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Fig. 1. With torus-shaped obstacles in the fluid domain, the cohomology of the fluid velocity becomes nontrivial. By incorporating the correct time-evolution of
the harmonic parts, our method (middle) removes the unphysical behaviors of a general vorticity-streamfunction method (left). We compare our result against
ground truth which is produced by a velocity-based method using pressure projection (right).

The vorticity-streamfunction formulation for incompressible inviscid fluids is
the basis for many fluid simulation methods in computer graphics, including
vortex methods, streamfunction solvers, spectral methods, and Monte Carlo
methods. We point out that current setups in the vorticity-streamfunction
formulation are insufficient at simulating fluids on general non-simply-
connected domains. This issue is critical in practice, as obstacles, periodic
boundaries, and nonzero genus can all make the fluid domain multiply
connected. These scenarios introduce nontrivial cohomology components to
the flow in the form of harmonic fields. The dynamics of these harmonic
fields have been previously overlooked. In this paper, we derive the missing
equations of motion for the fluid cohomology components. We elucidate the
physical laws associated with the new equations, and show their importance
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in reproducing physically correct behaviors of fluid flows on domains with
general topology.
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1 INTRODUCTION

One of the main tasks in fluid simulation in computer graphics is
to approximate the solutions to the incompressible Euler equations
which govern the dynamics of the velocity fields of incompressible
inviscid fluids. One approach is to instead simulate the equations
in the vorticity-streamfunction formulation of fluid dynamics. This
formulation takes the vorticity field as the primary variable, whereas
the velocity field is reconstructed from the vorticity through a
streamfunction [Bridson 2015, §14.2; Chorin and Marsden 1990,
§1.2]. Numerical methods based on this formulation have more
direct controls over the preservation of local vorticity. The velocity
fields derived from the streamfunction are automatically divergence
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Fig. 2. Fluid simulation on minimal surfaces plays an important role in
texturing soap films. Costa’s surface is a minimal surface with genus one
and three boundaries, and therefore nontrivial cohomology. Our method
is the first vorticity-streamfunction method to correctly simulate fluid on
generic surfaces including those with complicated topology.

free. Researchers have adopted this formulation to simulate vor-
tex dynamics [Gamito et al. 1995; Elcott et al. 2007; Zhang et al.
2015] and two-phase flows [Ando et al. 2015a]. Other usage of the
vorticity-streamfunction formulation in fluid simulation includes
[De Witt et al. 2012] (a vorticity-based spectral method) and [Rioux-
Lavoie et al. 2022] (a Monte Carlo method). Vorticity-streamfunction
formulation is especially advantageous for fluids on 2D domains
including curved surfaces, as the vorticity equation requires only a
scalar advection, as opposed to a vector advection in velocity-based
solvers [Yaeger et al. 1986; Elcott et al. 2007; Azencot et al. 2014].
The use of streamfunctions is also the foundation for divergence-
free flow syntheses [Bridson et al. 2007; Sato et al. 2014, 2021] and
interpolations [Chang et al. 2019, 2022].

While vorticity-streamfunction formulation is well established,
the equations therein are insufficient at describing fluid flows on
general domains, in particular, those that are non-simply-connected.
Such scenarios with nontrivial topology are common, as multiply-
connectedness can arise from the presence of obstacles (Fig. 1),
periodic boundary conditions, or the domain being a surface! with
nonzero genus (Fig. 2). The issue with multiply-connected domains
is that they support irrotational flows, known as harmonic fields,
that cannot be represented by the vorticity variable. In topological
terms, the harmonic fields represent the Ist de Rham cohomology
components of the flow.? A rarely discussed fact is that harmonic
parts have their own dynamics. The vorticity equation alone is not
enough to describe an Euler fluid flow. One must consider a coupled
system between the vorticity and the harmonic components.

Previous Approaches. Previous work fills in the harmonic compo-
nents using various treatments during the recovery of the velocity
from the vorticity variable. One approach is to reconstruct the ve-
locity field from the vorticity data using the Biot-Savart integral
(which works in the entire Euclidean space with no obstacles) fol-
lowed by adding a pressure gradient [Lin 1941; Bridson 2015, §14.3.7;

!Fluid dynamics on general surfaces especially attracts attention in computer graphics
[Stam 2003; Shi and Yu 2004; Azencot et al. 2014; Huang et al. 2020; Ishida et al. 2020;
Cui et al. 2021], geometry [Boatto and Koiller 2015; Padilla 2018] and biophysics [Rank
and Voigt 2021]. See references within for surveys of the topic.

