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Abstract

In this manuscript we present a mathematical theory and a computational algorithm to study optimal design of mesh-like
tructures such as metallic stents by changing the stent strut thickness and width to optimize the overall stent compliance.
he mathematical constrained optimization problem is to minimize the “compliance functional” over a closed and bounded set
f constraints. The compliance functional is the stent’s overall elastic energy. The constraints are the minimal and maximal
trut thickness, and a given fixed volume of the stent material. We prove the existence of a minimizer, thereby proving that
he constrained optimization problem has a solution. A numerical scheme based on an iteration procedure is introduced, and
mplemented within a Finite Element Method framework. Optimal design of three different stent prototypes is considered: (1)

single zig-zag ring, which can be found in many complex stent designs on the US market as a basic cell in the modular
tent design, (2) a Palmaz–Schatz type stent consisting of 6 zig-zag rings, and (3) a Cypher(TM) type stent consisting of
ig-zag rings with sinusoidal connectors. Several interesting optimization solutions are found, some of which have already
een implemented in the design of the currently available stents on the US market. The resulting computational algorithm is
ompared to a Genetic Algorithm, and it is shown that our computational approach outperforms the Genetic Algorithm in the
ollowing three key aspects: (1) computation time, (2) accuracy, and (3) maintaining the symmetry of the solution.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Optimal stent design; Vascular stents; Computational algorithm; Cypher stent

1. Introduction

A stent is a metallic mesh tube that acts like a scaffold to help keep arteries open. See Fig. 1. Stents have
first been introduced in the late 1980s with the goal to help reduce the restenosis rates (re-narrowing of coronary
arteries) associated with the angioplasty procedure in the treatment of coronary artery disease. First-generation
stents were bare metal stents (BMS) made of 316L stainless steel. BMS are still in use, although with various
improved features, including the introduction of materials such as, e.g., cobalt–chromium. BMS reduce the restenosis
rates when compared to coronary angioplasty alone, but have been known to cause severe intravascular injuries,
often times leading to complications such as in-stent restenosis. In-stent restenosis is associated with damaged and
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Fig. 1. Photographs of Palmaz stent (left) and Cypher stent (right).

dysfunctional endothelium (the inner-most layer of vascular walls) [1,2], with vascular inflammation, and with the
stretch of the medial layer causing vascular smooth muscle cell injury [3]. The damaged endothelium becomes
deficient of antithrombic and antiatherogenic properties, and becomes unable to suppress vascular smooth muscle
cell proliferation. Smooth muscle cells start growing inward the blood vessel, causing in-stent restenosis and loss
of vessel patency. To further improve the restenosis rates, next generation stents were born with the introduction
of drug-eluting stents (DES). DES are stents coated with a polymer which incorporates anti-proliferative drugs
(e.g., sirolimus, paclitaxel). The drugs are released slowly over a few weeks after stent deployment. Research has
shown that improved geometric and mechanical characteristics of stents can further reduce the restenosis rates [4–6]
both in BMS and in DES, and this remains to be an active area of research [7–17].

Stents are comprised of struts, distributed on the surface of a cylinder of a certain radius. Balloon expandable
stents, which populate the market, are cut out of a slotted tube using a high precision laser. The thickness of the tube
and the width of the stent struts affect deliverability, ability to scaffold, radial strength, and disruption of normal
flow in the treated coronary artery [18]. In this manuscript we present a mathematical theory and a computational
algorithm to study optimal design of mesh-like structures such as metallic stents by changing the stent strut thickness
nd width to optimize a certain cost function. The goal of the optimization algorithm presented in this manuscript
s to find a stent with overall minimal compliance. Different cost functions can be accommodated by this algorithm,
uch as, e.g., maximal or minimal radial strength, maximal or minimal longitudinal strength, minimal deviation in
he L2-norm from a given expanded stent shape, etc.

Despite the widespread use of vascular stents, optimal design of their geometric and mechanical properties using
well-defined, rigorous mathematical approach is lacking. The main reason for this is the fact that stents are

hree-dimensional solids which have been computationally modeled using 3D approaches, see [6,17,19–25] and the
eferences therein. Designing an optimization algorithm based on 3D stent simulations is exceedingly complicated,
nd often times leads to an algorithm that is computationally very expensive and requires a large memory. Of
articular importance in optimal 3D stent design is a very recent work by Russ et al. [17] in which a surrogate-based
ulti-objective optimization procedure was introduced to study optimal design of a stent that would help anchor a

ediatric balloon-expandable heart valve. The approach in [17] relies on 3D simulations of each stent configuration,
hich is used to generate a surrogate model. While the algorithm is extremely useful, it is also computationally

ather expensive (see Section 8 for more information). This is one of the reasons why in [26] the authors of this
ork introduced a reduced, one-dimensional model to study mesh-like structures such as stents. This model has been

igorously mathematically justified to approximate well the 3D curved rods that comprise a 3D stent, see [26–28].
he 1D model provides a 3D description of displacements of stent struts using simplified, reduced 1D equations.
he reduced model is based on the assumption that stent struts have a small aspect ratio (the ratio of thickness
s. length is small), and can therefore be modeled by the Antman–Cosserat type curved rod model, see [29,30] for
he formal derivation. The curved rods are connected at stent’s joints (nodes or vertices) via coupling conditions,
uch as the continuity of displacement and infinitesimal rotation, and balance of forces and moments, see [27,31]
or the formal derivation. The resulting model is a one-dimensional stent net problem, described in Section 2. This
ne-dimensional stent net model is a backbone of the optimization algorithm presented in this manuscript.

The ultimate goal of our research is to design a hybrid algorithm that would identify the extrema of the cost
unction using the efficient 1D-based model presented in this manuscript, and then use 3D approaches, such as
hose presented in Russ et al. [17], to explore a neighborhood around the minimum in order to capture the full 3D
nformation of the optimizer that may not be available from the 1D reduced model approach.

The mathematical constrained optimization problem presented in this manuscript addresses minimization of the
compliance functional” over a closed and bounded set containing the constraints such as the minimal and maximal
trut thickness and the total volume of the stent material. Overall, “global” stent compliance is measured by the
tent’s overall elastic energy. This is presented in Section 3. In Section 3 we also prove the existence of a minimizer
or this problem, thereby proving that the constrained optimization problem has a solution.
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Fig. 2. Our numerical results: The three stents considered in this study, optimized with respect to the slotted tube thickness h and struts’
thickness w to achieve maximal radial strength. From left to right: the Zig-Zag stent, the Palmaz6 stent, and a Cypher type stent. See
Section 5 for details.

To find solutions to the constrained optimization problem we introduce an iteration procedure, described in
Section 3.1.2 and apply it to different scenarios in terms of optimization parameters, and types of stents. We consider
three stent prototypes:

1. The Zig-Zag stent, shown in Fig. 2 left, which consists of a single zig-zag ring, which can be found in many
complex stent designs as a basic cell in the modular stent design;

2. Palmaz–Schatz type stent shown in Fig. 2 middle, which we call Palmaz6 stent due to the six zig-zag rings
that comprise the stent;

3. Cypher type stent, also known as Bx Velocity(TM), shown in Fig. 2 right, which consists of a sequence of
zig-zag rings connected by sinusoidal struts.

The optimization problems for these three stents are solved numerically using a Finite Element Method (FEM)
based algorithm, which utilizes a numerical method developed in [32] to study a single one-dimensional stent net
problem, formulated in mixed formulation. This algorithm is adapted to the iterative optimization method introduced
in this manuscript. It was proved in [33] that the algorithm introduced in [32] converges to the solution of the stent
net problem. Details about the numerical method introduced in this manuscript are presented in Section 4.

In Section 5 we present our numerical results in nine different examples. The results show a number of useful
nformation regarding optimal stent design. In particular, we provide optimal designs with respect to radial stiffness
f the three stents considered in this study, which are shown in Fig. 2.

In Section 6 we compare our algorithm to a genetic algorithm, implemented in Matlab2010a, and show that the
algorithm proposed in this manuscript outperforms the genetic algorithm in three key aspects: (1) computational
time, (2) accuracy, and (3) maintaining the symmetry of the solution.

To gain an insight into the strain distribution in the non-optimized and optimized stent configurations, in Section 7
we present the strain results for the three stents shown above. We show that the maximum strain for the optimized
Palmaz6 and Cypher stents is significantly lower than that of the non-optimized configuration, while the maximal
strain does not change in a significant way for the optimized single zig-zag ring.

We conclude this manuscript with a summary of the results and a few remarks comparing the method discussed
in this manuscript with the 3D surrogate-based modeling, presented in the work by Russ et al. in [17].

2. The stent model

2.1. Differential formulation

A stent is a three-dimensional elastic body defined to be a union of three-dimensional struts. To formulate an
algorithm for optimal stent design, we adopt the approach proposed in [26] where stents are modeled as one-
dimensional nets/networks. The slender stent struts are modeled as one-dimensional curved rods, satisfying certain
contact conditions at the locations where the stent struts meet. Details of the one-dimensional stent net model are
presented next.

2.1.1. The geometry
The reduced, one-dimensional stent net model is defined on a graph domain, where the edges of the graph

correspond to the middle lines of the curved rods (stent struts), and the vertices of the graph correspond to the
points where the curved rods (stent struts) meet. The following notation will be used in the definition of the

one-dimensional, reduced stent model:

3
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Fig. 3. One stent strut with the tangential, normal and binormal vectors to the middle line.

• V denotes the set of nV vertices in a stent (points where stent struts’ middle lines meet);
• E denotes the set of nE edges (pairing of vertices) corresponding to the middle lines;
• Φi

: [0, ℓi ] → R3 denotes the natural parametrization of the middle line of the i th strut, i.e., edge ei ∈ E ,
i = 1, . . . , nE ;

• ni , bi denotes the orthonormal basis in the normal plane of Φi , see Fig. 3; together with the tangential vector
t i
= (Φi )′ they form the Frenet basis of the i th strut;

• µi , λi , Ei= µi (3λi
+ 2µi )/(λi

+ µi ) are the material parameters (Lamé constants, and Young’s modulus,
respectively) associated with the i th strut, i = 1, . . . , nE ;

• I i
α,β (where α, β = 1, 2) and K i are moments of inertia and torsional rigidity, respectively, of cross-sections

of the i th strut, i = 1, . . . , nE .

he ordered pair N = (V, E) defines a stent graph and sets the topology of the stent. The stent geometry is made
recise by the parameterizations Φi for each i = 1, . . . , nE , which introduce orientation on the graph. Since the
echanical behavior of stents is independent of orientation, it is reasonable to expect that the resulting problem
ill be independent of graph’s orientation. Indeed, we will see below that this is the case. Since this is different

rom classical network problems in which orientation is important (e.g., channel flow), the stent problem is called
he stent net problem [26,34].

.1.2. The elasticity equations
The one-dimensional stent net model describing the mechanical behavior of a given three-dimensional stent is

efined by a family of 1D curved rod equations given in terms of the parametrization parameter s ∈ [0, li ] for each
dge ei , supplemented by a set of coupling conditions holding at each stent vertex where the edges meet. The 1D
urved rod equations for the curved rod (edge) ei are given in terms of the following unknown functions:

• ui
: [0, ℓi ] → R3, the displacement of the middle curve of the rod ei ;

• ωi
: [0, ℓi ] → R3, infinitesimal rotation of the cross-section of the rod ei ;

• qi
: [0, ℓi ] → R3, contact moment associated with ei ;

• pi
: [0, ℓi ] → R3, contact force associated with ei .

or a given stent loading, given by the line force density f i , the equations read [26]:

0 = ∂s pi
+ f i , (2.1)

0 = ∂s qi
+ t i

× pi , (2.2)
0 = ∂sω

i
− Qi (Hi )−1(Qi )T qi , (2.3)

0 = ∂s ui
+ t i

× ωi , (2.4)

for each ei ∈ E , i = 1, . . . , nE . Here, Hi and Qi are matrices given by

Hi
=

⎡⎣ µi K i 0 0
0 E i I i

33 E i I i
23

0 E i I i
23 E i I i

22

⎤⎦ , Qi
=
[

t i ni bi ] , (2.5)

see e.g. [35]. For a given cross-section S, Iαα are moments of inertia, I23 is the product of inertia, and K is torsional
rigidity of the cross-section S, i.e.,

Iαβ = (−1)αβ

∫
zαzβdz2dz3, α, β ∈ {2, 3}, K =

∫
(∂2w − z3)2

+ (∂3w + z2)2dz2dz3. (2.6)

S S

4
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Here, we denoted by z2 and z3 the local normal and bi-normal variables, see Fig. 3, and w is called the warping
function, which is defined as the unique solution of the Neumann problem: find w ∈ H 1(S) such that∫

S
(∂2w − z3)∂2r + (∂3w + z2)∂3r = 0, r ∈ H 1(S),

∫
S
w = 0.

atrix Hi describes the elastic properties of the i th rod and the geometry of its cross-section, and matrix Qi

escribes the local geometry of the i th rod parameterized by Φi , up to translations; t i
= (Φi )′ is the unit tangent

vector to the curve parameterized by Φi , while ni and bi constitute one orthonormal basis in the normal plane to
the middle curve of the i th rod. See Fig. 3.

