Generating the Gopher’s Grounds:
Form, Function, Order, and Alignment

Jiayi Zha02[00070003724977lZOX]*’ Anshul Kamath! [0000700027164174430]*’ Nick
Grisantil [0000700027698779194]’ and George D. Montaﬁezl [0000—0002—1333—4611]

' AMISTAD Lab, Dept. of Computer Science, Harvey Mudd College, Claremont, CA, USA
{akamath, ngrisanti, gmontanez}@hmc.edu
2 Department of Computer Science, Pomona College, Claremont, CA, USA
jzae2019C@mymail .pomona.edu

Abstract. Previous work has shown that artificial agents with the ability to dis-
cern function from structure (intention perception) in simple combinatorial ma-
chines possess a survival advantage over those that cannot. We seek to examine
the strength of the relationship between structure and function in these cases. To
do so, we use genetic algorithms to generate simple combinatorial machines (in
this case, traps for artificial gophers). Specifically, we generate traps both with
and without structure and function, and examine the correlation between trap co-
herence and lethality, the capacity of genetic algorithms to generate lethal and
coherent traps, and the information resources necessary for genetic algorithms to
create traps with specified traits. We then use the traps generated by the genetic
algorithms to see if artificial agents with intention perception still possess a sur-
vival advantage over those that do not. Our findings are two-fold. First, we find
that coherence (structure) is much harder to achieve than lethality (function) and
that optimizing for one does not beget the other. Second, we find that agents with
intention perception do not possess strong survival advantages when faced with
traps generated by a genetic algorithm.

Keywords: Structure and Function - Agents- Genetic Algorithms.

1 INTRODUCTION

Imagine being placed in an unknown environment where you expect to encounter both
treasures and dangers. Here you must rely on your instincts, observations, and ability
to identify potential dangers. In nature, both humans and animals are equipped with
the ability to perceive signals of risk, weigh their safety against possible rewards, and
decide what actions to take; risk assessment is an essential aspect of survival. Recent
work has revealed the potential advantage of intention perception, a particular kind of
risk assessment ability to detect the intention of other agents, in artificial agents under
a variety of adversarial situations [14,15,10].

In one such study, Hom et al. created a framework of simulated gopher agents sur-
viving against a series of simple combinatoric traps, and they found that artificial go-
phers possessing the ability to perceive the environment as intentionally designed (to

*denotes equal contribution.

2 J. Zhao et al.

harm the gopher) had significantly higher survival rates than gophers without intention
perception [10]. Specifically, they assumed that traps intentionally constructed by hu-
mans were more likely to be “coherent” (a property of trap structure defined in Section
3.1) than unintended traps generated uniformly at random, and used this coherence as a
indicator of designed traps.

There are two limitations with Hom et al.’s work: first, their design of an intention
perception algorithm implicitly assumed a correlation between trap structure and its
functionality, a relationship that requires further evidence to affirm; second, their ex-
perimental framework only investigated the survival of gophers for two types of traps
(human-designed traps and traps generated uniformly at random). Whether their results
hold more broadly, for different trap-generating processes, remains a relevant question.

In the present study, we examine the correlation between trap structure and trap
functionality in a more general context. The relationship between structure and func-
tion is central, as machines can generally be defined according to their structure and
function. While Hom et al. proposed that trap coherence implies intentional design and
intentional design implied functional lethality (so that coherence implied lethality), we
test this chain of inference by looking at trap coherence and trap lethality for machines
produced by genetic algorithms. Genetic algorithms are a metaheuristic search method
modeled on natural selection, consisting of biologically-inspired operators like selec-
tion, crossover (recombination), and mutation [7,16,18]. Genetic algorithms are known
for their ability to generate solutions to optimization and search problems defined on
complex, high-dimensional discrete spaces, and have become a popular tool for solv-
ing structural optimization problems, which is the automated synthesis of mechanical
components based on structural considerations [3,21]. Generating traps with desirable
characteristics (e.g., coherence and functionality) can be viewed as a simplified struc-
tural optimization problem on a high-dimensional discrete space. By simply changing
fitness functions, one can obtain traps optimized for a variety of traits. Thus, we employ
genetic algorithms as our primary trap-generation mechanism.

A second goal of this paper is to continue exploring the influence of intention per-
ception on survival of artificial gophers, possibly drawing conclusions on intention per-
ception more generally. We investigate whether intention perception can still provide
gophers with survival advantages when gophers are faced with a variety of traps gener-
ated by genetic algorithms. In particular, we generate traps with structure (coherence)
and with no function (no lethality), traps with function but no structure, and traps with
both structure and function. We test whether the intention-perception algorithm of Hom
et al. is able to distinguish such traps from human-designed traps, and how this affects
the survival rates of gophers.

We find that while lethality requires some baseline level of coherence, the relation-
ship is weak and the correlation between coherence and lethality is almost non-existent
for traps generated by genetic algorithms. As such, the survival advantages of inten-
tion perception observed by Hom et al. no longer hold in this more general case. We
also find that producing function (lethality) is much easier than producing coherence
for trap-generating genetic algorithms. Lastly, we observe that local structure and clus-
tering within fitness functions (order) is not sufficient to guarantee genetic algorithm
success; biasing alignment with the target set is also necessary.

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 3

2 RELATED WORK

One of the focuses of the present work is the correlation between trap coherence and
trap structure, namely, the relationship between structure and function of simple, com-
binatoric machines. Given the general importance of the relationship between structure
and function, there has been a wide range of research on this topic, with objects ranging
from organisms to engineering products.

Weibel, for example, posited that all functions depend on structural design in bio-
logical organisms, specifically for the morphometric characteristics of the organs. He
proposed a theory of symmorphosis and attempted to quantify the relationship between
structure and function in different organ systems [22]. Bock and Wahlert similarly ap-
proached the relationship from an adaptationist perspective, suggesting that structure
and function “constitute the two inseparable dimensions of biological features when
considering morphology and evolutionary biology” and “must always be considered
together” [2].

In contrast, Gero and Kannengiesser argued that no direct connection exists be-
tween structure and function for human-designed objects [6]. Instead, they proposed
the Function-Behaviour-Structure ontology which asserts that for any object, function
is “ascribed to” behavior, and behavior is “derived from” structure. Though structure
and function may affect each other, they are not directly connected.

Building on a presumed correlation between structure and function, the notion of
intention perception was introduced by Hom et al. [10] for a kind of risk assessment
by artificial agents. More broadly, there has been rich array of work on risk assessment
that may also provide insights to intention perception specifically. Vorhees and Williams
studied rodents’ spatial learning and memory as they tried to maneuver safely through
environments [20]. They argued that rodent survival depends on the ability to learn
and remember locations, and this ability relies on two systems: allocentric navigation
that uses cues outside the organism and egocentric navigation that uses internal cues.
In our work, the intention perception of simulated gophers relies only on allocentric
navigation, as decisions are made based on observations of the environment.

As mentioned in Section 1, our choice of genetic algorithms is motivated by their
ability to produce high-quality solutions to a variety of search and optimization prob-
lems [7,16,18]. However, traditional genetic algorithms face several difficulties. One
such difficulty is uncertainty—fitness functions are often noisy or approximated, envi-
ronmental conditions change dynamically, and optimal solutions may change over time
[13,19,1]. A variety of techniques have been developed to combat such problems [11].

2.1 Relation to Kamath et al.

This paper is an expanded supplement to Kamath et al. [12], adding additional exper-
iments to the work done there. In the present manuscript we investigate how changing
the trap generation process affects the intention perception algorithm and the survival
of gopher agents, along with revisiting the work done in the original paper.

4 J. Zhao et al.
3 METHODS

Our goals are to investigate the link between structure and function in simple combina-
torial machines, and to explore how an agent’s survival is impacted by intention percep-
tion under more complicated scenarios. We adopt the “trap-gopher” framework of Hom
et al., in which simulated gopher agents analyze a series of combinatorial traps con-
taining food, and decide whether or not to enter the traps using their coherence-based
intention perception algorithm [10]. Extending this framework, we introduce genetic
algorithms that allow us to generate traps with different desirable traits, produced by a
variety of fitness functions.

3.1 TRAPS

As mentioned, our trap framework is taken from Hom et al. [10]. Under this framework,
each trap is a combinatorial machine embodying both structure and function.

