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Owing to the heterogeneity of exosomes in size and biomolecular composition, there is a need for new

approaches for trapping, manipulating, and sorting of single exosomes in solution. Due to their small size

ranging from 30 nm to 150 nm and their relatively low refractive index, their stable trapping using optical

tweezers has been met with challenges. Trapping exosomes in an optical trap requires nearly 100 mW of

input power, which predisposes them to photo-induced damage and membrane rupture at the laser

focus. Here, we report a high stability opto-thermo-electrohydrodynamic tweezer for the stable stand-

off trapping of single exosomes based on a concentric nanohole array (CNA) using laser illumination and

an a.c. ûeld. The CNA system generates two regions of electrohydrodynamic potentials several microns

away from the laser focus where single exosomes are trapped. We demonstrate the rapid trapping within

seconds, and selective dynamic manipulation of exosomes based on size using only 4.2 mW of input

laser power. The proposed platform opens up a promising approach for stabilizing single exosomes in

solution and controlling their distribution based on size without the risk of photo-induced damage.

Introduction

The stable trapping of single biological particles against Brow-

nian motion within an observation volume is crucial to under-

stand their biophysical and biochemical properties on an

individual particle level.1–7 Exosomes are membrane-delimited

nanoscale extracellular vesicles (EVs) secreted by cells that

contain important biological information molecules including

proteins, lipids and nucleic acids, and thus serve as potential

biomarkers for noninvasive cancer detection.8–10 They are

released when multivesicular body fuses with the cell plasma

membrane.11,12 The ability to analyse exosomes in low concen-

tration media using small sample volumes is important for

early-stage disease detection and prognosis.13–15 Also, due to the

heterogeneity of exosomes both in size and biomolecular

compositions,16–18 the ability to achieve single exosome trapping

and analysis is crucial to understanding their properties on an

individual particle level. However, exosomes are very small

biological particles measuring only 30 nm to 150 nm in diam-

eter,10 which results in strong Brownian motion that makes

their stable trapping in solution challenging. While

conventional optical tweezers can trap and manipulate single

bio-particle of micron-size, such as bacteria or cells,19,20 they are

unable to address nanoscale biological particles like exosomes

with low optical powers due to the diffraction limit. Studies

have shown that to trap single nanosized exosomes in solution

with optical tweezers requires nearly 100 mW of incident

power,21–24 which poses the risk of irreversible photothermal

damage, such as membrane rupture, photo-toxicity or thermal

stress,25,26 to delicate bio-particles. Plasmonic nano-tweezers,

alternatively, are invented to handle nanometric particles27–31

due to the tighter light connement resulting from plasmonic

resonance. One vital issue with conventional plasmonic nano-

tweezers is that plasmonic resonators are always fabricated on

a substrate, which prohibits dynamic manipulation of particles

with the same exibility as optical tweezers. Active colloidal

tweezers have been proposed to solve this problem based on

a ‘tweezer in a tweezer’ conguration.32,33 However, they require

complicated fabrication techniques and do not offer the same

level of exibility in the design of the plasmonic elements in

comparison with lithographic fabrication. Moreover, in plas-

monic nano-tweezers, the transport of particles towards the

electromagnetic hotspot relies on slow and nondeterministic

diffusion, making the conventional plasmonic nano-tweezers

unsuitable to a low particle concentration environment. To

overcome the time-consuming particle-loading challenge, elec-

trothermoplasmonic tweezers have been demonstrated to ach-

ieve fast particle transport by taking advantage of photo-

induced heating.26,34,35 However, the temperature rise at the

trapping site must be managed.

aElectrical and Computer Engineering Department, Vanderbilt University, Nashville,

TN, 37212, USA. E-mail: justus.ndukaife@vanderbilt.edu

bVanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University,

Nashville, TN, 37212, USA

cInterdisciplinary Material Science, Vanderbilt University, Nashville, TN, 37212, USA

† Electronic supplementary information (ESI) available. See DOI:

https://doi.org/10.1039/d3na00101f

Cite this:Nanoscale Adv., 2023, 5, 2973

Received 13th February 2023

Accepted 3rd May 2023

DOI: 10.1039/d3na00101f

rsc.li/nanoscale-advances

© 2023 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2023, 5, 2973–2978 | 2973

