance the point estimate predictions of NNs with
a measure of predictive uncertainty.”" " The most widely used
approach among these is an ensemble of NN, all trained on the
same data that differ in their initial weights and perhaps other train-
ing or model hyperparameters. The mean of the predictions of all
constituent networks is used as the ensemble’s prediction, and the
standard deviation of the predictions is used as a measure of uncer-
tainty. Intuitively, if a structure seen at test time falls within the
input domain that the NNs are confident about, their predictions
should agree. In contrast, if a test structure lies outside of the train-
ing distribution, the networks’ predictions should differ, resulting
in a higher standard deviation. This method has been widely used
since the first generation of NN interatomic potentials.” "’ System-
atic analysis and improvements are desired in this direction, e.g., to
avoid situations where all models share the same bias not captured
in the training data or their functional form, resulting in mod-
els sharing confident but erroneous predictions. Recent work has
explored the over-confidence of NN-based ensembles and the cor-
relation between the test set error with the true predictive error.”’
While larger ensembles can provide more statistics, the need to train
and evaluate all constituent networks (often N > 10) incurs signifi-
cantly greater computational expenses, lowering inference speed and
limiting practical applications of ensemble NN models for molecu-
lar dynamics or Monte Carlo sampling calculations. To alleviate this,
a series of single-model methods have been proposed.””*** How-
ever, these methods often either still require multiple evaluations
at inference time or have not been demonstrated to work in appli-
cations of molecular dynamics, where force uncertainty is the key
objective.”® Finally, two papers that came to our attention during
the final preparation of this manuscript’”*' propose a further single-
model approach to uncertainty quantification; however, the primary
version of their approach only obtains an uncertainty estimate for
an entire structure. In contrast, our approach yields uncertainties
on each individual atom’s force predictions, which affords spatially
resolved analysis and active learning strategies that may be more
informative and useful in simulations of large and heterogeneous
systems. While these works™”"" introduce a second version that can
produce an uncertainty estimate for each atomic force component,
it incurs high computational costs due to requiring the computation
of many different gradients.

METHODS
Ensembles of neural networks

We investigate uncertainty quantification in Neural Equivari-
ant Interatomic Potentials (NequlP), an E(3)-equivariant neural
network for learning interatomic potentials that achieves state-of-
the-art accuracy on a challenging and diverse set of molecules
and materials at remarkable data efficiency in comparison to other
MLIPs." To establish a baseline for our proposed uncertainty quan-
tification approach, we train two sets of ensembles, each consisting
of ten NequlP neural networks: a “traditional” ensemble consist-
ing of networks differing solely in their weight initialization and
the order in which mini-batches are sampled during training, and a
“diverse” ensemble consisting of three networks from the traditional
ensemble and seven additional networks, each with different hyper-
parameters (listed in the supplementary material, Table 1). Other
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types of ensembles based on subsampling or bootstrapping of the
training set also exist; however, we choose not to analyze these in
this work because a bootstrapped ensemble may consist of individual
models that miss certain high-energy and important configurations
in their subsampled training set, leading to uncertainty that sim-
ply originates from subsampling the training set. Furthermore, the
high cost of training the ensemble still remains. To demonstrate the
robustness of our methods and conclusions to the width/capacity of
the networks, we train all networks with a hidden feature dimension
of f = 32 in one setting and f = 16 in another setting.

At run time, the force predictions of an ensemble, denoted E,
are calculated as the mean of the predictions of individual models in
the ensemble, component-wise,

F=(EF),F.), (1)

where F, denotes the mean of the a-component of the predicted
forces of all constituent models. To evaluate the model’s fidelity,
we calculate the per-atom root mean square error (RMSE), ¢, of the
ensemble’s predicted force as

e:\/§((Fx7Fx)2+(Fy*Fy)2+(Fz*FZ)2) )

and the force RMSE, &, over all N atoms in the test set as

e= | S (Fio - Fin)? 3)
€= WZ Z( ja — z,ot) 5

aex,y,z \i=1

where F;, and F;, denote the predicted and true a-component of
the force on atom i, respectively.