%In calculus terms, the de Rham cohomology describes the difference between a curl-free
vector field and the gradient of a function, and between a divergence-free field and the
curl of a vector potential.
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Fig. 3. Side-view of smoke passing through a torus-shaped obstacle. Also
see the top row of Fig. 1 (see video 00:31).

Weifimann and Pinkall 2012; Ishida et al. 2022], a vortex sheet over
the obstacle surface [Park and Kim 2005; Weilmann and Pinkall
2010; Golas et al. 2012; Brochu et al. 2012; Vines et al. 2013; Zhang
and Bridson 2014; Xiong et al. 2021], or mirror-reflected vortices in
the obstacles of specific shapes (e.g. a plane [Angelidis and Neyret
2005]) to prevent the velocity from penetrating the obstacles. These
methods do ensure correct dynamics of the harmonic components
implicitly. However, they work only when the fluid domain is a
subset of a Euclidean space and when the circulation around every
handle of the obstacle is zero. In particular, it does not apply to
flows on surfaces, on periodic domains, or with nonzero circulations
around obstacles.

A few methods skip the vorticity variable and directly reconstruct
streamfunctions from the velocity data on a grid. This technique
is intended to obtain the exact divergence-free flow interpolation
facilitated by the streamfunction [Biswas et al. 2016; Chang et al.
2022]. Unlike integrating from vorticity, the construction is by path-
integrating velocity, which will not lose the harmonic information
of the velocity. However, as we show in our paper (Proposition 5),
global streamfunctions exist only for special cases (e.g. when the
multiply-connectedness arises from removing obstacles from a
simply-connected domain).3

Another approach is to encapsulate the degrees of freedom of
harmonic fields into inhomogeneous boundary conditions for the
streamfunctions [Mizukami 1983]. Determining the boundary con-
ditions for the streamfunction on each “island” is a well-known
problem in oceanography [Godfrey 1989; Pedlosky et al. 1997]. This
is commonly known as the island rule, which boils down to solving
a global Dirichlet-to-Neumann map problem. Unfortunately, the
treatment only resolves harmonic fields that arise from obstacles in

3These methods are still useful for constructing local streamfunctions.
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Fig. 4. The change of linking between harmonic streamlines (blue) and fluid
vortex lines (green) in a fluid domain exterior to the obstacle (torus).

2D. The analogous formulations in 3D are more sophisticated as
they involve keeping track of circulations along flowing loops. In
general, the approach cannot account for harmonic fields arising
from periodic boundary conditions or nonzero genus of a surface
domain.

Lastly, a commonly adopted method accounting for harmonic
fields is to extract the harmonic component of the initial velocity
and add it to the streamfunction-represented velocity at each future
time step [Elcott et al. 2007, §4.5; Azencot et al. 2014, Eq. (1); Ando
et al. 2015a, §3]. This method keeps the harmonic parts fixed, as if
they were constant in time. If the initial harmonic components are
all zero, then the treatment is equivalent to neglecting harmonic
components on closed surfaces [Boatto and Koiller 2015, §3], or
setting a (tangentially) zero boundary condition on the streamfunc-
tions [Gamito et al. 1995; Rioux-Lavoie et al. 2022, §4.1]. While most
of these approaches address the nontrivial cohomology generated
by both the obstacles and the genus, they ignore the dynamics of the
harmonic parts. While it might seem that Kelvin’s circulation theo-
rem would imply the conservation of harmonic parts over time, this
is in fact a misinterpretation of the theorem and a misgeneralization
of the preservation of harmonic fields when there is no vorticity
[Thomson 1868]. The absence of changes in harmonic parts can lead
to unrealistic fluid behaviors. For example, omitting the harmonic
dynamics will lead to a fixed total flux over every cross-section of
the domain, e.g. the cross-section of the tunnel in Fig. 1. Notably, a
jet flow shot through the tunnel will be obstructed and disrupted
by an artificial zero total flux condition persisting since the initial
condition. Similar anomalies are pointed out in [Rioux-Lavoie et al.
2022, pp 12] and an errata [Ando et al. 2015b].