TRAP STRUCTURE A trap’s structure is simple; each trap is designed as a 4 x 3
grid that contains 12 tiles. There are three fixed tiles for all traps: one in the middle of
bottom row that acts as the “door,” allowing gophers to enter and triggering the trap; a
fixed blank “floor” tile directly above the “door” that is traversible; and a “food” tile,
enticing the gopher to enter the trap. Besides the three fixed tiles, each remaining tile can
be either: a laser gun that we call an arrow tile; a blank floor tile; or a wire tile meant
to propagate pulses from the door to arrow tiles. The arrows and wires have various
rotations and thicknesses, and accounting for all possible variations, there are a total of
91 possibilities each of these 9 tiles can take, with details of tile variations given in the
Appendix of Hom et al. [10]. Hence, there are a total of 91° 2 4.28 x 10'7 possible traps
in this framework. We let X denote the set of all valid traps, with |X| ~ 4.28 x 10!7.
Examples traps are shown in Figure 1.

To quantify the structure of a given trap, we define the coherence of the trap, in
agreement with Hom et al. [10], to represent how “connected" a given trap is. First, we
say that a coherent connection exists between two non-empty (wire or arrow) tiles if: (1)
the thicknesses of the two elements match, and (2) the two elements share an endpoint
(i.e., the rotation of the elements align). The coherence of a trap is then defined as the
number of coherent connections per non-empty (wire or arrow) tile.

TRAP FUNCTION Functional traps have at least one arrow properly connected to
the sensing door. That is, functional traps have an arrow directly connected to the door
or connected to the door through a series of wires with matching orientations and thick-
nesses, for which the door will send a “pulse” to the arrow after sensing an entering
gopher. Once an arrow receives the pulse it will fire a laser, and if the laser hits the
gopher, it may kill the gopher with certain probability (decided by the thickness of the
arrow). We associate a larger probability of killing gophers with thicker arrows: in par-
ticular, the probabilities of killing a gopher on a successful hit with a wide, normal,
skinny arrow are Py ,, = 0.45, P , = 0.3, and P ; = 0.15 respectively.

&b e -
cow Q © o &% ob
v | S 2

of |

3

(a) Example of a func- (b) Example of a de- (c) Encoding for the (d) Indexing the
tional trap created by signed trap created by twelve trap tiles. twelve trap tiles.
the genetic algorithm. Hom et al.

Fig. 1: Example traps, trap encoding, and trap location indexing. Figures 1-7 are repro-
duced from [12].

To quantify the function of a given trap, we define lethality of a trap as the proba-
bility that it kills a gopher entering it. We are able to compute the lethality, also referred
to as functionality in this context, of a trap analytically and verify the analytical results
through empirical simulation.

TRAP ENCODING To generate traps using genetic algorithms, we introduce a geno-
typic trap representation called an encoding. We code each trap as a finite length vector
of components, analogous to a chromosome, with the variable components correspond-
ing to genes. We consider the 93 possible individual tiles as variable components and
map each of them to a unique integer x € [0,92]. For instance, the door tile is given
the code 0, the food tile the code 1, the floor tile the code 2, and the skinny arrow with
right-acute angle rotated at 0° is represented by 33. The encoding of an example trap is
given in Figure 1c.

For convenience, we enumerate the twelve tiles in a trap as shown in Figure 1d. Our
next step is to consider how to order the twelve tiles in the genotypic representation
of a trap. Though simply encoding a trap by listing the codes for its tiles in the order
(0,1,2,3,4,5,6,7,8,9,10,11) is acceptable, we instead encode a trap by listing the
codes for its tiles in the order (9,6,3,0,1,2,5,8,11,10,7,4), using the wrap-around
pattern shown in Figure 2. This genotypic representation better reflects the actual spatial
layout of the trap.

3.2 GOPHERS

GOPHER BASICS As with traps, we adopt the simulated gophers from Hom et al. as
the artificial agents in our experiments [10]. These gophers have intrinsic goals: survive
traps and eat more food. Thus, each gopher will encounter traps, decide whether or not

6 J. Zhao et al.

& @ = |G

R b B B

L

[

(a) Encoding with permu- (b) Encoded trap: [72, 26, (c) An example of recom-
tation (9, 6, 3,0, 1,2, 5, 8, 25,47, 6, 86, 29, 62,9, 0, bining at the Sth cell with
11, 10,7, 4). 2, 1]. our encoding methods.

Fig.2: (a) Second encoding permutation and (b) corresponding encoded trap, for
Method 2. (c) A recombination example split, under Method 2.

to enter them, and attempt to eat the food once inside. A gopher will repeat this process
until it gets killed by a laser strike, dies from starvation, or successfully finishes going
through a predetermined number of traps.

Following Hom et al., we include intention gophers and baseline gophers in our
experiments. Intention gophers possess intention perception—the ability to assess the
coherence of the trap and then determine whether the trap is randomly generated or
deliberately harmful, based on its coherence. If the intention gopher senses the trap as
sufficiently coherent, it will conclude the trap is intentionally designed (rejecting the
null hypothesis of random generation), and skip over the trap unless it is forced to enter
due to starvation. Baseline gophers, in contrast, simply enter traps according to some
predetermined probability.

To simulate behavior, we first assign each gopher (whether intention or baseline)
with a hunger level H € [0,1) to indicate how hungry a gopher is. We set Maximum
Fasting Interval (MFI) as the maximal number of traps a gopher can endure without
eating, and define the hunger level by H(n) = ”MiFll, where n is the number of traps
the gopher has already endured without food. The probability that a baseline gopher
will enter an arbitrary trap is defined as P.(H) = P, - (1 — H'®) + H'° where P, is the
default probability of entering and P,(H) is the adjusted probability of entering. While
the baseline gopher will decide whether to enter based on the adjusted probability of
entering, the intention gopher will decide based on the intention perception algorithm
described in the next section.

For convenience, we use discrete time steps, called frames. After entering a trap,
a gopher will head directly toward the food in the center of the trap at the rate of 1
tile/frame and eat for a certain amount of time. As pulses take time to travel, eating

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 7

longer puts gophers at higher risk of being hit. Thus, we design the eating time of a
gopher to be based on its confidence of entering a trap, i.e., the default probability of
entering a trap. Specifically, the eating time #,,, of the gopher is selected according to
the probability vector p = [p1, p2, p3, P4, Ps|, calculated based on P, through methods
in [10], where p; represents the probability that a gopher eats for j frames.

If no arrow in the trap fires, after eating for 7,,, frames, the gopher will exit the trap
from the way it came at the same speed. However, if any arrow in the trap fires a laser,
the gopher will leave immediately regardless of its current hunger level, what it was
doing, and whether it was hit. This allows us to model the “skittishness" of gopher, and
it does not count as having eaten if a gopher leaves before it finishes eating.

INTENTION PERCEPTION We simulate gophers’ ability to determine whether the
external agents intend to harm through assessment of trap structures using the intention
perception framework adopted from Hom et al. [10]. The intention perception model
is built upon the functional information model introduced by Hazen et al. [9] within
Montaiiez [?], which “evaluates the surprise level (S) of a random configuration variable
meeting or exceeding a given level of function” [10]. The intention perception model
evaluates the surprise level S of any trap meeting a certain level of coherence. Following
Hom et al., the surprise level S is computed as

p(x)

S(x) = —log, ||X|(1 —I—ln|X|)Fg(x)7]

ey

where x is any trap configuration, X is the space of all possible traps, g(x) is the coher-
ence of a given trap x, p(x) is a probability measure on space X (we set as p(x) = 1/|.X|
by default in experiments, namely, a uniform distribution), and F,(x) is the proportion
of traps with at least the level of coherence of trap x. In other words, Fy(x) is calculated
by Fy(x) = M,(x)/|X|, where M,(x) is the number of traps with coherence greater or
equal to g(x). In order to implement the model, we use precalculated M, (x) terms for
each possible coherence value g(x), as given in the Appendix of Hom et al. [10].

After computing the surprise level S of a certain trap x, we reject the null hypothesis
that a trap is randomly generated at a significance level of oo = 0.0001, which corre-
sponds to a surprise level of § = 13.29 bits. That means that the probability of a trap
with surprise level of at least 13.29 bits being generated by the null hypothesis process
does not exceed 0.0001 [10,17]. Rejecting the null hypothesis implies that the intention
gopher regards the trap as being intentionally designed rather than generated uniformly
at random, and therefore the gopher will try to avoid the trap.

