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Abstract

Pedagogical planners can provide adaptive support to
students in narrative-centered learning environments by
dynamically scaffolding student learning and tailoring
problem scenarios. Reinforcement learning (RL) is
frequently used for pedagogical planning in narrative-
centered learning environments. However, RL-based
pedagogical planning raises significant challenges due to the
scarcity of data for training RL policies. Most prior work has
relied on limited-size datasets and offline RL techniques for
policy learning. Unfortunately, oftline RL techniques do not
support on-demand exploration and evaluation, which can
adversely impact the quality of induced policies. To address
the limitation of data scarcity and offline RL, we propose
INSIGHT, an online RL framework for training data-driven
pedagogical policies that optimize student learning in
narrative-centered learning environments. The INSIGHT
framework consists of three components: a narrative-
centered learning environment simulator, a simulated student
agent, and an RL-based pedagogical planner agent, which
uses a reward metric that is associated with effective student
learning processes. The framework enables the generation of
synthetic data for on-demand exploration and evaluation of
RL-based pedagogical planning. We have implemented
INSIGHT with OpenAl Gym for a narrative-centered
learning environment testbed with rule-based simulated
student agents and a deep Q-learning-based pedagogical
planner. Our results show that online deep RL algorithms can
induce near-optimal pedagogical policies in the INSIGHT
framework, while offline deep RL algorithms only find
suboptimal policies even with large amounts of data.

Introduction

Narrative-centered learning environments utilize game
engine technologies to create effective and engaging
learning opportunities for students through interactive
narratives with believable characters, plots, and immersive
virtual worlds (Mayer 2019; Naul and Liu 2020). These
environments can provide personalized pedagogical support
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in terms of targeted feedback, hints, and explanations to
foster enhanced learning in story-based problem-solving
scenarios. Learning an effective pedagogical policy can be
challenging as student behaviors and needs can vary, and
there is no single pedagogical support that is appropriate for
all circumstances. Pedagogical planning is the task of
creating pedagogical plans for enacting a range of decisions,
such as sequencing problems, intervening in problem-
solving, and offering explanations, feedback, and hints to
support students’ learning (VanLehn 2006; Woolf 2008).

Reinforcement learning (RL), a type of machine learning
paradigm for sequential decision making that maximizes
long-term reward (Sutton and Barto 2018), is well suited for
pedagogical planning. However, RL relies on large amounts
of data with rewards to learn optimal policies (Arulkumaran
et al. 2017). Collecting students’ interaction data and
learning experience data can be expensive as classroom
studies typically involve a couple hundred students at most.
Most prior work on RL-based pedagogical planning has
relied on limited-sized datasets and offline RL (aka batch
RL) (Singla et al. 2021), a special type of RL technique that
uses prior data without further exploration to find optimal
policies by estimating transitions and rewards.

Although this approach has shown significant promise (Ju
et al. 2022; Zhou et al. 2022), offline RL has limited
capabilities in terms of learning and evaluating policies.
With relatively small datasets and no exploration, offline RL
can yield suboptimal policies (Prudencio et al. 2023).
Moreover, the induced policies are typically evaluated using
off-policy evaluation (OPE) techniques, which can produce
unreliable and noisy results (Uehara, Shi, and Kallus 2022;
Fu et al. 2021). An alternative approach is to train online
RL-based policies (i.e., RL that leverages on-demand
exploration and evaluation) using synthetic data by
simulating student behaviors in the learning environment.

In this work, we propose a reinforcement learning-based
framework for pedagogical planning in narrative-centered
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learning environments, Intelligent Narrative System for RL-
Based Interactive Guidance and Helpful Tutoring
(INSIGHT). INSIGHT provides opportunities for devising
pedagogical policies for narrative-centered learning
environments using online RL techniques. INSIGHT
consists of three components: (1) a simulator of a narrative-
centered learning environment that is deterministic and
produces immediate rewards, (2) a simulated student agent
that can interact with the simulator to generate synthetic
data, and (3) an RL-based pedagogical planner agent that
dynamically induces pedagogical policies by altering the
problem-solving scenario and scaffolding of the learning
environment simulator. The RL process is guided by a
reward signal that is designed to reflect the quality of
students’ learning experiences and, importantly, can be
calculated directly based on observing a simulated student’s
interactions with the simulated environment.