New Formulation. In this paper, we derive the missing dynamics
of the harmonic parts for the vorticity-streamfunction formulation
of the Euler equations. The system applies to all multiply-connected
fluid domains. The dynamics are presented in a simple form that is
easy to incorporate into previous vorticity-streamfunction methods.
The dynamics can be summarized as a new physical law of Euler
fluids:

For each cohomology component associated with a
cross-section of the domain, the difference between the
fluid cross-sectional flux and the total linking number
(or winding number in 2D) between the harmonic field
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Fig. 5. Our pipeline of reconstructing the velocity field from both
the advected vorticity and the correctly updated harmonic coefficients
(ct,---rcm).

streamlines and the fluid vortex lines (or vortex points
in 2D) is a constant of motion (see Fig. 4).

In other words, the harmonic components, which are all directly
related to the cross-sectional fluxes, evolve precisely at the rate at
which a vortex line cuts through a harmonic streamline. Moreover,
this seemingly intricate rate of topological changes boils down
to a simple integral formula /M(u X w) - h;dx in terms of the
computationally available velocity u, vorticity w and harmonic basis
h;, which makes incorporating the new dynamics light-weight and
highly practical. This is the same as the time-evolution of coefficients
of a vector spectral basis, which includes the harmonic basis, as
proposed in the velocity-based model reduction work by [Liu et al.
2015]. We point out that this equation for the harmonic basis is
necessary to account for the missing dynamics of the harmonic
components in the vorticity-streamfunction formulation, making
the formulation suitable for fluid simulations on all general domains.
We also describe our new conservation law from the perspective of
Hamiltonian fluid mechanics as a Casimir invariant. Note that the
only previously known nontrivial example of a Casimir invariant for
3D incompressible fluids is the helicity [Khesin et al. 2022], which has
played important roles in meteorology, topological fluid mechanics,
and plasma physics. The discovery of the new Casimir invariant
will facilitate more exciting studies in these areas.

In practice, incorporating the new evolution equation of the
harmonic components is quite simple. Express the fluid velocity
field u = curl ! w + 3; c;h; in terms of the vorticity field w and
an orthonormal basis (h;); for the harmonic fields (see Fig. 5). On
top of a traditional vorticity equation solver that updates w, one
only needs to add an extra step for updating the coefficients ¢; =
/M (uxw) -h; dx (see Fig. 6). Through numerical examples, we show
the importance of the dynamics of the harmonic components for
reproducing physically correct behaviors of fluid flows on surfaces
and on 3D domains with nontrivial topology (Fig. 3).

Contributions. Highlights of this paper include

e Deriving the missing dynamics of the harmonic parts for
incompressible inviscid fluids, and a simple and practical
method for incorporating it to both 2D and 3D simulations
(Section 4).

e A new conservation law between harmonic streamlines and
vortex lines in an Euler fluid (Theorem 2).
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Fig. 6. The rate of change of the harmonic coefficients (dci/ds, ..., dem/dr)

is computed by projecting the Lamb vector onto the harmonic basis. The
Lamb vector is the cross-product of velocity and vorticity fields.

o The first vorticity-streamfunction-based fluid solver on gen-
eral surfaces that is consistent with the Euler equations.
(Alg. 2 (Fig. 2)).

e A new Hamiltonian formulation for incompressible Euler
equations featuring new Casimir invariants (Section 6).

1.1 Additional Related Work

In addition to computer graphics and oceanography, we briefly
review the fundamental research on the vorticity-streamfunction
formulation in related areas.

