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ABSTRACT: Synthetic development is a nascent field of research that uses the
tools of synthetic biology to design genetic programs directing cellular patterning
and morphogenesis in higher eukaryotic cells, such as mammalian cells. One
specific example of such synthetic genetic programs was based on cell−cell
contact-dependent signaling using synthetic Notch pathways and was shown to
drive the formation of multilayered spheroids by modulating cell−cell adhesion via
differential expression of cadherin family proteins in a mouse fibroblast cell line
(L929). The design method for these genetic programs relied on trial and error,
which limited the number of possible circuits and parameter ranges that could be
explored. Here, we build a parameterized computational framework that, given a
cell−cell communication network driving changes in cell adhesion and initial conditions as inputs, predicts developmental
trajectories. We first built a general computational framework where contact-dependent cell−cell signaling networks and changes in
cell−cell adhesion could be designed in a modular fashion. We then used a set of available in vitro results (that we call the “training
set” in analogy to similar pipelines in the machine learning field) to parameterize the computational model with values for adhesion
and signaling. We then show that this parameterized model can qualitatively predict experimental results from a “testing set” of
available in vitro data that varied the genetic network in terms of adhesion combinations, initial number of cells, and even changes to
the network architecture. Finally, this parameterized model is used to recommend novel network implementation for the formation
of a four-layered structure that has not been reported previously. The framework that we develop here could function as a testing
ground to identify the reachable space of morphologies that can be obtained by controlling contact-dependent cell−cell
communications and adhesion with these molecular tools and in this cellular system. Additionally, we discuss how the model could
be expanded to include other forms of communication or effectors for the computational design of the next generation of synthetic
developmental trajectories.

KEYWORDS: synthetic biology, self-organization, tissue engineering, computational modeling, cellular Potts, juxtacrine signaling,
synNotch, patterning, morphogenesis

■ INTRODUCTION

Multicellular mammalian systems display a remarkable capacity
for self-organization into a myriad of different shapes and
forms, from branching lung epithelia to elongating tail bud
mesenchyme. These phenomena of self-organization in
mammalian morphogenetic systems are not yet completely
understood and are being investigated intensively, e.g., via
analysis, perturbation, and modeling of model organisms.1−9

From these studies, several factors that seem to be important
for self-organization are being recognized, among them are
chemical, epigenetic, bioelectrical, morphogen, mechanical,
and cell−cell communication signals.10−12 The identification
and characterization of these factors will ultimately allow
implementation in simplified “toy models” (i.e., minimal
models akin to the pendulum for physics13) of synthetic
development both in silico and in vitro.13−20

One paradigmatic example of morphogenetic systems is the
mechanochemical systems, which are composed of cell−cell
signaling and changes in cellular or tissue mechanics. These
systems have been shown to be at play in a number of natural
systems,21,22 and computational models have been developed
to capture both signaling and mechanical changes in integrated
models.23

Among mechanical effectors, cell−cell adhesion has been
recognized as an important effector of multicellular morpho-
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genesis. In its simplest form, differential adhesion between cells
can favor cell rearrangements that bring cells with high cell−

cell adhesion closer together. This “differential adhesion”
hypothesis has been studied in cellular systems where adhesion

Figure 1. Model is developed and tested via a training set/testing set approach to parameterize and test generalization capacity. (A) Example of a
snapshot of the computational model output on the left; highlighted on the right is the schematic of the logic that drives the cell dynamics: cell−cell
adhesion and cell−cell juxtacrine signaling combined together. Cells can communicate to one another if, as in this case of the blue type and gray
type, they have the cognate signal and receptor. Outputs of the communication can be a change in fate, which can signify: new ligand production or
changes in cell adhesion. (B) We define input to our computational model as the initial conditions of how many cells of the different types there are
and the “genotype” of cells of the different types; the output is a simulation of the developmental trajectory. (C) Snapshot of the in vitro structures
used in this study to build the computational model. The red background highlights the structures used for the training set; the green background
highlights the structures for the testing set. For each structure, a microscopic image of L929 cells engineered with different networks is shown, as
described later in the text, and imaged at the indicated time point. The two-layer indicates a network of signaling where A → B, and the three-layer
one is where A → B → A (see later for more details). Adhesion molecules are as follows: E-cad, E-cadherin; N-cad, N-cadherin; P-cad, P-cadherin.
Scale bar is 17.5 pixels in silico, 100 μm in vitro. (D) Conceptual diagram of the flow we followed in the entire paper: each box represents a
conceptual item that we used and combined logically. First, we generate a basic generalized juxtacrine signaling model (GJSM) by combining
CompuCell3D with custom code for cell−cell contact-dependent signaling and change in cell types; then, we use the training set to identify
parameters capable of recapitulating in vitro training set behaviors; finally, we use that model to make prediction, which is tested by comparing it
with the testing set or used to make recommendations for novel synthetic genomes. Microscopic images with a gray background are reproduced
from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing Multicellular Structures with Synthetic Cell−Cell
Signaling. Science 2018, 361 (6398), 156−162. Copyright 2018 AAAS. Reprinted with permission from AAAS.
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levels were changed via constitutive adhesion protein over-
expression24 and also via computational systems where
adhesion levels can be decided by the user (including
CompuCell3D25).
Contact-dependent cell−cell communication networks have

also been recognized as powerful sources for multicellular
patterning in vivo,26−29 and computational models have been
developed and used to show the patterning potential of
contact-dependent networks.26,30,31 Recently, synthetic var-
iants of cell−cell contact-dependent signaling have been
developed and named synthetic Notch or synNotch. SynNotch
is based on the native Notch receptor, which relies on contact-
dependent, or juxtacrine, signaling.32 SynNotch has been
engineered such that it can respond to synthetic ligands, such
as green fluorescence protein (GFP), with user-defined
outputs. If a cell expressing GFP-ligand (sender cell) is in
contact with a cell expressing anti-GFP receptor (receiver cell),
then the receiver cell will start to produce user-defined target
genes. SynNotch pathways allow the user to define the input
and the output of communication channels that are orthogonal
to endogenous signaling. This synthetic cell−cell contact
signaling system alone has been used to drive patterning in
two-dimensional (2D) in epithelial cells.33

A first example of a synthetic artificial genetic network for
mechanochemical-driven morphogenesis was recently de-
scribed by combining cell−cell adhesion and cell−cell
contact-mediated communication by Toda et al.19 In this
system, artificial genetic networks intertwine two morphoge-
netic factors: cell−cell contact-dependent signaling and
concomitant changes in cell−cell adhesion. Changes of cell−
cell adhesion are initiated via synNotch cell−cell communica-
tion pathways, leading to dynamic and localized changes in
cell−cell adhesion strengths. With these networks, mouse
fibroblast cells can be designed such that they follow user-
defined morphogenetic trajectories to generate multilayered
spheroids starting from a random mixture of one or two
genetically different cell types. That work demonstrated that
simple networks of cell−cell communications with changes in
cell adhesion can drive developmental trajectories that have
features commonly found in developing morphogenetic
systems.
One limitation of synthetic development studies lies in the

design phase that relies heavily on lengthy trial-and-error
iterations. As the range of parameters and designs that can be
tested is limited to scientists’ best guesses, a systematic analysis
of design space is not possible and interesting solutions may be
overlooked. In other areas of synthetic biology, this initial
phase of intuitive design has been followed by a phase of
computational systems development. These computational
systems are used initially for the description and then the
design of the systems in a way that can lead to
implementation.34−36 One remarkable example is the decade-
long development of Cello, a computational framework for the
design and implementation of bacterial unicellular gene
regulatory networks.37 In Cello, users can give design
specifications in silico of combinatorial logic, and the
computational system converts them into complete DNA
sequences encoding transcriptional logic circuits that can be
executed in bacterial cells. Similar efforts in mammalian cells
are occurring with a lag, beginning with intracellular circuits.38

Computational efforts for helping the design of user-defined
structures in multicellular systems have been initiated, e.g., the
design of structure obtained by sculpting of muscle and

epithelial cells in “xenobots”39,40 or the design of culture and
initial conditions for aggregates of human stem cells to control
their organization.41 Until recently, no example of a computa-
tional system for description at the level of genetic circuits of
morphogenesis was available for assisting with design. The in
vitro system in Toda seems perfectly placed to provide a case
study as it has all of the features of a minimal “toy model” of
synthetic circuit-guided morphogenesis (and it has attracted
efforts from other groups as well42,43): it uses mammalian cells
(mouse fibroblast line L929), it has logically minimal circuits,
shows the genotype-to-phenotype relationships, and has
explored the phenotypic consequences of changes in either
cell−cell adhesion and/or network topologies.
Here, we describe how we have built a computational

framework for the description and design of genetic circuits of
morphogenesis based on contact-dependent signaling and
changes in cell−cell adhesion. This computational system can
take, as input, an artificial genetic circuit of cell−cell
communication, changes in cell adhesion (a “synthetic
genome”) and initial conditions (e.g., number of cells of each
type), and produce, as output, the developmental trajectory
(Figure 1A,B). The computational system is based on a
stochastic cellular Potts environment implemented in
CompuCell3D, which allows the simulation of adhesion-
based rearrangements, cell movement, and cell division.25 We
overlaid a custom code to model cell−cell contact-dependent
signaling by defining cell types and encoding information
about cell−cell contact. We then proceed to parameterize the
system with specific parameter values that model the cellular
type at hand (mouse fibroblast line L929), the communication
system (synNotch-based contact-dependent signaling), and the
morphogenetic effectors (adhesion molecules). To do so, we
split the available in vitro data set into a “training set” and a
“testing set” (Figure 1C), following a framework for model
identification common in machine learning. We use the
“training set” to identify parameters for the in silico model. The
synthetic genomes of the training set are chosen such that they
would contain all of the basic primitives of signaling and
adhesion interactions that are found in the in vitro
implementations: adhesion strengths, cell movement and
proliferation, and signaling. Subsequently, we use the testing
set to test if the parameterization can capture features of the
systems outside those used for parameterization. Finally, we
identify a synthetic genome in silico that can generate novel
four-layer structures (not present in the in vitro data set) and
provide a recommendation for the synthetic genome that could
implement it in vitro in the mouse fibroblast cell line L929,
with a combination of available parts (Figure 1D). Figures 2−4
describe the model parameterization based on in vitro data.
Figures 5−8 show examples of the capacity of the para-
meterized computational system to quantitatively reproduce
emergent properties not used in parameterization (Figure 5)
and qualitatively predict developmental trajectories from the
testing set that have different adhesion (Figure 6), different
initial number of cells (Figure 7), or changes to the genetic
network (Figure 8). Figure 9 shows the recommendation for
the synthetic genome for the four-layered structure in vitro
with a combination of available parts.
This example of the development of a computational

pipeline is among the first examples of computational systems
developed and used for the description and design of genetic
circuits for synthetic morphogenesis based on synNotch and
changes in adhesion in mouse fibroblast cells. We think it

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.0c00369
ACS Synth. Biol. 2022, 11, 1417−1439

