
Online Reinforcement Learning-Based Pedagogical Planning  
for Narrative-Centered Learning Environments 

Fahmid Morshed Fahid1, Jonathan Rowe1, Yeojin Kim1, 
Shashank Srivastava2, James Lester1 

1North Carolina State University 
2University of North Carolina Chapel Hill 

ffahid@ncsu.edu, jprowe@ncsu.edu, ykim32@ncsu.edu, ssrivastava@cs.unc.edu, lester@ncsu.edu 
 

 
Abstract 

Pedagogical planners can provide adaptive support to 
students in narrative-centered learning environments by 
dynamically scaffolding student learning and tailoring 
problem scenarios. Reinforcement learning (RL) is 
frequently used for pedagogical planning in narrative-
centered learning environments. However, RL-based 
pedagogical planning raises significant challenges due to the 
scarcity of data for training RL policies. Most prior work has 
relied on limited-size datasets and offline RL techniques for 
policy learning. Unfortunately, offline RL techniques do not 
support on-demand exploration and evaluation, which can 
adversely impact the quality of induced policies. To address 
the limitation of data scarcity and offline RL, we propose 
INSIGHT, an online RL framework for training data-driven 
pedagogical policies that optimize student learning in 
narrative-centered learning environments. The INSIGHT 
framework consists of three components: a narrative-
centered learning environment simulator, a simulated student 
agent, and an RL-based pedagogical planner agent, which 
uses a reward metric that is associated with effective student 
learning processes. The framework enables the generation of 
synthetic data for on-demand exploration and evaluation of 
RL-based pedagogical planning. We have implemented 
INSIGHT with OpenAI Gym for a narrative-centered 
learning environment testbed with rule-based simulated 
student agents and a deep Q-learning-based pedagogical 
planner. Our results show that online deep RL algorithms can 
induce near-optimal pedagogical policies in the INSIGHT 
framework, while offline deep RL algorithms only find 
suboptimal policies even with large amounts of data. 

 Introduction  
Narrative-centered learning environments utilize game 
engine technologies to create effective and engaging 
learning opportunities for students through interactive 
narratives with believable characters, plots, and immersive 
virtual worlds (Mayer 2019; Naul and Liu 2020). These 
environments can provide personalized pedagogical support 
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in terms of targeted feedback, hints, and explanations to 
foster enhanced learning in story-based problem-solving 
scenarios. Learning an effective pedagogical policy can be 
challenging as student behaviors and needs can vary, and 
there is no single pedagogical support that is appropriate for 
all circumstances. Pedagogical planning is the task of 
creating pedagogical plans for enacting a range of decisions, 
such as sequencing problems, intervening in problem-
solving, and offering explanations, feedback, and hints to 
support students’ learning (VanLehn 2006; Woolf 2008).  

Reinforcement learning (RL), a type of machine learning 
paradigm for sequential decision making that maximizes 
long-term reward (Sutton and Barto 2018), is well suited for 
pedagogical planning. However, RL relies on large amounts 
of data with rewards to learn optimal policies (Arulkumaran 
et al. 2017). Collecting students’ interaction data and 
learning experience data can be expensive as classroom 
studies typically involve a couple hundred students at most. 
Most prior work on RL-based pedagogical planning has 
relied on limited-sized datasets and offline RL (aka batch 
RL) (Singla et al. 2021), a special type of RL technique that 
uses prior data without further exploration to find optimal 
policies by estimating transitions and rewards.    

Although this approach has shown significant promise (Ju 
et al. 2022; Zhou et al. 2022), offline RL has limited 
capabilities in terms of learning and evaluating policies. 
With relatively small datasets and no exploration, offline RL 
can yield suboptimal policies (Prudencio et al. 2023). 
Moreover, the induced policies are typically evaluated using 
off-policy evaluation (OPE) techniques, which can produce 
unreliable and noisy results (Uehara, Shi, and Kallus 2022; 
Fu et al. 2021). An alternative approach is to train online 
RL-based policies (i.e., RL that leverages on-demand 
exploration and evaluation) using synthetic data by 
simulating student behaviors in the learning environment.  