1.1.1  Computational Fluid Dynamics. The vorticity-streamfunction
formulation is also extensively studied in the literature of compu-
tational fluid dynamics (CFD). There, the majority of attention is
drawn to finding a compatible boundary condition in the presence of
viscosity. Under viscosity, the boundary value of vorticity diffuses to
the interior and can influence the resulting streamfunction from the
Poisson solve. Therefore, the question becomes how to couple the
boundary values of the vorticity and the streamfunction such that
the resulting velocity satisfies both the no-through and no-slip condi-
tions at the boundary. An initial pursuit for the boundary treatments
by [Thom 1933] is followed by many variants [Taylor and Hood 1973;
Orszag and Israeli 1974], revisions, and discussions [Quartapelle
and Valz-Gris 1981; Anderson 1989; Quartapelle 1993; E and Liu
1996] throughout the remainder of the century. A comprehensive
review on the highly debated topic of boundary conditions for the
vorticity-streamfunction formulation can be found in [Rempfer 2006,
§3.4]. However, despite the large body of work searching for a proper
vorticity-streamfunction formulation in CFD, few mentioned the
effect of non-trivial topology. Different cohomology data of the flow
can correspond to different sets of coupled vorticity-streamfunction
boundary configurations, but these cohomological factors, which
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have their own dynamics, are irrotational and invisible to the vor-
ticity variable. A few vorticity-streamfunction formulations that
properly handle the cases of non-simply-connected domains are
described in [Mizukami 1983; Tezduyar et al. 1988]. However, these
approaches only account for the non-simply-connectedness induced
from obstacles rather than for general cases where cohomology
components can arise.

1.1.2 Geometric Fluid Dynamics. Geometric fluid dynamics is the
mathematical discipline that discusses fluid dynamics in the geomet-
ric mechanics framework, including Hamiltonian systems [Salmon
1988; Morrison 1998] and geodesic equations on Lie groups [Arnold
1966]. The mathematical foundation has inspired many structure-
preserving fluid simulation algorithms in computer graphics [Elcott
et al. 2007; Pavlov et al. 2011; Azencot et al. 2014; Liu et al. 2015;
Chern et al. 2016; Yang et al. 2021; Nabizadeh et al. 2022]. There,
the Hamiltonian formulation of fluid dynamics often employs the
vorticity-streamfunction formulation [Marsden and Weinstein 1983;
Morrison 1998]. Precisely, the phase space (with Poisson structure) is
given by the space of vorticities, and the evaluation of Hamiltonian
is defined with the aid of streamfunctions. Unfortunately, these
descriptions would omit the cohomology components of the velocity.
A way to take cohomology components into account is to define
the phase space as the quotient space Q!/dQ of velocity covectors
modulo exact forms [Arnold and Khesin 1998, Theorem 1.7.5; Os-
eledets 1989; Pavlov et al. 2011; Nabizadeh et al. 2022]. However, this
approach makes the phase space more abstract than the physically
more understandable vorticity. To our knowledge, our work is the
first to express the Hamiltonian formulation explicitly in terms of
both the vorticity and the cross-sectional fluxes that parameterize
the cohomology. Under this coordinate, we discover new Casimir
invariants [Morrison 1998; Khesin and Chekanov 1989] that relate
the cohomological flux and its linking number with the vortex lines.
A line of work that examines fluids’ cohomology is the study
of the commutant of the Lie group of volume-preserving diffeo-
morphisms [Arnold 1969; Banyaga 1978; Arnold and Khesin 1998,
Definition 1.7.12]. They give an insightful characterization of the sub-
group of flow maps generated by velocities that have no harmonic
parts. This subgroup turns out to be the commutant of the group
of all flow maps. However, the line of work did not comment on
whether the physical fluid flow would stay or leave this commutant
subgroup. The recent results on the helicity uniqueness conjecture
[Khesin et al. 2022] were also restricted to this subgroup. Our work
includes illustrative examples that show a fluid flow with initially
zero harmonic components will later gain harmonic components. We
show that fluid flows are generally not constrained in the commutant
subgroup of the Lie group of volume-preserving flow maps.