To obtain an uncertainty estimate, we calculate the standard
deviation of a predicted force, o, over the constituent networks.
Because we are primarily interested in predictive uncertainties for
molecular dynamics simulations, we investigate the uncertainty in
the force components as opposed to the energies, since the forces
determine the dynamics of the system. We thus calculate ¢ as
the square root of the mean of component-wise variances of the
predicted forces,

o= Si]az (z (ﬁj,am)z), (4)

€X,),2 j

where J is the number of constituent models (we use J = 10) and F ia
denotes the a-component of network j’s predicted force.

Gaussian mixture model

The aim of this work is to understand whether Gaussian mix-
ture models (GMM), trained on a network’s learned features, may
provide a faster and more memory-efficient approach to uncertainty
quantification in MLIPs. A GMM is a probabilistic model used in
many applications—including speaker verification,** language iden-
tification,” and computer vision**—due to its ability to represent a
large class of data distributions,”” which motivates us to investigate
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its capability of modeling a NequlP network’s learned features. A
GMM models a data distribution as a weighted sum of M Gaussians,

M
p(x(0) = > wa N (xlthm> Em), (5)
m=1

where x is a D-dimensional, continuous-valued vector, w,, is the
weight of the mth Gaussian with the constraint Z%:l wm = 1, and
N (x|m, Em ) are the D-variate Gaussian densities,

_%(x_!‘m)Tz:nl (x=m) (6)

>

1
N (xlpm: Zm) = — 53 —75¢€
(27T)D/2|Zm|1/2

with D-dimensional mean vector p,, € RP and D x D-dimensional
covariance matrix 2,,."” The parameters of the complete GMM are
collected into 6,

0 = {wm pm Zm},  me [1,M]. @)

To construct the GMM, we first train and evaluate a NequlIP
model on the training set to access the per-atom final projected
scalar features extracted immediately before the linear projection
down into the per-atom energy prediction (not the latent features
themselves). These final features are half the respective latent feature
widths f =16 (x € R®) and f =32 (x € R'®) used in our experi-
ments, but in practice, users can define the final feature dimension
and independently set the latent feature dimension. We then fit a
GMM to model the distribution of these feature vectors as evaluated
on the training set, denoted X, using the expectation maximiza-
tion (EM) algorithm with each initial u,, determined by k-means
clustering."*" We fit the GMM using a full covariance matrix for
each Gaussian, meaning that each X, is full rank and not shared
between Gaussians.”” We select the number of Gaussians using the
Bayesian Information Criterion (BIC). To then estimate the uncer-
tainty of a trained NequlIP model on a test data point, we run a
forward pass through NequlP to extract the final layer features for
the atoms of that test structure. Subsequently, we evaluate the fitted
GMM on the feature vector for each test atom x, obtaining a negative
log-likelihood NLL(x|X),

M
NLL(x|X) = - log ( > me(x|ym,Zm)). (8)
m=1

A higher NLL(x|X) indicates higher uncertainty. Since the GMM is
computationally light-weight, almost all computational burden lies
in the evaluation of the NequlP features, which now occurs once
instead of ] times in the ensembles.

RESULTS AND DISCUSSION
Dataset

We conduct our experiments on the 3-(benzyloxy)pyridin-2-
amine (3BPA) transferability benchmark.”” 3BPA (Fig. 1) is a flexible
drug-like molecule whose configurational diversity is largely deter-
mined by the three dihedral angles , 8, and y and is explored more
fully at higher temperatures, making it a challenging test case for
MLIPs.

In the first setting, we use three datasets of 3BPA structures
sampled at three temperatures: 300, 600, and 1200 K. We train
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FIG. 1. 3D model of the 3BPA molecule with atomic indices and «, 3, and y dihedral
angles depicted.

on structures sampled at 300 K (once with 50 structures, Dia, 505
once with 100 structures, D?roa(i)n,loo)' We set aside a pool of addi-

tional training data at 300 K to select from (D>%,). Finally, we have

pool
three test sets of structures at each temperature, i.e., ng?, fosi’, and

D20, along with three additional datasets (Dp_12°, Dp-150°> and
Dpg-180°), each consisting of structures with a fixed 3 dihedral angle
and uniformly sampled « and y angles.