2.1.3. The coupling conditions
.
To complete the problem, we need to prescribe the physics of the coupling between the stent struts at the points

where they meet, namely, the coupling conditions corresponding to (2.1)–(2.4) at each vertex of the stent net. Two
sets of coupling conditions, known as the kinematic and dynamic coupling conditions, give rise to a well-defined
problem. They are defined in terms of the set J−

j of all the outgoing edges for the vertex j where the local variable
s is equal to 0, and the set J+

j of all the incoming edges where the local variable s is equal to ℓ. The conditions
read:

(KC) The kinematic conditions which state that (u, ω) are continuous at each vertex:

ωi (0) = ωk(ℓk), i ∈ J−

j , k ∈ J+

j , j = 1, . . . , nV ,

ui (0) = uk(ℓk), i ∈ J−

j , k ∈ J+

j , j = 1, . . . , nV .
(2.7)

(DC) The dynamic conditions which require balance of contact forces p and contact moments q at each vertex:∑
i∈J+j

pi (ℓi ) −
∑
i∈J−j

pi (0) = 0, j = 1, . . . , nV ,

∑
i∈J+j

qi (ℓi ) −
∑
i∈J−j

qi (0) = 0, j = 1, . . . , nV .
(2.8)

ince the problem is a pure traction problem, solutions are unique up to a translation and rotation. To fix the unique
olution, zero total translation and zero total rotation are prescribed:

nE∑
i=1

∫ ℓi

0
ui ds =

nE∑
i=1

∫ ℓi

0
ωi ds = 0. (2.9)

.2. Weak formulation: the classical and mixed forms

We start by introducing a mixed weak formulation, which will be used in the numerical simulations. The mixed
ormulation is necessary to account for the conditions of inextensibility and unshearability of each rod. For this
urpose, we introduce a vector function uS , where the subscript S stands for “stent”, to denote the state variables
ui , ωi ) defined on all the edges ei , i = 1, . . . , nE of a given stent, so that

uS = ((u1, ω1), . . . , (unE , ωnE )) =: ( y1, . . . , ynE ).

he kinematic coupling condition requires that the displacements ui of the middle lines, and the infinitesimal
otations ωi of the cross-sections, are continuous at every vertex V ∈ V . We include this condition in the solutions
pace:

H 1(N ;R6) =
{

uS =( y1, . . . , ynE ) ∈
nE∏
i=1

H 1(0, ℓi ;R6) :

yi (0) = yk(ℓk),∀i ∈ J−

j , k ∈ J+

j , j = 1, . . . , nV

}
.

5
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Thus, the kinematic coupling conditions will be satisfied in the strong sense. In contrast, the dynamic coupling
conditions will be imposed weakly, in the weak formulation of the problem, through integration by parts.

To get to the weak formulation of the stent problem, we recall that a stent is a union of stent struts. Thus, the
(mixed) weak formulation of the entire stent is obtained by adding up the (mixed) weak formulations of each stent
strut. We will do this for the functions uS ∈ Vs and pS := ( p1, . . . , pnE , α, β) ∈ QS , where

VS = H 1(N ;R6), QS = L2(N ;R3) × R3
× R3

=

nE∏
i=1

L2(0, ℓi ;R3) × R3
× R3.

hese functions are defined on the entire stent, and the state variables uS are continuous at vertices (globally
ontinuous). The functions pS play the role of Lagrange multipliers, enforcing the inextensibility and unshearability
ondition (2.4), and zero total translation and rotation (see below).

After multiplying the differential Eqs. (2.1)-(2.2) by the components of the test functions ũS , and integrating
hem by parts, and after using the dynamic coupling conditions into account at stent’s vertices, the resulting mixed
eak formulation can be written in terms of the bilinear forms kS : VS × VS → R and bS : QS × VS → R, where:

kS(uS, ũS) =
nE∑
i=1

∫ ℓi

0
Qi Hi (Qi )T ∂sω

i
· ∂sω̃

i ds,

bS( pS, ũS) =
nE∑
i=1

∫ ℓi

0
pi

· (∂s ũi
+ t i

× ω̃
i )ds + α ·

nE∑
i=1

∫ ℓi

0
ũi ds + β ·

nE∑
i=1

∫ ℓi

0
ω̃

i ds.

(2.10)

o deal with the source term, the following linear functional is introduced:

lS : VS → R, lS(ũS) =
nE∑
i=1

∫ ℓi

0
f i

· ũi ds. (2.11)

he mixed formulation of our problem is then given by: find (uS, pS) ∈ VS × QS such that

kS(uS, ũS) + bS( pS, ũS) = lS(ũS), ∀ũS ∈ VS,

bS( p̃S, uS) = 0, ∀ p̃S ∈ QS.
(2.12)

he existence of a unique solution to this problem was proved in [32].
To get to the classical weak formulation, we introduce the space:

V Ker
S = {ũS ∈ VS : bS( p̃S, ũS) = 0, p̃S ∈ QS}.

he classical weak formulation then reads: find uS ∈ V Ker
S such that

kS(uS, ũS) = lS(ũS), ∀ũS ∈ V Ker
S , (2.13)

here the left-hand side corresponds to the elastic energy of the stent. It was shown in [32] that the weak formulation
nd the mixed formulation above are equivalent. This is because the form kS is coercive on V Ker

S , and b satisfies
he inf-sup condition from Brezzi and Fortin [36].

In this work we will consider optimal design of stents with respect to the change in the slotted tube thickness
h, and the stent strut’s width w, by considering the following scenarios:

1. Square cross-sections: We assume that h = w and optimize the overall, global stent stiffness by simultane-
ously changing h and w so that h = w;

2. Rectangular cross-sections: We optimize the overall, global stent stiffness in the following two sub-cases:

(A) We keep the thickness h of the slotted tube fixed, and only optimize with respect to the width w of
the stent struts;

(B) We vary both h and w, but keep the thickness h constant along the entire stent.

or some topology optimization problems of lattice structures, see e.g. [37,38].
The mathematical constrained optimization problem is presented next.
6
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3. The constrained optimization problem

To define a constrained optimization problem in terms of h and w, we need to understand the dependence of
the problem on those parameters. We will be working with the mixed formulation given in (2.12), where h and w

appear in the matrices Hi , defined in (2.5).
To see how the coefficients of Hi (the i th strut) depend on the parameters h (thickness of the tube) and w (width

f stent struts), we recall the definitions (2.6) of the moments of inertia Iα,β and of torsional rigidity K . For a
ectangular cross-section S =

[
−

1
2 h, 1

2 h
]
×
[
−

1
2w, 1

2w
]

we get:

I23 = 0, I22 =

∫
S
(z2)2dz2dz3 =

1
12

wh3, I33 =

∫
S
(z3)2dz2dz3 =

1
12

w3h,

and

K =
1
3

hw

(
h2

4
+

w2

4

)
+ 32

∞∑
k=1

1
(2k − 1)5π5

(
(2k − 1)πhw

(
h2

4
+

w2

4

)
−w4 tanh

(2k − 1)πh
2w

− h4 tanh
(2k − 1)πw

2h

)
.

(3.1)

In the case of a square cross section, w is set equal to h, in which case the cross-section can be scaled by h
ith respect to its center of mass, i.e., Si (h) = hS̃i , and the matrix Hi (h) then scales like h4, i.e.,

Hi (h) = h4H̃i ,

here H̃i is the matrix defined as in (2.5) and (2.6), but for S̃i instead of Si .
In the following three subsections we present the three optimization algorithms, corresponding to the scenarios

(1), (2A) and (2B) above.

3.1. Square cross-sections: perturbations with respect to the square side h

Here, we assume that the struts’ cross-sections are squares with a constant hi along the entire i th strut, for each
= 1, . . . , nE . This implies that

Hi
= (hi )4H̃i , i = 1, . . . , nE ,

for matrices H̃i that do not depend on strut thickness.
We will be assuming that the stent loading, given by f i , i = 1 . . . , nE , is independent of the stent strut thickness.

This is a natural assumption in applications, since the stent loading comes from the forces exerted by the blood
vessel walls onto the stent, which is independent of the stent strut thickness.

Therefore for a given thickness function h = (h1, . . . , hnE ), the mixed formulation for the stent model, written
explicitly in terms of h, is given by: find (uS(h), pS(h)) ∈ VS × QS , such that

kS(h)(uS, ũS) + bS( pS, ũS) = lS(ũS), ũS ∈ VS,

bS( p̃S, uS) = 0, p̃S ∈ QS,
(3.2)

where kS(h) is given in (2.10) with Hi replaced by (hi )4H̃i .
We consider an optimization problem in which the cost function is the stent’s overall compliance. Compliance

is measured by the stent’s overall elastic energy. See (2.13). For example, to find a stent with minimal compliance,
we seek to minimize the elastic energy of the stent in such a way that the resulting displacement, for a given outside
forcing, satisfies the stent problem (3.2). Since the elastic energy for a given forcing must be equal

∫
N f · uSds,

see (2.13), we introduce the following cost function J : VS × QS → R for the problem of optimizing the overall
stent’s compliance:

J (uS, pS) =
∫
N

f · uSds =

nE∑
i=1

∫ ℓi

0
f i

· ui ds, (3.3)

where (uS, pS) is the solution of (3.2). For a given value h : N → R, which is constant for each stent strut, we

denote by (uS(h), pS(h)) the solution of (3.2). The optimal stent design problem now reads as follows:

7
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(

Find h∗
∈ RnE such that{

J (uS(h∗), pS(h∗)) = min
h∈W

J (uS(h), pS(h)),

where (uS(h), pS(h)) is the unique solution of (3.2),
(3.4)

where J (uS(h), pS(h)) is given by (3.3).

The set W ⊂ RnE contains constraints, such as, e.g., the minimal and maximal stent strut thickness, 0 < hmin ≤

hi
≤ hmax, and a constraint on the total volume V0 of the material the stent is made of. Indeed, we take the set of

constraints W to be:

W = {h ∈ RnE : hmin ≤ hi
≤ hmax, i = 1, . . . , nE ,

nE∑
i=1

(hi )2ℓi
= V0}. (3.5)

Since the set W ⊂ RnE is bounded and closed we will be able to prove the existence of a solution to (3.4).

3.1.1. Existence of a minimizer defined by (3.4)
The existence of a minimizer is based on the properties of the set W , and on the continuity properties of the

function J as a function of h. To analyze the properties of J in terms of h, we introduce the following notation
denoting explicit dependence of J on h:

J̃ (h) := J (uS(h), pS(h)) =
nE∑
i=1

∫ ℓi

0
f i

· ui (h)ds, (3.6)

where (uS(h), pS(h)) is the solution of (3.2). Thus, to show continuity of h ↦→ J̃ (h), it is enough to prove that
h ↦→ u(h) is continuous. To show that u depends continuously on h, we consider the family (hλ)λ and functions
uS(hλ), pS(hλ))λ, where (uS(hλ), pS(hλ)) is a unique solution of (3.2), and we show that when hλ → h, the family

(uS(hλ), pS(hλ))λ converges to the solution (uS(h), pS(h)). More precisely, we have the following theorem.