3.3 GENETIC ALGORITHMS

While Hom et al. considered only two types of trap-generating processes (namely, hu-
man design and uniformly random generation), we investigate a wider variety of traps
generated by genetic algorithms. Similar to natural selection, individuals in a genetic
algorithm population reproduce at a rate proportional to their fitnesses, producing off-
spring that largely inherit the characteristics of their parents. Populations shaped by the

8 J. Zhao et al.

algorithm will tend toward increased fitness. Thus, by defining different fitness metrics
one can produce individuals that are optimized for different desired characteristics.

For our genetic algorithm, we begin with a search space X, which is the set of all
valid traps defined in Section 3.1, a randomly generated initial population X C X, and
a fitness function f : X — R that evaluates the fitness of each individual trap (details
given in Section 3.4). As discussed in Section 3.1, we represent each individual in the
search space by a string of variables known as genes, with the joint string being called
a chromosome, using the genotypic representation system defined there. Concretely,
each gene is an integer encoding a tile and a chromosome is a string of twelve such
genes. At each step, the genetic algorithm will go through the process of (roulette-
wheel) selection, recombination, and mutation to generate a new offspring population
X' C X. This process is repeated for ten thousand generations.

For recombination, we select (in a fitness-proportional, roulette-wheel manner) two
elements from the population, splitting the chromosomes of both elements into two
parts at the same position, and combine the first slice of the first element with the second
slice of the second element. This generates a new trap that inherits genetic information
from both parents. Figure 2c¢ illustrates an example of how we might split a trap at a
certain cell. Finally, each recombined new element will undergo a mutation step: for a
single trap, the algorithm uniformly picks a gene (that is not the door or food) from its
chromosome and switches that gene to some random gene y € [0,90], mimicking a ge-
netic point mutation. Each trap generated through the steps of selection, recombination,
and mutation becomes an element of the new population X’ C X. We repeat the process
until the size of the new generation matches that of the old.

We iteratively create new generations until a specific number of generations is gen-
erated. Finally, we output the single trap with highest fitness value from across all gen-
erations. The complete process of our genetic algorithm is described in Algorithm 1.

Algorithm 1 Sample Genetic Algorithm

1: procedure GENETICALGORITHM

2 globalBest < none

3 population < generateRandomPopulation()
4: while not terminationConditionsMet do

5: newPopulation < empty

6: for element in population do

7 selectedPair < roulette(population)
8: combined <— recombine(selectedPair)
9: mutated < pointMutate(combined)

10: newPopulation.add(mutated)

11: popBest < bestTrap(newPopulation)
12: if f(popBest) > f(globalBest) then
13: globalBest <— popBest

14: population < newPopulation

15: return globalBest

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 9

3.4 FITNESS FUNCTIONS

Fitness functions are critical in generating desirable traps. They impose an ordering on
all elements in the search space, based on certain criteria. When those criteria align with
one’s goals, it endows the genetic algorithm with the capacity to generate traps with par-
ticular traits as expected. However, not all fitness functions are valid and effective. We
define two properties of fitness functions useful for discussing their effectiveness. First,
we say a fitness function is spatially ordered if it assigns fitness values to individual
elements based on some pattern or local clustering. Second, we say a fitness functions
is correctly aligned if it is spatially ordered and embodies a preference for elements in
a specific target set, which, in our setting, is the set of all traps that are either coherent,
functional, or both.

We next introduce the set of fitness functions used in our experiments, and explore
how the properties of each fitness function contribute to its effectiveness.

RANDOM FITNESS Given any trap x € X, the random fitness function r : X — R is
a function defined by r(x) = n where n is a real number chosen uniformly at random
from the interval [0, 1]. In other words, we assign each trap in the search space a random
fitness value that is not based on any property of the trap itself. Thus, the random fitness
function is neither spatially ordered nor correctly aligned, as the spatial distribution of
its values reveal no regularities but only randomness.

BINARY DISTANCE (HAMMING) FITNESS The hamming fitness function begins
by picking a “target” trap ¢ € X uniformly at random from the search space. It then
measures the distance between a given trap and the fixed target trap. Given any trap x €
X, the hamming fitness function 4 : X — R is a function defined by h(x) = #d%, where
#4itr 1s the number of differing genes in the chromosomes of x and ¢, while 9 = 12 — 3 is
the largest possible number of differing genes, as there are three fixed cells for all traps.
Since the hamming fitness function imposes ordering on traps based on their distance
to the target trap, it is spatially ordered. However, this criteria doesn’t align with our

target set, so this fitness function is not correctly aligned.

COHERENT FITNESS Given any trap x € X, the coherent fitness functionc: X — R
returns the coherence of trap x defined in Section 3.1. This fitness function assign values
based on trap coherence and gives higher values to more coherent traps, which are
included in our target set. Thus, the coherent fitness function is both spatially ordered
and correctly aligned.

FUNCTIONAL FITNESS (LETHALITY) Given any trap x € X, the functional fit-
ness function f : X — R is defined by f(x) = Aan) ' \where Pxinn(x) is the probability of

x killing an entering gopher, also known as letffgﬁty of x as defined in Section 3.1, and
Prax 1s the largest probability of killing an enter gopher which is realized only in the
case that two arrows both hit the gopher. Since this fitness function rewards lethal traps,
and since lethal traps are often similar to other lethal traps, this indicates that it is both

spatially ordered and correctly aligned.

10 J. Zhao et al.

MULTIOBJECTIVE FITNESS We now define a fitness function that evaluates both
the coherence and lethality of any given trap. Moreover, it prioritizes traps that are both
coherent and lethal instead of traps that are only coherent or only lethal by penalizing
the gap between the trap coherence and lethality values.

We define two types of multiobjective fitness functions. The first is a local multi-
objective fitness function @ : X" — R" (n € N is the population size) that takes in a
population of traps and outputs an array containing fitness values of all traps in that
population. The local multiobjective fitness function imposes a proper ordering on the
input population based on the relationships between traps, and this effectively boosts
the performance of the genetic algorithm when optimizing for more than one objective.
However, the local multiobjective fitness value of each trap only depends on its relative
rank within the population, which implies that the same trap may have different fitness
values in different generations. Therefore, we define an additional global multiobjec-
tive fitness function g : X — R as a universal measure of trap coherence and lethality.
We employ the local fitness function during the selection process within the genetic
algorithm and the global fitness function to record the quality of generated traps.

Local Multiobjective Fitness Function. This fitness function is a variation of a standard
method for multiobjective evolutionary optimization which relies on the notion “domi-
nance” among traps [4]. For any traps x,y € X, we say that x dominates y if x has both
a greater coherence fitness and a greater functional fitness than y. Given a trap x € X,
let #jominans (X) denote the number of traps x dominates within the population. The base
score for x is then #4ominan: (x) + 1.

Moreover, we wish to add more diversity into the selected population by disin-
centivizing sampling traps that are too similar to each other. Let N(x) = {y € X |
#dominant (X) = #dominant (¥),y 7 x} be the set of neighbors of x containing traps that
have same base value as x. Then, we compute the normalized distance between x and
its closest neighbor dyormatizea(X) = minyep) [[x — ||/ V2, where ||x —y|| denotes the
point-wise Euclidean distance between trap x and y, and v/2 is the maximum possible
distance between two traps. If N(x) = 0, the normalized distance is set to be 1. Then,
for each x € X, we add this normalized distance to its base score, obtaining the boosted
score. Each boosted score is then divided by the maximum boosted score across the
population, leaving the most fit trap with a fitness value of 1. Finally, we return the ar-
ray of normalized boosted scores contained in range (0, 1] as the fitness values of traps
in the population.

In this way, the local multiobjective fitness function can not only serve as a good
measure of relative fitness of traps within the population, accelerating the genetic algo-
rithm, but also promotes diversity within the population.

Global Multiobjective Fitness Function. Given any trap x € X, the global multiobjective
fitness function is defined as

{JM 1 (x) = e(®)] < ki,

glx) =

where f(x) and c(x) are the functional and coherence fitness values of x respectively,
and kqifr is some pre-defined constant. The intuition behind this definition is to reward

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 11

both coherence and lethality of a trap while penalizing the difference between coherence
and lethality. The design of a threshold kgifr intends to disincentivize solely optimizing
coherence or lethality alone (which would lead to large gaps between the functional
and coherent fitness values). Furthermore, since the global multiobjective fitness func-
tion assigns higher values to traps that are both lethal and coherent, it is both spatially
ordered and correctly aligned.