In this work, we propose a reinforcement learning-based 
framework for pedagogical planning in narrative-centered 
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learning environments, Intelligent Narrative System for RL-
Based Interactive Guidance and Helpful Tutoring 
(INSIGHT). INSIGHT provides opportunities for devising 
pedagogical policies for narrative-centered learning 
environments using online RL techniques. INSIGHT 
consists of three components: (1) a simulator of a narrative-
centered learning environment that is deterministic and 
produces immediate rewards, (2) a simulated student agent 
that can interact with the simulator to generate synthetic 
data, and (3) an RL-based pedagogical planner agent that 
dynamically induces pedagogical policies by altering the 
problem-solving scenario and scaffolding of the learning 
environment simulator. The RL process is guided by a 
reward signal that is designed to reflect the quality of 
students’ learning experiences and, importantly, can be 
calculated directly based on observing a simulated student’s 
interactions with the simulated environment.  

We implemented INSIGHT as an OpenAI Gym 
(Brockman et al. 2016) environment that emulates a testbed 
narrative-centered learning environment for middle school 
microbiology education, CRYSTAL ISLAND (Rowe et al. 
2011). We used a previously validated in-game scores as the 
basis for calculating RL rewards and a rule-based simulated 
student agent to generate synthetic data for training RL-
based pedagogical planners. Using INSIGHT, we trained an 
online deep RL-based pedagogical planner with double deep 
Q-networks (DQN) (Van Hasselt, Guez, and Silver 2016) 
and compared it against multiple offline RL-based planners 
with varying sizes of training datasets. Results showed that 
the INSIGHT framework supports the use of online RL to 
find near-optimal pedagogical policies, whereas offline RL 
approaches, such as offline double DQN, batch-
conservative Q-learning (BCQ) (Fujimoto, Merger, and 
Precup 2019), and constrained Q-learning (CQL) (Kumar et 
al. 2020), induce suboptimal policies even with reasonably 
large training datasets.  

Related Work 
A wide range of computational approaches has been 
investigated for devising pedagogical policies in different 
learning environments. The most common approach is rule-
driven pedagogical planning where pedagogical support is 
provided based on expert-designed production rules such as 
event-driven rules, time-driven rules, score-based rules, and 
constraint-based rules (Azevedo et al. 2022; Johnson et al. 
2019; Lindberg and Laine 2018; Mitrovic and Ohlsson 
2016). Others investigated probabilistic reasoning 
(Hooshyar et al. 2021; Long and Aleven 2017; Shute et al. 
2021) and supervised learning (Munshi et al. 2022; Wiggins 
et al. 2015) for providing pedagogical support to students. 
However, these approaches require extensive expert 

knowledge, or they provide support based on immediate 
need without contextualizing long-term learning goals.  

Recent years have seen the use of RL as an alternative 
approach to devising effective pedagogical policies 
(Doroudi, Aleven, and Brunskill 2019; Singla et al. 2021). 
Much of the prior work on RL-based pedagogical planning 
has relied on offline RL approaches. For example, Cai et al. 
(2021) used offline multi-arm bandits with crowd-sourced 
data to learn a math-based pedagogical planner. Several 
studies found that immediate rewards can help with policy 
learning in terms of convergence and rewards in offline RL 
(Ausin et al. 2021; Azizsoltani et al. 2019; Fahid et al. 2022). 
Others investigated students’ agency in pedagogical 
decisions using offline RL (Ju et al. 2022). Some studies 
have investigated offline RL-based pedagogical planning in 
narrative-centered learning environments. Rowe et al. 
(2014) and Wang et al. (2016) investigated offline RL with 
modular architectures to induce pedagogical policies. 
Sawyer et al. (2017) used offline RL with multi-objective 
Markov decision processes (MDPs) to induce pedagogical 
policies that optimize students’ learning and engagement.  