We implemented INSIGHT as an OpenAl Gym
(Brockman et al. 2016) environment that emulates a testbed
narrative-centered learning environment for middle school
microbiology education, CRYSTAL ISLAND (Rowe et al.
2011). We used a previously validated in-game scores as the
basis for calculating RL rewards and a rule-based simulated
student agent to generate synthetic data for training RL-
based pedagogical planners. Using INSIGHT, we trained an
online deep RL-based pedagogical planner with double deep
Q-networks (DQN) (Van Hasselt, Guez, and Silver 2016)
and compared it against multiple offline RL-based planners
with varying sizes of training datasets. Results showed that
the INSIGHT framework supports the use of online RL to
find near-optimal pedagogical policies, whereas offline RL
approaches, such as offline double DQN, batch-
conservative Q-learning (BCQ) (Fujimoto, Merger, and
Precup 2019), and constrained Q-learning (CQL) (Kumar et
al. 2020), induce suboptimal policies even with reasonably
large training datasets.

Related Work

A wide range of computational approaches has been
investigated for devising pedagogical policies in different
learning environments. The most common approach is rule-
driven pedagogical planning where pedagogical support is
provided based on expert-designed production rules such as
event-driven rules, time-driven rules, score-based rules, and
constraint-based rules (Azevedo et al. 2022; Johnson et al.
2019; Lindberg and Laine 2018; Mitrovic and Ohlsson
2016). Others investigated probabilistic reasoning
(Hooshyar et al. 2021; Long and Aleven 2017; Shute et al.
2021) and supervised learning (Munshi et al. 2022; Wiggins
et al. 2015) for providing pedagogical support to students.
However, these approaches require extensive expert
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knowledge, or they provide support based on immediate
need without contextualizing long-term learning goals.
Recent years have seen the use of RL as an alternative
approach to devising effective pedagogical policies
(Doroudi, Aleven, and Brunskill 2019; Singla et al. 2021).
Much of the prior work on RL-based pedagogical planning
has relied on offline RL approaches. For example, Cai et al.
(2021) used offline multi-arm bandits with crowd-sourced
data to learn a math-based pedagogical planner. Several
studies found that immediate rewards can help with policy
learning in terms of convergence and rewards in offline RL
(Ausin et al. 2021; Azizsoltani et al. 2019; Fahid et al. 2022).
Others investigated students’ agency in pedagogical
decisions using offline RL (Ju et al. 2022). Some studies
have investigated offline RL-based pedagogical planning in
narrative-centered learning environments. Rowe et al.
(2014) and Wang et al. (2016) investigated offline RL with
modular architectures to induce pedagogical policies.
Sawyer et al. (2017) used offline RL with multi-objective
Markov decision processes (MDPs) to induce pedagogical
policies that optimize students’ learning and engagement.
In online RL-based pedagogical planning, early research
relied on classical RL techniques such as policy iteration
(Martin and Arroyo 2004) and value iterations (Iglesias et
al. 2008) with simulated students. Other work has
investigated deep RL techniques with online RL techniques.
Mu et al. (2022) used deep knowledge tracing to generate
synthetic data for online deep RL-based pedagogical
planning. Similar approaches have been taken by others
(Bassen et al. 2020; Zhang et al. 2022). Rafferty et al. (2016)
used hand-designed student behaviors to devise an online
RL-based pedagogical planner. Ruan et al. (2023) combined
online and offline RL to induce pedagogical planners for a
math learning environment. Wang et al. (2018) introduced
bipartite LSTMs for inducing online deep RL-based
pedagogical planners for narrative-centered learning
environments by creating synthetic student interaction data
and learning outcome data. Most of these approaches
simulate student behaviors by directly estimating or hand-
designing transitions and rewards with minimal validation.
There has been limited work investigating online RL-
based pedagogical planners for narrative-centered learning
environments that emphasize the validity of the student
interactions in the synthetic training data or the validity of
the rewards used to guide the RL process. Our work presents
a framework for online RL-based pedagogical planning in
narrative-centered learning environments.