Nanoscale
Advances

PAPER

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

4
 M

ay
 2

0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 4

/1
5
/2

0
2
4
 6

:3
3
:1

3
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online
View Journal  | View Issue



In an earlier work, we established a safe and rapid platform

for trapping single nanoscale objects in low-concentration

media called opto-thermo-electrohydrodynamics-tweezer

(OTET).26 In the OTET platform, a nanoparticle is trapped

outside a square nanohole array and is dynamically manipu-

lated by moving laser spot on the nanohole array. In this work,

we have advanced the OTET platform by tailoring the topology

of nanohole array into a concentric nanohole array (CNA)

pattern to create two trapping sites, namely site I and site II as

shown in Fig. 1(a). In this way, we increase the trapping stability

in site II, while keeping the properties of stand-off trapping, fast

particle transport, and dynamic manipulation. Interestingly, we

experimentally demonstrate the trapping of exosomes at

different locations based on their sizes. Therefore, our new

platform provides the opportunity for spatially-resolved single-

exosome trapping and on-chip analysis at low-concentration

levels in real time.

Experimental

The CNA platform is composed of a 120 nm gold lm on a oat-

glass substrate, where the gold lm is patterned with

a concentric nanohole array (CNA), as shown in Fig. 1(a) and (b).

The inner circle has a diameter of 30 mm, the gap size is 20 mm,

and the ring width is set to 20 mm. The nanohole array is opti-

mized to have a 680 nm lattice constant and 130 nm in nano-

hole radius, as depicted in Fig. 1(c). Large or small-size

exosomes can be trapped in site I together, while small-size

exosomes can be transferred into site II under certain a.c.

frequencies. As depicted in Fig. 1(d), both 973 nm laser and a.c.

electric eld need to be switched on so that we are able to

observe the trapping of uorescently labeled exosomes. We

attribute this trapping to the balance between two opposing

microuidic ows, i.e. a.c. electro-osmotic (ACEO) ow and

electrothermoplasmonic (ETP) ow.26 As shown in Fig. 1(d), an

a.c. electric eld is applied perpendicular to the gold lm using

the patterned lm as one of the electrodes. The nanohole

pattern distorts the applied a.c. electric eld, creating tangen-

tial components near the surface of the gold lm. The tangen-

tial components of electric eld then exert coulombic forces on

the ions and charges in the electric double layer near the gold

lm. The moving ions and charges form a directional uidic

motion near the surface, which is called a.c. electro-osmotic

ow. This osmotic ow is moving in a direction away from

the nanohole array and repels particles out of the nanohole

array region.

Furthermore, an ETP ow is generated by the laser-induced

heating of the nanohole array and the applied a.c. electric eld.

Laser illumination efficiently produces local temperature rise

due to the plasmonic resonance of the nanohole array.36

Fig. 2(a) shows the electric eld prole at the top surface of one

unit-cell of the nanohole array. It clearly shows the light eld is

concentrated near the fringe region of the nanohole, as well as

the region in-between the nanoholes due to electromagnetic

coupling. This in turn improves the photothermal conversion

efficiency of the nanohole array under the 973 nm laser illu-

mination. We also plot the simulated reection and absorption

spectrum in Fig. 2(b) to show an enhanced absorption at

973 nm. The simulated temperature prole on top of the gold

lm is provided in Fig. 2(c). It shows a peak local temperature

rise of 24 K under a laser illumination intensity of 3 × 109 W

m−2. We note that the temperature rises at the trapping sites I

and II is negligible. Due to this thermal gradient, a body force is

generated in the uid element under the application of an a.c.

electric eld.37 This body force drives a vortex-like uidic

motion called electrothermoplasmonic ow inside the micro-

uidic channel.34,38 Near the gold lm, the ETP ow moves

towards the hot region, where the laser is illuminated. The two

opposing ows, namely ETP and ACEO ows establish the

stagnation zones where the in-plane velocity goes to zero,

dening where the exosomes are trapped.