In a second setting, we combine all data from the three tem-
peratures and similarly split the combined data into training sets (of
size 50, D{‘r‘;’fﬂo, and size 100, D{’;;frffimo), a pool of additional training

data to sample from (D;:};;fd), and a test set (D),

Uncertainty quantification

In Fig. 2, we plot the uncertainty estimates of the ensembles
and the GMM against the measured per-atom RMSE e for models
with hidden feature dimension f = 32, trained on Df?a?n,mo and eval-
uated on D22, Plots for the evaluations on D% and D% and for
the mixed-temperature setting show similar results (supplementary
material, Fig. 4). Likewise, plots for models with hidden feature
dimension f =16 and models trained on Dj,s, and D{'r'ai’f,ff—,o
generally demonstrate the same results (supplementary material,
Figs. 1-3). We note that these uncertainty estimates in their current
form cannot be interpreted as error estimates. Previous works have
calibrated their error estimates to improve their accuracy, ”'" and
the conversion of our uncertainty estimates into error estimates and
subsequent calibration is a promising direction for future work. We
observe in Fig. 2 that the traditional ensemble achieves the lowest
€ while the single model used for fitting the GMM has the high-
est €. This result is expected as the average ensemble prediction has
been observed to be more accurate than the prediction of a single
model.*® The traditional ensemble generally performs better than
the diverse ensemble since the diverse ensemble contains simpler
models on average. The distribution of ¢ in the diverse ensemble
is generally shifted toward higher values than the traditional ensem-
ble, likely due to the differences in network architecture resulting
in more diverse predictions. As expected, supplementary material,
Fig. 4 shows that the distribution of e shifts toward higher errors
as the temperature of the test set increases from 300 to 1200 K.
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FIG. 2. Plots of the uncertainty metric (o for the ensembles and NLL for the GMM) vs  for models with hidden feature dimension f = 32, trained on D%

hrain 100 and evaluated

on all atoms of all configurations in D:ezs?‘). Each point (e;, U;) in a given plot represents the model’s force RMSE and predictive uncertainty, respectively, on a single atom i.
The color bar represents the number of points within each bin. The vertical dashed line in each plot marks the average force RMSE & over all atoms [see Eq. (3)].

More notably, the distribution of o of all methods shifts toward
larger positive values with increasing temperature, demonstrating
the ability of all methods to detect high-energy, out-of-distribution
configurations. Overall, we observe a modest correlation between
the uncertainty metric and e for each of the approaches, with the
GMM’s correlation similar to those of the ensembles. Most impor-
tantly, a GMM evaluated on a single network has similar predictive
power of the uncertainty as an ensemble of ten networks, providing
a way to reduce the computational cost of uncertainty quantifica-
tion by an order of magnitude while maintaining the state-of-the-art
performance of ensemble-based uncertainties.

To further quantify the quality of these uncertainty metrics,
we establish certain criteria that a good uncertainty metric should
meet. Since uncertainty estimates are often used to identify high-
error structures for which to invoke first principles calculations, we
set some uncertainty cutoff Uy, for capturing such structures. In
particular, we classify all configurations with uncertainty U > Uytofe
as “high-error” and all configurations with uncertainty U < Uyofr as
“low error.” A good uncertainty metric should simultaneously clas-
sify a large proportion of configurations with € > ecyofr as high-error
to avoid missing configurations with high true e while classifying a
small proportion of configurations with true € < eqyofr as high-error
configurations to avoid redundant calls to DFT calculations. In other
words, a good uncertainty metric should achieve a high true positive
rate (TPR) and a high positive predictive value (PPV),"

TP
TPR= —, 9
TP + FN ©

TP
PPV=_——, 10
TP + FP (10)

where TP (true positives) is the number of configurations with
U > Ugytoff and € > eyeoft; FN (false negatives) is the number of con-
figurations with U < Uy and € > €cyrofr, and FP (false positives) is
the number of configurations with U > Uyor and € < €cyrofr. Thus,

to quantify the quality of each method’s uncertainty estimates, we
calculate their TPR and PPV (as done in Ref. 40) for a range of Uytoft
and €cutoff-

Figure 3 shows the TPR and PPV of the uncertainty metrics
for ranges of Ucyofr and €curoff 0N all atoms in DL, along with
the product of the TPR and PPV (TPR x PPV). In each plot, €cutoff
ranges from 0 meV/A to 99th percentile of the €’s of the corre-
sponding method on all atoms, and Ugysr ranges from the Ist to
99th percentile of that method’s uncertainty estimates. Ranges are
chosen to minimize the impacts of outliers on the TPR and PPV.
Supplementary material Figs. 5-8 show plots for the other test sets,
training sets, and model hyperparameters and yield similar findings.