INSIGHT Framework

To learn effective RL-based pedagogical planners, we
created INSIGHT, an online RL framework for narrative-
centered learning environments. INSIGHT includes three
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Figure 1: INSIGHT Online RL-Based Pedagogical
Planning Framework

components: 1) a narrative-centered learning environment
simulator (henceforth referred to as the simulator), 2) a
simulated student agent (henceforth referred to as the
student agent), and 3) an RL-based pedagogical planner
agent (henceforth referred to as the planner agent).

The student agent and the planner agent are designed as
modular components with their own internal states and
decision policies (see Figure 1). The student agent can enact
student actions (Agtyqent) 0 the simulator based on its own
internal policy and current state to emulate a wide range of
student learning behaviors. Similarly, the planner agent can
perform a given set of planner actions (Apianner) based on
its own internal policy and current state. In the simulator,
the set of available actions for the student agent (Agtyqent)
and the planner agent (A,;anner) are determined by the rules
of the narrative-centered learning environment.

The simulator incorporates in-game scores as rewards
that reflect students’ learning in the learning environment.
Typically, in-game score metrics are expert-designed, and
prior work has shown that in-game scores can correlate with
key learning processes and outcomes (Nietfeld, Shores, and
Hoffmann 2014; Cheng, Lin, and She 2015; Westera et al.
2019). In-game score serves as the basis for calculating
immediate rewards for RL-based pedagogical planning in
INSIGHT. Different student actions (Ag¢y,qent) generate in-
game scores that are kept as a cumulative sum in a buffer as
immediate rewards (see Figure 1). When control is given to
the planner agent, these immediate rewards are provided to
the planner to guide the RL process for inducing an effective
pedagogical policy. As the task of the planner agent is to
support students, no reward is gathered by the planner
directly. For example, the planner may provide a hint
suggesting that a student should perform a particular action,
but the student is responsible for carrying out the action.
These actions produce corresponding rewards (in-game
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score points), which are then provided to the planner to
guide the policy learning.

The simulator controls the game logic, along with the
state of the game world, the transition rules, and the rewards
in a manner that mirrors that of a narrative-centered learning
environment; analogous to a digital twin (VanDerHorn and
Mahadevan 2021). Moreover, the simulator introduces a
level of abstraction over the gameplay mechanics, student
actions, and planner actions while maintaining the original
environment’s core gameplay design. For example, the
simulator hides the actual time passed in the game by using
an event-driven timeline. At each step, the simulator
determines which agent (i.e., the student agent or the planner
agent) control flow should be given to, the set of possible
actions, and the current state of the game world. Either the
student agent or the planner agent takes as input the current
state of the game world, the set of possible actions, and any
incremental rewards that have been accrued. The agent then
selects an action according to its own internal policy and
state. After an action is taken by an agent, the simulator
validates the action, updates the game world, and produces
areward when available. Note that the state of the simulator
and the rewards are deterministically calculated based on the
student’s actions or the planner’s actions, and the simulator
is responsible for ensuring that each transition and reward is
valid in the learning environment. However, from the
planner’s perspective, the behavior of the system is non-
deterministic and noisy. For example, two students in
identical states can take different student actions and end up
in different states (with different rewards) even though they
received the same decisions from the pedagogical planner.

Prototype Implementation of INSIGHT

This section describes the implementation of the INSIGHT
framework with a narrative-centered learning environment
testbed for middle school microbiology education. First, we
describe the implementation of INSIGHT, including the in-
game score metric and adaptable event sequences that are
utilized to instantiate the pedagogical planning task. Next,
we describe our student agent. Finally, we discuss the online
RL-based pedagogical planning architecture. The complete
implementation is made using the OpenAl Gym
environment for rapid prototyping and experimentation.