In online RL-based pedagogical planning, early research 
relied on classical RL techniques such as policy iteration 
(Martin and Arroyo 2004) and value iterations (Iglesias et 
al. 2008) with simulated students. Other work has 
investigated deep RL techniques with online RL techniques. 
Mu et al. (2022) used deep knowledge tracing to generate 
synthetic data for online deep RL-based pedagogical 
planning. Similar approaches have been taken by others 
(Bassen et al. 2020; Zhang et al. 2022). Rafferty et al. (2016) 
used hand-designed student behaviors to devise an online 
RL-based pedagogical planner. Ruan et al. (2023) combined 
online and offline RL to induce pedagogical planners for a 
math learning environment. Wang et al. (2018) introduced 
bipartite LSTMs for inducing online deep RL-based 
pedagogical planners for narrative-centered learning 
environments by creating synthetic student interaction data 
and learning outcome data. Most of these approaches 
simulate student behaviors by directly estimating or hand-
designing transitions and rewards with minimal validation. 

There has been limited work investigating online RL-
based pedagogical planners for narrative-centered learning 
environments that emphasize the validity of the student 
interactions in the synthetic training data or the validity of 
the rewards used to guide the RL process. Our work presents 
a framework for online RL-based pedagogical planning in 
narrative-centered learning environments. 

INSIGHT Framework 
To learn effective RL-based pedagogical planners, we 
created INSIGHT, an online RL framework for narrative-
centered learning environments. INSIGHT includes three 
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components: 1) a narrative-centered learning environment 
simulator (henceforth referred to as the simulator), 2) a 
simulated student agent (henceforth referred to as the 
student agent), and 3) an RL-based pedagogical planner 
agent (henceforth referred to as the planner agent).  

The student agent and the planner agent are designed as 
modular components with their own internal states and 
decision policies (see Figure 1). The student agent can enact 
student actions (𝐴!"#$%&") in the simulator based on its own 
internal policy and current state to emulate a wide range of 
student learning behaviors. Similarly, the planner agent can 
perform a given set of planner actions (𝐴'()&&%*) based on 
its own internal policy and current state. In the simulator, 
the set of available actions for the student agent (𝐴!"#$%&") 
and the planner agent (𝐴'()&&%*) are determined by the rules 
of the narrative-centered learning environment. 

  The simulator incorporates in-game scores as rewards 
that reflect students’ learning in the learning environment. 
Typically, in-game score metrics are expert-designed, and 
prior work has shown that in-game scores can correlate with 
key learning processes and outcomes (Nietfeld, Shores, and 
Hoffmann 2014; Cheng, Lin, and She 2015; Westera et al. 
2019). In-game score serves as the basis for calculating 
immediate rewards for RL-based pedagogical planning in 
INSIGHT. Different student actions (𝐴!"#$%&") generate in-
game scores that are kept as a cumulative sum in a buffer as 
immediate rewards (see Figure 1). When control is given to 
the planner agent, these immediate rewards are provided to 
the planner to guide the RL process for inducing an effective 
pedagogical policy. As the task of the planner agent is to 
support students, no reward is gathered by the planner 
directly. For example, the planner may provide a hint 
suggesting that a student should perform a particular action, 
but the student is responsible for carrying out the action. 
These actions produce corresponding rewards (in-game 

score points), which are then provided to the planner to 
guide the policy learning.   