4 EXPERIMENTAL SETUP

4.1 Generating Traps Through Genetic Algorithms

Our goal is to generate traps with specific traits using genetic algorithms equipped with
different fitness functions. In the process, we observe the performance of each fitness
function, in terms of their convergence speed and the quality of the traps produced.
For each fitness function (i.e., random, hamming, coherent, functional, or multi-
objective) we generate 1,000 optimized trap examples. Since each run of the genetic
algorithm outputs a single best trap as the final step, we run the genetic algorithm for
1,000 independent trials. For each run of the genetic algorithm, we set the population
size to be constant 20, terminate the algorithm after 10,000 generations, and output the
trap with best fitness value among all 200,000 traps generated in this run. After repeat-
ing this process for all five fitness functions, we also generate 1,000 traps uniformly at
random and make use of the designed traps from Hom et al. [10] for comparison.

5 RESULTS

5.1 Generating Traps Through Genetic Algorithms

First, we aim to understand how the genetic algorithm traverses through its solution
space when optimizing for different attributes. Moreover, we use three methods to un-
derstand how the algorithm searches the space: we calculate the average number of
generations until the best-fitness trap was found, the proportion of traps found with a
given lethality/coherence, and an estimated probability distribution for traps over the
range of lethality and coherence values.

Time to Optimal Trap First, we calculate the average number of generations until the
best-fitness trap is found. Figure 3 is a boxplot which shows the number of generations
until the best trap was found in each of the 1,000 trials. As stated above, the experiment
was split based on the fitness function used to generate the traps. The plot shows that the
functional fitness function has a median at around 100 generations, along with a small
interquartile range and some outliers up to 500 generations. On the other hand, the mul-
tiobjective and coherence fitness functions seem to have medians around 3,000 genera-
tions and ranges that span all 10,000 generations. The only notable difference between
the multiobjective and coherence fitness functions is that the interquartile range of the
coherence function is smaller than that of the multiobjective function. Specifically, it

12 J. Zhao et al.

seems that the coherence boxplot has an interquartile range of around 1,200 genera-
tions to 5,200 generations, while the multiobjective fitness function seems to have an
interquartile range of 200 generations to 6,200 generations. Hence, the coherence fit-
ness function seems to more reliably find its optimal trap in the 2,500-5,000 generation
range, while the multiobjective fitness function seems to be less reliable, finding its op-
timal trap in the 200-6,200 generation range. Since the range of the functional boxplot
is so much smaller than that of the coherence and multiobjective boxplots, it is evident
that finding a maximally lethal trap is much easier than finding a maximally coherent
trap. Furthermore, it is evident that coherence is the bottleneck for the multiobjective
fitness function as the multiobjective boxplot strongly resembles the coherence boxplot.

Fitness Function vs. Generation in which Optimal Trap was Found Across Trials

multiobjective - |—| I |

coherence A |—| I |

functional ﬂ-h(

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Generation

Fig. 3: Boxplot showing the distribution of when the optimal trap was found across all
generations. Reproduced from [12].

Figure 4 shows two line plots depicting the average time to optimal trap. Figure
4a depicts the average fitness across all 1,000 trials for a given generation, and Figure
4b depicts the cumulative average optimal fitness across all 1,000 trials for a given
generation. Unlike the average fitness, the cumulative optimal fitness takes “the best
trap seen until generation i” for each trial and averages those across all trials, whereas
the average fitness just takes the average fitness of all traps in generation i across all
trials. Additionally, the lack of visibility in the error bars can be attributed to the low
variance in the data.

In Figure 4a, notice that each of the functional, coherence, and multiobjective fit-
nesses plateau after around 300 generations. After this plateau, there were no deviations
from the observed trend, and hence we focus on the first 500 generations of the plot. No-
tice that the functional, coherence, and multiobjective curves all settle at values around
0.75, 0.25, and 0.10, respectively. It makes sense that the functional fitness function
converges at a high average fitness value, since this indicates that the function is able to
find traps that are maximally lethal quickly (notice that the plot should not converge to
1, or maximal lethality, since we are averaging all traps in a given generation across all

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 13

Average Fitness Across All Trials vs. Generations

— functional
coherence
—— multiobjective

0.8

Fitness value
o
o

o
S

0.2

F&

0 100 200 300 400 500
Generation

0.0

(a) Line plot showing the average fitness
across all trials over generations. The (imper-
ceptible) shaded region again represents the
95% confidence interval.

Cumulative Average Optimal Fitness Across All Trials vs. Generations

1.04

0.8

Average Optimal Fitness value

—— functional
coherence
0.0{ — multiobjective

6 20‘00 40‘00) 60‘00 8600 10600
Generation
(b) Line plot showing the cumulative average
optimal fitness across all trials over genera-
tions. The shaded region represents the 95%
confidence interval.

Fig. 4: Line plots showing the trends of average fitness over generations, from [12].

trials. By virtue of recombination and mutation, there are bound to be some defective
traps within each generation, thereby lowering the total average fitness). However, it is
interesting that the coherence and multiobjective functions converge at lower values of
0.25 and 0.10. Since the optimal solution likely wasn’t found (an intuition we will soon
confirm), we would expect the average fitness of these traps to generally increase since
our genetic algorithm has the potential to generate coherent structures. Finally, note the
peak in the multiobjective curve. This is likely due to the genetic algorithm choosing
to sacrifice lethality in favor of coherence to generate traps with higher coherence and
lethality. Such a choice would temporarily decrease overall fitness.

Next, consider Figure 4b, the optimal cumulative fitness graph. Notice that the func-
tional, coherence, and multiobjective lines converge to around 1.0, 0.75, and 0.60, re-
spectively. Furthermore, since this is a graph of cumulative optimal fitness, notice that
all of our plots depict monotonically increasing averages. The functional graph con-
verges to 1.0 within about 500 generations. This tells us that all 1,000 trials were able
to find a maximally lethal trap within that same period. Likewise, the coherence and
multiobjective plots converge to values below 1, which tells us that these functions
were not reliably able to find traps of maximal fitness (either maximally coherent or
maximally coherent and lethal). In fact, this plot tells us that the highest value for co-
herence and multiobjective traps that we can find on average is 0.75 and 0.60. Such
a disparity between the functional and coherence/multiobjective line plots is evidence
that coherence is a much harder problem to solve than lethality (at least for this problem
instance). Finally, after around 4000 generations, notice that there is another dramatic
decrease in slope among all of the lines. Such a decrease indicates that most trials have

14 J. Zhao et al.

found their optimal traps, and corresponds to the end of the interquartile range in the
respective box plot.

Proportion of Traps with Given Lethality by Generative Process Proportion of Traps with Given Coherence by Generative Process
random unif hamming coher funct multi desig random unif hamming coher funct multi desig
1.000] L 1.0 558 = = 10
0982 - : 299 = H)
0.950 | k| 875 O O
0.882 - Bl - H H
| 1 833]]
0.838 11 "800 X H
0.763 - O 08 778 hul H 08
0.731 d § Enl iy
— — 1714 4 4
o 0725 H g 0667 X H
$ 0695 q 06 = 062 a a 0.6
3 0645 o S 0690 = e
2 0613 4] g 0556 il a
2 0581 Em| £ 0300 a 0
S 0552] 9 0.244 a H
5 1 1 0.4 8 0429 0 - 0.4
g 0516 Ll 5 0400 a |
0.430] =] = |
0.409 | Ll 33 X]
0.398 | O 02 1250 g 0.2
0.378 | - : 222 = i -
0.215] el -$69 H H
0.204 - - 143 inl =
0.172 -] | X] 1]
0.000 -l 0 00 500 I E‘ 00
(a) Lethality. (b) Coherence.

Fig. 5: Heatmap showing the proportion of traps with a given lethality / coherence, split
by the parameter which the genetic algorithm was optimizing for (and designed traps).
Reproduced from [12].

Proportion Vectors Figure 5 shows the proportion of traps with a given lethality and
coherence. Each vector is separated by the method used to generate the trap. First,
notice that the uniform random, (genetic algorithm) random, and hamming vectors are
nearly identical in both figures. This supports the idea that all of these functions are
equally effective at finding lethal and coherent traps. Specifically, this implies that the
random and hamming fitness functions generate traps of similar quality to sampling our
solution space uniformly at random (when using lethality and coherence as our proxy
for success). Hence, sampling traps using a random fitness function is as effective as
uniformly assigning fitness values to traps. Additionally, it is evident that being spatially
ordered is not the only important aspect of our fitness function (contrary to [8])— there
must also be correct alignment to encode some selection bias and guide the genetic
algorithm to a target set of interest. In the case of the hamming function, notice that it
is spatially ordered but not correctly aligned. Spatial-orderedness in the hamming case
comes from optimization towards some random “goal” trap. Failing to align correctly
can be seen in its inability to consistently generate traps with high lethality/coherence.
Hence, spatial order is not sufficient for search success.