1419

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.0c00369?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 2. Concepts underlying the computational model (see the Methods section for details and generalized model). Schematic description of the
computational model for contact-dependent cell state changes in cell aggregates. (A) Representation of the biological communication between cell
pairs A and B. A cells express ligand (black circle + stick) and B cells express receptor (black). With contact (pink arrow), B cells receive signal
(dashed arrow) that triggers the expression of the target gene (green). In the cells below, the amount of contact surface is lower; hence, the
signaling (dashed arrow) toward the target gene is less intense. (B) The in silico model shows a simplified representation of the cell−cell signaling
process with parameters: ligand amount (L, purple), surface area of contact (Φ, pink), and net signal (white arrow to target gene R). Cells (A) are
the sender in the communication, and cells B are the receiver. In this schematic, in silico cells are objects of nine pixels. The cell pair at the top has a
higher level of signaling compared to the upper pair due to a larger surface area of contact (Φ2 > Φ1, 2 pixels compared to 1). (C) Time evolution
of the target gene level in the receiving cell B; cells A and B are placed in contact at time zero and kept in the same configuration for 100,000 steps
of simulation and then moved far apart to stop signaling. Target gene levels are followed over time for two different values of shared surface area Φ,
with Φ2 > Φ1, with all other parameters kept identical. (D−F) Model representation of the cell behavior state change. (D) Representation of the
biological “effector gene” activation: a sender cell A (blue) activates a receiver cell B (gray) to induce a target gene (green) that encodes for an
effector protein. Over time, cell B accumulates target gene products, and at a certain threshold, the effector gene product causes cell behavior to
change (e.g., stronger adhesion to neighbors) such that the cell transitions from type B to B′. (E) The graph shows the progression of target gene
level over time for a B cell that is initially in contact with an A cell and is then isolated at 100,000 steps. The threshold for the excited state is shown
as the dotted horizontal line. At the start, the B cell is in the basal state (black solid line), but when the target gene level passes the excited-state
threshold, B cell becomes a B′ cell. The B′ cell remains in the active state (green solid line) until target gene levels drop below the activation
threshold and reverts to B (line goes back to solid black). (F) In silico representation of the state transition and communication relationship
between cells A, B, and B′. Orange curved arrows indicate state transitions. Matching ligand/receptor pairs indicate a communication channel from
A to B that promotes the state change of B to B′.
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represents an example that can be built upon in the future in
the field either expanding the analysis of the reachable
structures with these parts or by extending it with other
parts. The description here of how we went about the
computational system parameterization with the available parts
(synNotch signaling and cadherin-based adhesion in L929
cells) could serve as a template for the expansion to other cell
types, signaling currencies and morphogenetic effectors (e.g.,
soluble ligand-based, bioelectricity, cytoskeletal, etc.). We think
that our work provides a first necessary step toward the
development of complete pipelines with computational design
and in vitro implementation of synthetic developmental
trajectories in multicellular systems.

■ RESULTS
Framework for Modeling of Cell−Cell Contact Signal-

ing and Cell State Changes in CompuCell3D (Complete
Details in the Methods Section). We first built a
computational framework that could simulate the development
of multicellular spheroids informed by a “synthetic genome”
that controls their cell−cell communication, adhesion, and
movement. The CompuCell3D platform can simulate
adhesion, movement, division, and presence of different cell
“types”; we added a new code for contact-dependent signaling-
mediated change of cell type.
Briefly, in CompuCell3D,25 each cell σ(i) is defined as

comprising a user-defined number of atomic pixels, whose
position in space can change over time with a stochastic
algorithm. The probability that a pixel will move is calculated
by CompuCell3D for each attempt of movement at each time
interval (known as Monte Carlo step (mcs)) with the
following equation

P E H T/= −Δ (1)

where ΔH is the difference in “entropy energy” between the
configurations before the change versus after the change, and T
is a “temperature” parameter of the cell that is attempting the
change, which can be interpreted as cell motility. Governed by
this equation, a system will dynamically change configuration
over time toward configurations that minimize entropy energy
(H). Entropy energy for a given configuration of cells is
calculated based on cell−cell contact and cell shape as follows

H J (1 )

( ( )(Sur( ) Sur ( ))

( )(Vol( ) Vol ( )) )

i j
i j i j

,
( ), ( ) ( ), ( )

Tar
2

Tar
2

∑

∑

δ

λ σ σ σ

λ σ σ σ

= −

+ + −

+ −

σ σ σ σ

σ

(2)

The first term of this equation deals with how cell−cell
contacts contribute to H. Whether two cells are in contact is
encoded in a Kronecker delta δσ(i),σ(j) that is 0 if cells i and j are
neighbors and 1 otherwise and can be thought of as an
adjacency matrix. If two cells are in contact, they will
contribute proportionally to H the number of pixels that are
in contact-weighted by the adhesion matrix J. The adhesion
matrix Jσ(i),σ(j) defines an adhesion weight between cells i and j.
Higher adhesion values in the adhesion matrix correspond to
increased entropy, less “stable” conformations, and hence a
lower likelihood that neighboring cells will remain close.
Consequently, higher adhesion values in the model correspond
to a lower likelihood of cells sticking together and can

therefore be interpreted as corresponding to lower adhesion
strength.
The second line of eq 2 deals with how cell shape

contributes to H. Cell shape contributions are defined as the
sum of all deviations of the current volume of each cell from
target volume (VolTar) and surface (SurTar), weighted with a
“deformability” parameter λ. As cells deform and stray further
from their target volume or surface, entropy energy (H)
increases. The amount that the deformation is penalized is
weighted via λ, with lower values of λ allowing larger
deformations.
In this context, cell types can be defined as subsets of the

total set of cells that share certain features (e.g., adhesion,
motility, deformability, or other). Upon cell division, daughter
cells inherit the features of the parent cell. One special “cell-
type” indication is given to the medium, such that cell−
medium adhesion parameters can be defined.
In this framework, we introduced the capacity for cells to be

able to influence the behavior of their neighbors, so that a
contact-dependent cell−cell communication system could be
implemented. The abstract features of the synNotch
communications that we want to capture are (i) signaling
that is proportional to the amount of shared cell−cell contact
surface between the sender and receiver cells that express
cognate ligand/receptor pairs, (ii) signaling that is capable of
affecting changes in protein production, (iii) that when protein
production increases sufficiently, the receiver cell can change
from a basal to an activated state, and (iv) that the activated
cell can acquire new behaviors such as altered adhesiveness or
the capacity to send a new signal (Figure 2A,D). To model
these synNotch communications, we conceptually separated
the modeling into two parts: signaling-dependent continuous
changes in target protein production in receiver cells (Figure
2B,C) and protein-dependent discrete changes in cell behavior
(Figure 2E,F). The two parts of the model, continuous
signaling and discrete response, are highly modular and can be
designed and tested independently of one another.
For modeling contact surface-dependent, continuous

changes in target protein production, we introduce a new
feature of in silico cells, their repertoire of ligands and
receptors. Each cell σ(i) can be equipped with ligand_A
through _Z and with receptor_A through _Z. If a cell is
equipped with receptor_X, it can start to accumulate target
protein production points if it is in contact with a cell that is
expressing the cognate ligand_X. Cell contact information is
encoded in the adjacency matrix (see above), and the response
is calculated via differential equations to model input-
dependent response as follows

R
t

Rd
d

1
1 e S(( )/ ) κ

=
+

−
β ε− − (3.1)

here, R is the response (target protein production); S is the
signal or input coming from neighbors; β is a constant that
controls signaling delay; ε is a constant that affects the
strength, steepness, and overall geometry of this differential
equation; and κ is the degradation constant. Signal (S) can
depend on several factors: the number of sender cells
contacting the receiver cell, the number of ligands on each
sender cell, the number of receptors on the receiver cell, and
the amount of contact between sender(s) and receiver. In a
simplified two-cell case with sender cell A and receiver cell B, if
the receptors on B are in excess, signaling depends primarily on
the amount of ligand on cell A and the fraction of A’s surface
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contacting B. If we define L as the number of ligands on cell
A’s surface and Φ as the fraction of A’s surface in contact with
B’s surface, we can then define the signal (S) that cell B
receives as S = Φ × L (Figure 2B)

R
t

Rd
d

1
1 e L((( ) )/ ) κ

=
+

−
β ε− Φ× − (3.2)

The target protein production for each cell is calculated by
numerically solving (eq 3.2) via the forward Euler method.
With these definitions, we have cellular signaling that depends
on the amount of contacted ligand and obtain a stronger
response as the fraction of the shared surface or ligand
produced per unit area is increased, as in the case of synNotch
signaling33,44 (Figure 2C). This part of the model accounts for
the continuous changes in protein production in receiver cells.
For a more detailed explanation, please see the CompuCell3D
and the Cellular Potts Formalism and the Generalized
Juxtacrine Signaling Model (GJSM) sections.
To model target protein-dependent change in cell behavior,

we define thresholds of protein production that induce
transition from a basal cell state to an activated state and
vice versa. In the example above, if receiver cell B receives
sufficient signal to produce a level of protein passing the
activation threshold, the cell will become activated, denoted as
B′ (Figure 2E). Thresholds for state transitions from basal to
active and from active to basal can be different, in general, but
in the current work, they are kept at the same value. The state-
machine schematic for this type of network is shown in Figure
2F. The features of an activated cell’s adhesion and signaling
can be different from its basal state. For example, B′ cells can
be more adhesive than B cells to other B′ cells. In this way,
behavioral transitions are linked to the protein production
changes via a threshold, which captures the discrete change in
cell behavior observed in cell biology and used in other
modeling efforts.3,4,45 Additionally, or alternatively, cell B′ can
also gain a communication capacity that was absent in cell B,
e.g., the capacity to produce a synthetic ligand for
communication. The model itself is general, and any features
of B′ cells can be different compared to those of B cells, e.g.,
proliferation, motility, division rate, etc. We note here that the
cellular protein production and interactions are chosen to
model contact-dependent signaling (also known as juxtacrine).
Other signaling mechanisms, such as diffusion-mediated
patterning, can be implemented by choosing the appropriate
differential equations.
Within this framework, cell rearrangements are nonlinearly

dependent on cell−cell signaling networks, adhesion prefer-
ences of the cells in the different states, and initial conditions.
The number and amount of cell−cell contacts in fact change
over time as the systems restructure toward a stable
configuration, which depends on the pattern of cell adhesion
preferences, but the stability of a given configuration also
changes when the cell−cell adhesion properties of the cells
change over time as a consequence of cell−cell signaling. This
gives rise to a nonlinear system that cannot be treated
completely analytically.
Parameterization of the Model. With the computational

system at hand, we wanted to see if we could parameterize it
such that it could describe mouse fibroblast cell line L929
engineered with the synthetic morphogenetic networks based
on synNotch and changes in cell adhesion described in ref 19.
As detailed below, we first made decisions on basic parameters
such as cell size and adhesion range with in vitro data from

L929 cells, biological considerations, and feasibility constraints
in execution time, and then the rest of the more specific
parameters were tuned by parameter scans and comparison
with in vitro L929 cells. In this way, we identified a coherent
ensemble of parameters that faithfully reproduce in vitro
results. We note here that several different sets of numerical
values for the parameters could give rise to the same cellular
structures in CompuCell3D. For example, we chose 52 as cell−
medium adhesion, which restricts the value of adhesion for
more adherent cells in the 0−51 range; if we picked a different
value for cell−medium adhesion, the precise numerical value
for the adhesion of the different adhesion molecule would be
different. Further details on the algorithm and parameters can
be found in the Methods, In Silico L929 (ISL929) Cell Line
Properties, and CompuCell3D and the Cellular Potts Formal-
ism sections, and full lists of simulation parameters can be
found in Table S1 for signaling and simulation and Table S2
for adhesion.