Fig. 2(d)–(f) illustrates the simulated in-plane microuidic

ow eld distribution near the gold lm surface. In Fig. 2(d),

the arrows represent the total local in-plane ow (ACEO + ETP)

direction. The details of the governing equations for the

numerical simulations can be found in our previously pub-

lished article.26 As highlighted in the red box (labeled site I), the

opposing inward ETP and outward ACEO ows meet and create

the stagnation zone outside the CNA pattern. The highlighted

yellow box (labeled site II) indicates the existence of another

available trapping position besides site I. Since site II is sand-

wiched by two nanohole arrays, particles at site II experience the

ACEO ows coming from both the inner and outer nanohole

array as well as the inward ETP ow. Fig. 2(e) and (f) show the

2D simulated in-plane total ow velocities versus radial distance

for both trapping sites II and I, respectively, with the radially

Fig. 1 (a) Schematic illustration of concentric nanohole array (CAN)

system. Laser is illuminated at the center of the CNA. a.c electric ûeld is

applied perpendicular to the gold ûlm. Exosomes (shown in purple) are

rapidly transported and trapped. Letters I and II indicate two sites

available for trapping. (b) Scanning electron microscopy (SEM) image

of template-stripped patterned gold ûlm. (c) The zoomed-in image of

part of the template-stripped nanohole array. (d) The experimental

light path for trapping and imaging the üuorescently labeled exo-

somes. DM1 and DM2 are dichroic mirrors. DM1 reüects the 973 nm

trapping laser towards the sample but blocks it from entering the

camera. DM2 reüects the excitation of üuorescence towards the

sample but only allows the emitted light to pass through and be

collected by the CMOS camera.

2974 | Nanoscale Adv., 2023, 5, 2973–2978 © 2023 The Author(s). Published by the Royal Society of Chemistry

Nanoscale Advances Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

4
 M

ay
 2

0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 4

/1
5
/2

0
2
4
 6

:3
3
:1

3
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



outward direction dened as positive. The radial positions

where the velocities go to zero in Fig. 2(e) and (f) depict the

stagnation zones, which correspond to the trapping positions.

The connement along the out-of-plane direction is because of

the particle–surface interaction, which describes the attractive

force between the surface charge on a particle close to the

surface and its image charge inside the conducting lm.39

For the experimental demonstrations, we adapted a combi-

nation of electron beam lithography and the template stripping

method40,41 to fabricate the patterned gold lm. The detailed

fabrication process is provided in the ESI† section. The fabri-

cated gold lm was then covered by an Indium–Tin–Oxide (ITO)

coated glass cover slip but separated by a dielectric spacer (120

mm) to create a microuidic channel. Subsequently, diluted

exosome solution was injected into the microuidic channel

using a syringe. A 973 nm wavelength laser is focused onto the

center of the CNA using a water-immersion objective lens (60×)

with a numerical aperture of 1.2. Alternating current (a.c.)

electric voltage is applied across the microuidic channel to

give a eld strength of 83 333 V m−1.

The experimental demonstration of trapping single exo-

somes is conducted using diluted commercial FITC-conjugated

exosomes solution (Creative Diagnostics). The nal concentra-

tion of exosomes is diluted to 1.8 × 105 particles per mL.

Fig. 3(a) shows a frame-by-frame sequence of the rapid trans-

port, trapping, sorting and spatially-resolved size-based sepa-

ration of exosomes. Starting from a vacant system with a laser

spot focused at the center and the a.c. electric eld being off, no

exosome is observed to be trapped. Immediately aer the a.c.

eld is turned on at a frequency of 1.5 kHz, exosomes are rapidly

transported by ETP ow to site I and trapped within 2 seconds.

Due to the low a.c. frequency eld of 1.5 kHz, the radially

outward ACEO ow in the CNA is strong enough to preclude

exosomes from entering site II. Thus, at this frequency, all the

exosomes are trapped at the external periphery of the CNA

system (namely site I). Subsequently, the a.c. frequency is tuned

up to 3.5 kHz and the smaller exosomes (circled in blue) are

observed to hop into the gap, i.e. site II. The a.c. frequency is

kept at 3.5 kHz for 3 seconds to ensure all the small exosomes

transit the barrier, hopping from site I to site II. By so doing, the

CNA system enables the spatially-resolved sorting of bio-

particles, ensuring that smaller and larger exosomes are sepa-

rated and trapped at different locations. We also note that in

general the trapping stability of site II is higher than in site I as

depicted in Fig. 3(e). Finally, the a.c. frequency is reduced to 2

kHz and the particles remain trapped at the respective posi-

tions. The release of the trapped exosomes can be achieved by

increasing the frequency to 10 kHz or more.26 To conrm the

size of the trapped exosomes, we applied a low frequency a.c.

eld of 10 Hz a.c to immobilize all trapped exosomes onto the

substrate.34 Subsequently, the sample is imaged under a scan-

ning electron microscopy (SEM) system. The SEM image is

provided in Fig. 3(b) and (c). We thus veried that the exosome

in site II has a diameter of around 60 nm, while a larger exo-

some with a diameter of about 120 nm was trapped in site I.