Additionally, notice that there are hot spots at non-zero values for traps generated
uniformly at random. These hot spots are at lethalities 0.215, 0.430, and 0.645, and
at coherences less than or equal to 0.333. The lethalities correspond to simple, lethal
traps, such as traps where there is an arrow right by the door. Examples of such traps
are shown in Figure 6. The coherences correspond to random, coherent connections
formed within cells. Note that it is not hard to form these connections by themselves,
but it is the act of chaining long coherent connections together that becomes difficult.

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 15

B WA WA E

Fig. 6: Four simple traps of lethality 0, 0.215, 0.430, and 0.645, respectively, from [12].

Notice that the coherence vector resembles the uniform random vector in 5a and the
lethality vector resembles the uniform random vector in 5b. As seen in the hamming
case, this resemblance to the uniform random vector is indicative of a mismatch in
alignment. In other words, optimizing for lethality does not beget coherence and vice
versa, a trait that is attributable to our problem instance: the intersection of coherent and
lethal target sets is too small.

In Figure 5a, notice that there are a considerable proportion of traps that have
achieved maximal lethality (namely, traps generated by the functional and multiob-
jective fitness functions). However, the same cannot be said for traps reaching maximal
coherence in 5b. Specifically, about 40% of the traps generated by the functional fitness
function had maximal lethality, but only about 10% of the traps generated by the co-
herence fitness function had a coherence value of 0.556 (which corresponds to the last
color of sufficient magnitude to be non-white). It is important to note that our genetic
algorithm was able to find traps with higher coherence than 0.556, but there were not
a significant enough proportion of those traps to show up in Figure 5b. Hence, this is
further evidence that finding lethal traps is significantly easier than finding coherent
traps.

Finally, note that the proportion vectors for the designed traps are starkly different
from the other vectors. Recall that these traps were created by the Hom et al. to zap
gophers in a variety of ways—they were not intentionally designed to be maximally
lethal or maximally coherent. Despite this lack of intentional effort, notice that every
designed trap has a coherence of 1 and a near-randomly distributed lethality. Hom et
al. attributed this unintended coherence to an innate sense of structure in human de-
sign. Furthermore, since coherence was an unintentional side-effect of construction, we
see that form is a good indicator of intentional construction, as Hom et al. assumed.
However, as shown by the inability for our genetic algorithm to reliably produce highly
coherent traps directly, it is hard to reproduce this affinity for structure in silico [12].

Frequency Density Heatmaps Finally, Figure 7 shows the log proportion of traps gen-
erated with a given coherence and lethality. Again, each of the heatmaps are split by the
method used the generate the traps. These heatmaps are similar to the proportion vectors
shown in Figure 7, but they plot both coherence and lethality as separate dimensions on
the same graph (rather than being separate graphs). Note that all traps across all 1,000
trials and 10,000 generations are shown here, and hence we can see how the genetic

16 J. Zhao et al.

Lethality/Coherence Heat Map for Randomly Optimized Traps 100 Lethality/Coherence Heat Map for Uniformly Random Optimized Tr?g§

1.000 -

1.000-
0.875- 107 0.875- .
0.833- 0833~
0.778- 10-2 0.778 - 102
0.714- o 0.724- 9

g 0.625 - 10 g o 0-625- 5 £

20571~ E 2 0.571 07

8 0.500 I s 5 5

5 - - - - E 20500 S

8 0.429 10k S oz - - - 0§

13 5
0.375 £ 0.375 2
0.286 107 0.286 107
0.222 f 0.222
0.167 -1076 0.167
ol B OB - B
0.000 Lo Lo oo -107 0.000 o o -
S P > R) AR Y 0O DS
Q Y D7 W ’b 2’ M D7 A7 R P QO 07 © '5 '\ D7 4B A7 DY O
S EF PP FF F T F LS SFFFFF e® SN
Lethahty Lethality
(a) Random. (b) Uniform-random.
" - Lethality/Coherence Heat Map for Functionally Optimized Traps
Lethality/Coherence Heat Map for Hamming-Distance Optimized Trages v/ P v O > 10°
Lo0o- B 1.000 -
0.875- . 0-875 - 10!
0833~ 107 0.833-
0.778- o2 0.778 - 102
0.714- ” 0.714 - 2
o 06257 - § ¢ o8- 102 g
¢ osn- 107 0571- 5
 0.500 § 2 0500 —— [r— g
S 0420 | | 104 § 8 020 104§
. g g
0.375 g 0375 &
0.286 105 0.286 10-°
0.222 3 0.222
0.167
aff B 6 W
0.000 " . . " I " . . i
b\ o
& w{’ 49% qu u’" 4:‘*'\ «,""’ «’Q «@ 039' N ¢
Lethality Lethality
(c) Binary Distance. (d) Functional.
Lethality/Coherence Heat Map for Coherently Optimized Traps 100 Lethality/Coherence Heat Map for Multiobjectively Optimized Tra%ﬂ
1.000 - 1.000 -
0.875- 10t 0.875- 10
0.833- 0.833-
0.778 0778 -
1072 10-2
0.714 " 0.714 - N
0625 g 0.625 4 - = g

3 102 2 g 103 2

2 0571 5 2 0571 5

S 0429 07t g S 0429 107 g

g

0375 & 0.375 2
0.286 10° 0.286 10-%
0.222 3 0.222
0.167 0.167 100
0125 . l 0.125
0.000 G 0.000 o o \ -107

O AV .0 D &) S NP oH D oD OB LIRS

0V S S 3 D DA S SOy RS PP P A A S

@c’s-e'ya?’c-“c"””"cbe“e“@’x Q-Qe\’o'-”n"a"&’o“" S o VT
Lethality Lethality
(e) Coherence. (f) Multiobjective.

Fig.7: Heatmaps representing the log proportion of traps with a given lethality and
coherence value separated by optimization parameter from [12].

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 17

algorithm traversed its search space among all iterations (again, using coherence and
lethality as proxies for success).

First, notice that all distributions have hot spots at lethalities 0, 0.215, 0.430, and
0.645, which we have already noted correspond to simple, lethal traps (as shown in
Figure 6). Furthermore, notice that there is some baseline level of coherence for such
simple traps, since having a firing arrow implies that there must be at least one coherent
connection. This relationship can be seen for any trap with non-zero lethality, since
these traps also have non-zero coherence in the heatmap. Additionally, notice that the
lethalities 0.215, 0.430, and 0.645 are present in traps with coherence less than 0.222
(meaning that there is at most one coherent connection in the trap). On the other hand,
when we consider lethalities larger than 0.645, notice that all of traps have coherence
greater than 0.222, since these traps must have two firing arrows. Hence, since traps
can only be lethal if they are built upon coherent connections, all lethal traps must have
some baseline level of coherence. In other words, an absolute lack of coherence implies
an absolute lack of lethality [12].

Next, notice that in Figures 7a, 7b, and 7c have nearly identical distributions. Since
these figures correspond to our unaligned fitness functions, the similarity of these dis-
tributions gives credence to the claim that these methods generate results of similar
quality, and thus cannot reliably generate lethal or coherent traps.

Finally, in Figures 7d, 7e, and 7f, we have functional, coherence, and multiobjec-
tive distributions, respectively. We can see that the multiobjective heatmap shares traits
with both the functional and coherence heatmaps. Namely, notice that the multiob-
jective heatmap resembles the functional heatmap with some of the probability mass
shifted towards higher coherence values. This is as expected, since the multiobjective
function tries to find traps with high coherence and lethality. However, since lethality
is easier to obtain, it makes sense that the multiobjective plot more closely resembles
the functional plot; the algorithm seems to be finding highly lethal traps first, and then
it tries to increase the coherence of those highly lethal traps.

6 Intention Perception and Genetic Algorithm Traps

6.1 Examining Generated Traps Under Intention Perception

Having generated a series of traps with genetic algorithms, we evaluate them in terms
of intention perception. We note that while the significance value of oo = 0.0001 and
uniform distribution probability measure p(x) = 1/|X| were used by default in both
Hom et al.’s and our own previous work [10,12], we add more variation to the intention
perception model in the present paper. Considering that the traps in our study are gen-
erated by genetic algorithms rather than being selected uniformly at random from the
sample space X, a default, idealized uniform distribution model may affect the accuracy
of intention perception. We test this claim.