Theorem 3.1 (Continuity). Let (uS(h), pS(h)) be a family (parameterized by h) of unique solutions of (3.2). Then,
for each fixed h, the family of solutions (uS(hλ), pS(hλ))λ converges strongly in H 1(N ;R6) × L2(N ;R3) to the
solution (uS(h), pS(h)) as hλ → h.

Proof. To prove this theorem we first recall that (uS(hλ), pS(hλ))λ satisfy the mixed formulation (3.2). To emphasize
the dependence on λ, we introduce the notation ⟨Fλ, ũS⟩ instead of lS(ũS), and write (3.2) in terms of this new
notation as

kS(hλ)(uS(hλ), ũS) + bS( pS(hλ), ũS) = ⟨Fλ, ũS⟩, ũS ∈ VS,

bS( p̃S, uS(hλ)) = 0, p̃S ∈ QS.
(3.7)

We now show that solutions (uS(hλ), pS(hλ))λ of this mixed formulation, are uniformly bounded (uniformly in λ),
which will be used to prove (uS(hλ) − u(h), pS(hλ) − p(h)) → 0 in H 1(N ;R6) × L2(N ;R3), as hλ → h. In fact,
we prove the following more general result.

Lemma 3.2. Let ( f (1,λ), f (2,λ), f (3,λ), f (4,λ))λ be a family of source terms in L2(N ;R3)4 and (hλ)λ ⊂ W . For
each ũS ∈ VS denote

⟨Fλ, ũS⟩ =

nE∑
i=1

∫ ℓi

0

(
f i

(1,λ) · ũi
+ f i

(2,λ) · ∂s ũi
+ f i

(3,λ) · ω̃
i
+ f i

(4,λ) · ∂sω̃
i
)

ds.

Let (uhλ
S , phλ

S )λ ⊂ VS × QS be the solutions of problems

kS(hλ)(uhλ
S , ũS) + bS( phλ

S , ũS) = ⟨Fλ, ũS⟩, ũS ∈ VS,

bS( p̃S, uhλ
S ) = 0, p̃S ∈ QS.

(3.8)

1. If there exists C > 0 such that ∥ f(i,λ)∥L2(N ;R3) ≤ C (independent of λ), for i = 1, 2, 3, 4, then there exists
C ′ > 0 such that

∥uhλ
∥ , ∥ phλ

∥ ≤ C ′.
S H1(N ;R6) S L2(N ;R3)

8
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2. If f (i,λ) → 0 in L2(N ;R3) as hλ → h, for i = 1, 2, 3, 4, then

uhλ
S → 0 in H 1(N ;R6), phλ

S → 0 in L2(N ;R3).

We will prove this lemma after we finish the proof of Theorem 3.1.
From the first part of this lemma, applied to the case f (2,λ) = f (3,λ) = f (4,λ) = 0 and for f (1,λ) independent

of λ, we obtain that the family (uS(hλ), pS(hλ)λ is uniformly bounded in H 1(N ;R6) × L2(N ;R3) by a constant
M > 0.

We now use this to show that (uS(hλ) − u(h), pS(hλ) − p(h)) → 0. For this purpose, we derive a system of
equations that is satisfied by the difference (uS(hλ)−u(h), pS(hλ)− p(h)), and show that the system is of the form
(3.8). Indeed, by recalling the left hand-side of (3.2), we obtain:

kS(h)(uS(hλ) − uS(h), ũS) + bS( pS(hλ) − pS(h), ũS)
= kS(h)(uS(hλ), ũS) + bS( pS(hλ), ũS) − lS(ũS),

where we have used the fact that uS(h) is a solution to (3.2). The last two terms on the right hand-side can be
further rewritten as −kS(hλ)(uS(hλ), ũS) by recalling that uS(hλ) is also a solution to (3.2). Thus, we obtain:

kS(h)(uS(hλ) − uS(h), ũS) + bS( pS(hλ) − pS(h), ũS)
= kS(h)(uS(hλ), ũS) − kS(hλ)(uS(hλ), ũS)

=

nE∑
i=1

((hi )4
− (hi

λ)4)
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (hλ) · ∂sω̃
i ds.

Therefore, (uS(hλ) − u(h), pS(hλ) − p(h)) satisfies the following system of two equations:

kS(h)(uS(hλ) − uS(h), ũS) + bS( pS(hλ) − pS(h), ũS)

=

nE∑
i=1

((hi )4
− (hi

λ)4)
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (hλ) · ∂sω̃
i ds

bS( p̃S, uS(hλ) − uS(h)) = 0.

(3.9)

This is exactly of the form (3.8) with the right-hand side equal to

⟨Fλ, ũS⟩ =

nE∑
i=1

((hi
λ)4

− (hi )4)
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (hλ) · ∂sω̃
i ds.

By the Cauchy–Schwarz inequality, and by the upper bound on the matrix H, we have⏐⏐⟨Fλ, ũS⟩
⏐⏐ ≤ nE∑

i=1

⏐⏐(hi
λ)4

− (hi )4
⏐⏐ ∥H̃i

∥∥∂sω
i (hλ)∥L2(0,ℓi ;R3)∥∂sω̃

i
∥L2(0,ℓi ;R3)

≤ C max
i=1,...,nE

⏐⏐(hi
λ)4

− (hi )4
⏐⏐ ∥ũS∥H1(N ;R6),

where, in the last inequality, we have used the uniform boundedness ∥uS(hλ)∥H1(N ;R6) < M discussed above, to
estimate the term ∥∂sω

i (hλ)∥L2(0,ℓi ;R3). As hλ → h, we see that the right-hand side of the inequality goes to zero,
and so by the second part of Lemma 3.2, we obtain that (uhλ

S , phλ
S ) =(uS(hλ) − u(h), pS(hλ) − p(h)) → 0 in

H 1(N ;R6) × L2(N ;R3), as hλ → h. □

Proof of Lemma 3.2. The proof of Lemma 3.2 relies on the following result from [36].

Theorem 3.3 (Brezzi, Fortin, TM 1.1. [36]). Let V and Q be Hilbert spaces with associated norms ∥·∥V and ∥·∥Q .
Let the continuous bilinear forms k : V × V → R and b : V × Q → R satisfy

|k(u, ũ)| ≤ A0∥u∥V ∥ũ∥V , ∀u, ũ ∈ V,

|b(u, p)| ≤ B0∥u∥V ∥p∥Q, ∀u ∈ V, p ∈ Q,

k(u, u) ≥ α0∥u∥2
V , ∀u such that b(u, p) = 0 ∀p ∈ Q,

inf sup
b(u, p)

≥ β0,

(3.10)
p∈Q u∈V ∥u∥V ∥p∥Q

9
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for some positive constants A0, B0, α0, β0. Let f ∈ V ′, g ∈ Q′. Then there exists a unique solution (u, p) ∈ V × Q
of

k(u, ũ) + b(ũ, p) = ⟨ f, ũ⟩V ′,V , ∀ũ ∈ V,

b(u, p̃) = ⟨g, p̃⟩Q′,Q, ∀ p̃ ∈ Q.
(3.11)

Moreover, the solution (u, p) satisfies the bounds

∥u∥V ≤
1
α0

∥ f ∥′V +
1
β0

(
A0

α0
+ 1

)
∥g∥′Q,

∥p∥Q ≤
1
β0

(
A0

α0
+ 1

)
∥ f ∥′V +

A0

β2
0

(
A0

α0
+ 1

)
∥g∥′Q .

(3.12)

This theorem, as stated above, is in fact a special case of Theorem 1.1. [36] in the sense that the last inequality
n (3.10) is more restrictive than the corresponding condition in the original statement of Theorem 1.1. [36]. As a
esult, the original Theorem 1.1. [36] guarantees uniqueness of the second component p of the solution (u, p) up
o a function from the function space {p ∈ Q : b(ũ, p) = 0 ∀ũ ∈ V }. The last inequality from (3.10) as stated in
heorem 3.3, implies that this function space is trivial, and so uniqueness is guaranteed in Theorem 3.3.

From this theorem, we see that if we can show that there exist uniform constants A0, B0, α0, β0 such that
roblems (3.8) satisfy the estimates (3.10) uniformly for all λ, then both claims of Lemma 3.2 follow directly from

the estimates (3.12).
We start by noting that the bilinear form bS does not depend on λ. Then, Lemma 3.5 in [32] implies the existence

of constants B0 > 0 and β0 > 0 such that the estimates involving bS in (3.10) hold.
What is left is to show the continuity and coercivity estimates on kS . For this purpose, we recall the definition

f the form kS:

kS(hλ)(uS, ũS) =
nE∑
i=1

(hi
λ)4
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i
· ∂sω̃

i ds.

he continuity estimate now follows directly from the boundedness of the matrix H̃i . More precisely, if we denote
by C > 0 the constant that bounds the matrix norm of H̃i , and by recalling that for all hλ ∈ W we have
hmin ≤ hi

λ ≤ hmax, the Cauchy–Schwarz inequality implies

kS(hλ)(uS, ũS) ≤ h4
maxC

( nE∑
i=1

∥∂sω
i
∥

2
L2(0,ℓi ;R3)

)1/2 ( nE∑
i=1

∥∂sω̃
i
∥

2
L2(0,ℓi ;R3)

)1/2

≤ h4
maxC∥uS∥H1(N ;R6)∥ũS∥H1(N ;R6).

(3.13)

By choosing the uniform constant A0 = h4
maxC , we have shown continuity of kS .

The uniform coercivity of kS follows from the coercivity associated with the matrix H̃i , and a Poincaré type
nequality. More precisely, from Lemma 3.2. [32], we see that there exists a constant CP > 0, independent of λ,
uch that

∥uS∥
2
H1(N ;R6) =

nE∑
i=1

(
∥ui

∥
2
H1(0,ℓi ;R3) + ∥ωi

∥
2
H1(0,ℓi ;R3)

)
≤ CP

( nE∑
i=1

∥∂s ui
∥

2
L2(0,ℓi ;R3) +

nE∑
i=1

∥∂sω
i
∥

2
L2(0,ℓi ;R3)

)
+

⏐⏐⏐⏐⏐
nE∑
i=1

∫ ℓi

0
ui ds

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐

nE∑
i=1

∫ ℓi

0
ωi ds

⏐⏐⏐⏐⏐
his is a Poincaré type estimate for the stent problem, obtained in [32]. We further estimate the right-hand side
y recalling that this coercivity estimate is done over the space of constraints V , namely for all u such that

(u, p) = 0,∀p ∈ Q, see (3.10), which includes the conditions that make the last two terms on the right-hand side

10
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above equal to zero. Therefore, the right-hand side can be further estimated by

≤ 2CP

nE∑
i=1

(
∥∂s ui

+ t i
× ωi

∥
2
L2(0,ℓi ;R3) + ∥t i

× ωi
∥

2
L2(0,ℓi ;R3) + ∥∂sω

i
∥

2
L2(0,ℓi ;R3)

)
≤ C̃

nE∑
i=1

∥∂sω
i
∥

2
L2(0,ℓi ;R3),

here we again used that the space V includes the constraint ∂s ui
+ t i

× ωi
= 0 via b(u, p) = 0,∀p ∈ Q. If we

ow denote by a0 the coercivity constant associated with H̃i , we can further estimate the above inequality as

C̃
nE∑
i=1

∥∂sω
i
∥

2
L2(0,ℓi ;R3) ≤ C̃

a0

h4
min

nE∑
i=1

(hi
λ)4
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i
· ∂sω̃

i ds ≤
C̃a0

h4
min

kS(hλ)(uS, ũS),

hich completes the proof of coercivity of k.
The statements of Lemma 3.2 then follow directly from Theorem 3.3. □

We have now completed the proof of continuity of h ↦→ J̃ (h) and are ready to state the main result of this
ubsection.