The simulator controls the game logic, along with the 
state of the game world, the transition rules, and the rewards 
in a manner that mirrors that of a narrative-centered learning 
environment; analogous to a digital twin (VanDerHorn and 
Mahadevan 2021). Moreover, the simulator introduces a 
level of abstraction over the gameplay mechanics, student 
actions, and planner actions while maintaining the original 
environment’s core gameplay design. For example, the 
simulator hides the actual time passed in the game by using 
an event-driven timeline. At each step, the simulator 
determines which agent (i.e., the student agent or the planner 
agent) control flow should be given to, the set of possible 
actions, and the current state of the game world. Either the 
student agent or the planner agent takes as input the current 
state of the game world, the set of possible actions, and any 
incremental rewards that have been accrued. The agent then 
selects an action according to its own internal policy and 
state. After an action is taken by an agent, the simulator 
validates the action, updates the game world, and produces 
a reward when available. Note that the state of the simulator 
and the rewards are deterministically calculated based on the 
student’s actions or the planner’s actions, and the simulator 
is responsible for ensuring that each transition and reward is 
valid in the learning environment. However, from the 
planner’s perspective, the behavior of the system is non-
deterministic and noisy. For example, two students in 
identical states can take different student actions and end up 
in different states (with different rewards) even though they 
received the same decisions from the pedagogical planner. 

Prototype Implementation of INSIGHT  
This section describes the implementation of the INSIGHT 
framework with a narrative-centered learning environment 
testbed for middle school microbiology education. First, we 
describe the implementation of INSIGHT, including the in-
game score metric and adaptable event sequences that are 
utilized to instantiate the pedagogical planning task. Next, 
we describe our student agent. Finally, we discuss the online 
RL-based pedagogical planning architecture. The complete 
implementation is made using the OpenAI Gym 
environment for rapid prototyping and experimentation.  

Testbed Learning Environment 
We implemented INSIGHT with a testbed narrative-centric 
learning environment based on the CRYSTAL ISLAND 
learning environment for middle school microbiology 
(Rowe et al. 2011). The testbed features a science mystery 
about an infectious outbreak on a remote island. Students 
play the role of a medical detective investigating the 
outbreak and are responsible for identifying the disease and 

Figure 1: INSIGHT Online RL-Based Pedagogical 
Planning Framework 
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its source of transmission in the virtual world (see Figure 2). 
The game randomizes the disease (between salmonella and 
influenza) and the transmission source (foodborne or 
airborne) at the start of the game. Students can move 
between different locations on the island, talk to different 
non-player characters (NPCs), read books and posters, 
collect different objects as samples, test them for possible 
contaminants using different testing kits (e.g., influenza test, 
food pathogen test), complete a diagnosis worksheet, and 
submit their diagnosis to attempt to solve the science 
mystery. These are the set of available student actions 
(𝐴!"#$%&"). There are total four locations (lab, infirmary, 
dining hall, and outdoors), four non-player characters (Kim, 
Teresa, Robert, Elise), 14 books and posters, 10 different 
objects, 7 diseases, and 5 different test kits. The problem-
solving scenario ends when the student finds the correct 
diagnosis or more than 200 timesteps have elapsed.  

In-Game Score 
CRYSTAL ISLAND’s in-game score is incremented after key 
in-game milestones are completed by students, and it is 

decremented when students make errors or enact 
unproductive learning behaviors during gameplay. The in-
game score metric was carefully designed and empirically 
validated in prior studies with middle school students; it was 
found to be correlated with student motivation and learning 
processes in CRYSTAL ISLAND (Rowe et al. 2010; Nietfeld, 
Shores, and Hoffmann 2014). The in-game score metric is 
designed to encourage effective learning strategies and 
penalize gaming-the-system. The reward model utilized in 
the prototype implementation of INSIGHT is lightly 
adapted from the in-game score metric in CRYSTAL ISLAND. 
Table 1 shows the in-game score metric that is used in 
INSIGHT’s learning environment simulator. 
 

Milestone Scores Recurring 
Submit correct  
diagnosis 

500 No 

Solution efficiency 7500/total timesteps No 
Incorrect diagnosis -100 Yes 
Correct test  
performed 

200 No 

Incorrect test  
performed 

-25 Yes 

Talk to Kim 15/elapsed timesteps No 
Talk to Teresa 40/elapsed timesteps No 
Talk to Elise 50/elapsed timesteps No 
Talk to Robert 50/elapsed timesteps No 

Table 1: Calculation of in-game score in the testbed 
narrative-centered learning environment. 