Using the intention perception framework introduced in Section 3.2, we design four
different intention perception models with varying probability measures p(x) and sig-
nificance levels a. Specifically, we use two different probability models: one represent-
ing an idealized uniform distribution and one estimating the real distribution of traps in

18 J. Zhao et al.

the generating process, smoothed by the Simple Good-Turing (SGT) method [5]. We
also test two significance levels, o0 = 0.0001 and o = 0.05. We then apply these in-
tention perception models to the five classes of traps (random, functional, coherence,
multiobjective, and designed) in an attempt to see whether gophers equipped with in-
tention perception will regard the generated machines as designed traps, and if so, how
this affects survival.

Survival of Gophers We investigate the status of gophers with and without intention
perception surviving against a series of traps generated by the genetic algorithms. For
each class of traps, we randomly sample fifty traps, and a gopher will decide whether
to enter a trap or skip to the next trap until it gets killed by a laser, dies from starvation,
or successfully survives the fifty traps. Note that the gopher will behave exactly as
described in Section 3.2: after deciding to enter the trap, the gopher will directly head
toward the food and eat for some amount of time. However, if any arrow fires, the
skittishness of the gopher will force it to leave immediately. We repeat this for 1,000
independent trials, record the status of the gophers as they progress through fifty traps,
and analyze the results across availability of intention perception and types of traps.
The parameters in the experiment are given in Table 1.

Table 1: Default values of experiment parameters.

Param. Description Value

P, Default prob. of entering 0.8
MFI Maximum Fasting Interval 4
Py, Prob. of kill w/ wide arrow 0.45
P, Prob. of kill w/ normal arrow 0.30
P, s Prob. of kill w/ skinny arrow 0.15

Survival of Brave Gophers Gophers are skittish by construction. However, we further
investigate how the survival status of gophers is affected when the gophers are brave:
instead of leaving a trap immediately whenever an arrow fires, a brave gopher will only
leave the trap if it is hit or has finished eating. We re-run the same set of experiments for
brave gophers as for default (skittish) gophers. That is, we run the experiment for each
type of trap for 1,000 independent trials, average the measured outcomes, and analyze
the results.

We investigate whether the generated traps are considered designed or randomly
generated when gophers apply their intention perception algorithm. Moreover, by choos-
ing different distributions and significance level parameters, we also study how varying
of parameters affects the algorithm itself.

Table 2 shows the results of the intention perception algorithm for the uniform dis-
tribution model (p(x) = 1/]X]) and the Simple Good-Turing (SGT) model. We test for

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 19

Table 2: Intention Perception Test Results.

Fitness Function o Unif. “Designed” % SGT “Designed” %
Uniform Random 0.05 0% 0%
Functional 0.05 0% 0%
Coherence 0.05 100% 8.9%
Multiobjective 0.05 97.5% 0.1%
Designed 0.05 100% 100%
Uniform Random 0.0001 0% 0%
Functional 0.0001 0% 0%
Coherence 0.0001 100% 0.1%
Multiobjective 0.0001 58.2% 0%
Designed 0.0001 100% 100%

a levels of 0.05 (corresponding to a surprise level of 4.33 bits) and 0.0001 (correspond-
ing to a surprise level of 13.29 bits). As seen, for uniform random generated traps and
functional traps, 0% of them are regarded as intentionally designed at both significance
levels, under both distribution models. In other words, they are never mistaken for de-
signed traps. In contrast, the designed traps themselves are judged as designed 100% of
the time, at both significance levels under both models. For coherence and multiobjec-
tive traps, the results become more interesting. Under the uniform distribution model,
coherence traps are deemed designed 100% of the time at both significance levels. Mul-
tiobjective traps are deemed designed 97.5% of the time at & = 0.05, and 58.2% of the
time at o, = 0.0001. However, once the more accurate SGT distribution model is used,
the percentages drop precipitously for both types of traps.

We conclude that the intention perception algorithm finds coherence-optimized traps
to be very similar to designed traps, but that there is a clear threshold between human-
designed traps and others under the SGT model, at roughly the o« = 0.0001 level, where
the intention perception algorithm becomes nearly perfect at distinguishing between
human-designed traps and the others. Thus, changing the probability model from a
misspecified uniform model to a more accurate SGT estimated model greatly improves
the accuracy of the intention perception algorithm. Even though most of the coherence-
optimized traps are considered to be intentionally designed under a assumed uniform
distribution, very few of them are considered designed under the estimated SGT distri-
bution model.

6.2 Survival of Gophers in Generated Traps

We investigate whether the intention perception algorithm of Hom et al. continues to
confer significant survival advantages for artificial gophers when confronted with traps
generated by a wider variety of processes. For these experiments we used the default
parameter values of Hom et al. [10], including the misspecified uniform distribution
probability model discussed in the previous section.

20 J. Zhao et al.

10 20 30 40 50 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
‘Time (# of Traps Seen) Time (# of Traps Seen) Time (# of Traps Seen) Time (# of Traps Seen)

(a) Random Traps (b) Random Traps with (c) Functional Traps (d) Functional Traps
without Intention. Intention. without Intention. with Intention.

Fig. 8: The effects of intention perception on the status of (skittish) gophers progressing
through random and functional traps.

o 10 20 30 10 50 20 10 50
‘Time (# of Traps Seen) ‘Time (# of Traps Seen)

o 10 20 30 0 50 10 20 30 10 50
‘Time (# of Traps Seen) ‘Time (# of Traps Seen)

(a) Coherence Traps (b) Coherence Traps (c) Multiobj. Traps (d) Multiobj. Traps
without Intention. with Intention. without Intention. with Intention.

Fig. 9: The effects of intention on the status of (skittish) gophers progressing through
coherence and multiobjective traps.

Figures 8a and 8b show the status of gophers with and without intention perception
as they progress through fifty random traps, and these fifty random traps are selected
from among the random traps generated by the genetic algorithm equipped with the
random fitness function. We observe that only about 21.8% of baseline gophers survive
all fifty traps while around 30.8% intention perception gophers do. The greater survival
rate for intention perception gophers can be attributed to the sharp decline in percentage
of gophers starved (40.6% starved for baseline gophers compared to 18.7% starved for
intention gophers). This is mainly because intention perception gophers are more likely
to enter random traps and eat, confidently judging them as safe. However, intention go-
phers also have a higher probability of being killed by lasers (37.6% zapped for baseline
gophers compared to 50.5% zapped for intention gophers). Thus, their confidence has a
cost. Overall, intention perception gives gophers a survival advantage on random traps.

Figures 8c and 8d show how intention perception influences the survival of gophers
as they progress through functional traps generated by the genetic algorithm optimiz-
ing for lethality. In this case, both baseline gophers and intention perception gophers
have similar lifespans of around 5 traps. This is due to the high lethality of functional
traps. Since we set the Maximum Fasting Interval (MFI) to be 4 (using the default value

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 21

from Hom et al. and Kamath et al. [10,12]), every gopher will enter at least one trap
before the 5th, leading to a high percentage of death from lethal lasers. The only dif-
ference between baseline gophers and intention perception gophers is that while 99.2%
of intention gophers are killed by lasers, 3.3% of baseline gophers die from starvation
as shown in Figure 8c. While the high lethality of the traps is responsible for the low
survival rate for both gopher types, the relatively low coherence of the functional traps
causes intention perception gophers to confidently enter them.

Figures 9a and 9b reveals another case in which intention perception fails to boost
the survival rate of gophers even when traps are not lethal. We observe that both base-
line gophers and intention perception gophers only survive through around 17 traps.
Both baseline gophers and intention perception gophers die mainly from starvation, but
intention gophers are even more likely to starve (73.5% starved for baseline gophers
compared to 91.0% starved for intention gophers). As seen in Section 5, coherence
traps usually have only low levels of lethality, resembling the lethality levels of traps
generated uniformly at random. However, the high coherence implies a high probabil-
ity of proper connectedness, which leads to a higher probability of firing. Even though
the lasers may not hit the gophers, they can still frighten the skittish gophers and cause
them to leave before finishing eating. This leads to the high percentage of gophers dy-
ing from starvation for both gopher types. However, the decrease for baseline gophers is
relatively smooth, but the decrease for intention gophers is more periodic. We observe
a sharp decline in the surviving gopher population at around 4 traps, corresponding
to the Maximum Fasting Interval (MFI) of 4. This is because, as the name suggests,
coherence-optimized traps have high coherence, leading intention perception gophers
to treat them as designed traps and thus they refuse to enter them. For coherence traps,
the intention perception algorithm becomes a liability, as the largely non-functional co-
herence confuses the decision apparatus, leading to increased, unnecessary starvation.