Testbed Learning Environment

We implemented INSIGHT with a testbed narrative-centric
learning environment based on the CRYSTAL ISLAND
learning environment for middle school microbiology
(Rowe et al. 2011). The testbed features a science mystery
about an infectious outbreak on a remote island. Students
play the role of a medical detective investigating the
outbreak and are responsible for identifying the disease and
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Figure 2: Testbed narrative-centered learning environment
based on CRYSTAL ISLAND.

its source of transmission in the virtual world (see Figure 2).
The game randomizes the disease (between salmonella and
influenza) and the transmission source (foodborne or
airborne) at the start of the game. Students can move
between different locations on the island, talk to different
non-player characters (NPCs), read books and posters,
collect different objects as samples, test them for possible
contaminants using different testing kits (e.g., influenza test,
food pathogen test), complete a diagnosis worksheet, and
submit their diagnosis to attempt to solve the science
mystery. These are the set of available student actions
(Agtudgent)- There are total four locations (lab, infirmary,
dining hall, and outdoors), four non-player characters (Kim,
Teresa, Robert, Elise), 14 books and posters, 10 different
objects, 7 diseases, and 5 different test kits. The problem-
solving scenario ends when the student finds the correct
diagnosis or more than 200 timesteps have elapsed.

In-Game Score

CRYSTAL ISLAND’s in-game score is incremented after key
in-game milestones are completed by students, and it is

decremented when students make errors or enact
unproductive learning behaviors during gameplay. The in-
game score metric was carefully designed and empirically
validated in prior studies with middle school students; it was
found to be correlated with student motivation and learning
processes in CRYSTAL ISLAND (Rowe et al. 2010; Nietfeld,
Shores, and Hoffmann 2014). The in-game score metric is
designed to encourage effective learning strategies and
penalize gaming-the-system. The reward model utilized in
the prototype implementation of INSIGHT is lightly
adapted from the in-game score metric in CRYSTAL ISLAND.
Table 1 shows the in-game score metric that is used in
INSIGHT’s learning environment simulator.

Milestone Scores Recurring
Submit correct 500 No
diagnosis

Solution efficiency  7500/total timesteps ~ No
Incorrect diagnosis  -100 Yes
Correct test 200 No
performed

Incorrect test -25 Yes
performed

Talk to Kim 15/elapsed timesteps  No
Talk to Teresa 40/elapsed timesteps  No
Talk to Elise 50/elapsed timesteps  No
Talk to Robert 50/elapsed timesteps  No

Table 1: Calculation of in-game score in the testbed
narrative-centered learning environment.

Adaptable Event Sequences

At predefined points during gameplay, the learning
environment can alter or not alter different components of
the problem scenario or scaffolding in the learning
environment. We call these decision points adaptive event
sequences, or AESs (Rowe et al. 2014). The simulator used

AES Student action triggers  Effect when AES is altered by pedagogical planner

Story-Plot Test an object in the lab ~ The disease mutates to a seasonal variant of influenza. A

Adaptation newspaper is added to a virtual bulletin board that hints at the
mutation. A specialized test kit is required to correctly identify the
disease in this modified version of the narrative.

Character- Talk to Teresa (patient) Teresa reveals important information about the relevant test kit and

Delivered in the infirmary the possible source of disease transmission.

Scaffolding

Tool-based Open in-game diagnosis ~ Provide additional direction about how to investigate the outbreak.

scaffolding worksheet Specifically, the student is prompted to speak to Teresa (patient)

about her medical history and about collecting a nasal swab.

Move to a location after
story-plot adaptation
was enacted

Character-Behavior
Directives

Provide a virtual text message to the student that reinforces the
potential for a seasonal mutation of the spreading virus.

Table 2: Adaptable event sequences (AESs) in the prototype implementation of INSIGHT
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in this work features several pre-defined AESs, which serve
as opportunities for dynamically altering students’ story-
based learning experiences during science problem solving.
At each AES, there are two possible actions a pedagogical
planner can take: 1) alter or 2) do not alter. Notably, AESs
are designed to not interfere with the overall progression of
the narrative. All possible choices by the pedagogical
planner yield coherent interactive narratives that play out
within the Crystal Island learning environment.

Table 2 lists the four AESs in our prototype
implementation. All AESs are triggered by a corresponding
student action. All AESs can occur multiple times except for
the Story Plot AES, which can recur until a decision to alter
the plot (i.e., introduce a mutation to the disease) is enacted.
Figure 2 shows an example where the pedagogical planner
enacts a decision (altered Character-Delivered Scaffolding
AES) by including a new dialogue option.