Baseline Adhesion, Cell Size, Deformability, and Motility.
Cells in the in vitro reference experiment are L929 murine
fibroblasts; to create an in silico version, ISL929, we needed to
identify a parameter set that would produce biologically
plausible cellular structures. The parameters that needed to be
identified are highlighted in yellow in the CompuCell3D
equations

For the parameters for cell size and cell shape, we first chose
the target surface (SurTar) and volume (VolTar) of the cell to
correspond to that of a sphere, as the cells are spherical before
aggregating in vitro. If a cell is too small, then its movement is
very volatile due to the small number of pixels that constitute
it. On the other hand, a very large cell is slow and requires
many Monte Carlo steps (mcs) to move, making it
computationally demanding. With this motivation in mind,
we set the cells to have a preferred radius of 3 pixels,
corresponding to the target volume and surface (VolTar and
SurTar) of 113 pixels. Furthermore, we set the basal energy cost
of deforming away from the target volume and area to be λ =
2.2.
With these fixed parameter choices, we moved to identify

parameters for temperature (T), which can be interpreted as a
motility parameter25,46 and basal cell−cell and cell−medium
adhesion via parameter screening. These parameters are crucial
to define a multicellular system’s basal “mixability”, i.e.,
capacity of cells to rearrange in a spheroid. To parameterize
T and baseline cell−cell and cell−medium adhesion, we first
picked an arbitrary value for cell−medium adhesion of 52. The
parameter choice for cell−medium adhesion sets the scale for
the remaining model parameters, as cells that are not in contact
with other cells are always in contact with the medium, and
they, e.g., favor cell−cell only if the cell−cell adhesion is lower
than the cell−medium. In this system, adhesion between cells
contributes positively to the effective energy and, since the
stochastic dynamics favor pixel rearrangements that lower the
effective energy, higher adhesion magnitudes correspond to a
lower adhesion strength.
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Figure 3. Model parameterization of signaling and adhesion in A → B networks. (A) In vitro picture of 100 parental L929 cells grown for 24 h in a
nonadhesive U-bottom well of a 96-well plate. (B) In silico pictures of 100 identical cells grown in a nonadhesive virtual medium for 24 h; as
indicated, cells in different snapshots have different parameters for cell movement (x axis) and cell−cell adhesion (y axis). (C) In vitro picture of
100 L929 cells grown for 24 h in a nonadhesive U-bottom well of a 96-well plate, either parental (upper picture) or genetically engineered to
overexpress E-cadherin (lower picture). (D) In silico pictures of 100 identical cells grown in a nonadhesive virtual medium for 24 h; as indicated,
cells in different snapshots have different parameters for cell deformation (x axis) and cell−cell adhesion (y axis). (E) Diagram of sender A cells and
receiver B cells that induce GFP downstream of activation of a contact-dependent receptor (left). Below, the graph of target gene expression over
time for B cells for either in silico simulations (red line + shadow standard deviation) or in vitro experiments (black line). (F) Diagram of sender A
cells and receiver B cells that induce GFP and E-cadherin downstream of activation of a contact-dependent receptor (top). On the bottom is a
result of an in vitro experiment after 24 h of cultivating approximately 100 A cells with 100 B cells. (G) Depiction of the transition network between
cell states that is implemented in (F). (H) Starting from 100 A and 100 B cells where the B′−B′ adhesions were changed (first line) or the A−A
(second line) or the B−B (third line). Red dotted lines indicate the structure that most closely resembles the in vitro implementation (F). (I)
Sorting index quantification of a 24 h time point of cells A (blue line) or B (green line) for a range of B′−B′ adhesion (first line), A−A adhesions
(second line), and B−B adhesions (third line). Red dotted lines represent ranges of behavior that recapitulate in vitro observations. (J) In silico
output of input 94 A cells and 85 B cells with the same network as in (H) and with the values for adhesion indicated on the right. Scale bar is 17.5
pixels in silico, 100 μm in vitro. Microscopic images with a gray background are reproduced from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.;
Lim, W. A. Programming Self-Organizing Multicellular Structures with Synthetic Cell−Cell Signaling. Science 2018, 361 (6398), 156−162.
Copyright 2018 AAAS. Reprinted with permission from AAAS.
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Then, we compared the behavior of an aggregate of 100
L929 cells in vitro with a similar aggregate of ISL929 cells in
silico where parameter values of T and cell−cell adhesion were
varied within a specified range (Figure 3A,B). As visible from
Figure 3A, wild-type L929 cells weakly aggregate to a pseudo-
spherical structure with “rough” edges, biologically indicative
of weak cell−cell adhesion. In silico, a range of motility
between 10 and 1000 and of cell−cell adhesion between 20
and 70 were tested. As shown in Figure 3B, within 10,000
simulation steps (mcs), T = 10 does not allow cells to move for
any of the adhesion parameters. When T = 1000, spheroid
formation occurred only for cell−cell adhesion values of 20,
whereas higher values for cell−cell adhesion (corresponding to
lower adhesion strength) resulted in cells disintegrating from
the spheroid, which is not observed in vitro. Moreover, with T
= 1000, cell shape was extremely distorted. At T = 100, we
obtained a spheroid with rough edges for cell−cell adhesion
stronger than cell−medium (49 for cell−cell adhesion vs 52 of
cell−medium adhesionreminder that these values are
inversely proportional to the strength of adhesion), similar to
the in vitro phenotypes. These observations prompted us to use
values of T = 100 for basic temperature, 52 for cell−medium
adhesion, and 49 for cell−cell adhesion of cells. These values
were used throughout the rest of the simulations presented in
this paper.
When performing the adhesion parameter scan, we noticed

that lower cell−cell adhesion values (higher adhesion
strengths) resulted in larger aggregates, which was not
consistent with previous observations in vitro that higher
cell−cell adhesion results in more compact aggregates. To
further investigate this, we cultivated aggregates of 100 L929
parental cells in U-bottom wells and compared their dimension
to aggregates made of 100 L929 cells overexpressing E-
cadherin protein, which leads to increased cell−cell adhesion
strengths. We observed that the E-cadherin aggregates were
indeed smaller than the parental ones in vitro (Figure 3C). To
recapitulate this behavior in silico, we conducted a parameter
scan of the deformability parameter lambda over two adhesion
values. As visible from Figure 3D, a λ = 5 does not allow cells
to change shape at all, while λ = 1 allows more highly adhesive
cells (below 40) to form a compacted spheroid. When set at a
value of 2.2, cells with adhesion above 40 formed larger
aggregates, as seen in vitro. Based on this analysis, we chose to
keep λ at 2.2 for parental cells, but to lower it to 1 for cells with
adhesion below 40, such that they would mimic in vitro
behavior and form smaller aggregates.
synNotch Signaling for “Two-Layer” Networks. To identify

numerical values for the signaling eq 3.1, we use experimental
data from a simple in vitro experiment presented in ref 19. A
population of receiver cells engineered with the synNotch
receptor that activates a GFP target protein were set in contact
with a population of sender cells expressing a cognate ligand.
Then, fluorescent protein production is tracked over time
(Figure 3E). The time dependence of the normalized
fluorescence provides the time scale of contact-dependent
signaling. To mimic the signal induction dynamics in receiver
cells in silico, a simulation was set up to track normalized
protein production over time. Equal amounts of sender A and
receiver B cells were seeded in two box-shaped sheets, with
uniform contact between the two types. Levels of reporter gene
in receivers were tracked over time for a total of 24,000 mcs.
The signaling parameters β, κ, ε were heuristically adjusted
(not shown) such that the simulation matched the

experimental normalized fluorescence (shown in Figure 3E)
(numerical values for β, κ, and ε can be found in Table S1).
These parameters capture dynamics specific to synNotch
signaling in L929 cells, and we used them as our baseline for all
subsequent signaling interactions. Given the temporal
dimension of the in vitro results, this also gave us a temporal
translation between simulation time and real time of 1000 mcs
= 1 h.

Adhesion in Two-Layer Networks. We then moved to
identify numerical values for the adhesion weights (matrix J) of
different adhesion molecules. In the in vitro experiments,
different levels of E-cadherin (E-cad), N-cadherin (N-cad),
and P-cadherin (P-cad) are used to modulate cell−cell
adhesion. We first developed an initial relative hierarchy of
adhesion strength based on available studies in the literature
that pointed to differences in adhesion strength produced
between cells expressing different adhesion molecules or even
different amounts of the same adhesion molecule.24 In
particular, E-cad, N-cad, and P-cad are preferentially
homotypical, but E-cad is stronger and more promiscuous
toward N- and P-cad, whereas P- and N-cad are weaker and
more selectively homotypical.47 From this, we generated an
adhesion hierarchy where, at similar levels of expression, E-cad
produces greater adhesion strength between cells than either
N- or P-cad; heterotypic E-cad:P-cad and E-cad:N-cad pairings
are more favored than the N-cad:P-cad, and for any given
cadherin molecule, low levels of expression produce less
adhesion strength than higher levels of expression. With this
general hierarchy of the relative strengths of different adhesion
pairs, we performed the following parameter screens to identify
specific numerical values for adhesion strength parameters.
We started with identifying parameters for E-cad. To do so,

we used experimental data from a training set structure that we
call “two-layer network”: here, sender A cells activate receiver
B cells to generate B′ cells that produce E-cad adhesion
molecule. We knew from the in vitro data that if we started
with 100 A cells and 100 B cells randomly mixed, in 24 h, we
would obtain a two-layered spheroid with activated B′ cells in
the innermost layer and A cells on the outside (Figure 3F). In
silico, we set up a simulation to mirror the in vitro experiment
(Figure 3G). Approximately 100 A cells expressing ligand_A
were mixed with 100 B cells expressing receptor_A; when B
cells acquire target protein units above the activation threshold
(set at 5263), they convert to B′ (Figure 3H). We then ran 10
simulations for each value of B′−B′ adhesion between 25 and
50 and recorded screenshots of the resulting structure at
24,000 mcs. The goal in the parameter screen is to identify
parameters that achieve the maximal similarity to the in vitro
picture, where activated, green B′ cells are found in the inner
layer and A cells in the outer layer. As shown in Figure 3H, for
values of B′−B′ adhesion of 35 or higher, the sorting was either
incomplete or the two types were randomly mixed. To get a
quantitative measure of sorting, we also followed homogeneity
index for both type A and B cells (Figure 3I). We calculated a
homogeneity index measure inspired from refs 10, 48 and 49
and defined in eq S8 (see Methods and Simulation
Quantifications sections) as the average fraction of surface
area that cells of type X share with cells of the same type X
over their total surface. The measure scores higher if the cells
are uniformly contacting cells of the same kind and lower if it
has neighbors of a different kind. Given geometrical
constraints, the highest value is around 0.8 for our cell
numbers (as with a finite number of cells, there will always be
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cells that do not have all their surface in contact with neighbors
at all). Following this measure confirmed the impression from
the visual inspection that for values of B′−B′ adhesion higher
than 35, the homogeneity of B/B′ cells was low, contrary to
what is observed in vitro where B/B′ has the highest
homogeneity (Figure 3I). These results constrained the value
of the adhesion of B′−B′ when they express E-cad to <35 and
we picked the adhesion value for induced E-cad at 25 moving
forward.
So far, we kept all of the other adhesion values to the

parental level of 49 but wanted to see if this was appropriate.
To do so, we performed a similar screen for B−B adhesion
values spanning between 25 and 50. In this case, if B−B
adhesion is under 40, the sorting of the B cells precedes
activation, and only B cells at the interface between B and A
cells activate. This leaves the inner core of the B cells to the

inactivated state, which is not what is observed in the in vitro
counterpart. Therefore, B−B adhesion needs to be higher than
40, and we picked 47. We finally performed a screen for A−A
adhesion values; this showed that low values of A−A adhesion
results in the formation of a blue core and green poles at the
periphery, which is not what is observed in vitro. Therefore, A−
A adhesion values were constrained to >45 and we picked 49.
With these parameters and starting with a mixture of
approximately 100 A and 100 B cells, we consistently obtained
two-layer structures qualitatively similar to that of the in vitro
results (see Figures 3J and S1A for quantifications and more
replicates and Movie S1).
Collectively then, this screening allowed the identification of

a set of adhesion values of B′−B′ = 25, B−B = 47, A−A = 49
(reminder that in CompuCell3D lower adhesion values
correspond to higher adhesion strengths), which was able to