We observe that for a given ecyofr in all approaches, lowering
Uecutoff captures more high true-error points but incurs more false
positives, as evidenced by an increase in the TPR but a decrease in
the PPV. The GMM achieves TPR = 1 for slightly smaller but com-
parable ranges of Ucytoff and eqytoff compared to both ensemble types.
All approaches achieve PPV ~ 1 for similar ranges of Ugyofr and
Ecutoft> With the GMM’s PPV decaying slightly more slowly than that
of the ensembles as €yofr increases and Ugyofr decreases. Notably,
the similarity in the TPR and PPV profiles between the two ensem-
ble types indicates that diversifying an ensemble increases o for
each data point but does not necessarily improve the quality of the
uncertainty estimate. Overall, we conclude that for all methods, it is
difficult to simultaneously achieve TPR ~ 1 and PPV ~ 1 unless we
set a Ucyofr around the 30th percentile of all uncertainty estimates of
a given method, marking a majority of configurations for recalcula-
tion with DFT. Most importantly, the GMM produces uncertainty
estimates comparable in quality to both ensemble types at a much
lower computational cost.

Uncertainty landscapes

To further investigate the similarity between the uncertainty
metrics obtained by the ensembles and the GMM, we create
“uncertainty landscapes” in which we plot the uncertainty of each
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method for configurations of fixed § and varying « and y, sim-
ilar to a potential energy landscape. We evaluate the ensembles
and a single NequlP model on Dg_15p°, Dp-150°, and Dp_1gp> and
obtain force uncertainties per atom per configuration as usual. For
the ensembles, we define a single aggregate uncertainty value for a
molecular structure as the square root of the sum of all 27 atomic
force variances. For the GMM, we sum all 27 atomic force NLL’s
for each structure to obtain a single uncertainty value. Finally, we
normalize these aggregate molecular uncertainties for each method
to be between 0 and 1 for a clearer comparison. For example, if the
uncertainty over all configurations ranges from Ulyy to Ungn for a
particular method, a configuration with uncertainty U would have a
normalized uncertainty of

U = Ulow
Uhigh = Ulow

1m

We note that a user of these uncertainty quantification approaches
would not have to generate such test sets and uncertainty landscapes;
this analysis simply further validates our approaches.

The top row of Fig. 4 shows the uncertainty landscape of the
GMM, and both ensemble types with models with f = 32 trained
on D?g?n,mo and evaluated on Dg_jype (supplementary material

Ecutort (MeV/A)

Figs. 9-12 show results for the Dg_j50° and Dg_ygp test sets,
models with f = 16, and models trained on Diy, 50, which demon-
strate comparable findings). All three uncertainty landscapes are
very similar in that they generally label the same configurations with
relatively high uncertainty. For example, all methods label config-
urations with a < 60°, a ~ 180°, and (« ~ 240°,y ~ 10°) with high
relative uncertainty. Moreover, the uncertainty landscapes of all
methods closely resemble their corresponding potential energy land-
scapes and the reference DFT potential energy landscape (bottom
row of Fig. 4).”> These similarities further demonstrate that a sin-
gle NequIP model and GMM evaluation can achieve uncertainty
estimates comparable to those of an ensemble at a greatly reduced
computational cost. Note that the aggregation of uncertainty val-
ues assumes independence between atomic forces within a structure.
However, we cannot know the true correlation of forces within
a structure as they may vary between systems. Furthermore, this
assumption does not affect our analysis because in supplementary
material Figs. 25-28 where we plot similar landscapes of the stan-
dard deviation of the ensembles’ total energy predictions, we observe
that the total energy standard deviation landscapes closely resem-
ble the aggregated uncertainty and potential energy landscapes.
Because the total energy standard deviation landscapes do not make
any assumptions of independence, the assumption of independence
between the atomic forces does not affect our conclusion.
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FIG. 4. Top row: Uncertainty landscape of the GMM and ensembles for Dg_s0 . Color scale represents normalized summed force uncertainty over all atoms in a configura-
tion. Bottom row: Potential energy surface (PES) landscape of the GMM, ensembles, and reference DFT calculations for Dg_129-. The color scale represents energy relative
to the minimum energy over all configurations in units of meV, with yellow indicating higher energy. Purple space at « ~ 240°, y ~ 160° indicates missing data.