Fig. 2 (a) Simulated electric ûeld proûle on top of one unit-cell of the nanohole array using Finite-Difference Time-Domain (FDTD) method. (b)

The simulated transmission, reüection and absorption spectrum of the optimized nanohole array. (c) The simulated temperature rises when

illuminating a 973 nm laser at the center of CNA. Laser spot is 1.33 mm. (d) The total in-plane velocity map of CNA system. It clearly shows two

possible trapping sites where the in-plane velocity arrows are pointing oppositely, labeled as I and II. The orange arrow and red arrow indicate the

trajectory where we plot out the in-plane velocity as shown in (e) and (f). (e) and (f) Simulated in-plane velocity in trapping site II and trapping site I,

corresponding to the orange and red arrows in (d), respectively. Positive velocity is deûned as velocity direction pointing away from the center.

Inset in (f) plots a zoomed-in version of the blue box, to show the position of the stagnation zone.

© 2023 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2023, 5, 2973–2978 | 2975
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Methods
Sample preparation

Aer the CNA chip was fabricated, we sandwiched the gold lm

by covering it with an ITO-coated glass cover-slip, spaced by

a 120 mm-thick dielectric spacer to create a microuidic

channel. Two copper wires are connected to the ITO side on the

cover-slip and the gold lm, respectively, to apply the a.c. elec-

tric eld.

The FITC-conjugated uorescently-labeled exosomes were

purchased from Creative Diagnostics as lyophilized particles.

100 ml DI water was added to 100 mg of solid and mixed well to

obtain a concentration of 1 mg per mL exosome solution. The

concentration is ∼1010 exosomes per mL as suggested by the

instruction. The acquired exosome solution was then diluted to

1.8 × 105 exosomes per mL by adding more DI water.

Fluorescence imaging

The trapping experiment and uorescence imaging were con-

ducted on Nikon Ti2-E inverted microscopic system. The

detailed light path is presented in Fig. 1(d) in the main text. A

high quantum efficiency sCMOS camera (Photometrics PRIME

95B) was used to acquire images at 5 frames per second. The

labeled exosomes were excited under blue light ltered out from

a broadband uorescent illumination lamp (Nikon INTENSI-

LIGHT C-HGFI). The emitted light was collected through the

same objective lens and imaged on the camera. The nanohole

array was illuminated with a 973 nm semiconductor diode laser

(Thorlabs CLD1015). The laser beam was focused with a Nikon

×60 water-immersion objective lens (NA, 1.2). The a.c. electric

eld was supplied by a dual-channel function generator (BK

Precision 4047B).

Results and discussion

To interpret the mechanism of this size-based sorting, as well as

emphasize the high trapping stability in site II, we consider the

relationship between trapping stability with respect to the

applied a.c. frequency. For a low a.c. frequency of 1.5 kHz, the

ACEO is strong enough to balance the ETP ow outside the

nanohole array. Furthermore, the particle–surface interaction

force (Fz) is stronger at lower a.c. frequencies, and as a result,

both large and small exosomes are transported by the ETP ow

and trapped at site I. As the a.c. frequency is increased to 3.5

kHz, both the ACEO ow strength and particle–surface inter-

action force is reduced, while the ETP ow strength is relatively

unchanged. This lowers the trapping stability in site I. As

evident in Fig. 3(d), it is shown that the smaller exosomes

experience a lower trapping stability than the larger exosomes

under a 3 kHz frequency since they experience a larger Brow-

nian motion. As the a.c. frequency increases to 3.5 kHz, the

trapping stability is sufficiently reduced such that the smaller

exosomes at site I are released and transported inward to site II

where they become trapped. The smaller exosomes are stably

trapped at site II because site II has a larger trapping potential

well depth than site I. The experimental data shown in Fig. 3(e)