Rule-Based Simulated Student Agent

We devised a simple rule-based simulated student agent that
follows a random walk-based student interaction policy (3
rules for random interactions) combined with hand-designed
reaction rules (4 rules for specific reactions to AES
alterations with multiple sub-rules within them). These rules
are governed by 6 features in students’ internal states. The
student’s internal state consists of four features based on
student actions (number of times the student asked about
disease symptoms or medical history, the minimum number
of times the student performed all actions, and current
location of the transmission source) as well as two features
denoting student individual differences: student skill (high
or low) and motivation (high or low). Student skill and
motivation are randomly assigned at the start of an episode
and are kept constant during the episode. We designed the
simulated student agent’s behavior to be reflective of
common student learning behaviors observed in prior
studies with CRYSTAL ISLAND (Rowe et al. 2010; Rowe et
al. 2014). Designing data-driven simulated student agents
using machine learning is a direction for future work.

RL-Based Pedagogical Planner

To learn an optimal policy in a complex environment, a
common approach is to estimate the state-action value
function Q(s, a) using a deep neural network (8). The Q-
function represents the expected discounted reward G =

Tytr, starting from state s, €S, taking action a, €
Apianner» and following a policy w where y is the discount
factor. This is known as a deep Q-network or DQN (Mnih
et al. 2015). For our online RL-based pedagogical planner,
we use double DQNs (Van Hasselt, Guez, and Silver 2016),
a variant of DQNs that reduces the overestimation bias by
separating the action selection and action evaluation
components of the model into two separate networks,
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namely, a target network (8) and an online network ().

The following Bellman equation is used to induce an

optimal Q*(s;, a;) function by iteratively sampling states,

actions, and rewards from a finite experience buffer:
Q(spar) =1+

14% (St+1' argmaxaHleAplannerQ(st+1' aip1;0); 9)

(1)

States, Actions, and Rewards

RL problems are typically defined using an MDP formalism
with a state-action-reward paradigm. This section describes
the MDP utilized for this work.

State S: The state representation consists of 7 binary
features and 6 numerical features. The binary features are
student skill (high/low), transmission source location
(backpack or not), knowing about mutation, and the type of
AES that is triggered (four binary indicators). The numerical
features are the number of times the student submitted a
proposed solution, talked about symptoms, talked about
medical history, learned about a possible disease mutation,
the number of times each AES was altered, and the
minimum number of times any one type of student action
was performed across the entire student learning episode.

Action Ay anner: Each time an AES is triggered, there are
two distinct planner actions: alter and do not alter. These
alternatives manifest as follows: 1) Story Plot Adaptation
AES: the decision involves mutating the disease or not; 2)
Character-Delivered Scaffolding AES: the decision pertains
to providing or not providing a hint through one of the NPC;
3) Tool-Based Scaffolding AES: the decision pertains to
providing or not providing a hint through the in-game
diagnosis worksheet; and 4) Character-Behavior Directive
AES: the decision involves prompting or not prompting a
character to send a virtual text message to the student about
disease mutation. Although the alter/no-alter decision has
different meanings based on the different AESs, we model
them as unified actions under a single RL framework by
incorporating the AES-trigger within the state features.

Reward R: Immediate rewards are calculated by taking
the cumulative change in the student's in-game score
between the current planner action and the next planner
action (or the end of the episode). This value is assigned as
a reward to the current planner action. The rewards are
calculated by taking the cumulative sum of in-game score
points based on sequences of student actions. We ignore any
rewards collected prior to the first planner action, as those
rewards are irrelevant for pedagogical policy learning.

Evaluation

For all experiments, we keep the rule-based simulated
student agent and the narrative-centered learning
environment simulator fixed to generate synthetic data and



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

600

400

400

200 200

reward
reward

OfflineDQN_100
- OfflineDQN_500
-- OfflineDQN_1000
OfflineDQN_5000

___________

=200 -200

50000

100000 150000 50000

step

200000 250000

100000

step

600

200

reward

i
o Bad POLICY
.5;1 ......................... DON
OfflineBCQ_100 I OfflineCQL_100
OffineBCQ_500  py  —p-m=mmmmmmmmmmr > OfflineCQL_500