Figure 4. Parameterization of A→ B→ A network parameters and E-cadherin levels. (A) Diagram 2 cells A (blue) and B (gray) and their signaling
with the receptor and promoter representation: cell A has a CD19 ligand (rounded ligand on a stick on the cell membrane of cell A), which
activates (pink arrow) the rounded receptor in cell B, which in response activates Hi.E-cad (white rectangle) and GFP-ligand (green rectangle); the
GFP-lig (green square on a stick on the membrane) is then produced (gray arrow) on the membrane, which activates the square receptor on cell A
that activates intracellularly (white arrows) Lo.E-cad (white rectangle) and mCherry (red rectangle). (B) Experimental results of mixing
approximately 200 A cells and 40 B cells; A cells are blue, B cells are gray, B′ cells are green, and A′ cells are red. (C) State-machine diagram of the
network, with the adhesion components. B cell has basal adhesion and rounded receptor; when it is activated by a neighboring rounded receptor, it
activates to a B′ state where it starts to be adhesive with E-cad.Hi parameter and a square ligand; A cell, blue, has basal adhesion and expresses a
rounded ligand and a square receptor; the activation of the square receptor activates A cell to A′, which is red and acquires the adhesion of E-cad.Lo
parameter. (D) Graph depicting the cell-type activation index over time for activation from A → A′ in vitro (dark red line) and in silico (light red
line and shadowed standard deviation) and from B → B′ in vitro (dark green line) and in silico (light green line and shadowed standard deviation).
We present mean ± standard deviation (s.d.) for the in silico results (dotted lines with standard deviations in the graph) (n = 30 simulations in
silico, n = 1 for in vitro). (E) Hierarchy of adhesion between cells with different levels of E-cadherin adhesion; notation adhesion.level 1:
adhesion.level 2 indicates adhesion preference between cells that express adhesion level 1 and cells that express adhesion level 2. (F) Diagram of the
cell−cell adhesion strengths for pair-wise cells of different types; horizontal black lines denote cell−cell adhesion, and more horizontal lines denote
stronger adhesion. (G) Input (198 A + 53 B cells) and output (developmental trajectory with snapshots at the indicated time frames) of the system
with genome as in panel (C). Scale bar is 17.5 pixels in silico, 100 μm in vitro. Microscopic images with a gray background are reproduced from
Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing Multicellular Structures with Synthetic Cell−Cell
Signaling. Science 2018, 361 (6398), 156−162. Copyright 2018 AAAS. Reprinted with permission from AAAS.
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recapitulate the fully sorted, two-layer spheroid as in the in
vitro experiment. The choice of the parameters is not univocal;
any choice of the parameters in those ranges would have
resulted in a two-layer phenotype. We used these values for the
rest of the papers for E-cad activation: induced E-cad−induced
E-cad = 25; basal E-cad−basal-E-cad = 47, which is consistent
with in vitro cells in a basal state having a leakiness of E-cad
expression even in the absence of activation;19 this minimal
difference between basal and parental (47 vs 49) is not
sufficient to induce sorting (not shown here, but see Figure
S2B.2 for an example where cells with 49 vs cells with 45 of
adhesion do not sort).
Next, we used the parameter scan approach to parameterize

cell-type adhesion for N-cad and P-cad adhesion molecules.
For induced N- and P-cadherin, we compared the parameter
scan with the in vitro phenotype of a two-layer network where
B cells induce N-cad instead of E-cad. The phenotype in vitro is
a less well-sorted two-layer (Figure S1B), which is similar to
what is obtained in silico with values of B′−B′ of around 35.
With this parameter, in fact, the homogeneity of B/B′ is still
higher than the homogeneity of A cells but lower than it was
for E-cad expressing cells (compare Figure S1A-B/B′ green
line with the same line in Figure S1B.4). Hence, for induced N-
cad, we chose 35 as adhesion value, and the same was then
fixed for induced P-cad (given they are reported to have similar
adhesion strengths47). Finally, another two-layer structure
from the training set allowed parameterization of heterotypic
N- and P-cad adhesion, as well as constitutively expressed P-
cad. In this circuit, A cells constitutively express low levels of P-
cad, whereas B cells are induced to express N-cad (Figure
S1C). The resulting phenotype in vitro is that of a spheroid
where A cells and B′ cells cluster together at different poles.
Given the parameter scan in Figure 3H,I, we thought using A−
A adhesion values in the range of 35−45 would allow us to
achieve that; indeed, when we did simulations with the A−A
adhesion set to 43, we obtained in silico structures similar to
the in vitro ones, where both A cells and B/B′ cells show
similar homogeneity index values (Figure S1C). This screening
allowed us to identify parameters for adhesion values for E-,
N-, and P-cadherin.
Adhesion and Signaling in Three-Layer Networks. More

complex three-layer structures can be generated in vitro with a
more complex signaling network (Figure 4A). In this network
architecture, the B cells, when they receive the signal from A,
transition to a B′ state that is able to communicate back to the
A cells that can become activated to A′ cells. In this case, A, A′,
and B′ cells have the capacity to both receive and send a signal,
a feature known as “transceiver” (Figure 4C). This signaling
logic is also called “back-and-forth”. This network was used in
vitro19 to generate both central symmetric three-layered
structures and also noncentral symmetric structures based on
the choice of adhesion molecule. We chose to use the central
symmetric three-layered structure as a training structure for
parameterization in silico and leave the noncentral symmetric
structures for the test set.
The central symmetric three-layer structure in vitro is

generated as follows: A and B cell types have basal adhesion
deriving from a small amount of leakiness,19 whereas A′
expresses low levels of E-cad (E-cad.Lo) and B′ expresses high
levels of E-cad (E-cad.Hi). As shown in Figure 4B, when
approximately 200 A cells are mixed with approximately 40 B
cells in vitro, A cells signal to B cells to induce E-cad.Hi, turn
on reporter GFP, and form the center of the spheroid.

Subsequently, the surrounding blue A cells expressing blue
fluorescence protein (BFP) are activated to A′ cells that turn
on a red reporter (mCherry) and E-cad.Lo positive via
signaling coming from activated B′ cells, resulting in a three-
layered structure with B′ cells in the center followed by A′ and
then A cells at the outside.
To implement this in silico, A cells have ligand_A (filled

circle) and can respond to ligand_B (green square) thanks to
the expression of receptor_B (squared). B cells have
receptor_A (rounded) to respond to ligand_A and in the B′
state can gain the capacity to send ligand_B (Figure 4C). To
parameterize the signaling for A and B cells, we proceeded as
for signaling parameterization in the simper networks
described earlier by comparing activation measures in vitro
and in silico. For this more complex network architecture, the
activation indices are defined based on cell-type conversion
from A to A′ and B to B′ as follows: in vitro, the activation
index is the normalized amount of GFP fluorescence (green)
for signaling in cell B and of mCherry fluorescence (red) for
signaling in cell A (see the Simulation Quantifications section).
In silico, the activation index is the normalized ratio of activated
cells over the total number of cells of the same type (see
Methods and Video Analysis sections). With these definitions,
we were able to compare in vitro and in silico signaling and
identify parameters for signaling constants as described
previously (numerical values for signaling parameters are in
Table S1) (Figure 4D). We notice that the signaling
parameters that allow for recapitulation of in vitro data set
are (slightly) different for cells A and B, even though they have
a similar genetic network; we speculate that this could be due,
in vitro, to a different level of expression of the receptor or the
transgene that makes signaling dynamics different in different
cell types; hence, parameterization of different cell types could
require parameterization of signaling each time a new circuit is
built. We used the identified signaling parameters for all
subsequent simulations involving this kind of signaling.
For the adhesion values, the central symmetric three-layer

structure involves different expression levels of E-cad protein in
different cells, e.g., low levels in A′ cells and high levels in B′
cells. For the parameterization, based on previous work that
established that changes in the expression levels of cadherins
change adhesion strength,24,47 we derived a hierarchy as in
Figure 4E. Based on this hierarchy, and starting from the
previously identified value for E-cad − E-cad of 25, we chose to
use E-cad.Lo − E-cad.Lo = 40 and E-cad.Hi − E-cad.Hi = 20
(Figure 4F).
With these parameters for signaling and adhesion, we then

simulated the development of a system comprising around 200
A and 50 B initial cells. We observed that there was first
induction of B to B′ cells, which then formed a green core.
Then, the B′ cells started to signal to the A cells to turn red
(Figures 4G and S2A and Movie S2). At the corresponding
time points, we observed structures similar to that of the in
vitro results (Figure 4B), a three-layer structure consisting of a
green B′ cell core surrounded by concentric shells of red A′
cells and then blue A cells (Figure 4G).
We wondered if, in the signaling scheme, reversion back to

the basal state played a role in this trajectory. To test this, we
designed networks where there is no reversion, meaning that,
once induced, cells cannot revert to the basal state.
Qualitatively and via homogeneity index, these two scenarios
are not distinguishable in our setup (compare Figure S2A with
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Figure S2C), suggesting that, in silico, the reversion might not
play a big role for this specific trajectory.
Finally, we showed that signaling is necessary for three-layer

formation in the in silico model, similar to what was shown for
the in vitro model. In the absence of signaling, there is no

activation to B′ and A′, no formation of core(s), and no sorting
occurring either qualitatively or quantitatively in silico (Figure
S2B).
This parameterization allowed us to identify values for all of

the target parameters that remain unchanged for the rest of the

Figure 5. Emergent properties in vitro are captured by the parameterized system in silico for the central symmetric three-layer network. (A)
Quantification of the number of cores formed over repeated simulations (n = 30 simulations, n = 28 for in vitro). In vitro result data are from ref 19.
See the Methods and Simulation Quantifications sections for more details on core definitions in silico. (B) Quantification of sphericity/circularity
indices over the time development of synthetic and in vitro systems (see the Methods and Simulation Quantifications sections for in silico and the
Video Analysis section for in vitro details on the indices). In blue, all of the cells are considered; in green, only the activated (A′) and (B′) cells are
considered. The solid line is from in vitro measures; solid lines with shaded contours are from in silico measurements and represent mean and
standard deviation intervals, respectively. The vertical dashed line indicates the time of (B′) cell activation (n = 30 simulations, n = 1 for in vitro).