heorem 3.4. The constrained minimization problem (3.4) has a solution.

roof. The set W is a closed and bounded subset of RnE , and is therefore compact. From Theorem 3.1 we obtained
hat J̃ is continuous on W . Therefore, J̃ possesses extrema on W . □

.1.2. The iteration algorithm
We present an iteration algorithm for solving the optimization problem (3.4). We begin with a given h, and look

or a g ∈ RnE such that

J̃ (h + g) ≤ J̃ (h).

ssuming that J̃ admits the Taylor series expansion around h, we obtain:

J̃ (h) + dh J̃ (h)g + o(g) ≤ J̃ (h).

ere dh J̃ (h)g is the Gateaux derivative of the functional J̃ in the direction of g. Thus, in order to decrease the
alue of the cost function in each step, we look for a g such that

dh J̃ (h)g ≤ 0. (3.14)

his leads to a gradient based method.
More precisely, from the definition of the Gateaux derivative, we calculate dh J̃ (h)g as follows:

dh J̃ (h)g = lim
λ→0

J̃ (h + λg) − J̃ (h)
λ

= lim
λ→0

∑nE
i=1

∫ ℓi

0 f i
· ui (h + λg)ds −

∑nE
i=1

∫ ℓi

0 f i
· ui (h)ds

λ

= lim
λ→0

nE∑
i=1

∫ ℓi

0
f i

·
ui (h + λg) − ui (h)

λ
ds =

nE∑
i=1

∫ ℓi

0
f i

· dhui (h)gds.

herefore,

dh J̃ (h)g =

nE∑
i=1

∫ ℓi

0
f i

· dhui (h)gds. (3.15)

What is left is to “calculate” dhui (h)g. More precisely, we will derive a system of equations satisfied by
hui (h)g. This system is obtained directly from the system (3.9) for hλ = h + λg after dividing the first equation
n (3.9) by λ and after taking the limit λ → 0, to obtain

kS(h)(dhuS(h)g, ũS) + bS(dh pS(h)g, ũS)

= −(dhkS(h)g)(uS(h), ũS) := −

nE∑
4(hi )3gi

∫ ℓi

Qi H̃i (Qi )T ∂sω
i (h) · ∂sω̃

i ds.

i=1 0

11



S. Čanić, L. Grubišić, D. Lacmanović et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114853

T
N

w
f
s
a
L

a

w
s

From the definition of the bilinear form kS , we see that the right-hand side can be expressed as kS(hg)(uS(h), ũS),
where (hg)i

= −4(hi )3gi , i = 1, . . . , nE . Therefore,

−(dhkS(h)g)(uS(h), ũS) = kS(hg)(uS(h), ũS), where (hg)i
= −4(hi )3gi , i = 1, . . . , nE .

Thus, the first equation satisfied by dhuS(h)g is

kS(h)(dhuS(h)g, ũS) + bS(dh pS(h)g, ũS) = kS(hg)(uS(h), ũS), ũS ∈ VS.

he second equation satisfied by dhuS(h)g follows directly from the second equation in (3.9) with hλ = h + λg.
amely, since bS does not depend on h, we easily obtain

bS

(
p̃S,

uS(h + λg) − uS(h)
λ

)
= 0 H⇒ bS( p̃S, dhuS(h)g) = 0.

Therefore, (dhuS(h)g, dh pS(h)g) ∈ VS × QS satisfy the following system of equations:

kS(h)(dhuS(h)g, ũS) + bS(dh pS(h)g, ũS) = kS(hg)(uS(h), ũS), ∀ũS ∈ VS,

bS( p̃S, dhuS(h)) = 0, ∀ p̃S ∈ QS.
(3.16)

This formal derivation is now rigorously justified by the following result.

Theorem 3.5. Let (uS(h), pS(h)) be a family (parameterized by h) of unique solutions of (3.2). Then, the following
limits exist:

dhuS(h)g := lim
λ→0

1
λ

(uS(h + λg) − uS(h)), dh pS(h)g := lim
λ→0

1
λ

( pS(h + λg) − pS(h)).

Furthermore, the limits above are unique solutions of (3.16).

Proof. For each fixed h, consider the system (3.16), and denote by (dhuS(h)g, dh pS(h)g) its unique solution. Notice
that system (3.16) is of the form discussed in Theorem 3.3, which guarantees the existence of a unique solution.
We now show that this solution is, in fact, the limit as λ → 0 of ( 1

λ
(uS(h+ λg)− uS(h)), 1

λ
( pS(h+ λg)− pS(h))).

For this purpose, for each λ define

(uλ
S, pλ

S) :=
1
λ

(uS(h + λg) − uS(h), pS(h + λg) − pS(h)).

We first see that functions (uλ
S, pλ

S) are solutions of system (3.8), with

⟨Fλ, ũS⟩ =

nE∑
i=1

1
λ

((hi
+ λgi )4

− (hi )4)
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (h + λg) · ∂sω̃
i ds.

Now we focus on the factor multiplying the integral in the source term ⟨Fλ, ũS⟩, and introduce the functions

φλ(t) :=
1
λ

((t + λc)4
− t4) = 4t3c + 6t2λc2

+ 4tλ2c3
+ λ3c4,

here c > 0 is arbitrary. We see that φλ(t) are uniformly (in λ) bounded on t ∈ [hmin, hmax] for small λ, and the
unctions φλ converge uniformly to φ0(t) = 4t3c, as λ → 0. Thus the family Fλ is uniformly bounded, since we
howed in the proof of Lemma 3.2 that (uS(h + λg)− u(h), pS(h + λg)− p(h)) → 0 in H 1(N ;R6)× L2(N ;R3),
s λ → 0, which implies that the integrand is uniformly bounded as well. Therefore, by the first statement of
emma 3.2, functions (uλ

S, pλ
S) are uniformly bounded in H 1(N ;R6) × L2(N ;R3).

Finally, we consider the functions

(uλ
S − dhuS(h)g, pλ

S − dh pS(h)g)

nd notice that they are also solutions of (3.8), with

⟨Fλ, ũS⟩ =

nE∑
i=1

(
(hi

+ λgi )4
− (hi )4

λ
− 4(hi )3gi

)∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (h + λg) · ∂sω̃
i ds,

hich converges to zero by a similar argument as above. The second statement of Lemma 3.2 now implies that the
equence (uλ

− d u (h)g, pλ
− d p (h)g) → (0, 0) in H 1(N ;R6) × L2(N ;R3), which completes the proof. □
S h S S h S

12
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Remark 3.1. Since dhuS(h)g is the solution of (3.16) which is of the form (3.7) we can apply similar arguments
from the proof of Theorem 3.1 to conclude that dhuS(h)g is continuous with respect to h. This also implies the
Fréchet differentiability of J̃ and that J̃ is of class C1.

Now that we have determined dhui (h)g, we return to the expression (3.15) which specified the relationship
between dhui (h)g and dh J̃ (h)g to further simplify the calculation of dh J̃ (h)g. More precisely, using (3.16) we
get:

dh J̃ (h)g =

nE∑
i=1

∫ ℓi

0
f i

· dhui (h)gds = lS(dhuS(h)g)

= kS(h)(uS(h), dhuS(h)g) + bS( pS(h), dhuS(h)g)
= kS(h)(uS(h), dhuS(h)g) = kS(hg)(uS(h), uS(h)).

(3.17)

From this equation we conclude that the minimization problem for the functional J̃ , described by the inequality
(3.14), reduces to finding a g such that⎧⎪⎨⎪⎩ −

nE∑
i=1

4(hi )3gi
∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (h) · ∂sω
i (h)ds = kS(hg)(uS(h), uS(h)) ≤ 0,

where uS(h) solves (3.2) for a given h.

(3.18)

Since the form
∫ ℓi

0 Qi H̃i (Qi )T ∂sω
i (h)·∂sω

i (h)ds is positive definite, this implies that any g consisting of nonnegative
components gi , will decrease the value of the functional J̃ . However, the gradient descent method is obtained for
the choice

gi
:= (hi )3

∫ ℓi

0
Qi H̃i (Qi )T ∂sω

i (h) · ∂sω
i (h)ds, (3.19)

for i = 1, . . . , nE .
Finally, one has to take into account the conditions on the minimal and maximal thickness and the total volume

constraint. This can be done as in [39,40] by constructing a projection operator PW onto the set of constraints W ,
defined in (3.5), and using an iteration procedure

hn+1 = PW (hn+αg), n > 0

until convergence. Here α > 0 is the descent step, PW is the projection operator onto the closed convex set W , and
the derivative dh J̃ (h)g is calculated in (3.17).

The following is the resulting stent constrained optimization algorithm:

Initialization
prescribe initial h0

compute the solution (uS(h0), pS(h0)) of Eq. (3.2)

compute J̃ (h0)

Iterations
compute g using Eq. (3.19)
update h = h + αg for appropriate α

calculate the projection PW onto the constraints set W

compute the solution (uS(h), pS(h)) of Eq. (3.2)

compute J̃ (h)

(3.20)

3.2. Rectangular cross-sections: Perturbations with respect to wi

In this case the cross-sections are rectangles with sides h and wi corresponding to the thickness and width,
respectively, of the i th strut. Numerically, each strut will be subdivided into n sub-struts, in which case w will be
i
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associated with each sub-strut. This effectively means that the width of each strut at the continuous level will be a
function of s. See, e.g., Fig. 6 right, where the width of a single stent strut is shown versus axis of symmetry of the
tent. Since stents are often cut out of a metallic tube of a certain fixed thickness, we are assuming that the thickness

h of all the stent struts is constant. The rectangles are positioned in such a way that the thickness is aligned with the
irection of the normal vector ni to the middle line of the curved rod, while the width is aligned with the binormal
ector bi , see Fig. 3. The normal vector to the middle line is also normal to the cylinder describing the arterial
all. In this case we have:

I 23
i = 0, I i

33 =

∫ h/2

−h/2

∫ wi /2

−wi /2
x2

3 dx2dx3 =
hw3

i

12
, I i

22 =

∫ h/2

−h/2

∫ wi /2

−wi /2
x2

2 dx2dx3 =
h3wi

12
.

For torsional rigidity we use the series (3.1), where w is replaced by wi , and denote the resulting function of tube
thickness h and strut width wi by K (h, wi ). In the numerical simulations, we use the first seven terms in the series
for K (h, wi ) as an approximation. With this notation, we have:

Hi (w) =

⎡⎢⎣ µi K (h, wi ) 0 0

0 E i hw3
i

12 0
0 0 E i h3wi

12

⎤⎥⎦ , where K (h, wi ) is given by (3.1).

After using the same arguments as in the previous section, we conclude that:

dw J̃ (w)g = kS(w)(uS(w), dwuS(w)g) = −dwkS(w)g(uS(w), uS(w)),

where dwkS(w)g is given by

(dwkS(w)g)(ωi , ω̃
i ) =

nE∑
i=1

∫ ℓi

0
Qi (dwHi (w)g)(Qi )T ∂sω

i
· ∂sω̃

i ds.

t is easy to compute

dwHi (w)g =
d

dλ
Hi (w + λg)|λ=0 =

⎡⎢⎣ µi ∂K (h,wi )
∂wi

gi 0 0

0 E i 3hw2
i gi

12 0
0 0 E i h3gi

12

⎤⎥⎦

=

⎡⎢⎣ µi ∂K (h,wi )
∂wi

0 0

0 E i 3hw2
i

12 0
0 0 E i h3

12

⎤⎥⎦ gi =: Ĥi (w)gi .

Thus

dw J̃ (w)g = −

nE∑
i=1

gi

∫ ℓi

0
Qi Ĥi (w)(Qi )T ∂sω

i
· ∂sω̃

i ds. (3.21)

Therefore, the gradient descent direction is given by the vector g with components

gi =

∫ ℓi

0
Qi Ĥi (w)(Qi )T ∂sω

i (w) · ∂sω
i (w)ds, i = 1, . . . , nE , (3.22)

here (uS(w), pS(w)) is the unique solution of (3.2), and uS(w) = ( y1(w), . . . , ynE (w)), where yi (w) =

(ui (w), ωi (w)).
The constrained stent optimization algorithm looks the same as the boxed algorithm at the end of Section 3.1,

except that g now is calculated using (3.22). Furthermore the existence of the minima of the cost functional also
follows in the same way, now using the fact that matrices Ĥi depend smoothly on w.