Adaptable Event Sequences 
At predefined points during gameplay, the learning 
environment can alter or not alter different components of 
the problem scenario or scaffolding in the learning 
environment. We call these decision points adaptive event 
sequences, or AESs (Rowe et al. 2014). The simulator used 

AES Student action triggers  Effect when AES is altered by pedagogical planner 
Story-Plot 
Adaptation 

Test an object in the lab The disease mutates to a seasonal variant of influenza. A 
newspaper is added to a virtual bulletin board that hints at the 
mutation. A specialized test kit is required to correctly identify the 
disease in this modified version of the narrative. 

Character-
Delivered 
Scaffolding 

Talk to Teresa (patient) 
in the infirmary 

Teresa reveals important information about the relevant test kit and 
the possible source of disease transmission.  

Tool-based 
scaffolding 

Open in-game diagnosis 
worksheet 
 

Provide additional direction about how to investigate the outbreak. 
Specifically, the student is prompted to speak to Teresa (patient) 
about her medical history and about collecting a nasal swab. 

Character-Behavior 
Directives 

Move to a location after 
story-plot adaptation 
was enacted  

Provide a virtual text message to the student that reinforces the 
potential for a seasonal mutation of the spreading virus. 

Table 2: Adaptable event sequences (AESs) in the prototype implementation of INSIGHT  

Figure 2: Testbed narrative-centered learning environment 
based on CRYSTAL ISLAND.  
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in this work features several pre-defined AESs, which serve 
as opportunities for dynamically altering students’ story-
based learning experiences during science problem solving. 
At each AES, there are two possible actions a pedagogical 
planner can take: 1) alter or 2) do not alter. Notably, AESs 
are designed to not interfere with the overall progression of 
the narrative. All possible choices by the pedagogical 
planner yield coherent interactive narratives that play out 
within the Crystal Island learning environment.  

Table 2 lists the four AESs in our prototype 
implementation. All AESs are triggered by a corresponding 
student action. All AESs can occur multiple times except for 
the Story Plot AES, which can recur until a decision to alter 
the plot (i.e., introduce a mutation to the disease) is enacted. 
Figure 2 shows an example where the pedagogical planner 
enacts a decision (altered Character-Delivered Scaffolding 
AES) by including a new dialogue option.  

Rule-Based Simulated Student Agent 
We devised a simple rule-based simulated student agent that 
follows a random walk-based student interaction policy (3 
rules for random interactions) combined with hand-designed 
reaction rules (4 rules for specific reactions to AES 
alterations with multiple sub-rules within them). These rules 
are governed by 6 features in students’ internal states. The 
student’s internal state consists of four features based on 
student actions (number of times the student asked about 
disease symptoms or medical history, the minimum number 
of times the student performed all actions, and current 
location of the transmission source) as well as two features 
denoting student individual differences: student skill (high 
or low) and motivation (high or low). Student skill and 
motivation are randomly assigned at the start of an episode 
and are kept constant during the episode. We designed the 
simulated student agent’s behavior to be reflective of 
common student learning behaviors observed in prior 
studies with CRYSTAL ISLAND (Rowe et al. 2010; Rowe et 
al. 2014). Designing data-driven simulated student agents 
using machine learning is a direction for future work.  