Fig. 3 (a) The frame-by-frame illustration of rapidly transporting and trapping individual exosomes. Then by tuning a.c. frequency, we achieved

size-based exosomes sorting and trapping at different locations. (b) and (c) are the SEM images of exosomes trapped in site II and I, respectively,

after we pattern the exosomes onto gold ûlm using ultra-low frequency a.c. ûeld. SEM images conûrm the size-based separately trapping. (d)

Histograms of radial position displacement of trapped small-size and larger-size exosomes under 3 kHz a.c. frequency. (e) Histograms of radial

position displacement when the same small-size exosome is trapped outside the CNA or inside the gap, under the same 2 kHz a.c. frequency.

The stability is enhanced at site II. The inset indicates the deûnition of radial direction in the analysis of (d) and (e), (yellow arrow).

2976 | Nanoscale Adv., 2023, 5, 2973–2978 © 2023 The Author(s). Published by the Royal Society of Chemistry
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depicts tighter trapping stability for the same exosome trapped

in site II versus when the exosome was trapped in site I. We also

note that the enhanced trapping stability in site II can be tuned

by controlling the width of the gap region dened by site II. We

have varied the width of the gap region of site II using widths of

(6, 10 and 20 mm) and show a narrower gap width provides

stronger trapping stability on the trapped exosomes as detailed

in Fig. S4 of the ESI section.†

Aer the single small exosome is loaded into site II, we

demonstrate dynamic manipulation by moving the laser spot.

As shown in Fig. 4, we begin with the laser spot close to the

center of CNA and the exosome is in the northeast of the gap.

Then, the laser spot moves a round trip across the inner circular

pattern along ‘center / south / northwest / northeast /

southeast’ direction. The white dashed curve depicts the

trajectory of the laser motion. The corresponding video is

provided in ESI video 3.† In the video, it took about 70 seconds

to nish the whole manipulation process and the small exo-

some faithfully followed the motion of laser to complete the

round trip, while the large exosome stayed to the northeast

(circled in orange) of the CNA during the whole process. The

dynamic manipulation is primarily enabled by the ETP ow. In

site II, the distance to laser spot is shorter and the local ETP

velocity will be higher. This ensures that the trapped exosomes

in site II is within the radius of inuence of the ETP ow to be

dynamically manipulated by the ETP ow. Hence, the CNA

system provides the means to achieve the selective manipula-

tion of single exosomes.

Conclusion

We have demonstrated a concentric nanohole array system for

opto-thermo-electrohydrodynamic trapping, dynamic manipu-

lation, and sorting of single nanoscale exosomes with high

stability within seconds using low particle concentrations. The

CNA system features selective trapping and selective dynamic

manipulation of single exosomes based on size. Our proposed

platform may be combined with other single molecule analysis

techniques such as Forester Resonance Energy Transfer (FRET)

by enabling to stabilize single exosomes in solution within

a microscope observation volume without tethering to surfaces.

Other analysis methods, such as surface enhanced Raman

spectroscopy (SERS), may also be supported with the CNA

platform. By integrating plasmonic cavities at the electro-

hydrodynamic trapping positions,7 CNA offers the opportunity

for studying the chemical composition of nanoparticles, and

sorting particles with desired composition for further analysis.

The ability to trap and manipulate individual bioparticles

selectively opens the door to single vesicle analysis to under-

stand the heterogeneity of extracellular vesicles on the single-

particle level.
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18 E. Willms, C. Cabañas, I. Mäger, M. J. A. Wood and P. Vader,

Front. Immunol., 2018, 9, 1.

19 A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, Opt.

Lett., 1986, 11(5), 288–290.

20 A. Ashkin and J. M. Dziedzic, Science, 1987, 235, 1517–1520.

21 Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari,

A. Knudson, K. Lam, H. Saari, E. Lazaro Ibañ ez, T. Viitala,

T. Laaksonen, M. Yliperttula and S. Wachsmann-Hogiu,

Citation, 2015, 4, 28533.

22 W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto,

L. W. M. M. Terstappen and H. L. Offerhaus, Anal. Chem.,

2018, 90, 48.

23 S. G. Kruglik, F. Royo, J.-M. Guigner, L. Palomo, O. Seksek,

P.-Y. Turpin, I. Tatischeff and J. M. Falcón-Pérez,
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