.3. Rectangular cross-sections: perturbations with respect to both wi and h

In this subsection the optimization is performed with respect to two parameters, the width and the thickness of
ach stent strut, where the thickness h is the same for all stent struts. This is motivated by the fact that balloon
14
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expandable stents are typically cut out of a single slotted tube of thickness h. As a result, the steepest descent vector
g now has two components: g : = (g0, g), and the matrix Hi describing the elastic properties of the i th strut is
now denoted by:

Hi (h, w) =

⎡⎢⎣ µi K (h, wi ) 0 0

0 E i hw3
i

12 0
0 0 E i h3wi

12

⎤⎥⎦ , where K (h, wi ) is given by (3.1).

o shorten the notation we also introduce the notation w := (h, w). By repeating the arguments from the previous
sections, we obtain the following expression for dw J̃ (w)g:= (dh J̃ (w)g, dw J̃ (w)g0):

dw J̃ (w)g = kS(w)(uS(w), dwuS(w)g) = −dwkS(w)g(uS(w), uS(w)),

where dwkS(w)g is given by

(dwkS(w)g)(ωi , ω̃
i ) =

nE∑
i=1

∫ ℓi

0
Qi (dhHi (w)g0)(Qi )T ∂sω

i
· ∂sω̃

i ds

+

nE∑
i=1

∫ ℓi

0
Qi (dwHi (w)g)(Qi )T ∂sω

i
· ∂sω̃

i ds.

As before

dwHi (w)g =

⎡⎢⎣ µi ∂K (h,wi )
∂wi

0 0

0 E i 3hw2
i

12 0
0 0 E i h3

12

⎤⎥⎦ gi =: Ĥi (w)gi ,

hile

dhHi (w)g0 =

⎡⎢⎣ µi ∂K (h,wi )
∂h 0 0

0 E i w3
i

12 0
0 0 E i 3h2wi

12

⎤⎥⎦ g0 =: Ĥ0(w)g0.

Therefore the gradient descent direction is given by the vector g = (g0, g) = (g0, g1, . . . , gnE ) with components

g0 =

nE∑
i=1

∫ ℓi

0
Qi Ĥ0(w)(Qi )T ∂sω

i (w) · ∂sω̃
i (w)ds,

gi =

∫ ℓi

0
Qi Ĥi (w)(Qi )T ∂sω

i (w) · ∂sω
i (w)ds, i = 1, . . . , nE ,

here (uS(w), pS(w)) is the unique solution of (3.2) and uS(w) = ( y1(w), . . . , ynE (w)), where yi (w) =

ui (w), ωi (w)).

4. The numerical method

The stent optimization problems considered in this work are all solved iteratively, with the iteration procedures
escribed in Section 3. A summary of the optimization algorithms is given in (3.20). An important feature of this
lgorithm is that it is very fast, since in each iteration only one solution of the stent problem has to be solved.
ne does not need to find the derivative of the cost function, nor the derivatives of the solutions with respect to

he optimization parameters, but rather only solve a problem like (3.18), which requires one solution of the stent
roblem itself. In fact, we performed a comparison with a genetic algorithm implemented in Matlab, see Section 6,
nd showed that not only is our algorithm faster, but the optimal solution of our algorithm has the value of its
inimum smaller than that obtained by the genetic algorithm, indicating higher accuracy of the solution. The stent

roblem is solved by a FEM method applied to the mixed formulation (2.12). The approach is to first subdivide
ach edge (stent strut) into subintervals along the middle line of each stent strut. Each subinterval is then treated as
“strut” itself in the sense that the finite elements at the nodes, corresponding to each subinterval, have to satisfy

he coupling conditions at each node (continuity of displacement and infinitesimal rotation, and balance of forces
15
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Fig. 4. Pure traction boundary conditions: uniform pressure load is applied on the interior stent surface shown in red, and stress free on the
rest. Additionally, zero total translation and zero total rotation are prescribed.

Fig. 5. Zig-Zag stent. Left: The middle lines of the Zig-Zag stent. Right: Mesh points (struts discretization) with n = 40.

and moments). Namely, they belong to the space VS = H 1(N ,R6) for (uS, ωS) defined on this “new” stent with an
ncreased number of stent struts. This way we keep the discretized structure unchanged at the expense of changing its
escription, i.e., the number of vertices, the number of edges, and the split parameterizations. The problem remains
iven by the equations of the same form (2.12), defined on the associated function space. For the finite dimensional
pproximations of displacement u and of infinitesimal rotation ω, we use piecewise polynomials of order 2, while

for the finite dimensional approximation of the contact force pS , which is the Lagrange multiplier in the problem,
we use piecewise polynomials of order 1. In order for the piecewise polynomials of order 2, approximating (uS, ωS),
to belong to the space VS = H 1(N ,R6), we additionally assume that they are globally continuous (continuous at
vertices), while for the first order polynomials approximating pS this is not required since they belong to L2(N ,R3).
It was proved in [33] that this particular approach leads to a convergent approximation of the solution (uS, ωS) ∈ VS .

In the simulations below, the size of the spatial discretization is n = 40 for all the stents except for Cypher for
which we used n = 10 discretization points for non-sinusoidal stent struts in the finest mesh.

5. Numerical results

We show numerical result of optimal design of the following three stents: the Zig-Zag stent (see Fig. 5), the
Palmaz6 stent (see Fig. 19), and the Cypher stent (see Fig. 21). We design stents with minimal compliance by
changing their struts’ width w, and slotted tube thickness h. To avoid having solutions which have infinite strut
thickness, we optimize the stents under the constraint that the total volume of struts is kept constant, i.e., the total
material used to produce an optimal stent is fixed. We start the optimization process by an initial configuration in
which the thickness and width of the stent struts is uniform for all struts in one stent, and it is equal to h0 = 10−4m,
which is a typical thickness in stent manufacturing. The total volume is then calculated by multiplying h2

0 by the total
length of stent struts. We also fix the minimal and maximal possible thickness to be hmin = 10−5 m, hmax = 10−3 m.

The boundary conditions used in the simulations correspond to the pressure loading applied to the interior stent
surface. See Fig. 4. The remaining boundary (stent surface) is force free. This gives rise to a pure traction problem
for which the solutions are unique up to translation and rotation. To ensure uniqueness of the solution, zero total
translation and zero total rotation are prescribed. See (2.9) in Section 2.1.3. The results are shown next.

5.1. Square cross-sections and radial forcing

In this subsection we assume that the cross-sections are squares, and optimize the stent width w and thickness
h so that the resulting stent has minimal compliance, under the assumption that h = w. We apply an interior radial
ressure force, uniform in magnitude along the entire stent, and study stent’s response to this loading.
16
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Fig. 6. Left: Expanded configurations of a Zig-Zag stent with uniform strut thickness (gray), superimposed over the optimized stent with
onuniform strut thickness (black). Right: A graph showing strut thickness for the optimized stent, versus cylindrical axis of symmetry.

Table 1
Optimization of Zig-Zag stent, radial loading. The table shows initial compliance, optimal compliance for the stiffest stent, minimal and
maximal stent strut thickness in the optimal stent, and the fixed volume used in the optimization algorithm.

Stent Init compl. Opt. compl. Min thickness Max thickness Fixed vol.

Zig-Zag 3.04 · 10−5 Nm 2.21 · 10−5 Nm 6.72 · 10−5 m 1.28 · 10−4 m 2.01 · 10−9 m3

Table 2
Optimization of Palmaz like stent. The table shows initial compliance, optimal compliance for the stiffest stent, minimal and maximal stent
strut thickness in the optimal stent, and the fixed volume used in the optimization algorithm.

Stent Init compl. Opt. compl. Min thickness Max thickness Fixed vol.

Palmaz6 0.21771 Nm 0.15287 Nm 5.3401 · 10−5 m 1.7152 · 10−4 m 7.7350 · 10−10m3

Example 1. We start by considering the simplest example of a stent consisting of a single zig-zag ring, as shown in
Fig. 5 left. The stent’s length in this example is 0.0168022 m, and the struts lie on a cylinder of radius 0.0015 m.
The total volume of this stent is equal to V0 = 2.0185 · 10−9 m3. Each stent strut is split into n = 40 smaller struts,
as shown in Fig. 5 right. The optimization algorithm is run with the initial configuration in which all the struts are
f the same thickness.

Fig. 6 left shows the expanded configuration of the reference stent in gray, and the expanded optimal solution
n black. One can observe that (1) the optimized stent indeed deforms less than the stent with uniform stent struts’
hickness, and (2) the stent struts’ thickness is larger at the joints of the stent. Detailed information about the strut’s
hickness is shown in Fig. 6 right and in Table 1. We can see that in the optimal configuration the minimal thickness

of the struts is 6.7219 · 10−5m, while the maximal is 1.2856 · 10−4m. Compliance of the initial configuration of
he stent with all struts of the same thickness is 3.0411 · 10−5Nm, while the compliance for the optimized stent is

2.21068 · 10−5Nm. This is a 45% increase in stent stiffness for the optimized stent.
Conclusion. This example shows that the stent’s stiffness increases by the increase in the thickness of stent struts

at the joints. This is to be expected since the radial pressure loading applied to the stent tends to increase the radius
of the stents, which occurs due to bending of the struts in the plane tangential to the stent’s cylinder. In Example
8 below, however, we will see that this fails to be true for the struts of very small thickness, see Fig. 14.

Example 2. Here we consider a more realistic stent of Palmaz–Schatz type, Palmaz6, which consists of six zig-
zag rings in which all the struts are of the same length, see Fig. 7. The gray color in the left panel shows the
expanded initial stent with stent struts of equal thickness, while the black color shows the optimized stents with the
corresponding stent strut thickness leading to a stent with minimal compliance, expanded under the same loading
density of f = 5000 N/m.

Fig. 7 right shows strut thickness versus axis of symmetry of the stents’ cylinder. The simulations were performed
with n = 40 discretization points along each stent strut.

Conclusions. We again see that the stiffest stents have struts with the thickness that is largest at the joints, and
smallest at the mid-points of each strut. The precise data is shown in Table 2. Additionally, we also observe that
the overall stiffness of the struts near the left and right edges of the stent is higher than everywhere else. This can
17
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Fig. 7. Palmaz6: Palmaz type stent under radial loading. The panel on the left shows the expanded initial configuration in gray and the
ptimal stent configuration in black. The panel on the right shows strut thickness versus axis of symmetry.

Fig. 8. Cypher stent, radial loading. Panel 1: Reference configuration. Panel 2: Expanded Cypher stent with uniform strut thickness. Panel
3: Expanded Cypher stent with optimized strut thickness for maximal stiffness. Panel 4: Thickness versus axis of symmetry of the stent
cylinder.

be attributed to the compensation by the optimization algorithm of the so called dogboning effect, associated with
the flaring-out of the stents’ edges during uniform pressure loads during balloon angioplasty.

Example 3. Here we consider the geometry of a Cypher type stent. Cypher(TM) sirolimus-eluting coronary
stent is indicated for improving coronary luminal diameter in patients with symptomatic ischemic disease due to
discrete de novo lesions of length ≤ 30 mm in native coronary arteries with reference vessel diameter between
2.2 mm and 3.5 mm. Cypher stent platform is made of 316L stainless steel material, with stent strut thickness of
1.4 · 10−1 mm [41]. The reference length of the stent considered in this study is 16.7 mm and reference diameter
3 mm. The stent consists of 8 zig-zag rings, connected via sinusoidal struts, see Fig. 8, forming seven circumferential
cells.