2 BACKGROUND

In this section, we review the vorticity-streamfunction formulation
for incompressible fluids. We present the theory of the paper in
exterior calculus for its ability to unify 2D and 3D languages and
to provide geometric intuitions. Readers who are less familiar
with exterior calculus may find the following resources useful: (a)
a comprehensive review of exterior calculus in Appendix A.1, (b)
translations of exteior calculus operations to vector calculus in



Table 1. Exterior calculus operations written in terms of vector calculus
operations on a 2D domain M. Here, a, b are scalar functions, a, b, v are
vector fields, and 7 is the 90° rotation operator. The map j: oM < M is
the inclusion map of the boundary, whose normal vector is denoted by n.

a=aeQ’ a=a’ € Q! a=%acQ? Meaning
da Va % - 3—2 Exterior derivative
Sa -V-a -9Va Codifferential
iva v-a agv Interior product
anb ab ba ab Wedge product
a ABP ab aiby — azby
a A (xb?) agb a-b
a A (xb) ab

v-Va v-Va . -

Lva v-Va +(Vv)Ta +(V-v)a Lie derivative
Jra= alop =0 alopm || n Dirichlet BC
Jixa=0 algpr L n alop =0 Co-Dirichlet BC

Table 2. Same as Table 1 but on a 3D domain.

a=aeQ’ a=a e Q! a =’ € Q? a=xaeQ’
da Va Vxa V-a
Sa -V.a Vxa -Va
iva v-a -vXa av
anb ab ba ba ab
a AbP ab axb a-b
a A (xb?) ab a-b
a A (xb) ab

v-Va v-Va—-a-Vv v-Va

va v-Va +(Vv)Ta +(V-v)a +(V-v)a
Jla=0 alom =0 alom [l n alom Ln
J ra=0 aloppm L n alom I n alopm =0

Tables 1 and 2, and (c) a summary of this section written in terms of
vector calculus in Section 2.6.

We use the standard notations [Lee 2013, Chapter 17; Hatcher
2002, Chapter 2] of Co (M), Ze (M), Bo (M), He (M) to denote, respec-
tively, the space of chains, cycles, boundaries, and homologies, and
Ce (M, OM), Zo (M, dM), Be (M, M), He (M, dM) for their relative-to-
boundary counterparts. See Appendix A.2 for further discussion on
homology and relative homology.

2.1 Euler Equations

The incompressible inviscid fluid is governed by the following Euler
equations. We assume the fluid density to be 1. On an n-dimensional
fluid domain M (n = 2 or 3), the time-dependent fluid velocity vector
field u € T'(TM) evolves under

%u +u-Vu=-Vp inM;(momentum equation), (1a)
V-u=0 in M; (divergence-free), (1b)
u-n=0 on dM; (no-through boundary). (1c)

Here, n denotes the normal vector of the domain boundary oM,
and the scalar function p € Q°(M) is the fluid pressure field. The
covector (1-form) formulation [Nabizadeh et al. 2022] of (1) for the
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velocity 1-formn = u € QL(M) is given by
%17 + % n=—-dpy in M; (circulation equation),  (2a)
on=0 in M; (co-closedness), (2b)
J *xn=0 on dM; (co-Dirichlet BC), (2¢)

where d is the exterior derivative, § the codifferential, %, the Lie
derivative along u = r]ﬂ, and * the Hodge star. The Lagrangian
pressure pp, € Q¥(M) is related to physical pressure by pr, = p— % [ul?.
The boundary condition is described using the pullback operator
Jj* of the canonical inclusion map j: dM < M. Note that we call a
differential form Dirichlet if it lies in ker(j*), and co-Dirichlet if it
lies in ker(j*x).%

All possible velocity fields form a linear subspace V! of all the
co-closed (2b) and co-Dirichlet (2¢) 1-forms.

Definition 1 (Co-Dirichlet co-closed subspace). Let the subspace of
co-Dirichlet co-closed k-forms be denoted by

Pk = {,, c Qk(M)((sq —0,j %7 =o} cokmy). @)

The readers may verify that the co-Dirichlet co-closed subspace
VK is L2-perpendicular’ to the space im(d) of exact forms. Further-
more, together they span the space QX (M) of all k-forms.

1
Proposition 1. ok (M) = im(d) ® V.
ProoF. See Appendix E.1. O

As a result of this proposition, one can view the Lagrangian
pressure term dpy, in (2a) as the L% normal projection onto V1. Note
that by Stokes theorem, the addition of an exact form dpp, does not
affect the circulation along closed curves, i.e. 9§C n= fc n +dpy, for
any closed curve C. Additionally, %n + % n = —dpr implies that
the circulation ygcz n; is conserved if C; is a closed curve advected

by the fluid.®

2.2 Vorticity Equation

The vorticity 2-form is defined as w = dn which measures local
circulations. By taking the exterior derivative of (2a), applying
dd = 0, and using the commutativity between %, and d, we obtain
the vorticity equation

%w + % w=0. 4)
Eq. (4) is often regarded as a formulation “equivalent to (2a).” It
is the basis of the class of fluid solvers known as vortex methods.
However, to fully establish the equivalence between (4) and (2a) (and
to implement a vortex method), one must know how to reconstruct
the velocity 1-form 5 = v’ € V! froma given vorticity 2-form
o € im(d) N Q2(M) such that dy = . The reconstruction problem
is posed as follows.