Active learning

Active learning is a procedure in which a model explores
a data distribution and iteratively chooses new data to label
and add to its training set to augment it with maximally infor-
mative samples. Active learning has been of great use, in par-
ticular, in building training sets for machine learning inter-
atomic potentials.'”'**"? #7944 Crycially, in such a setting, one
requires a method to decide which data points to label. Using uncer-
tainty estimates from the GMM and the ensembles, we conduct
experiments in which we select new data from a set of hold-out
examples based on the model’s estimated uncertainty on those data
points. This uncertainty-based selection should ideally result in a
training set that improves the model’s generalization error more
than by adding an identical number of randomly chosen data points.

To measure the effectiveness of the different uncertainty esti-
mates, we perform one round of this active learning task (which
we will refer to as “active learning”) using a single model with
GMM uncertainties and compare the results to active learning with
uncertainties from both ensemble types. We evaluate a trained
ensemble or single NequIP model on a pool of additional train-
ing data, obtaining an uncertainty Uy = oy for each atom k in each
molecular structure. Let k* be the atom within a 3BPA molecule with
the highest uncertainty, i.e.,

k" = argmax {U; }. (12)
k

We select the Nirin structures with the highest U+ to add the orig-
inal training set of size Nzain, creating a new training set Dirain,active-
We also randomly select Nirain to add to the original training set, cre-
ating another training set Dirin, random- We re-train all models with
the same parameters from scratch on each of these two new training
sets and evaluate them on various test sets. For further details, see
the Active learning section in the supplementary material.

Assuming that atoms with the highest e (i.e., outliers) are
labeled with the highest uncertainties, we ideally expect our active
learning procedure to improve generalization error on those atoms
the most. Thus, to compare the effectiveness of active learning based
on the three uncertainty metrics, we consider not only & [Eq. (3)]
over all atoms in a test set but also the distribution of ¢, the aver-
age force RMSE of all € above 200 meV/A (&), and the maximum
force RMSE (emax) between the three approaches.

Figure 5 shows the results of evaluating the ensembles and sin-
gle NequlP model on Djg_ ;5o after one round of active learning, with
all models having hidden feature dimension f = 16, initially trained
on Dtram 50» and with new data sampled from DPOOl We observe
that active learning improves & on Dp_j50 by around 10 meV/A
for the three methods, compared to the random selection baseline.
The improvement is even greater on Dg_i50> and Dg_g°, reach-
ing nearly 30 meV/A on Dpg_ygp° using the GMM (supplementary
material, Fig. 13). Similar to Fig. 2, we observe that the ensembles
generally achieve lower error than a single model irrespective of the
sampling scheme due to the fact that the average ensemble
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Distribution of € on B =120° Dataset
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FIG. 5. Distribution of e of the GMM and ensembles on Dg_15p for models with hidden feature dimension f = 16 and trained on D30

marks the 200 meV /A cutoff for determining the RMSE of outliers.