We optimize the thickness of Cypher struts to maximize the stent’s stiffness. We used n = 10 discretization
points for each strut. Fig. 8 shows the reference configuration (see Panel 1), the expanded initial configuration with
struts of equal thickness (see Panel 2), the optimized Cypher stent with the corresponding struts’ thickness (see
Panel 3), and the graph of struts’ thickness versus axis of symmetry (see Panel 4). Details of the optimization
results are shown in Table 3.

Conclusions. We see that the stiffest Cypher stent geometry is the geometry for which the zig-zag rings have
thickness which is considerably higher than the thickness of the sinusoidal struts. See Fig. 8, Panel 4. The optimized

expanded stent has a smaller maximal diameter (4.5 mm) than the stent with uniform strut thickness (4.9 mm).

18



S. Čanić, L. Grubišić, D. Lacmanović et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114853

i

A
o
(
o
f
t

5

a
a

E
i
w

Table 3
Optimization of Cypher stent, radial loading. The table shows initial compliance, optimal compliance for the stiffest stent, minimal and
maximal stent strut thickness in the optimal stent, and the fixed volume used in the optimization algorithm.

Stent Init compl. Opt. compl. Min thickness Max thickness Fixed vol.

Cypher 0.8159 Nm 0.4101 Nm 6.8486 · 10−5 m 2.6230 · 10−4 m. 4.3535 · 10−9 m3

Table 4
Optimization of Palmaz type stent. The table shows initial compliance, optimal compliance for the stiffest stent, minimal and maximal stent
strut thickness in the optimal stent, and the fixed volume used in the optimization algorithm.

Stent Init compl. Opt. compl. Min thickness Max thickness Fixed vol.

Palmaz6 0.17181 Nm 0.094959 Nm 4.8647 · 10−5 m 2.1345 · 10−4 m 7.7350 · 10−10 m3

Fig. 9. Palmaz6: Palmaz type stent, longitudinal loading. Left: expanded stent (initial configuration is in gray; optimal stent configuration is
n black). Right: Strut thickness versus axis of symmetry.

dditionally, the length of the expanded optimized stent is larger (15.9 mm) and closer to the length of the
riginal, reference stent (16.7 mm) when compared to the length of the expanded stent with uniform strut thickness
14.5 mm). The change in the length of the expanded stent is known as “foreshortening” and is an important piece
f information when determining the size of the stent used to treat a lesion of a certain length. The smaller the
oreshortening the better. We see that in terms of foreshortening, the optimized stent has preferred behavior over
he non-optimized stent.

.2. Square cross-sections and longitudinal forcing

In this section we consider stent optimization with respect to longitudinal forcing. The longitudinal loading is
pplied in a symmetric way stretching the stent in opposite directions with respect to its center line. The load is
pplied at every point of the stent.

xample 4. We start by considering the Palmaz type stent described in Example 2. Each stent strut is subdivided
nto n = 40 sub-segments, and a uniform longitudinal force density f = 5000 N/m is applied in a symmetric
ay. The stent struts thickness is optimized to obtain the stiffest stents. Fig. 9 shows the results. Table 4 shows the

initial and optimized values of the stent’s compliance, and the minimal and maximal thickness of stent struts in the
optimized stent. The fixed volume kept during the optimization procedure is the same as in Example 2.

Conclusions. We see that under the symmetric longitudinal loading in opposite directions, the stiffest stent,
namely the stent that resists the longitudinal stretching the most, is the stent with the thicker struts in the middle
of the stent, and thinner struts at the edges of the stent, as shown in Fig. 9. This is exactly the opposite from the
results shown in Example 2.

Example 5. Here we consider the same Cypher stent as discussed in Example 3, except that the stent is now subject
to longitudinal loading. We used n = 10 discretization points for each strut, and the force density of f = 5000

N/m was applied in opposite directions with respect to the central line of the stent. Fig. 10 shows the reference
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Fig. 10. Cypher stent, longitudinal loading. Panel 1: Reference configuration. Panel 2: Expanded Cypher stent with uniform strut thickness.
anel 3: Expanded Cypher stent with optimized strut thickness for maximal stiffness. Panel 4: Thickness versus axis of symmetry of the
tent cylinder.

Table 5
Optimization of Cypher stent, longitudinal loading. The table shows initial compliance, optimal compliance for the stiffest stent, minimal
and maximal stent strut thickness in the optimal stent, and the fixed volume used in the optimization algorithm.

Stent Init compl. Opt. compl. Min thickness Max thickness Fixed vol.

Cypher 1.7979 Nm 0.9614 Nm 6.7753 · 10−5 m 2.7635 · 10−4 m 4.3535 · 10−9 m3

configuration (see Panel 1), the expanded initial configuration with struts of equal thickness (see Panel 2), the
optimized Cypher stent with the corresponding struts’ thickness (see Panel 3), and the graph of struts’ thickness
versus axis of symmetry (see Panel 4). Details of the optimization results are shown in Table 5.

Conclusions. We see that, as in Example 4, the stiffest stent is a stent with thick stent struts in the middle, and
thinner struts at the end points. See Panel 4 in Fig. 10. Notice the dramatically different behaviors of the optimized
stent, shown in Panel 3 of Fig. 10, and the non-optimized stent, with uniform stent struts’ thickness, shown in Panel
2 of Fig. 10. When compared with the results in Table 3 one can see that the maximal stiffness of the struts under
the longitudinal loading is higher than the maximal stiffness of the struts in the optimized stent under radial loading.

5.3. Combined forcing and square cross-sections

In this section we apply different combinations of radial and longitudinal forcing on a single reference stent
configuration corresponding to Palmaz type stent, and compare different optimal designs with respect to strut
thickness for three different combinations of radial and longitudinal forcing. In each of the three cases we use
n = 40 discretization points for each stent strut.

Example 6. We consider the following three cases of forcing applied to the Palmaz6 geometry:

f = αfr + βfl , where

⎧⎨⎩
α = 1, β = 0.5; (Palmaz6A),
α = 1/

√
2, β = 1/

√
2; (Palmaz6B),

α = 1, β = 2; (Palmaz6C ),
(5.23)

here fr is radial forcing of density 5000 N/m, and fl is longitudinal forcing of density 5000 N/m, applied
ongitudinally in opposite directions with respect to the axial center point of the stent, stretching the stent in the
eft and right directions. The three different cases give rise to three substantially different stent configurations. See
igs. 11 and 12.

Data associated with optimization of the three stents is shown in Table 6.
Conclusions. This example shows how different types of loading imply different optimal stent designs. Of

particular interest is stent Palmaz6C . The expanded structure, featuring flaring out of the end points with a rigid
interior can be observed in stents designed to anchor bioartificial aortic valves, see Fig. 13. This shows that
our optimization algorithm has the features necessary to produce optimal stent designs for different applications,
including Transcatheter Aortic Valve Replacement (TAVR).
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Fig. 11. Left panel: Expanded Palmaz6A (left) and strut thickness versus symmetry axis (right). Right panel: Expanded Palmaz6B (left) and
trut thickness versus symmetry axis (right).

Fig. 12. Left: Expanded Palmaz6C shown in black, superimposed over the expanded non-optimized Palmaz6 stent, under the loading with
α = 1 and β = 2 shown in (5.23). Right: Strut thickness for optimized stent Palmaz6C versus symmetry axis (right).

Fig. 13. Left: Expanded Palmaz6C . Middle: Expanded aortic valve bioprosthesis Symetis Acurate TATM. Right: St. Jude Medical PorticoTM

Transcatheter aortic heart valve.

Table 6
Optimization of Palmaz6A , Palmaz6B , and Palmaz6C stents. The table shows initial compliance, optimal compliance for the stiffest stent,

inimal and maximal stent strut thickness in the optimal stent, and the fixed volume used in the optimization algorithm.

Stent Init compl. Opt. compl. Min thickness Max thickness Fixed vol.

Palmaz6A 0.087336 Nm 0.053493 Nm 4.6118 · 10−5 m 2.0478 · 10−4 m 7.7350 · 10−10 m3

Palmaz6B 0.021432 Nm 0.009966 Nm 5.7611 · 10−5 m 2.1358 · 10−4 m 7.7350 · 10−10 m3

Palmaz6C 0.021164 Nm 0.0101 Nm 6.057 · 10−5 m 2.3489 · 10−4 m 7.7350 · 10−10 m3

5.4. Radial forcing and rectangular cross-sections, optimization of struts’ width over a series of tube thicknesses

Since balloon expandable stents are typically cut out of a metallic tube of a given thickness, in this section we
ptimize the stent struts’ width, for a given tube thickness using methods explained in Sections 3.2 and 3.3. Thus,
21
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Table 7
Zig-Zag stent data for minimal compliance optimization. The numbers in black show the optimal results for the optimization with respect
to the strut width w, for a given tube thickness h. The numbers in red show the optimal solution for the optimization with respect to both
w and h.

Zig-Zag thickness Optimal compliance Min width Max width Total volume

0.2 · 10−4 m 2.0972 · 10−5 Nm 3.8065 · 10−4 m 5.9645 · 10−4 m 2.0185·10−9 m3

0.4 · 10−4 m 9.2795 · 10−6 Nm 2.0131 · 10−4 m 3.1750 · 10−4 m 2.0185·10−9 m3

0.4738 · 10−4 m 8.8700 · 10−6Nm 1.3531 · 10−4 m 2.7907 · 10−4 m 2.0185·10−9 m3

0.5 · 10−4 m 8.9492 · 10−6Nm 1.3066 · 10−4 m 2.5520 · 10−4 m 2.0185·10−9 m3

10−4 m 1.9396 · 10−5Nm 4.2475 · 10−5 m 1.3810 · 10−4 m 2.0185·10−9 m3

we allow that the cross-sections of stent struts be rectangles. This is different from the previous examples where
the cross-sections of all struts were squares. In the end we perform optimization with respect to both the thickness
of the tube and the width of stent struts and compare the optimal solution with the solutions obtained by fixing
the tube thickness and optimizing only with respect to the strut width. Tables 7–9 show the results for the three
stents considered: the Zig-Zag stent, the Palmaz6 stent, and Cypher stent. The rows in red show the solutions for
the optimization performed with respect to both the tube thickness and the strut width simultaneously. The rows
in black show the solutions for the optimization performed only with respect to the strut width, for several tube
thickness values.

Example 7. For the Zig-Zag stent we fix the total volume to be 2.0185·10−9 m3, and run our optimization algorithm
or four different tube thickness values between 20 µm and 100 µm. Table 7 reports the results of those simulations,

with an additional line, colored in red, showing optimal result for the optimization performed with respect to both
thickness h of the tube and the width w of the stent struts. Fig. 14 shows the optimization results for the four
ifferent tube thickness values shown in Table 7 in black. Fig. 15 shows the optimal stent for the optimization with
espect to both h and w, shown in red in Table 7. The corresponding 3D optimal stent, together with the initial
onfiguration, are shown in Fig. 16. This optimal stent, which is the stiffest Zig-Zag stent made of a 316L stainless
teel tube, occurs for the tube of thickness 47.38 µm. This optimal result corresponds to the red dot in Fig. 22 left,
hich shows the cost functional (compliance) vs. tube thickness for the Zig-Zag stent, optimized with respect to
oth h and w.

Conclusions. Two interesting observations can be drawn:
1. From Fig. 14 we see that for very thin tubes, e.g., h = 20 µm, the stiffest stent has the struts that are widest

n the middle than at the junctions. This is opposite from the stents that are cut out of a thicker tube with thickness
h = 40 µm and higher, shown in Fig. 14, for which the width of the struts is larger at the junction points than at
he middle. Also, it is interesting to notice how the distribution of the widths of the struts changes as we increase
he thickness of the tube, shown in the graphs on the right in Fig. 14.