Figure 6. Model correctly predicts the behavior of in vitro experiments with different cadherin target genes. (A) State-machine diagram of the
network, with the adhesion components. B cell has basal adhesion and a rounded receptor; when it is activated by a neighboring rounded receptor,
it activates to a B′ state that is adhesive with N-cad parameter and produces a square ligand; A cell, blue, has basal adhesion and expresses a
rounded ligand and a square receptor; the activation of the square receptor activates A cell to A′, which is red and has the adhesion of P-cad
parameter. (B) Representative results of two classes of resulting structures at t = 50 h of simulated time of approximately 30 A + 30 B cells with the
genotype as in panel (A): one class (approx. 10% of the simulations) gives two red poles, and the other class (approx. 90% of the simulations) gives
one red pole. See Figure S3 for quantification of homogeneity index over 10 runs of the simulation with the same parameters and initial conditions.
(C) In vitro results at t = 50 h of the two categories of structures that are obtained with the genotype of cells in A and with mixing approximately 30
A cells and 30 B cells. (D) State-machine diagram of the network, with the adhesion components. B cell has basal adhesion and a rounded receptor;
when it is activated by a neighboring rounded receptor, it activates to a B′ state that is adhesive with N-cad parameter and produces a square ligand;
A cell, blue, has constitutive P-cad adhesion and expresses a rounded ligand and a square receptor; the activation of the square receptor activates A
cell to A′, which is red and continues to have adhesion of constitutive P-cad parameter. (E) Representative results of resulting structures at t = 34 h
of simulated time of approximately 179 A + 72 B cells with the genotype as in panel (D): a core of blue inactivated A cells, with multiple poles of
green activated B′ green cells and in the between red activated A′ cells. See Figure S3 for the quantification of homogeneity index over 10 runs of
the simulation with the same parameters and initial conditions. (F) In vitro results at t = 34 h of a representative structure that is obtained with the
genotype of cells in panel (D) and with mixing approximately 160 A cells and 80 B cells. Scale bar is 17.5 pixels = 100 μm. Microscopic images with
a gray background are reproduced from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing Multicellular
Structures with Synthetic Cell−Cell Signaling. Science 2018, 361 (6398), 156−162. Copyright 2018 AAAS. Reprinted with permission from AAAS.
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simulations. We then moved to test the quantitative capacity of
the newly parameterized model to capture emergent properties
of the system.
Testing of Predictive Capacity of the Model in the

Testing Set. Parameterized Model Correctly Captures
Emergent Properties of In Vitro Developmental Trajectories.
With the model parameterized to capture the morphologies
and activation dynamics, we wondered if the parameterized
model would also reproduce other properties of the in vitro
systems that were not used to calibrate the model parameters.
As a first example, we focused on the robustness of obtaining

the target structures, focusing on the central symmetric three-
layer structure. Both the in vitro and the in silico systems have
stochastic components. In vitro, the system forms a similar

structure with one core 57% of the time experiments
performed (n = 28 experiments19). In the in silico system,
the stochasticity comes from the core algorithm in
CompuCell3D, as the transition from one stage to the next
is shaped by a probability distribution (eq 1). We quantified in
silico the number of cores formed over repeated simulations of
our parameterized model of the central symmetric three-layer
structure (n = 30). The majority of the simulations yielded a
one-core structure (47%), some yielded a two-core structure
(30%), and a minority yielded a noncore structure (23%)
(Figure 5A). We compared this distribution to that of
morphologies reported for the biological system19 and found
them similar (Pearson χ2 = 4.75, d.f. = 2, P > 0.09).

Figure 7. Model correctly predicts the behavior of in vitro experiments with different number of cells. (A) State-machine diagram of the network,
with the adhesion components. B cell has basal adhesion and a rounded receptor; when it is activated by a neighboring rounded receptor, it
activates to a B′ state that is adhesive with N-cad parameter and produces a square ligand; A cell, blue, has basal adhesion and expresses a rounded
ligand and a square receptor; the activation of the square receptor activates A cell to A′, which is red and has the adhesion of P-cad parameter. (B)
Representative results of resulting structures at t = 50 h of simulated time of 98 A + 81 B cells with the genotype as in (A): a core of green activated
B′ cells, with two poles of red activated A′ cells and external to that blue inactivated A cells. See Figure S4 for quantification of homogeneity index
over 10 runs of the simulation with the same parameters and initial conditions. (C) In vitro results at t = 50 h of a representative structure that is
obtained with the genotype of cells in (A) and with mixing approximately 100 A cells and 100 B cells. Scale bar is 17.5 pixels = 100 μm. (D) State-
machine diagram of the network, with the adhesion components. B cell has basal adhesion and a rounded receptor; when it is activated by a
neighboring rounded receptor, it activates to a B′ state that is adhesive with E-cad.Hi parameter and produces a square ligand; A cell, blue, has basal
adhesion and expresses a rounded ligand and a square receptor; the activation of the square receptor activates A cell to A′, which is red and has
adhesion of E-cad.Lo parameter. (E) Representative result of resulting structures at t = 24 h of the simulated time of approx. 179 A + 72 B cells with
the genotype as in (D): a core of green activated B′ cells, with a subsequent layer of red A′ activated cells, surrounded by a layer of inactivated blue
A cells. See Figure S4 for the quantification of homogeneity index over 10 runs of the simulation with the same parameters and initial conditions.
(F) In vitro results at t = 24 h of a representative structure that is obtained with the genotype of cells in (D) and with mixing approximately 160 A
cells and 80 B cells. Scale bar is 17.5 pixels = 100 μm. (G) State-machine diagram of the network, with the adhesion components. B cell has basal
adhesion and a rounded receptor; when it is activated by a neighboring rounded receptor, it activates to a B′ state that is adhesive with N-cad
parameter and produces a square ligand; A cell, blue, has constitutive P-cad adhesion and expresses a rounded ligand and a square receptor; the
activation of the square receptor activates A cell to A′, which is red and continues to have the adhesion of constitutive P-cad parameter. (H)
Representative results of resulting structures at t = 24 h of the simulated time of 137 A + 42 B cells with the genotype as in panel (G): a core of blue
inactivated A cells, with multiple poles of green activated B′ green cells and in between red activated A′ cells. See Figure S4 for the quantification of
homogeneity index over 10 runs of the simulation with the same parameters and initial conditions. (I) In vitro results at t = 24 h of a representative
structure that is obtained with the genotype of cells in panel (G) and with mixing approximately 150 A cells and 50 B cells. Scale bar is 17.5 pixels =
100 μm. Microscopic images with a gray background are reproduced from Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A.
Programming Self-Organizing Multicellular Structures with Synthetic Cell−Cell Signaling. Science 2018, 361 (6398), 156−162. Copyright 2018
AAAS. Reprinted with permission from AAAS.
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As a second example, we focused on changes in the
quantitative metric of morphology and, in particular, the
sphericity of the assembly. In vitro, we noticed that the
circularity of the structures evolves over time to reach a steady
state by the end of the experiment, both for the overall
structure and for the cadherin-expressing cells. To quantify
these features, we used a standard circularity index in 2D that
increases when the structure is more circular (see the Methods
and Quantification and Statistical Analyses sections; eq S9)
and quantified it over time; results are in Figure 5B, blue and
beige solid lines. To compare it with the in silico system, we
defined a sphericity index in silico (eq S7) and measured it over
time. We plotted it together with the in vitro results and found
that they generated qualitatively similar temporal evolution
(Figure 5B).
These data collectively show that the parameterized in silico

system can recapitulate emergent properties of robustness and
morphological evolution of the in vitro cellular system,
properties that have not been used for the identification of
the parameters.
Parameterized Model Predicts Developmental Trajecto-

ries with Reshuffled Adhesion. We now set out to test the
predictive power of the parameterized model for multicellular
circuits in the testing set. We start by considering circuits that
contain a different combination of adhesion proteins compared
to the training set. To do so, with the identified parameters, we
ran simulations to see what the model predicts for the
behaviors of multicellular systems with genomes that are
obtained by changing adhesion values.
In a first example (Figure 6A−C), following the logic of one

of the synthetic genomes in the in vitro test set, the in silico
implementation had two cell types, A and B, and a back-and-
forth signaling logic where A activates B to B′ and B′ activates
A to A′. The adhesion features of the cells are basal for cells A
and B, whereas A′ gains P-cad and B′ gains N-cad (Figure 6A).
We implemented this program in silico by giving A′ cells the
value of adhesion that we identified previously for P-cad and
similarly with B′ cells for the value of adhesion for N-cad. We
then ran simulations with ∼30 A cells and 30 B cells for 50,000
mcs equivalent to 50 h of in vitro experiment. This gave rise to
predicted structures that fell in two categories: one with one
green B′ pole (90% of the runs) and another with two red A′
poles (10% of the runs) (Figure 6B; see also Figure S3A for
adhesion matrix, other sample structures, and sorting index
dynamics and Movies S3 and S4 for runs with the two different
phenotypes). When compared to the in vitro system, these
structures display similar classes of morphology (Figure 6C),
with the one pole observed more frequently.19

We proceeded similarly for a second system (Figure 6D),
where the signaling logic is the same back-and-forth signaling
between A and B cells, but now P-cad is constitutively
expressed in A cells from the beginning, and signaling from B′
only changes color from blue to red. When we mixed
approximately 160 A and 80 B cells for the equivalent of 34
h, we obtained a structure with B′ green cells forming
aggregates at polar positions in the spheroid, and the B′
aggregates are lined internally by A′ red cells; the inactive A
cells stay in the center of the aggregate since they express
adhesion molecules from the beginning of the experiment
(Figures 6E and S3B and Movie S5). The in vitro results
obtained with engineered cells with a similar genome resulted
in a similar architecture (Figure 6F).

These results show that our parameterized model can
predict outside of the training set into new genomes obtained
by changing the adhesion molecules produced by different cells
in the system.

Model Predicts In Vitro Structures When Initial Number of
Cells Are Changed. We next explored the computational
models’ capacity to predict final structures when initial
conditions were changed. We ran simulations starting from
different amounts of A and B cells for three different systems.
For the first one, using the same underlying genetic

architecture as in Figure 6A−C, we increased the initial
number of cells to around 90 for both A and B. In silico,
increasing cell number resulted in a bigger B′ green core and
the formation of two red poles more systematically (see
Figures 7B and S4A for homogeneity index and more replicates
and Movie S6). In the in vitro experiment, it was noted that
when more cells were used, the two-pole phenotype occurred
with higher frequency and the B′ green core was bigger (Figure
7C) similar to what we obtained in silico.
For the second one, we returned to the genetic architecture

underlying the central symmetric structure used to parameter-
ize back-and-forth signaling (Figure 7D). Instead of using the
initial conditions from the training set (200 A and 40 B), we
ran simulations with 160 A and 90 B. We obtained a thicker B′
central core and a thinner outer blue layer (Figures 7E and S4B
and Movie S7). When we looked at the in vitro data, it was
noted that this initial cell combination led to a thicker B′ core
as well (Figure 7F).
For the third one, using the same underlying genetic

architecture as in Figure 6D−F, we decreased the initial
number of cells to approximately 130 A and 45 B. In silico, the
result of decreasing number of cells resulted in the formation
of two green cores more systematically (see Figures 7H and
S4C for homogeneity index and more replicates and Movie
S9). In the corresponding test set in vitro experiment, a two-
pole phenotype is obtained (Figure 7I) similar to what we
obtained in silico.
These results show that our parameterized model can

predict changes to the developmental trajectories when the
initial number of cells is changed.