Finally, Figure 9c and 9d show the status of baseline and intention gophers when
attempting to survive against series of multiobjective traps that are optimized for both
coherence and functionality. In this case, intention perception again provides no survival
advantage to gophers. Though intention perception gophers have a lower percentage
of dying from lasers (88.1% zapped for baseline gophers compared to 71.3% zapped
for intention gophers), they have an increased likelihood of starvation (11.9% starved
for baseline gophers compared to 28.7% starved for intention gophers). The average
lifespan for both gophers types is again approximately 4. Similar to case of functional
traps, this means gophers are forced to enter at least one trap before the 5th. Once they
entered the trap, they are either directly zapped by a laser or frightened to leave the
trap without consuming food since the traps are both lethal and coherent. Thus, before
entering the 5th trap they typically die from either laser strike or starvation.

6.3 Survival of Brave Gophers in Generated Traps

In contrast to Section 6.2, Figures 10 and 11 show the status of brave gophers with
and without intention perception as they progress through fifty random traps gener-
ated by our genetic algorithms, beginning with the random fitness function results in
Figures 10a and 10b. Notice that the number of gophers that starve has now sharply

22 J. Zhao et al.

Status Over Time
‘With Intention
(functional)

Status Over Time
Without Intention

Status Over Time Status Over Time
‘With Intention Without Intention

Gopher Status (%)
Gopher Status (%)

10 30

20 3 40 50
Time (# of Traps Seen)

10 20 30 40 50 10 20 30 5 10 20 30 40 50
‘Time (# of Traps Seen) Time (# of Traps Seen) Time (# of Traps Seen)

(a) Random Traps (b) Random Traps with (c) Functional Traps (d) Functional Traps
without Intention. Intention. without Intention. with Intention.

Fig. 10: The effects of intention perception on the status of brave gophers progressing
through random traps and functional traps.

‘With Intention
(multiobjective)

Status Over Time
Without Intention
(coherence)

Status Over Time Status Over Time
‘With Intention Without Intention
(coherence) (multiobjective)
= Alive
== starved
== Zapped

Gopher Status (%)
Gopher Status (%)

10 20 30 40 50
Time (# of Traps Seen)

10 20 30 40 50
Time (# of Traps Seen)

10 20 30 5 10 20 30 40 50
‘Time (# of Traps Seen) Time (# of Traps Seen)

(a) Coherence Traps (b) Coherence Traps(c) Multiobj. Traps (d) Multiobj. Traps
without Intention. with Intention. without Intention. with Intention.

Fig. 11: The effects of intention on the status of brave gophers progressing through
coherence and multiobjective traps.

decreased, regardless of intention perception. Furthermore, notice that gophers with in-
tention (seemingly) do not starve at all. Both of these observations make sense since
random traps are likely non-lethal. Even if these random traps are firing traps, it is un-
likely that the orientation of such a trap would hit the gopher. Furthermore, if a gopher
is hit by a rogue arrow, the probability that it will be hit in successive traps is equally
small. Due to their bravery, these gophers will keep eating even when aberrant arrows
fire. Starvation is still possible, though, such as when a gopher without intention per-
ception decides not to enter MFI - 1 traps, and is hit by a rogue arrow in the final trap.

Notice that Figures 10c and 10d are nearly identical to Figures 8c and 8d, respec-
tively. Effectively nothing changes in the setup since every trap is maximally lethal.
Thus, having brave gophers does not make much of a difference, since any entering go-
pher will be shot immediately and then leave. Hence, the only factor in what proportion
of gophers starve or are zapped is the probability of entering, which remains constant
between the previous experiment and this one.

In Figures 11a and 11b the gophers survive much longer than in Figures 9a and 9b,
respectively. This is expected, since these gophers are brave. We saw in the previous
experiment that high connectedness implied a higher probability of firing, which would

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 23

scare off skittish gophers. However, brave gophers are rewarded for their bravery—
since the probability of a trap being lethal is low (as coherence does not necessarily
beget lethality [12]), if a gopher enters a trap it will most likely be able to eat unharmed.
However, the probability of entering a trap now causes a larger discrepancy between the
intention perception and non-intention gophers. Since these traps are highly coherent,
gophers with intention perception are more likely to consider these traps designed, and
will not enter them until they are forced to (namely, every 4 traps). Furthermore, if these
gophers get hit on the 4th trap, then they starve. Hence, we see sharp drops every 4 traps
in Figure 11b. On the other hand, gophers with no intention perception are rewarded for
their ignorance, and hence we see much smoother curves (since there is a fixed 80%
probability that a non-intention gopher will enter a trap). This is another case where
intention perception slightly helps gophers through genetic algorithm traps.

Finally, consider Figures 11c and 11d. Again, these plots are nearly identical to
Figures 9c and 9d. This is due to the same reasoning as the functional case—all traps are
somewhat lethal. Furthermore, note that these traps may not be maximally lethal, since
we penalize large differences in coherence and lethality (thereby artificially lowering
lethality in favor of coherence). Hence, we expect traps to fire, but not necessarily kill
the gophers. Thus, when a gopher enters a multiobjective trap, it is likely to get either
killed or starve before the 5th trap, and the gopher’s boldness is unable to save it.

7 DISCUSSION

7.1 GENETIC ALGORITHM

First, we saw that it is easier to optimize for lethality than for coherence. This could be
seen in Figure 4 since the average cumulative optimal fitness of the functional fitness
function reaches a maximal lethality of 1.0, while the coherence fitness function was
only able to reach a coherence of 0.75 on average. Furthermore, every trial for the
functional fitness function converged to a maximal lethality within 500 generations, as
per Figure 3. Additionally, we saw a considerable proportion of traps generated reach
a maximal lethality under the functional fitness function in Figure 5, and we saw that
the multiobjective heatmap shared a much stronger resemblance with the functional
heatmap than the coherence heatmap in Figure 7. However, even though we saw highly
lethal traps within 200 generations (when optimizing for lethality), we noted that these
traps were only simple, lethal traps, where there were one or two arrows by the door. If
we wanted to generate traps with only these 2 arrows by the door (and everything else
as floor cells), then that would be a much harder problem. In other words, it is hard to
generate highly coherent traps with just these two arrows, just as it is hard to generate
long chains of coherent connections.

Next, we saw that most coherence-optimized traps did not reach their optimum fit-
ness until around 2,500 generations, as per Figure 3. This can be attributed to a lack of
“shortcuts” in optimizing for coherence, unlike lethality [12]. Specifically, when opti-
mizing for lethality, the algorithm exploited the shortcut of putting two arrows near the
door. There is no such shortcut for coherence—the only way to create highly coherent
traps is to place the correct tiles with the correct thickness in the correct orientation at
the correct position on the board. This discrepancy in problem difficulty is reflected in

24 J. Zhao et al.

the target set sizes: among all possible traps, there are only 26,733 traps with a coher-
ence of 1, while there are at least 917 ~ 5.1 x 10'* traps with lethality 1. Furthermore,
according to a uniform sampling of one million traps, 2.27% of those traps had a lethal-
ity greater than 0.5, whereas only 0.0037% of traps had a coherence greater than 0.5.

Finally, we note that the coherence of a trap is solely dependent on the connected-
ness of the wire, which is not a property that is preserved under recombination [12].
Since we encode our traps as an array, when we recombine and mutate, we effectively
cut the trap in two. Thus, we can cut the coherence by up to a factor of one half if we cut
along a coherent connection, and we can further lower the coherence if we then mutate
a cell that is a coherent connection. On the other hand, if we only have arrows by the
door, mutation and recombination are much less likely to affect these traps. Modify-
ing the genetic algorithm to allow for coordinated mutations and recombination may
overcome the current barriers to achieving high coherence levels.

7.2 INTENTION PERCEPTION

We tested gophers against traps generated by our genetic algorithms. Some of the go-
phers were equipped with intention perception algorithms, using a default, misspecified
uniform distribution probability model. We saw that under the uniform model the go-
phers would always enter the trap, unless the trap was coherence-optimized. In the event
that the trap was optimized for both lethality and coherence, we saw that a majority of
multiobjective traps were thought to be designed. This suggests that intention percep-
tion may no longer confer strong survival advantages when presented with such traps
under a misspecified model. Furthermore, as we saw in Sections 6.2 and 6.3, intention
perception gophers no longer survive at a significantly higher rate than those without
intention perception. When presented with traps optimized for only coherence, inten-
tion perception gophers actually starved more often, since they become too scared to
enter traps they deem harmful. On the other hand, intention perception gophers enter
every trap optimized for lethality, thereby dying instantly (and never starving). Hence,
the gophers were confidently wrong in both cases, losing their survival advantage.