2. When compared to the optimal stent from Example 1 for which h = w (square cross-sections), we see from
able 7 that optimal tube thickness in this example is smaller than the smallest thickness of the stent struts in
xample 1: 4.738 · 10−5 m < 6.72 · 10−5 m. However, this is compensated by the increase in the width of the stent
truts in this example, when compared to Example 1. Namely, the width of the stent struts in this example is between
.3531 · 10−4 m and 2.7907 · 10−4 m, while in Example 1 the width of the stent struts is between 6.72 · 10−5 m and
.28 · 10−4 m. This is consistent with the constraint on the total volume of stent material. The resulting optimized
ompliance in this example is smaller than the optimized compliance in Example 1, 8.8700·10−6 Nm vs. 2.21·10−5

m. Therefore, we conclude that optimizing the Zig-Zag stent with respect to compliance by keeping the thickness
f the metallic tube uniform along each stent, gives better solutions.

xample 8. Here we consider Palmaz6 stent. We optimize the struts’ width for several thicknesses of the 316L
tainless steel tubes to find the tube thickness and struts widths that correspond to the stiffest Palmaz6 stent. For all
he stents in the optimization algorithm the total volume is kept at 7.7350−10 m3. Table 8 shows the data for seven
ifferent metallic tube thicknesses, with the row in red showing the optimal solution obtained, as in the previous
xample, by optimizing with respect to both the thickness h of the tube, and the width w of the struts. We see
22
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s

Fig. 14. Zig-Zag stent. Left: Optimal stent; Middle: Starting configuration; Right: Strut width vs. axis of symmetry. The optimization is
performed only with respect to the strut width w for four different values of h. See Table 7. Notice the stent for h = 20 µm, which has
truts whose width is largest in the middle, not at the junctions.

Fig. 15. Zig-Zag stent optimized for both stent strut thickness and width, where the stent strut thickness is kept constant for the entire stent,
motivated by the fact that balloon expandable stents are cut out of a metallic tube of constant thickness. Left: Initial configuration. Middle:
Optimized stent. Right: Strut width vs. axis of symmetry. The minimal and maximal strut width and stent compliance are shown in red in
Table 7.

Fig. 16. Zig-Zag stent: A comparison between the initial, non-optimal configuration with uniform thickness and struts’ width (left), and
optimized configuration (right). Both have the same material volume. The stent on the right has optimized tube thickness h and struts’ width
w giving the highest radial strength.

that the stiffest stent is obtained for the tube thickness of 0.2854 · 10−4 m, with the minimal and maximal width
of stent struts between 2.0138 · 10−4 m and 6.0470 · 10−4 m. Fig. 17 shows the optimal stent in 2D, while Fig. 19
23
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Table 8
Palmaz6 stent data for minimal compliance optimization with respect to stent strut thickness and stent strut width, where the thickness is
kept constant along each stent.

Palmaz6 thickness Optimal compliance Min width Max width Total volume

0.1 · 10−4 m 0.062135 Nm 4.4886 · 10−4 m 2.0369 · 10−3 m 7.7350−10 m3

0.2 · 10−4 m 0.029266 Nm 3.0741 · 10−4 m 9.4024 · 10−4 m 7.7350−10 m3

0.2854 · 10−4 m 0.0244269 Nm 2.0138 · 10−4 m 6.0470 · 10−4 m 7.7350−10 m3

0.3 · 10−4 m 0.024632 Nm 1.5760 · 10−4 m 5.5991 · 10−4 m 7.7350−10 m3

0.4 · 10−4 m 0.029452 Nm 8.5846 · 10−5 m 4.0752 · 10−4 m 7.7350−10 m3

0.6 · 10−4 m 0.052715 Nm 3.5213 · 10−5 m 2.6637 · 10−4 m 7.7350−10 m3

10−4 m 0.13360 Nm 1.3587 · 10−5 m 1.6096 · 10−4 m 7.7350−10 m3

Fig. 17. Palmaz6 stent optimized for both stent strut thickness and width, where the stent strut thickness is kept constant for the entire
stent, motivated by the fact that balloon expandable stents are cut out of a metallic tube of constant thickness. Left: initial configuration.
Middle: Optimized stent. Right: Strut width vs. axis of symmetry.

Fig. 18. Comparison between the fully expanded Palmaz6 stent cut out of a very thin tube (h = 10 µm) shown on the left, and the optimal
stent from Fig. 17 shown on the right. Notice that for the h = 10 µm stent, the struts are thicker in the middle, they become thinner near
the joints, and then thick again at the joints. Additionally, significant radial deformation of the stent with h = 10 µm can be observed,
which is not visible in the optimal stent shown on the right.

right shows its 3D image. This optimal result corresponds to the red dot in Fig. 22 middle, which shows the cost
functional (compliance) vs. tube thickness for the Palmaz6 stent, optimized with respect to both h and w.

Similarly as in the previous example, in the case of a very thin tube, namely for h = 10 µm, see Fig. 18, the
optimal stent has struts that are wider in the middle than at the joints. This is opposite to all the other stents for
which h ≥ 20 µm. Fig. 18 shows a comparison between the thin stent for which h = 10 µm and the optimal stent,
shown in Fig. 17, fully expanded. Notice how the deformation under uniform pressure loading is different for the
two stents: significant radial deformation can be seen for the stent with h = 10 µm.

Conclusions. Two interesting observations can be drawn:
1. From Fig. 18 left we see that for very thin tubes, e.g., h = 10 µm, the stiffest stent has the struts that are widest
in the middle, they become thinner near the joints, and then thick again at the joints. As a result the deformation
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Fig. 19. Palmaz6 stents: A comparison between the initial, non-optimal configuration with uniform thickness and width of stent struts, shown
n the left, and the optimized configuration corresponding to the red line in Table 8, shown on the right. Both have the same material

volume. The stent on the right has optimized tube thickness h and strut width w giving the highest radial strength.

Table 9
Cypher stent data for minimal compliance optimization with respect to stent strut thickness and stent strut width, where the thickness is
kept constant along each stent.

Cypher thickness Optimal compliance Min width Max width Total volume

0.4 · 10−4 m 0.69161 Nm 1.9212 · 10−5 m 8.3330 · 10−4 m 4.3535 · 10−9 m3

0.6 · 10−4 m 0.37138 Nm 1.4607 · 10−5 m 5.1185 · 10−4 m 4.3535 · 10−9 m3

0.8 · 10−4 m 0.27389 Nm 1.0635 · 10−4 m 4.3553 · 10−4 m 4.3535 · 10−9 m3

1.0 · 10−4 m 0.24717 Nm 6.6646 · 10−5 m 3.8404 · 10−4 m 4.3535 · 10−9 m3

1.0282 · 10−4 m 0.24628 Nm 5.7496 · 10−5 m 3.6928 · 10−4 m 4.3535 · 10−9 m3

1.2 · 10−4 m 0.25031 Nm 4.8512 · 10−5 m 3.2200 · 10−4 m 4.3535 · 10−9 m3

1.4 · 10−4 m 0.27048 Nm 2.8829 · 10−5 m 2.8067 · 10−4 m 4.3535 · 10−9 m3

under uniform pressure loading is significantly different from the deformation of the optimal stent, shown in Fig. 18
right. Notice how the centers of the struts have smaller radial displacement than the joints of the stent. This is very
different from the deformed stent shown on the right.

2. When compared to the optimal Palmaz6 stent from Example 2, we draw similar conclusions as for the Zig-
Zag stent above. The optimal tube thickness in this example is smaller than the smallest thickness of stent struts in
Example 2, however, this is compensated by the increase in the width of stent struts in this example, when compared
to Example 2. The resulting optimized compliance in this example is significantly smaller than the optimized
compliance in Example 2, 0.0244269 Nm vs. 0.94959 Nm, which is a reduction of 38 times in compliance achieved
by the stent in Fig. 17. We conclude that optimizing the Palmaz6 stent with respect to compliance by keeping the
width of the metallic tube uniform along each stent, provides significantly better results, as was the case with the
Zig-Zag stents in the previous example.

Example 9. Here we consider Cypher stent. We optimize the struts’ width for several thicknesses of the 316L
stainless steel tubes to find the tube thickness and struts widths that correspond to the stiffest Cypher stent. For
all the stents in the optimization algorithm the total volume is kept at 4.3535 · 10−9 m3. The initial thickness was
taken to be 1.4 · 10−4m. Table 9 shows the optimization results, with the line in red showing the optimal solution
btained by changing both h and w, where h is kept fixed over the entire stent. The optimal stent data is shown in
ig. 20, and a 3D image of the optimal stent is shown in Fig. 21. Fig. 21 also shows a comparison with the initial,
on-optimal configuration.

Conclusions. By comparing the results from Example 3 and this example, we conclude that optimizing Cypher
tent with respect to compliance by keeping the width of the metallic tube uniform along each stent, provides
ignificantly better results, as was the case with the previous two examples. Namely, Table 9 shows that optimal
ompliance of the Cypher stent in this example is 0.24628 Nm, which is 50% smaller than optimal compliance of
he Cypher stent in Example 3. As in Example 3, the zig-zag rings in Cypher stent are responsible for bearing most
25
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Fig. 20. Cypher stent optimized for both stent strut thickness and width, where the stent strut thickness is kept constant for the entire stent,
otivated by the fact that balloon expandable stents are cut out of a metallic tube of constant thickness. Left: Initial configuration. Middle:
ptimized stent. Right: Strut width vs. axis of symmetry.

Fig. 21. Cypher: A comparison between the initial, non-optimal configuration with uniform thickness and width of stent struts (left), and
optimized stent (right). Both have the same material volume. The stent on the right is optimized with respect to the tube thickness h and
stent struts’ width w. In this stent, the thickness of the sinusoidal connecting struts is roughly 1/3 of the thickness of the zig-zag rings.

Fig. 22. Cost functional (compliance) versus tube thickness for Examples 7, 8, and 9, with the optimum denoted by the red dot. The plots
indicate that in all three examples compliance is a convex function of tube thickness. By comparing the stiffness values for the optimal
configurations, we see that of the three stents, the stiffest one is Palmaz6.

of the load in uniform pressure loading, with the ratio between the average thickness of the thin sinusoidal struts
and the average thickness of the zig-zag struts in the optimal configuration being roughly equal to 1 : 3, see

Table 9. This is similar to what is used in the production of certain Cyphers stents, see [42].
We conclude this section by the graphs shown in Fig. 22, which depict compliance vs. tube thickness for the

three stents. We observe that the cost function (compliance) appears to be a convex function of the tube thickness,
and that the minimum, which is denoted by the red dot in each of the three graphs, is significantly lower for the
Palmaz6 stent than for the other two stents, showing a well-accepted opinion that Palmaz-like stents are the stiffest
stents on the US stent market.

6. Comparison with a genetic algorithm

We compared the results and efficiency of our optimization algorithm with the genetic algorithm implemented
in Matlab 2010a, run on the same personal computer as the optimization algorithm used above, with 2.4 GHz
Quad-Core Intel Core i5 and 16 GB 2133 MHz LPDDR3 memory. The comparison was performed for the Zig-Zag
stent problem presented in Example 1.

For the Zig-Zag stent, each strut was divided into six subintervals. Each subinterval carried information about
the thickness of that subinterval. This defines six degrees of freedom in the optimization algorithm for each strut.
Since the entire Zig-Zag stent consists of twelve struts, the optimization problem we considered had 72 degrees of

freedom. To lower the computational cost of the entire stent optimization procedure, we used the fact the pressure
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Fig. 23. Comparison between the genetic algorithm and our algorithm: strut width v.s. strut length.

oading is symmetric, and identified one strut with all the remaining eleven struts forming the Zig-Zag stent shown
n Fig. 5. More precisely, the substruts (subintervals) with the same {x1}start and {x1}end (axial) coordinates were
dentified among different struts. This way the number of degrees of freedom for the entire stent was kept at only
ix (corresponding to one strut), providing a symmetric solution. In fact, we noticed that the genetic algorithm
as having difficulties keeping the solution symmetric without the approach described above. This is a well-known
ownside of genetic algorithms. However, it is important to notice that this is different from the algorithm studied
n the present paper. We never needed to impose a symmetric solution in any of the examples presented above. The
ymmetries in our algorithm are embedded in the formulation of the optimization problem.