-200

- OfflineBCQ_1000
OfflineBCQ_5000

- OfflineCQL_1000
OfflineCQL_5000

150000 200000 250000 50000 100000

step

150000 200000 250000

Figure 3: Comparing results of online double DQNs (DQN) against offline DQNs (left), offline BCQ (middle), and
offline CQL (right) with varying sizes of training data. The green, red, gray, and black horizontal lines represent the
optimal, random, always-alter, and always-do-not-alter policies, respectively.

evaluate the induced pedagogical planning policies. The
only component of the framework that is manipulated is the
algorithm used to induce pedagogical planner policies. Also,
to simulate different types of students, at the start of each
episode we randomly selected a student skill level (from
high/low) and student motivation level (from high/low). We
evaluate pedagogical planning policies' performance every
5,000 steps by simulating 100 episodes with 100 random
rule-based student agents with the current policy. We report
the mean of total rewards for each student.

To evaluate the INSIGHT framework, we use double
DQNs, as it provides stability in learning and converges
more efficiently than vanilla DQNs. We utilize two hidden
layers with 256 neurons, a learning rate of 0.0005, a discount
factor of 0.99, a buffer size of 10,000, and a batch size of
256. We update the target network after 1,000 steps. We use
a 3-step temporal difference for Q-learning for better
stability. We refer to this architecture simply as “DQN.”

To compare the INSIGHT framework for inducing online
RL-based pedagogical planners against offline RL
techniques, we use offline versions of the same DQN
architecture (offline DQN), along with constrained Q-
learning (offline CQL) and batch-constrained Q-learning
(offline BCQ). We keep the network architectures and
hyperparameters of the offline RL similar to the online
DQNs. Additionally, for BCQ, we use the action-
constrained probability threshold T = 0.3 and for CQL, we
use constrained constant @ = 1. We explore training with
100 episodes, 500 episodes, 1,000 episodes, and 5,000
episodes of prior data (i.e., synthetic data sampled using a
uniform random policy and rule-based student in INSIGHT)
for each of the offline RL algorithms. For all experiments,
we use the d3rlpy library (Seno and Imai 2022).

We train all RL-based planners for 250,000 steps and
repeat all experiments 10 times with different random seeds.
To support the evaluation of RL-based policies, we
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compare them to four baseline policies: 1) a hand-designed
“optimal” policy which has a mean reward of 696 (green
line), 2) a random policy which chooses actions from a
uniform random distribution with a mean reward of -180
(red dashed line), 3) an “always alter” policy with a mean
reward of -19 (gray dotted line), and 4) an “always do not
alter” policy with a mean reward of -298 (black dashed line).

Results show that online DQN performs almost as well as
the optimal policy with a mean reward of 636 (SD=72) and
converges after approximately 150,000 steps (Figure 3).
Comparing online DQNs to the offline versions of DQNs
(Figure 3, left), we see that with 100 training episodes
(orange), offline DQN's converge relatively quickly (around
50,000 steps) but have the lowest mean reward of 150
(SD=109). Increasing the number of training episodes to 500
increases the overall reward to 392 (SD=116) and results in
model convergence around 150,000 steps. Further
increasing the dataset size improves performance, but the
benefit is relatively small. For example, with 5,000
episodes, policies converge to a mean reward of 498
(SD=53). Note that this mean reward value is less than the
mean reward obtained by online DQNs (636).

Similarly, we compare online DQNs to offline BCQ
(Figure 3, middle). As we can see, with 100 episodes, offline
BCQ converges to a mean reward of 139 (SD=142), similar
to the offline DQN model. With increasing dataset size,
performance continues to improve. With 500 episodes, BCQ
converges to a mean reward of 373 (SD=127). With a
significantly larger dataset (i.e., 5,000 episodes), BCQ
converges to a mean reward of 510 (SD=51). Once again,
this is lower than the online DQN approach.

Finally, when comparing online DQNs to offline CQL
(Figure 3, right), we see similar trends. With 100 episodes
(orange), CQL converges very early (around 10,000 steps)
with a mean reward of 87 (SD=118). With increasing dataset
size, improvements in performance are significant. For
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example, 1,000 and 5,000 training episodes yield a mean
reward of 405 (SD=62) and 444 (SD=96), respectively.
Again, the performance of offline CQL is significantly
lower than the online RL-based pedagogical planners.