8 CONCLUSIONS

As discussed in the introduction, we set out to investigate two potential limitations of
Hom et al’s work. First, we conclude that the link between lethality and coherence
is weak. We saw that while an absolute lack of coherence implies an absolute lack
in lethality (cf. Figure 7), this is where the correlation ended. As noted by Kamath et
al., even though highly lethal traps imply a baseline level of coherence, the genetic
algorithm does not produce high coherence as a side product of high lethality [12].
Similarly, high coherence does not beget high lethality. However, high coherence may
boost the probability of finding firing traps, but firing traps may not necessarily hit the
gopher (and hence may not be lethal).

Second, we found that while intention perception helps intention gophers survive
as they progress through random traps, the strong survival advantage disappears under
other conditions. When traps are lethal, all gophers are killed quickly, within 5 traps.

Generating the Gopher’s Grounds: Form, Function, Order, and Alignment 25

When gophers progress through traps that are coherent and traps that are both coherent
and lethal, intention perception leads to more gophers dying from starvation, but the
average lifespan of intention gophers is the same as that of baseline gophers. Even
if we attempt to reduce of number of gophers dying from starvation by abandoning
the skittishness of gophers, intention perception does not significantly benefit gophers’
chances of survival in any of the situations. Therefore, we can conclude that Hom et
al’’s finding that intention perception provides significant survival advantage to artificial
agents doesn’t always hold. This is because the implicitly assumed correlation between
trap coherence and trap lethality doesn’t hold generally.

Finally, we explored the capacity of genetic algorithms to generate traps with spe-
cific traits. We saw that they were efficient in creating highly functional traps in a small
number of generations, but the genetic algorithms struggled to optimize for coherence.
The inability of genetic algorithms to directly generate highly coherent traps implies
that trap coherence may still remain a plausible sign of intentional construction. More-
over, we conclude that generating traps with specific traits of interest requires our fitness
functions to be both spatially ordered and correctly aligned. Being spatially ordered al-
lows the genetic algorithm to perform a meaningful local search with neighborhood
constraints on the elements of the search space, but simply being spatially ordered is
not enough. Additionally, alignment allows us to target a specific set using selection
bias.

ACKNOWLEDGEMENTS

This research was supported in part by the NSF under Grant No. 1950885. Any opin-
ions, findings, or conclusions are those of the authors alone, and do not necessarily
represent the views of the National Science Foundation.

References

1. Bhattacharya, M., Islam, R., Mahmood, A.N.: Uncertainty and Evolutionary Optimization: A
Novel Approach. In: 2014 9th IEEE Conference on Industrial Electronics and Applications.
pp- 988-993 (2014). https://doi.org/10.1109/ICIEA.2014.6931307

2. Bock, W.J., Wahlert, G.V.: Adaptation and the form—function complex. Evolution 19 (1965)

3. Chapman, C.D.: Structural Topology Optimization via the Genetic Algorithm. Ph.D. thesis,
Massachusetts Institute of Technology (1994)

4. Fonseca, C.M., Fleming, P.J., et al.: Genetic Algorithms for Multiobjective Optimization:
Formulation Discussion and Generalization. In: ICGA. vol. 93, pp. 416423 (1993)

5. Gale, W.A.: Good-Turing Smoothing Without Tears. Journal of Quantitative Linguistics 2
(1995)

6. Gero, J.S., Kannengiesser, U.: A Function—Behavior—Structure Ontology of Processes. Ar-
tificial Intelligence for Engineering Design, Analysis and Manufacturing 21(4), 379-391
(2007). https://doi.org/10.1017/50890060407000340

7. Golberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley (1989)

8. Higgstrom, O.: Intelligent design and the NFL theorems. Biology & Philosophy 22(2), 217—
230 (2007)

https://doi.org/10.1109/ICIEA.2014.6931307
https://doi.org/10.1109/ICIEA.2014.6931307
https://doi.org/10.1017/S0890060407000340
https://doi.org/10.1017/S0890060407000340

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Zhao et al.

. Hazen, R.M., Griffin, PL., Carothers, J.M., Szostak, J.W.: Functional information

and the emergence of biocomplexity. Proceedings of the National Academy of Sci-
ences 104(suppl_1), 8574-8581 (2007). https://doi.org/10.1073/pnas.0701744104,
https://www.pnas.org/doi/abs/10.1073/pnas.0701744104

Hom, C., Maina-Kilaas, A., Ginta, K., Lay, C., Montafiez, G.D.: The Gopher’s Gambit:
Survival Advantages of Artifact-Based Intention Perception. In: Rocha, A.P., Steels, L.,
van den Herik, H.J. (eds.) Proceedings of the 13th International Conference on Agents and
Artificial Intelligence - Volume 1: ICAART. pp. 205-215. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010207502050215

Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303-317 (2005). https://doi.org/10.
1109/TEVC.2005.846356

Kamath, A., Zhao, J., Grisanti, N., Montafez, G.: The gopher grounds: Testing the link be-
tween structure and function in simple machines. In: Proceedings of the 14th International
Conference on Agents and Artificial Intelligence - Volume 2: ICAART. pp. 528-540. IN-
STICC, SciTePress (2022). https://doi.org/10.5220/0010900900003116

Krink, T., Filipic, B., Fogel, G.: Noisy optimization problems - a particular challenge for
differential evolution? In: Congress on Evolutionary Computation, 2004. (CEC 2004). vol. 1,
pp. 332 —339 Vol.1 (june 2004). https://doi.org/10.1109/CEC.2004.1330876
Maina-Kilaas, A., Hom, C., Ginta, K., Montafiez, G.D.: The Predator’s Purpose: Intention
Perception in Simulated Agent Environments. In: Evolutionary Computation (CEC), 2021
IEEE Congress on. IEEE (2021)

Maina-Kilaas, A., Montafiez, G.D., Hom, C., Ginta, K.: The Hero’s Dilemma: Survival Ad-
vantages of Intention Perception in Virtual Agent Games. In: 2021 IEEE Conference on
Games (IEEE CoG). IEEE (2021)

Mitchell, M.: An Introduction to Genetic Algorithms. MIT press (1998)

Montafiez, G.D.: A Unified Model of Complex Specified Information. BIO-Complexity
2018(4) (2018)

Reeves, C., Rowe, J.: Genetic Algorithms: Principles and Perspectives: A Guide to GA The-
ory. Kluwer Academic Pub (2002)

Then, T., Chong, E.: Genetic algorithms in Noisy Environment. In: Proceedings of 1994 9th
IEEE International Symposium on Intelligent Control. pp. 225-230 (1994). https://doi.
org/10.1109/ISIC.1994.367813

Vorhees, C., Williams, M.: Assessing spatial learning and memory in rodents. ILAR journal /
National Research Council, Institute of Laboratory Animal Resources 55, 310-32 (09 2014).
https://doi.org/10.1093/ilar/i1u013

Wang, S., Wang, M., Tai, K.: An enhanced genetic algorithm for structural topology op-
timization. International Journal for Numerical Methods in Engineering - INT] NUMER
METHOD ENG 65 (01 2006). https://doi.org/10.1002/nme.1435

Weibel, E.R.: Symmorphosis: On Form and Function in Shaping Life. Harvard University
Press (2000)

https://doi.org/10.1073/pnas.0701744104
https://doi.org/10.1073/pnas.0701744104
https://www.pnas.org/doi/abs/10.1073/pnas.0701744104
https://doi.org/10.5220/0010207502050215
https://doi.org/10.5220/0010207502050215
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.5220/0010900900003116
https://doi.org/10.5220/0010900900003116
https://doi.org/10.1109/CEC.2004.1330876
https://doi.org/10.1109/CEC.2004.1330876
https://doi.org/10.1109/ISIC.1994.367813
https://doi.org/10.1109/ISIC.1994.367813
https://doi.org/10.1109/ISIC.1994.367813
https://doi.org/10.1109/ISIC.1994.367813
https://doi.org/10.1093/ilar/ilu013
https://doi.org/10.1093/ilar/ilu013
https://doi.org/10.1002/nme.1435
https://doi.org/10.1002/nme.1435

	Generating the Gopher's Grounds: Form, Function, Order, and Alignment