Model Recapitulates Synthetic Structures Generated by
Lateral Inhibition Circuits Starting from Genetically Uniform
Cell Populations. Having tested prediction capacity for
changes in adhesion and changes in initial conditions, we
wondered if the system could be predictive when the network
itself was changed. To do so, we turned to another test set
genome that involved a lateral inhibition signaling network.
Lateral inhibition networks are deployed during multicellular
development, e.g., in the inner ear,28 and entail a Notch
receptor whose activation results in the repression of its
cognate ligand, Delta, in the same cell. This system has been
modeled and studied extensively in silico, in vivo, and in vitro.
When deployed in architectures in 2D cellular lattices, lateral
inhibition networks bifurcate to produce distinctive checker-
board patterning.7,30,31,50−53 In our computational system, thus
far, we had parameterized signaling only for positive
activations. Given that in the molecular logic, to obtain
inhibitory signaling, there is a swap of an inhibitory
transcription factor in place of an activatory one, we
hypothesized that our computational model could recapitulate
inhibitory signaling by simply modifying our signaling
equations (eqs 3.1 and 3.2) such that S → −S (S is signal)
and β → −β (threshold of signaling). This would yield an
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inverse relationship between signaling and reporter production,
whereby low signaling receiver cells have high reporter
production. We tested the inhibition version of the model
on lateral inhibition by generating the following network in a
monolayer sheet of cells: red A cells send and receive
inhibition signals to/from neighboring A cells (Figure S5A).
In this setup, the receptor activation decreases the reporter
level, so cell state A has a target protein level above the
activation threshold (we start from 7000) and can transition to
A′ if its reporter inhibition is strong enough to make its
reporter points fall below the threshold. In the A′ state, the
cells become green and lose the capacity to signal. When we
simulated development starting from red A cells in a single-
layer sheet, we obtained the classic checkerboard pattern of
lateral inhibition both when cells are regular (cells are not
allowed to move, grow, or divide) or irregular (cells are
allowed to move but not grow or divide) (Figure S5B).
Importantly, since this was achieved keeping all of the rest of
the signaling parameters the same as for the other simulations
described so far (adhesions are set at the parental level of 49
for all of the cells), this shows that our parameterization can be
extrapolated to simulate other known network contexts.
We then moved to see if this implementation of the lateral

inhibition network could be used to predict the behaviors of
spheroid morphogenesis based on lateral inhibition and
changes in cell adhesion. In the in vitro implementation, the
logic of the signaling is that of lateral inhibition, but the
adhesions are changed: A′ fate (green) increases E-cad
expression, whereas A cells have basal adhesion capacity
(Figure 8C). When we computationally modeled this signaling
logic (Figure 8A) starting from approximately 100 A cells,
initially some of the red cells become green and then the green
cells met each other in the center of the aggregate. After 50 h
of simulated time, this results in a spheroid with both A and A′
cells, with the A′ green cells forming more preferentially the
inside of the aggregate and never the outer layer, which was
instead populated by inactivated red A cells (see Figures 8B
and S8C for robustness and homogeneity index and Movie
S8). This phenotype is qualitatively consistent with the
observation of the in vitro system, where a two-layered
structure is observed with green cells that adhere to other
green cells, thereby forming a two-layer structure with a shell
of red cells surrounding a green core19 (Figure 8C).
Collectively, these results show that our parameterized

model’s predictive capacity can be extended to different
network architectures.
Model-Based Recommendation for Genome for New

Structures. Finally, we asked if we could identify a network in
silico that can give rise to a new structure not yet shown in
vitro, a four-layer central symmetric structure (Figure 9A). We
started from the observation that increasing the adhesive
strength of the gray B cells in the two-layer model resulted in a
homogeneous gray core with a thin layer of activated B′ cells
on the edges (see Figure 3H, middle row, leftmost structure).
This resembled a three-layer structure but was done with only
a forward signaling between A and B cells. Thus, we
hypothesized that if the B−B homotypic adhesion were
increased to the inferred B E-cad.Hi adhesive strength, and if
the inner B′ cells were allowed to activate the outer A cells, we
might be able to create a four-layered structure simply by
reconfiguring the same synNotch circuits used in previous
structures (Figures 9B and S6A). This circuit configuration was
tested with different initial conditions consisting of 2:1 mixed

A and B cells at different numbers of cells and allowed to run
for 24,000 mcs (equivalent to 24 h in vitro) (Figures 9C and
S6B for more replicates). If the initial number of A cells is
around 110 and B cells of around 70, there are not enough B
cells to sustain the innermost layer, resulting in loss of the
innermost layer and forming a three-layer-like structure at the
end of the trajectory. If the initial number of A cells is around
1220 and B cells of around 620, however, there are too many
cells impeding the formation of the homogeneous inner core of
(B/B′) cells, resulting in the premature activation of (B/B′)
cells. In this case, the final structure is composed of multiple,
deformed inner cores, each surrounded by a homogeneous
layer of A cells. These results indicate that different initial
number of cells, with the same circuit, could lead to different
morphological outcomes. For the goal of a four-layered
structure with a single core, there exists a tradeoff between

Figure 8. Model correctly predicts the behavior of in vitro
experiments with different network wiring. (A) State-machine
diagram of the network, with the adhesion components. Cells of
type A are red and have basal adhesion and express both rounded
ligand and receptor; when the receptor is activated enough, it can
activate A cells to A′ cells, which lose rounded signal expression and
gain color green and expression of E-cadherin. (B) Representative
results of resulting structures at the indicated timestamp of the
developmental trajectory starting from 93 cells of type A with the
genotype as in (A); some of the red cells turn green and gather at the
center of the core; at t = 50, the external layer is of inactivated A cells,
and the internal core is a mixture of mainly green cells with
interspersed minority of red cells. See Figure S5 for the quantification
of homogeneity index over 10 runs of the simulation with the same
parameters and initial conditions. (C) In vitro results at the indicated
time points of a representative structure that is obtained with the
genotype of cells in (A), starting with 100 A cells. Scale bar is 17.5
pixels = 100 μm. Microscopic images are reproduced from Toda, S.;
Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming
Self-Organizing Multicellular Structures with Synthetic Cell−Cell
Signaling. Science 2018, 361 (6398), 156−162. Copyright 2018 AAAS.
Reprinted with permission from AAAS.
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the initial number of cells and the resulting homogeneity of the
layers in the desired structure. Our in silico experiments
indicated that an optimal initial number of cells would be
around 310 A cells and 170 B cells (Figures 9C and S6B). The
recommended circuit would be as depicted in Figure 9D,
where A cells have ligand_A and receptor_B that activates red
and Lo.E-cad expression, whereas B cells have a constitutive
expression of Hi.E-cad and receptor_A that activates ligand_B
expression.
This shows that our computational system can generate

recommendations for in vitro implementation of circuits for
structures that have not been implemented yet.

■ DISCUSSION

A computational framework for the design of genetic networks
for synthetic development would allow testing of the reachable
morphogenetic space and allow identification of networks for
user-defined trajectories and structures that optimize a certain
parameter (e.g., burden on cellular machinery, number of cell−
cell communication channels, number of cell types, etc.). This
preimplementation optimization would provide access to a
larger parameter space, allow the identification of less intuitive
solutions, and ultimately move the field toward the design
phase. Here, we provide a first step in that direction by
focusing on a paradigmatic example of synthetic developmental
systems, where contact-dependent signaling is paired with
changes in cell adhesion in mouse fibroblast cell spheroids.
Networks, where cell−cell signaling changes the mechanical

properties of cells, are a recurrent feature of multicellular
development. The combination of signaling and morphological
effectors has been shown to be at the core of complex
developmental transitions: tissues are a complex system where
cell−cell signaling affects morphogenesis and then morpho-
genesis feeds back to influence signaling to robustly generate
complex multicellular structures.54 In fact, the combination of
signaling and morphological effectors has been incorporated in

several computational models and shown to be able to
replicate the complex morphogenesis of embryonic transi-
tions.1,9,23 Given that the synthetic morphogenesis described in
ref 19 is one of the first synthetic systems that couples chemical
and mechanical signaling for synthetic developmental
trajectories in mammalian cells, it has attracted other
computational descriptions recently,42,43 with different compu-
tational systems or objectives compared to ours. The system in
ref 42 describes a similar system in a cellular Potts model, with
more focus on the underlying design principles and what can
be learned about the logic of these kinds of networks. The
system in ref 43 is developed with predictive capacity and with
some novel calibration structures and relies on a new
computational model for modeling cell movements that is
distinct from cellular Potts. We think these efforts will
collectively bring the field closer to the goal of rationally
designing genetic networks for synthetic developmental
trajectories.
Here, we pursued one way to go about developing a

computational system for the design of genetic circuits of
morphogenesis, using an available data set to train and test our
model for cell−cell contact signaling and changes in cell
adhesion. The computational system is designed so that it is
general in its conception, so that it could be parameterized for
different cellular systems, different effectors, different commu-
nication systems, etc. In this paper, we show how we
parameterized this general computational system to corre-
spond to the synNotch receptor-based communication net-
works that was previously developed in vitro.19 The modeling
framework itself uses an available open-source platform,
CompuCell3D, a cellular Potts-based formalism that allows
us to model basic cell behaviors like proliferation, movement,
and adhesion-based sorting.25 Given that this computational
system natively retains cell−cell neighboring relationship,
which was originally used to compute the “entropy” of a
multicellular system, we were able to use it to implement

Figure 9. In silico recommendation for obtaining a four-layered structure. (A) Goal target pattern: four layers with gray-green-red-blue cells
centrally symmetric. (B) State-machine diagram of the network, with the adhesion components. B cell has adhesion with E-cad.Hi parameter and a
rounded receptor; when it is activated by a neighboring rounded receptor, it activates to a B′ state that is adhesive with the same E-cad.Hi
parameter and produces a square ligand; A cell, blue, has basal adhesion and expresses a rounded ligand and a square receptor; the activation of the
square receptor activates A cell to A′, which is red and has adhesion of E-cad.Lo parameter. (C) Representative results of resulting structures at t =
24 h of simulated time of cells with the genotype as in (A) and with the ratio and numbers as indicated. All structures generate inactive A cells,
activated A′ cells, inactive B cells, and activated B′ cells in different ratios and in different geometrical arrangements. See Figure S6 for additional
replicates over 10 runs of the simulation with the same parameters and initial conditions. (D) Recommended in vitro implementation. Scale bar is
17.5 pixels in silico, equivalent to approx. 100 μm in vitro.
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signaling that is dependent on how much contact there is
between “sender” cells and “receiver” cell types. Signaling, in
turn, is linked with activation in receiver cells to a different cell
type that can be given a different capacity for signaling and/or
different levels of adhesion. This allowed us to create a
modular backbone for implementing genetic networks based
on contact-dependent signaling and changes in cell adhesion,
which then generate synthetic developmental trajectories in
cells. It would be possible to expand the current system with
long-range signaling systems, e.g., since these effectors are
available in CompuCell3D.
We parameterized the model with in vitro data using a subset

of the complete in vitro data set, what we call the training set.
In particular, we parameterized signaling parameters for cell−
cell contact-dependent synNotch signaling and adhesion values
for adhesion molecules of the cadherin family using simple
experimental setups. For the signaling, sender−receiver
coculture experiments were used. For the adhesion parameters,
simple, single-link networks were used, where signaling from A
to B induces B to become B′ and where the different cell types
can have different adhesion molecules. This setup allowed us
to explore a parameter space and identify the in silico
parameters that most closely mimicked the in vitro structures.
The capacity of our system to match experimental results
shows that the computational system can be tuned to represent
synthetic developmental trajectories. Finally, the signaling for a
more complex back-and-forth signaling network was para-
meterized with a simple example of that type of network in
vitro. We used the simplest experiments to parameterize the
model, mimicking a future pipeline where simple experiments
would provide the baseline parameterization for predictive
models that could identify potential circuit architectures for
more complex implementations in cells.
Others have done parameterization in different ways:

heuristic parametric tuning42 or machine learning.43 Our
method was to design screenings of parameters in meaningful
ranges, motivated by biology and by computational consid-
erations. It allowed us flexibility and exploration of a
meaningful parameter space and was able to provide
parameters with qualitative and quantitative matching. For
more automated processes and extensions, the machine
learning parameter estimation is an appealing future direction.
In showing the steps that we took for parameterization, we