RL-Based Pedagogical Planner  
To learn an optimal policy in a complex environment, a 
common approach is to estimate the state-action value 
function 𝑄(𝑠, 𝑎) using a deep neural network (𝜃). The Q-
function represents the expected discounted reward 𝐺+ =
∑ 𝛾"𝑟"+
"  starting from state 𝑠" ∈ 𝑆, taking action 𝑎" ∈

𝐴'()&&%*, and following a policy 𝜋 where 𝛾 is the discount 
factor. This is known as a deep Q-network or DQN (Mnih 
et al. 2015). For our online RL-based pedagogical planner, 
we use double DQNs (Van Hasselt, Guez, and Silver 2016), 
a variant of DQNs that reduces the overestimation bias by 
separating the action selection and action evaluation 
components of the model into two separate networks, 

namely, a target network (𝜃̅) and an online network (𝜃). 
The following Bellman equation is used to induce an 
optimal 𝑄∗(𝑠" , 𝑎") function by iteratively sampling states, 
actions, and rewards from a finite experience buffer: 

𝑄(𝑠" , 𝑎") = 𝑟" +	
𝛾𝑄 4𝑠"-., 𝑎𝑟𝑔𝑚𝑎𝑥)!"#∈0$%&''()𝑄(𝑠"-., 𝑎"-.; 𝜃); 𝜃̅9 (1) 

States, Actions, and Rewards 
RL problems are typically defined using an MDP formalism 
with a state-action-reward paradigm. This section describes 
the MDP utilized for this work. 

State 𝑺: The state representation consists of 7 binary 
features and 6 numerical features. The binary features are 
student skill (high/low), transmission source location 
(backpack or not), knowing about mutation, and the type of 
AES that is triggered (four binary indicators). The numerical 
features are the number of times the student submitted a 
proposed solution, talked about symptoms, talked about 
medical history, learned about a possible disease mutation, 
the number of times each AES was altered, and the 
minimum number of times any one type of student action 
was performed across the entire student learning episode.  

Action 𝑨𝒑𝒍𝒂𝒏𝒏𝒆𝒓: Each time an AES is triggered, there are 
two distinct planner actions: alter and do not alter. These 
alternatives manifest as follows: 1) Story Plot Adaptation 
AES: the decision involves mutating the disease or not; 2) 
Character-Delivered Scaffolding AES: the decision pertains 
to providing or not providing a hint through one of the NPC; 
3) Tool-Based Scaffolding AES: the decision pertains to 
providing or not providing a hint through the in-game 
diagnosis worksheet; and 4) Character-Behavior Directive 
AES: the decision involves prompting or not prompting a 
character to send a virtual text message to the student about 
disease mutation. Although the alter/no-alter decision has 
different meanings based on the different AESs, we model 
them as unified actions under a single RL framework by 
incorporating the AES-trigger within the state features.  

Reward 𝑹: Immediate rewards are calculated by taking 
the cumulative change in the student's in-game score 
between the current planner action and the next planner 
action (or the end of the episode). This value is assigned as 
a reward to the current planner action. The rewards are 
calculated by taking the cumulative sum of in-game score 
points based on sequences of student actions. We ignore any 
rewards collected prior to the first planner action, as those 
rewards are irrelevant for pedagogical policy learning. 

Evaluation 
For all experiments, we keep the rule-based simulated 
student agent and the narrative-centered learning 
environment simulator fixed to generate synthetic data and 
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evaluate the induced pedagogical planning policies. The 
only component of the framework that is manipulated is the 
algorithm used to induce pedagogical planner policies. Also, 
to simulate different types of students, at the start of each 
episode we randomly selected a student skill level (from 
high/low) and student motivation level (from high/low). We 
evaluate pedagogical planning policies' performance every 
5,000 steps by simulating 100 episodes with 100 random 
rule-based student agents with the current policy. We report 
the mean of total rewards for each student. 

To evaluate the INSIGHT framework, we use double 
DQNs, as it provides stability in learning and converges 
more efficiently than vanilla DQNs. We utilize two hidden 
layers with 256 neurons, a learning rate of 0.0005, a discount 
factor of 0.99, a buffer size of 10,000, and a batch size of 
256. We update the target network after 1,000 steps. We use 
a 3-step temporal difference for Q-learning for better 
stability. We refer to this architecture simply as “DQN.” 