Discussion

Results indicate that the INSIGHT framework shows
substantial promise for learning and evaluating pedagogical
planning policies with online RL techniques. We employed
the INSIGHT framework to compare online RL-based
pedagogical planners with offline RL-based planners,
including some specifically crafted to address extrapolation
errors associated with offline learning. Our findings indicate
that offline RL algorithms can produce improved policies
for pedagogical planning as more data becomes available.
However, these improvements are not substantial when
compared to the benefits of utilizing an online RL approach.
The underlying reason for this is straightforward. Online
RL-based planners have the advantage of utilizing a
simulator to actively explore and exploit the environment to
discover optimal policies. In contrast, offline RL-based
planners rely on previously collected data, which may or
may not contain sufficient samples of advantageous states
and high-reward trajectories. It is interesting to note that
offline DQN's demonstrate similar performance to CQL and
BCQ when a sufficient amount of offline data is available
(e.g., 5,000 episodes). This similarity could be attributed to
the larger size dataset better representing the possible state-
action pairs encountered, reducing the chance for
distribution mismatch and extrapolation errors (Prudencio et
al. 2023). Moreover, we demonstrated that the INSIGHT
framework allows direct evaluation of different policies
with cumulative rewards without relying on limited data for
estimating outcomes using OPE (Levine et al. 2020).

The work presented in this study has several limitations.
First, the use of a simplistic rule-based simulated student
agent to learn and test pedagogical planner policies may not
accurately reflect real human behaviors. However, the
modular nature of the framework allows for improvements
to the simulated student agent in future research. Second, the
creation of the simulator involves abstracting certain low-
level game mechanics. It is possible that this type of
abstraction may have unexpected implications. Third,
although the reward metrics were previously found to
correlate with students' learning experiences (Rowe et al.
2010), it remains to be seen whether they robustly predict
student learning in classroom implementations of CRYSTAL
ISLAND integrated with a run-time RL-based planner.
Moreover, rewards that correlate with students’ long-term
learning do not guarantee that they correspond to good
policies (Azizsoltani et al., 2019); AESs must be carefully
designed and policies must be verified to ensure they are
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safe and appropriate for students. Lastly, our evaluation for
online RL-based pedagogical planning is limited to an
investigation of double DQNs against three offline
algorithms. It is possible that other offline algorithms, such
as robust fitted Q-Iteration (Panaganti et al. 2022) could
outperform double DQNs. Future research should explore
alternative online RL approaches for pedagogical planning
in narrative-centered learning environments.

Conclusion

RL-based pedagogical planning shows significant promise
for enhancing student learning and engagement in narrative-
centered learning environments. In this paper, we
introduced INSIGHT, a multi-component online RL
framework for inducing data-driven pedagogical planners in
narrative-centered  learning  environments. INSIGHT
leverages a learning environment simulator, a simulated
student agent, and a pedagogical planner agent to emulate
the process of a student receiving guidance from a
pedagogical planner as they solve an interactive story-based
problem scenario. By combining the framework with
rewards that reflect effective student learning processes, we
train an online RL-based pedagogical policy for a testbed
narrative-centered learning environment.

Results from a series of experiments show the
effectiveness of the INSIGHT framework for inducing and
evaluating online RL-based pedagogical planners for
narrative-centered learning environments. We compared
online RL-based planners against several offline RL-based
planners. Findings revealed that online RL-based planners
performed nearly as well as hand-designed optimal policies,
while offline RL approaches achieved suboptimal results
even with significantly large training datasets. This disparity
can be attributed to online RL's ability to explore and exploit
state-action pairs, which are often missed by offline RLs.

This work provides several contributions, including the
development of a modular framework for inducing and
evaluating online RL-based pedagogical planners, the
creation of a testbed RL-based pedagogical planning
framework in OpenAl Gym, and an evaluation
demonstrating the effectiveness of online RL-based
planners. Directions for future research include enhancing
the framework with more sophisticated reward models,
exploring different designs of the student and planner
agents, and investigating the application of INSIGHT in
other narrative-centered learning environments.
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