are also showing how this could be done for different effectors.
For example, if one were to be interested in predicting a system
where some cells change their proliferation, one would need to
parameterize proliferation. To do so, in vitro experiments,
where proliferation is quantitatively measured in baseline as
well as perturbed conditions, would be set up; parameter
tuning would then be performed in silico to identify the
proliferation parameters that achieve in silico results similar to
the in vitro. This pipeline is shown for cell motility,
deformation, synNotch signaling dynamic, and cadherin
adhesion in Figure 3.
We then showed that the parameterized model can perform

qualitatively accurate predictions of in vitro networks from a
different subset of the in vitro data set, what we call the test set.
The test set had either adhesion molecule combination, initial
number of cells, or network architecture that were different
compared to the parameterization set. The capacity of our
model to generalize outside the parameterization set suggests
that our parameterization is a valid pipeline, at least for
network designs with the same basic building blocks of

signaling and effectors. The capacity to predict different initial
conditions is also shown by ref 42. These efforts pave the way
toward the computational design of developmental trajectories.
One interesting aspect of our computational system is that it

captures some of the robustness features of the in vitro system,
e.g., in the formation of 1, 2, or multiple cores in the central
three-layer structures. Noise and robustness are features of
biological systems in general and in particular for devel-
opmental systems.55,56 Given that our computational system is
able to capture this important component, it seems it could be
a useful resource to approach questions regarding whether
certain network architectures are more conducive for buffering
noise while still delivering the user-intended structures.
This system can be used to explore the reachable space of

morphogenesis with these effectors. An exhaustive character-
ization of the morphospace has not been attempted here but
we think it would be an interesting avenue to pursue.
Finally, we showed how one can go about making a

recommendation of a biological network for a user-identified
phenotype. The fact that we have a parameterized model and
know realistically implementable parameters allowed us to
conduct educated searches in a space that is smaller than the
entire parameter space. These constrained searches could be
helpful when trying to generate user-defined patterns or shapes
starting with a limited toolkit of signaling and effector genes.
Recent computational research showed that having access to a
limited set of primitives is generative of a large number of
shapes and patterns if you are allowing free parameter
variations.57 It will be interesting to see if this holds true in
parameterized synthetic systems in silico, where you have
access to the subset of parameters that are implementable. This
would go in parallel with works where unconstrained
approaches are taken,58 which are helpful to identify the
needs for novel tools like recombinases in the example. It will
also be interesting to see how many of the structures obtained
with the multirecombinase approach can be deconstructed and
reimplemented in our system with restriction to an
implementable toolkit. Ultimately, the test to this kind of use
of the modeling framework will come from works where the
prediction is followed by implementation to close the cycle.
Our basic framework was built with the goal of designing

artificial genetic circuits that would control synthetic
developmental trajectories. Given this goal, we focused on
“implementable” solutions, i.e., solutions that can be
implemented with the available genetic tools. To achieve
this, our model modularly exploits the concept of cell types to
signify cell transitions based on signaling. These transitions
model the acquisition of novel properties following cell−cell
signaling events. In the work presented here, cell-type
transitions include changes in adhesion or signaling capacity.
It would be rather straightforward in our model to extend to
have the change in cell types signify changes in proliferation,
motility, etc. This expansion would require initial parameter-
ization experiments in a simple setup, so that the user would
know the parameters to use, e.g., for the proliferation changes
that can be executed with genetic controls.
Another interesting expansion for our system would be the

inclusion of other modalities of signaling such as signaling
dependent on soluble ligands, bioelectrical signaling, as well as
ECM mechanical and chemical signaling. Taking inspiration
from what we achieved here with contact-dependent signaling,
existing computational solvers for these other types of signaling
could be incorporated to add or subtract points to cell-type
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transition likelihood. This would be particularly interesting for
soluble signaling, as morphogenetic signaling is another family
of signaling that is predicated to underlie developmental
transitions54 for which synNotch-based implementation has
also been recently reported.59 Modeling platforms exist to
model changes of other morphogenetic currencies, like ECM-
based or bioelectrical in a tissue,60 and one could imagine the
extension of our system to calculate cell-type transition based
not only on cell−cell contact signaling but also on the input
from other computational engines.
Future directions for these computational efforts could be a

combination with artificial intelligence-based optimization
through either evolutionary algorithms or machine learning.
It has been recently shown that these could be used to generate
morphologies that can then be recapitulated in vitro.61,62

Algorithms could not only be trained to optimize parameters
such as cell line, signaling network, and behavioral response
but also incorporate subparameters such as motility,
proliferation, differentiability, juxtacrine and soluble morph-
ogen signaling, mechanotransduction, adhesion, chemotaxis,
and differentiation, to list a few. Numerous other recent
advances in synthetic biology33,63−70 have made it possible to
further control this process, facilitating the synthetic
reconstruction of complex native morphogenic processes
toward enabling control over custom tissue development.

■ METHODS
Contact for Reagent and Resource Sharing. Further

information and requests for resources or codes should be
directed to and will be fulfilled by the Lead Contact, Leonardo
Morsut (Leonardo.Morsut@med.usc.edu).

Computational Method Details. CompuCell3D and the
Cellular Potts Formalism. We implemented our model in
CompuCell3D (CC3D) v.3.7.8,25 a modeling software that
allows simulation of cells and their behaviors using the cellular
Potts formalism. By itself, CC3D contains numerous built-in
features for replicating in vitro cell behavior, several of which
we utilized either directly or adjusted via CC3D Python
v.2.7.13 scripting according to manual v3.7.9. In our model, we
incorporated default features from CC3D such as surface area
constraint, volume constraint, cell division, adhesion, cell−cell
surface contact, and cell types. We implemented custom cell
motility, cell growth, and cell signaling, as described below and
in subsequent sections.
We defined cells as multipixel entities in 3D that physically

act by performing “pixel copy attempts” over simulation time
steps (Monte Carlo steps, mcs). Performing “pixel copy
attempts” effectively moves and changes both cell geometry
and position over time. These pixel copy attempts succeed

probabilistically, determined by the Boltzmann acceptance
function, P = e−ΔH/T, where P is the probability of attempt
success, ΔH is the change in the total effective energy of the
system from all attempted pixel copy attempts at the mcs t, and
T is the cell motility.25

Effective energy (H): because we incorporated the surface
area constraint, volume constraint, and adhesion, our total
effective energy H at a given mcs t therefore takes the form

H J (1 )

( ( )(Sur( ) Sur ( )) ( )

(Vol( ) Vol ( )) )

i j
i j i j

,
( ), ( ) ( ), ( )

Sur Tar
2
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Tar
2

∑

∑

δ

λ σ σ σ λ σ

σ σ

= − +

− +

−

σ σ σ σ

σ

as described in ref 3. The terms σ(i) and σ(j) denote the
identity of the cells occupying pixel sites i and j separately, with
the Kronecker delta limiting the inclusion to only the cell
interface. J is a matrix that contains the contact energy between
cells of different identities. λSur and λVol constrain the
deviations of a cell from the ideal surface areas SurTar and
VolTar, hereafter referred to as the target surface area and target
volume, respectively.
The numerical values in J control adhesion in cellular Potts.

The values in J represent a stability index: lower J makes for a
more stable state, which is then how you achieve stronger
adhesion. Conversely, a higher J leads to weaker adhesion.

Generalized Juxtacrine Signaling Model (GJSM). Juxta-
crine signaling is the method employed to achieve the known
synthetic structures. For a generic signaling ligand whose
expression was constitutive, constant, and unaffected by
signaling, we describe the total ligand level, L, on a cell’s
surface by the equation

L
1 e t( / )

γ=
+ ξ− (S1)

where t is the given time in mcs, while γ and ξ are constants.
We chose this equation because of its simplicity. It could be
generalized to represent the steady-state ligand level on a cell’s
surface, recovery of surface ligand level from trypsinization,
and experimental conditions such as ligand induction via
tetracycline from a drug-controlled promoter (e.g., Tet On).
Then, a receiver cell in contact with the sender cell would

change its target protein level, R, by the differential equation
(eq 3.1)

R
t

Rd
d

1
1 e S(( )/ ) κ

=
+

−
β ε− −

where β, ε, and κ are constants, whereas S is the signal
strength. We chose this form for several reasons. First,
parameters have intuitive interpretations: β controls sensitivity
to S, ε modulates the magnitude of S and β, and κ represents
the standard linear protein decay rate constant commonly
employed in biological models. Second, these parameters have
kinetic/biological interpretations due to the logistic function’s
intrinsic relation to the Hill function.72 Lastly, this form of the
logistic function is easily tunable and well behaved due to its
monotonicity from negative infinity to positive infinity and
bound between 0 and 1. This tunability is not as easily
achievable with the Hill function, where odd or fractional Hill
constants lead to the existence of singularities.

Table 1. Key Resources

reagent or resource source identifier

software and algorithms
CompuCell3D (CC3D) v3.7.8 ref 25 RRID:SCR_003052
Mathematica v11.3.0.0 Wolfram

Research
RRID:SCR_014448

ImageJ v1.52a ref 71 RRID:SCR_003070
JMP Pro v14.0.0 SAS

Institute
RRID:SCR_014242

Excel v1808 Microsoft RRID:SCR_016137
General Juxtacrine Signaling
Model (GJSM) in CC3D

this paper N/A
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In the case where the target gene is a ligand itself, we use eq
2 to calculate ligand levels.
The time-dependent evolution of the reporter, apart from

the parameters, depends on signal strength S; this reflects the
biological fact that the promoter of the target gene is under the
control of the receptor in juxtacrine signaling. Signal strength is
itself affected by the number of receptors on the receiver cell
(Ω), the number of ligands on contacting neighboring cells
(L), and the surface contact area between the receiver cell and
its neighbors (Φ). Because these factors evolve over time, S is
therefore a morphological dependent and time-dependent
function that evolves according to the structure’s spatial
organization.
The following describes how we take into consideration the

shared surface area to compute S. We consider a single receiver
cell σ; first we need to identify which of its neighbors can signal
with it. The different cells are assigned different types,
according to whether they can signal (ligand expressing) or
can receive (receptor expressing) or both. These cell types are
indicated as A, A′, B, and B′ in the text. For example, we have a
cell σ of type A that expresses receptor rA and that can be
activated by ligand lA. This allows us to identify the neighbors
of sigma by looking through the list of all neighbors of sigma
and identifying those that are of a type that bear ligand lA.
Then, each different ligand/receptor interaction is treated

identically regardless of the specific mechanism (e.g., if it
models anti-GFP/GFP or anti-CD19/CD19).
Receiver cells have receptors on their membrane, quantified

by Ωσ. The neighbors have ligands on their membrane,
quantified by Li. To compute the amount of receptor−ligand
interactions that can occur when receiver + cognate sender
cells are in contact, we need to calculate the amount of
receptor and ligand that are present on the surface of the
contact.
To do that, we first define the portion of contact surface for

sender (SNi) and receiver (sigma)

surface area of contact between SNi and sigma
Sur(SN)SNi( )Φ =σ

(S2a)

surface area of contact between SNi and sigma
Sur( )i( ) σ

Φ =σ

(S2b)