€ (meV/A)

£ (meV/A)

hrain 50- A vertical dashed line in each plot

TABLE I. Improvement of &, &9, and emax With active learning over random sampling for each of the three methods on Dg_1290, Dg_gg0, and Dg_ygqo (for models with hidden

300 )

feature dimension f = 16 and initially trained on D;7¢ 5,

Absolute improvement (meV/A)

Percentage improvement (%)

GMM Traditional Diverse GMM Traditional Diverse

€ 9.2 10.2 9.3 17.0 22.1 20.0

D12t 200 21.9 ~13.4 16.1 7.5 -5.1 5.9
€max 148.2 184.9 172.8 19.0 239 24.3

€ 15.6 9.5 7.8 26.0 25.5 17.9

Dﬁ=150° €200 118.8 41.6 90.0 28.6 14.0 26.0
€max 290.8 114.1 232.1 40.9 419 419

€ 29.6 15.2 234 39.9 32.1 39.0

Dﬁ:lgo" €200 140.4 70.3 134.6 27.5 18.5 30.2
€max 451.9 169.0 537.4 44.3 27.3 54.9

prediction is typically more accurate than the prediction of a single
model.**

Additionally, we observe that active learning reduces € and
€max by a much larger amount compared to the reduction in &, as
reflected by the presence of fewer high-error data points in the dis-
tribution of e resulting from active learning. On Dj_;5¢° and Dg_yg¢,

&0 is even reduced by over 100 meV/A with active learning, as
seen in the supplementary material, Fig. 13. Table I summarizes the
absolute and percentage improvements of active learning over ran-
dom sampling for all three methods on these performance metrics
on Dg_5¢°, Dp-150° and Dy_490. From these results, we conclude that
the improvement in € is significant for all methods, and in particular,
using GMM uncertainties for active learning yields improvements
in overall error and outlier generalization error comparable to those
achieved with ensemble-based active learning at a significantly lower
computational cost.

We note that assessing the effectiveness of uncertainty quan-
tification and active learning approaches requires configurations of

sufficiently high rarity. This ensures that the model is not already
fully trained to accurately predict all points in the test set. For
instance, active learning achieved minimal improvement over ran-
dom sampling for all methods when testing on D3 DS pl20 and
Dinixed (supplementary material, Figs. 17-20). Di and DR con-
tain structures from the same distribution as their respective training
sets, rendering them “easier” test sets that the model marginally
improves on with additional training data. Similarly, while DY
and D2 contain more high-energy structures than ng?nﬁo and
D{on 100> their distributions still overlap significantly because struc-
tures are Boltzmann-sampled at each temperature. In compari-
son, Dg_150°, Dp-150°» and Dg_1g0° contain structures spanning a
much wider range of a and y angles for a fixed f.”* Further-
more, compared to active learning with models initially trained on
Dfrg?mso, active learning with models initially trained on D?g?n,wo
generally achieves smaller improvement over random sampling
(supplementary material, Figs. 15 and 16). Similarly, for models ini-
tially trained on Dfroa?n,wo, active learning using models with f = 32
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generally achieves slightly lower improvement over random sam-
pling compared to models with f =16 (compare supplementary
material, Figs. 15 and 16), which may also be due to the fact
that models with a higher latent feature dimension typically per-
form slightly better before active learning (compare supplementary
material, Tables 3 and 4). In summary, we emphasize that for
developing and benchmarking uncertainty quantification and active
learning approaches, one must establish that active learning meth-
ods are justified and statistically distinguishable in performance
from random sampling.

CONCLUSION

Algorithmic advances in fast and accurate uncertainty quantifi-
cation for deep neural network interatomic potentials are needed to
enable robust large-scale uncertainty-aware simulations. While an
efficient method that can give access to predictive uncertainties in
deep learning interatomic potentials has been a long-standing goal,
so far it has not been achieved, and current methods still rely on
leveraging an ensemble of networks, thereby incurring a massive
computational overhead. Here—by training a probabilistic model on
the feature space of the neural network—we show that it is possible
to retain the accuracy of ensemble uncertainty estimates with a single
neural network evaluation, resulting in large computational savings
in training and inference. In particular, we show that a Gaussian
Mixture Model trained on NequlP features produces uncertainty
estimates of similar quality to deep ensembles while requiring only a
single model evaluation, resulting in a significant reduction of com-
putational cost in both training and inference. While we find that
the GMM models are competitive with ensembles, which are cur-
rently the state of the art methodology, significant improvement is
desired for reliable predictions of quantitative uncertainties in both
types of approaches. One future direction is to compare the methods
explored here with rigorous Bayesian inference techniques, both in
neural networks and kernel-based learning models.

SUPPLEMENTARY MATERIAL

The supplementary material contains additional experiments,
as referenced in the main text.
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