To compare the INSIGHT framework for inducing online 
RL-based pedagogical planners against offline RL 
techniques, we use offline versions of the same DQN 
architecture (offline DQN), along with constrained Q-
learning (offline CQL) and batch-constrained Q-learning 
(offline BCQ). We keep the network architectures and 
hyperparameters of the offline RL similar to the online 
DQNs. Additionally, for BCQ, we use the action-
constrained probability threshold 𝜏 = 0.3 and for CQL, we 
use constrained constant 𝛼 = 1. We explore training with 
100 episodes, 500 episodes, 1,000 episodes, and 5,000 
episodes of prior data (i.e., synthetic data sampled using a 
uniform random policy and rule-based student in INSIGHT) 
for each of the offline RL algorithms. For all experiments, 
we use the d3rlpy library (Seno and Imai 2022).  

We train all RL-based planners for 250,000 steps and 
repeat all experiments 10 times with different random seeds. 
To support the evaluation of  RL-based policies, we 

compare them to four baseline policies: 1) a hand-designed 
“optimal” policy which has a mean reward of 696 (green 
line), 2) a random policy which chooses actions from a 
uniform random distribution with a mean reward of -180 
(red dashed line), 3) an “always alter” policy with a mean 
reward of -19 (gray dotted line), and 4) an “always do not 
alter” policy with a mean reward of -298 (black dashed line).  

Results show that online DQN performs almost as well as 
the optimal policy with a mean reward of 636 (SD=72) and 
converges after approximately 150,000 steps (Figure 3).  
Comparing online DQNs to the offline versions of DQNs 
(Figure 3, left), we see that with 100 training episodes 
(orange), offline DQNs converge relatively quickly (around 
50,000 steps) but have the lowest mean reward of 150 
(SD=109). Increasing the number of training episodes to 500 
increases the overall reward to 392 (SD=116) and results in 
model convergence around 150,000 steps. Further 
increasing the dataset size improves performance, but the 
benefit is relatively small. For example, with 5,000 
episodes, policies converge to a mean reward of 498 
(SD=53). Note that this mean reward value is less than the 
mean reward obtained by online DQNs (636). 

Similarly, we compare online DQNs to offline BCQ 
(Figure 3, middle). As we can see, with 100 episodes, offline 
BCQ converges to a mean reward of 139 (SD=142), similar 
to the offline DQN model. With increasing dataset size, 
performance continues to improve. With 500 episodes, BCQ 
converges to a mean reward of 373 (SD=127). With a 
significantly larger dataset (i.e., 5,000 episodes), BCQ 
converges to a mean reward of 510 (SD=51). Once again, 
this is lower than the online DQN approach. 

Finally, when comparing online DQNs to offline CQL 
(Figure 3, right), we see similar trends. With 100 episodes 
(orange), CQL converges very early (around 10,000 steps) 
with a mean reward of 87 (SD=118). With increasing dataset 
size, improvements in performance are significant. For 

Figure 3: Comparing results of online double DQNs (DQN) against offline DQNs (left), offline BCQ (middle), and 
offline CQL (right) with varying sizes of training data. The green, red, gray, and black horizontal lines represent the 

optimal, random, always-alter, and always-do-not-alter policies, respectively. 
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example, 1,000 and 5,000 training episodes yield a mean 
reward of 405 (SD=62) and 444 (SD=96), respectively. 
Again, the performance of offline CQL is significantly 
lower than the online RL-based pedagogical planners. 