We ran the genetic algorithm with no initial data prescribed, using 200 generations and a population size of 100.
ptimization was performed by changing the width of the stent struts with the tube thickness of h = 10−4m =

00 µm. We obtained an optimized stent with the minimal compliance equal to 2.13417 · 10−5Nm, and stent strut
hickness for each of the six intervals along each strut given by:

Stent w1 (µm) w2 (µm) w3 (µm) w4 (µm) w5 (µm) w6 (µm)

Zig-Zag 142.9711 101.2637 67.1848 61.9685 100.3653 126.8807

The graphs shown in Fig. 23 show optimal strut width v.s. strut length obtained using the genetic algorithm (left)
and our algorithm (right).

One can notice three things:

1. The symmetry of the strut width along each strut in the genetic algorithm is not kept as well as it is in our
algorithm (compare w1 with w6, w2 with w5, and w3 with w4).

2. The minimal compliance obtained using the genetic algorithm, which was equal to 2.13417 · 10−5Nm, is
higher than the minimal compliance obtained using our algorithm, which was 2.120925 · 10−5Nm, which
indicates that the results of our algorithm are closer to the true minimum.

3. The time it took the genetic algorithm to generate the optimal solution was 280 seconds, which is 60 times
longer than 4.5 s it took our optimization algorithm to run on the same machine. In fact, the 4.5 s is the time
it took our algorithm to optimize the stent without any assumptions on the symmetry of the problem, thereby
computing with 72 degrees of freedom (72 = 2 (ends of each subinterval) ∗6 (subintervals) ∗6 (struts)),
instead of the 6 degrees of freedom used in the genetic algorithm to enforce symmetry.

In conclusion, we argue that for the class of optimization problems considered here, where the stent is modeled
using the one-dimensional stent net model [26], the algorithm proposed in this manuscript outperforms the genetic
algorithm in three key features: (1) computational time, (2) accuracy, and (3) symmetry.

For longer stents, and more degrees of freedom, the genetic algorithm may not be an option due to the
prohibitively large computational time and asymmetries that contaminate the solution landscape.

7. Strain information for optimized configurations

Finally, we present strain information for the optimized configurations shown in Figs. 15, 19, and 21. The strain
magnitude in this 1D model is proportional to ∥∂sω∥, see [30]. A simple argument which relates strain to ∂sω can
be explained as follows. Following the derivation of the Antman–Cosserat 1D curved rod model from 3D elasticity

T
presented in Antman [43] and Scardia [44], one can see that the following quantity: [∂sR]R , plays the main role
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Fig. 24. Zig-zag stent from Fig. 15. Left: Strain for the non-optimized stent, with maximum strain 15.4 m−1. Right: Strain for the optimized
tent, with maximum strain 15.6 m−1. While the max strain for the two configurations has not changed in a significant way, the concentration
f high strain has moved from the joints in the non-optimized stent, to the middle of the struts in the optimized configuration. This is
ecause centers of the struts in the optimized stent are thinner then in the non-optimized stent.

Fig. 25. Palmaz stent from Fig. 19. Left: Strain for the non-optimized stent, with maximum strain 2367 m−1. Right: Strain for the optimized
tent, with maximum strain 1787 m−1, which is a reduction in maximal strain of 24%. While the maximal strain is located at the joints
or both configurations, the strain distribution along the stent struts is different for the nonoptimal and optimal stent configurations.

n the calculation of strain, where R is a rotation matrix that describes the behavior of the cross-section of the rod.
he quantity [∂sR]RT measures flexure and torsion of the middle curve of the curved rod. Since R is a rotation
atrix function, there exists a vector function ω such that R = eAω , and Aω denotes the skew-symmetric matrix
ith axial vector ω (Aωx = ω× x). A simple calculation then shows that [∂sR]RT

= A∂sω, where this ω is exactly
he same as the ω we use in the stent model. The typical remaining strains are zero in the model (2.12) we use, as
as rigorously justified in [44], since we have inextensibility and unshearability assumed in the model. Therefore,

o capture the strain magnitude in this reduced 1D model, it is sufficient to plot ∥∂sω∥. The pictures presented in
his section show ∥∂sω∥ for the non-optimized and optimized configurations of the stents shown in Figs. 15, 19,
nd 21. The strains are presented on deformed configurations.

We start with the strain associated with the Zig-Zag stent shown in Fig. 15. We see that for the Zig-Zag stent,
he optimization procedure minimizing compliance gives rise to a stent for which the maximal strain is comparable
o the non-optimized configuration, however, the distribution of strain is “the opposite” to the non-optimized stent.

hile the non-optimized stent has maximal strain concentrated at the joints of the stent, the optimized stent’s
aximal strain occurs in the middle of the stent struts (see Fig. 24). This is because the centers of the struts in the

ptimized stent are thinner then in the non-optimized stent.
In Fig. 25 we show strain distribution for the Palmaz6 stent. One can see that the expanded optimized stent

as maximal strain that is 24% smaller than the non-optimized stent. We also observe that the maximal strain is
oncentrated at the joints of the stent for both configurations.

Finally, we present the strain distribution for Cypher stent. We observe that the optimized Cypher stent has
aximal strain that is 49% smaller than the maximal strain of the non-optimized configuration. Additionally, we

ee that the maximal strain concentration has shifted from the joints of the stent to the centers of the stent struts,
aking this stent a desirable choice for the lesions in which stent stiffness and low strain at stent joints is preferred
see Fig. 26).
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Fig. 26. Cypher stent from Fig. 21. Left: Strain for the non-optimized stent, with maximum strain 1489 m−1. Right: Strain for the optimized
stent, with maximum strain 754 m−1, which is a reduction in maximal strain of 49%. In contrast with the non-optimized configuration

here the maximum strain is located at the stents joints, the maximal strain in the optimized stent is distributed along the struts.

. Conclusions

We conclude this manuscript with a summary of the main results of the paper (see Section 8.1), and a comparison
f the proposed optimization approach based on the 1D reduced model discussed here, with a full 3D approach
ecently published by Russ et al. in [17] (see Section 8.2.

.1. Summary

In Section 2 we introduced the differential and integral (weak) formulations of the 1D stent model. Based on
his 1D stent model, we formulated a constrained optimization problem in Section 3. The constrained optimization
roblem is based on minimizing compliance for the three stents considered in this study: the Zig-Zag stent, the
almaz6 stent, and a Cypher-like stent. We presented three sets of minimization procedures: the first one assumes

hat the cross-sections of the stent struts are squares, and optimizes the squares’ sides h (see Section 3.1), the second
ne assumes that the cross-sections of the stent struts are rectangles, with constant thickness h, and optimizes the
idths wi of each stent strut (see Section 3.2), and the third assumes that the cross-sections of the stent struts

re rectangles, and optimizes with respect to both the stent thickness h and the width wi of each stent strut (see
ection 3.3). In the first case a proof of the existence of a unique minimizer was obtained in (3.4). For all three
ases a numerical optimization algorithm was developed, with the main steps of the algorithm shown in (3.20).

Finite Element Method-based numerical method was developed and described in Section 4, where a series of
umerical results, providing insightful information about optimal stent design, were presented. The following is a
napshot of those results:

1. Minimal compliance under radial force for the stents manufactured from stainless steel tubes of thickness
40 µm and higher, is achieved by increasing the width of stent struts near the struts’ joints. For the thin struts
whose thickness is between 10 µm and 20 µm, which appears to be a popular choice currently, the stiffest
stent has the struts that are wider in the middle than at the joints. For very thin struts, whose thickness is
10 µm or smaller, the stiffest stent has the struts that are widest in the middle, then become thinner as we
approach the junction, and are again thick at the joints.

2. Minimal compliance under a symmetric longitudinal force (stretching) is achieved with the stents that have
thicker struts near the center of the stent, and thinner struts at the edges of the stent.

3. For Palmaz–Schatz-like stents, which are stents with a uniform geometry, the stent compliance is minimal
for the stents with thicker struts near the left and right edges of the stents. This is directly related to the
dogboning effect associated with the flaring-out of the stents edges under uniform pressure loading during
balloon angioplasty.

4. The stiffest Cypher-like stent geometry is the geometry for which the zig-zag rings have thickness which is
considerably higher than the thickness of the sinusoidal struts. This is in line with the most recent designs
of Cypher-like stents that are currently available on the US market, see [42]. Our analysis suggests that the
optimal thickness ratio between the zig-zag struts and the sinusoidal struts is 3 : 1.

5. For both Palmaz6 and Cypher stents, the optimal configurations presented in this work have maximal strain
that is significantly lower than the strain of the non-optimized configuration. See Section 7. Lower strain

could be associated with lower fatigue in those stents (not analyzed in this work).
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6. Based on these findings, the optimized Cypher-like stent presented in Fig. 21, could, in fact, be a realistic
choice for stent implantation in lesions where radial strength, flexibility to bending, and low junction fatigue
are preferred.

8.2. Comparison with 3D surrogate-based optimization approaches

Finally, we compare our approach with 3D surrogate-based approaches, such as those used in [17]. The work
presented in [17] discusses optimization of a stent used to anchor a pediatric balloon-expandable prosthetic heart
valve. The optimization is performed with respect to three parameters: uniform stent strut thickness, uniform stent
strut width, and the number of circumferential patterns. The goal in [17] is to obtain a stent that is stiff enough
to counteract the retraction of a polymeric glue that holds a prosthetic heart valve, under a constraint on the stent
diameter to be as uniform as possible, and as close to the diameter of the remaining conduit as possible. Additionally,
a criterion for ductile failure was incorporated in the computational model. Optimization was performed on a
3D stent model, which was approximated by a high quality hexahedral mesh. The optimization algorithm was
a surrogate-based multi-objective optimization procedure.

Because of the high computational costs typically associated with 3D approaches the run time is typically hours
for each model evaluation without a high quality preconditioner, see [17]. This can be compared to 1–2 s that it
takes for the reduced 1D model evaluation using a serial code on a laptop with a 2.4 GHz Quad-Core Intel Core
i5 and 16 GB 2133 MHz LPDDR3 memory. The entire optimization algorithm presented in this manuscript takes
3-5 min on this laptop.

The significantly shorter simulation time of the 1D model allows the use of a large number of optimization
parameters. In the present paper, since the strut thickness and width are not uniform, the number of optimization
parameters is, in fact, 2880. It would be computationally prohibitive to take into account 3000 parameters in the
3D approaches using surrogate-based optimization.

Another significant difference between the two approaches is the way how the optimization procedure accounts
for the dependence of the cost function on the optimization parameters. While a surrogate-based model alla
Russ et al. [17] contains information about the model parameters implicitely, the model presented in this
manuscript provides an explicit dependence of the cost function on the parameters in the problem. This reduces
the computational costs significantly. At most 100 iterations are needed to complete the optimization procedure
based on a gradient descent method, which translates into the total computational time of only a few minutes per
stent optimization with high accuracy. Furthermore, rigorous mathematical analysis presented in this manuscript
guarantees that the problem is well-posed, which implies that the problem we are solving actually has a minimum,
thereby justifying the development of a computational algorithm to solve it.

Because of the simplicity of the 1D model, which can be viewed as a rigorously justified “surrogat” model for the
3D problem, we are also not restricted by the size of the optimization step in the gradient descent-based algorithm
to find the minimum. Due to the rigorous derivation of the 1D “surrogat” model in [26,27], our approach contains
the information that allows us to deal with even local oscillatory behavior of the cost function near a minimum.

In summary, the advantages of the proposed algorithm are its computational efficiency, a capability to handle
a large number of optimization parameters, high accuracy, and confidence based on mathematical rigor implying
that the minimum we are looking for actually exists. Drawbacks include the lack of detailed 3D information within
each stent strut that is provided by full 3D simulations.

The ultimate goal of this research would be to design a hybrid algorithm based on both approached. First,
one would identify the extrema of the cost function using the efficient 1D-based model that captures explicitly
the parameter landscape and the dependence of the cost function on the parameters, presented in this manuscript.
Once a minimum is found, 3D approaches, such as those presented in Russ et al. [17] would be used to explore
a neighborhood around the minimum in order to capture the full 3D information of the optimizer that may not be
available from the 1D reduced model approach.
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S. Čanić, L. Grubišić, D. Lacmanović et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114853
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