These are now multiplied for the total amount of ligand (or
receptor) to obtain the amount of ligand (or receptor) that is
available at the area of contact.
Available ligand = ΦSNi(σ) × Li.
Available receptor = Φσ(i) × Ωσ.
With these two values, we can calculate the value of Sσ as

follows

S Lgeneral: min ( ), ( )
i

n

i i
1

SNi( ) ( )∑= [ Φ × Φ × Ω ]σ σ σ σ
=

(S3)

where n is the total number of cells that are currently in
contact with sigma and that can engage in signaling with sigma,
i.e., produce the ligand for which cell sigma produces the
receptor.
This results from the assumption of: a 1-1 stoichiometry of

one ligand activating one receptor, given the biochemistry of

the signaling; homogeneity of a ligand and receptor on the
cell’s surface.
This is in general; in the majority of the simulations that we

describe in the results, we employed a simplified version where
the receptor is considered to be in excess, as we do not have
evidence to think otherwise. In this case, the only part of (S3)
that is determining the amount of signal S is given by the
ligand, so S takes the form of

S Lligand limiting:
i

iSNi( )∑= Φ ×σ σ
(S4)

To implement signaling-inducible behavioral response, we use
a state-transition model. We borrow the notation from physics;
cells of each genotype, if excitable, bear a ground state and an
excited state or even multiple higher-order excited states. The
transition between states is regulated by the target gene
activation, which is regulated by the cell−cell signaling. Cells in
different states can have different properties such as color/
state, adhesive properties, deformability properties, signaling/
reception capacity (Figure 2F). This quantized representation
of cell behavior has been applied, though not with this
notation, in other models.3,4,45 In this way, the signaling can
induce behavioral changes in the cells that receive the signal,
generating a highly nonlinear system of interacting agents.
Because the reference experiments primarily focus on

signaling-inducible adhesion with reporter, we utilize two
states per genotype, ground and excited, in the biological
replication simulations.
The excited state bears a different color from the ground

state, reflecting signaling-induced reporter expression. Adhe-
sion matrix J can be defined for the different states to mirror
changes depending on the adhesive strength and binding
specificity that the cadherin types in the in vitro counterpart
express upon sufficient signaling (see Table S1). It is also
possible for a cell to fall from the excited state to the ground
state due to the loss of signaling; falling under the transition
threshold will move an excited-state cell to the ground state,
reverting color and excited properties.

In Silico L929 (ISL929) Cell Line Properties. Cell Division.
In silico L929 (ISL929) cells consist of multiple pixels and start
with a target radius (TR) randomly chosen using a Gaussian
distribution (μ = 3.0 pixels, σ = 0.5 pixels). This TR is then
used to calculate the target surface area (4πr2) and target
volume (4πr3/3) for each cell, as in vitro L929 cells adopt a
spherical shape at the beginning of experiments.19 Each cell
then undergoes growth by experiencing a net positive increase
in TR from small positively skewed uniformly distributed
fluctuations in TR. The target surface area and target volume
thus increase slowly over time. Upon reaching a threshold
volume, 2 × 4πμ3/3, the cell then undergoes division, resulting
in the original cell and a new cell. The original cell is
subsequently reassigned to a new TR from the above Gaussian
distribution, and both target surface area and target volume are
recalculated. The new cell is assigned the same postdivision
parameters as the original cell, modeling completely symmetric
cell division. All of the parameters and state variables are
inherited by the two daughter cells from the parent cell. These
choices result in roughly a doubling time of 24,000 mcs
(equivalent to 24 h, the estimated doubling time of L929
cells19). For example, this resulted in a ratio of cell number at t
= 24 h vs t = 0 h of 2.07 ± 0.10 (n = 10) for simulations in
Figure S1A; 2.02 ± 0.08 (n = 10) for simulations in Figure
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S1B.5; and the ratio between 20 and 0 h of 1.73 ± 0.08 (n =
30) for Figure 4B.
We note that, due to the stochastic nature of growth, cell

death is also possible within this model.
Cell Adhesion. In vitro L929 mouse fibroblasts weakly

adhere to one another under ultra-low attachment suspension
conditions;19 thus, we designate our basal, parental ISL929
cells to have a relatively high J to one another and a slightly
higher J to the medium, resulting in the formation of weak
aggregates in the medium. As a result, these ISL929 cells also
bear high motility, again similar to in vitro L929.19,73

Cell Deformation. Cells that express adhesion proteins and
adhere to each other in vitro deform markedly and lose their
rounded morphology.19 In CC3D, a way to change
deformability of cells is through modulating parameters λ
and in eq 1 for H, with lower values corresponding to higher
deformability. Cells had an adhesion matrix value of at least 39
(i.e., 0−39 range) (see Table S1), and λ and λ were set to 1.0.
Other cells had λ and λ set to 2.2.
Cell Motility. Cell motility is defined in CC3D via the

parameter T. Biologically, it is known that cell adhesion to
environment is complexly linked to cell motility, and adhesion
effects on motility vary widely between different adhesion
proteins and cell types.74−76 In general, although clearly not
all-encompassing, the adhesion abstraction is that strong cell
adhesion to environment tends to decrease cell motility.74,76,77

For our purposes, in the in vitro L929 system, we noticed
that the cell motility is rather similar across different cell types
and different adhesion, with some minor differences between
adherent cells (slightly lower motility) compared with
nonadherent cells (slightly higher motility). We therefore
defined motility as a sum of a constant T0 plus function of a
cell’s environment (neighboring cells and medium), so that
higher adhesion results in lower motility; in this way, different
cells can have different motilities. Each cell’s individual motility
Tσ is

T T
J (1 )

Sur( )
i j i j i j

0
( ) , ( ), ( ) ( ), ( )iζ

δ

σ
= +

∑ −
σ

σ σ σ σ σ

(S5)

This formula iterates over each neighboring cell pixel and
medium uniquely, and ultimately, T is determined only by the
type of the focal cell, the types of the neighbors, and total
contact with the medium. Categorizing environment by cell
types and medium instead, accomplished in CC3D via cell−
cell surface contact feature and cell-type index, we obtained a
computationally simpler approximate formula, which is the one
that we use in our simulations

T T
J ktotal contact surface area with

Sur( )k

k

0

type( ),∑

ζ

σ

= +
×

σ

σ

(S6)

T0 is a constant representing basal cell motility, ζ is a constant
representing how the effectual adhesion is at attenuating
motility, and k denotes “cell type” (can be either a cell type or
medium). This T allows each cell to sense its adhesivity to the
local environment, decreasing motility if adherent to neighbors
and restoring motility when exposed to nonadhesive
conditions.
T0 and ζ are kept constants throughout after the initial

parameterization in Figure 3B.

Simulation Lattice. At the center of a 100 × 100 × 100
lattice, we seeded a mixture of (A) and (B) cells as a radially
symmetric blob to maintain a consistent initial cell aggregate
shape while also maintaining a similar cell total and ratio to
that of the reference experiment. For the setup in “2D” (Figure
S5B), we used a 100 × 100 × 5 pixel cell monolayer (∼400
cells).

Quantification and Statistical Analyses. Simulation
Quantifications. Sphericity Index. (B′) green cells were
visualized in 3D to determine the core amounts and were
counted for each simulation at the end point. Sphericity was
measured over time, both for excited states and over all states
(Figure 3D), using the formula78,79

sphericity
(6 structure volume)
structure surface area

1/3 2/3π= ×
(S7)

We roughly rescaled the sphericity by dividing by 0.48 to
compensate for the cubic nature of the voxels. We measured
the activation time scale by measuring the number of (B′) and
(A′) cells present per time step and normalized each to 1
maximum.

Homogeneity Index. We were interested in the spatial
patterning of different cell types in these multicellular
structures over time; thus, we developed and quantified
homogeneity index Ψ per cell-type X, calculated according to
the following formula

nx
i
n X

1
surface area of that is in contact with cells of type

Sur ( )
i

iΨ =
∑ σ

σ=

(S8)

where the sum is taken only for cells of type X that are in
contact with other cells of type X, and n is the total number of
cells of type X in contact with cells of type X.
This measure ranges from 0 to 1, with 1 indicating maximal

homogeneity, and is similar to sorting measurements employed
in other studies.10,48,49 By focusing only on cells that have
neighbors of the same kind, this measure focuses on clusters
and not on isolated cells.
This measure hence depends also on the number of cells

present, given that if you only have two cells, e.g., even though
they are very homogeneous, less than 100% of their surface will
be occupied by the neighbor.
This measure can be generalized for more than one cell type

by considering, e.g., two cell types together. For example, in our
simulations, when we have a genotype B that gives rise to two
cell types (B basal and B′ excited), we may be interested in
measuring the homogeneity index for B and B′ combined. To
do so, we calculated ΨB,B′ by defining type X as {type B or type
B′} in the above formula. If desired, this measure can be simply
extended to the ground and excited states of each genotype as
well, ΨA, ΨB, ΨA′, ΨB′, or condensed as desired, ΨA,A′,B,B′,
making it possible to distinguish the effects of different
behaviors on morphogenesis. This measure can be applied to
many different morphologies, beyond fixed lattices49 and
spherical morphologies.

Core Distribution. We counted the number of cores per
structure by visualizing only (B′) green cells in 3D at the end
point of each simulation. To determine whether a core was a
single core or double core, we visualized the endpoint
simulation (B′) green cells from multiple perspectives to
prevent viewpoint bias. This allowed us to determine whether
there was truly a single core or multiple cores of similar sizes,
with the latter generating 2-cores or 3+ cores (counted as
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“other” in Figure 5A). Small cell stripe connections between
cores were negligible and therefore counted based on the
cores. Structures that did not appear core-like (i.e., large cell
stripes) were counted in the “other” category (see Figure S7
for examples of core counting).
Activation Index. The activation index in silico is defined as

the normalized ratio of activated cells over the total number of
cells of the same type, i.e., #(A′)/Maxt[#(A′)] and similarly for
(B) and (B′) cells.
Video Analysis. In vitro data were either provided in the

reference paper or obtained by analyzing the supporting video
for the counterpart structure from the reference experiments.19

Circularity Index. The video was split into constituent
frames using Mathematica v11.3.0.0 and then circularity
analyzed by drawing a region of interest around the structure
using ImageJ v1.52a, both in bright field (all cells) and in
merged color field (activated cells only), and data were collated
in Microsoft Excel v1808. Circularity was then calculated using
the classic equation

circularity
4 area

perimeter2
π=

(S9)

This measure ranges between 0 and 1, and the closer to 1
indicates it is closer to a perfect circle.
Activation Index. To estimate how fast cells activated over

time, we color-separated the green-, red-, and black-merged
image portions of each frame by green and red to generate two
sets of frames, one for green and one for red, representing,
respectively, the activated cells of (B) and (A). We then
converted these frames into binary images using the
MorphologicalBinarize function in Mathematica, replacing
pixels with an intensity above 0.1 with pixels of intensity 1.
This threshold value was minimally low to remove noncellular
background fluorescence and prevent biasing activated cell
detection. Binarization additionally facilitated comparison by
splitting in vitro cells into discrete states. Totaling the pixel
intensity for each frame of each set estimates the activation per
time point for (B) and (A). Cellular background fluorescence,
due to a few cells beginning with some green/red,19 was
removed by subtracting the minimum background fluorescence
of the time series. Using the minimum helped negate cellular
background fluorescence with again minimal biasing of
activated cell detection.
Statistical Analyses. Sample sizes are given in the text and/

or figure caption. Statistical tests were performed in JMP PRO
v14.0.0 with a significance level of 0.05. We performed a χ2

analysis for our core distribution analyses (Figures 5A and
S2C.4). An appropriate test was chosen according to data type,
and assumptions were tested by residual analysis. We report
and show mean ± s.d. for all measures.
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