Discussion 
Results indicate that the INSIGHT framework shows 
substantial promise for learning and evaluating pedagogical 
planning policies with online RL techniques. We employed 
the INSIGHT framework to compare online RL-based 
pedagogical planners with offline RL-based planners, 
including some specifically crafted to address extrapolation 
errors associated with offline learning. Our findings indicate 
that offline RL algorithms can produce improved policies 
for pedagogical planning as more data becomes available. 
However, these improvements are not substantial when 
compared to the benefits of utilizing an online RL approach. 
The underlying reason for this is straightforward. Online 
RL-based planners have the advantage of utilizing a 
simulator to actively explore and exploit the environment to 
discover optimal policies. In contrast, offline RL-based 
planners rely on previously collected data, which may or 
may not contain sufficient samples of advantageous states 
and high-reward trajectories. It is interesting to note that 
offline DQNs demonstrate similar performance to CQL and 
BCQ when a sufficient amount of offline data is available 
(e.g., 5,000 episodes). This similarity could be attributed to 
the larger size dataset better representing the possible state-
action pairs encountered, reducing the chance for 
distribution mismatch and extrapolation errors (Prudencio et 
al. 2023). Moreover, we demonstrated that the INSIGHT 
framework allows direct evaluation of different policies 
with cumulative rewards without relying on limited data for 
estimating outcomes using OPE (Levine et al. 2020). 

The work presented in this study has several limitations. 
First, the use of a simplistic rule-based simulated student 
agent to learn and test pedagogical planner policies may not 
accurately reflect real human behaviors. However, the 
modular nature of the framework allows for improvements 
to the simulated student agent in future research. Second, the 
creation of the simulator involves abstracting certain low-
level game mechanics. It is possible that this type of 
abstraction may have unexpected implications. Third, 
although the reward metrics were previously found to 
correlate with students' learning experiences (Rowe et al. 
2010), it remains to be seen whether they robustly predict 
student learning in classroom implementations of CRYSTAL 
ISLAND integrated with a run-time RL-based planner. 
Moreover, rewards that correlate with students’ long-term 
learning do not guarantee that they correspond to good 
policies (Azizsoltani et al., 2019); AESs must be carefully 
designed and policies must be verified to ensure they are 

safe and appropriate for students.  Lastly, our evaluation for 
online RL-based pedagogical planning is limited to an 
investigation of double DQNs against three offline 
algorithms. It is possible that other offline algorithms, such 
as robust fitted Q-Iteration (Panaganti et al. 2022) could 
outperform double DQNs.  Future research should explore 
alternative online RL approaches for pedagogical planning 
in narrative-centered learning environments.  

Conclusion 
RL-based pedagogical planning shows significant promise 
for enhancing student learning and engagement in narrative-
centered learning environments. In this paper, we 
introduced INSIGHT, a multi-component online RL 
framework for inducing data-driven pedagogical planners in 
narrative-centered learning environments. INSIGHT 
leverages a learning environment simulator, a simulated 
student agent, and a pedagogical planner agent to emulate 
the process of a student receiving guidance from a 
pedagogical planner as they solve an interactive story-based 
problem scenario. By combining the framework with 
rewards that reflect effective student learning processes, we 
train an online RL-based pedagogical policy for a testbed 
narrative-centered learning environment.  

Results from a series of experiments show the 
effectiveness of the INSIGHT framework for inducing and 
evaluating online RL-based pedagogical planners for 
narrative-centered learning environments. We compared 
online RL-based planners against several offline RL-based 
planners. Findings revealed that online RL-based planners 
performed nearly as well as hand-designed optimal policies, 
while offline RL approaches achieved suboptimal results 
even with significantly large training datasets. This disparity 
can be attributed to online RL's ability to explore and exploit 
state-action pairs, which are often missed by offline RLs. 

This work provides several contributions, including the 
development of a modular framework for inducing and 
evaluating online RL-based pedagogical planners, the 
creation of a testbed RL-based pedagogical planning 
framework in OpenAI Gym, and an evaluation 
demonstrating the effectiveness of online RL-based 
planners. Directions for future research include enhancing 
the framework with more sophisticated reward models, 
exploring different designs of the student and planner 
agents, and investigating the application of INSIGHT in 
other narrative-centered learning environments. 
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