“The co-Dirichlet boundary condition is referred to as the Neumann boundary condition
in [Schwarz 2006; Poelke and Polthier 2016]. For 1 form in 3D domains, [Abraham
et al. 2012, §Hodge-de Rham theory] and [Zhao et al. 2019] refer to the Dirichlet and
co-Dirichlet conditions as normal and tangential conditions respectively. We document
how Dirichlet and co-Dirichlet boundary conditions relates to normal and tangential
conditions for k-forms in 2D and 3D respectively in Tables 1 and 2.

SHere, the L? structure is {(a, ) = /M a Axp.

®This is commonly known as the Kelvin circulation theorem. See more in [Nabizadeh
et al. 2022].
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Problem 1. Given an exact (k + 1)-form « € im(d) C Qk+L(p),
findn € VK that solves dy = w.

Unfortunately, the solution n may not be unique, depending on the
fluid domain M. If { € ker(d) N V¥, readers can verify that 5 + { is
also a solution to Problem 1. When k = 1, the subspace ker(d) N V!
is the space of all closed and co-closed 1-forms (corresponding to
curl-free and divergence-free vector fields) satisfying the co-Dirichlet
boundary condition (corresponding to the no-through boundary
condition for vector fields). In general, the space ker(d) N VK is the
space of co-Dirichlet harmonic forms

HE(M) = ker(d) N VF
- {he Qk(M)‘dh:O,éh:O,j**h:O}. )

Here, the subscript “C” indicates the co-Dirichlet boundary condition
s
jJFxh=0.

2.2.1  Roadmap for Analyzing Problem 1. The standard method for
reconstructing velocity from vorticity is through a streamfunction
[Bridson 2015]. We show that this streamfunction and its boundary
condition emerge naturally in the context of solving a particular
solution to Problem 1. We first introduce the concept of pseudoinverse
of the exterior derivative in Section 2.3. Then we apply the idea to
the problem of velocity reconstruction from vorticity in Section 2.4.

2.3 Pseudoinverse of d

Definition 2. Defined*: Q¥+1(M) — Q¥ (M) as the Penrose-Moore
pseudoinverse of the exterior derivative d: Qk (M) = QF (M) with
respect to the L2-norms on QK (M) and QX1 (M). Explicitly, given
B e Qk*L ey Pim(ayf € im(d) € Qk*1 be the orthogonal projection

of B onim(d):

Pin(ay B = d ( argmin da - ﬁllz) . ©)
acQk (M)
The pseudoinverse d* ff € Qk(M) is given by the least-norm solution
1
d*p = argmin ~|lall?. 7)
da=Piya)f

The general theory of pseudoinverses suggests that the pseudoin-
verse of a linear operator (d in our case) maps onto the orthogonal
complement of the kernel of such a linear operator. Furthermore,
the projection in (6) suggests that the pseudoinverse annihilates
anything that is orthogonal to the image of the linear operator.

Proposition 2. The space of k-forms has an orthogonal decomposition

Q* (M) = ker(d) & im(d"), (8a)
QF (M) = im(d) & ker(d"). (8b)

The orthogonal projectors toim(d) ¢ QK*1(M) andim(d*) c Q% (M)
are respectively

Pim(d) =dd, Pim(d*) =d*d. 9)
PRrooF. See Appendix E.2. O
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Proposition 3. The subspaces im(d*) C Q% (M) and im(d) c
QKL (M) are isomorphic by the map dlim(g+): im(d*) — im(d)
and its inverse d*|im (g : im(d) — im(d*).

PRrooF. See Appendix E.3. O
ker(d)
Qk (M) ker(d")
d+
1m(d+) d\\ Qk+1 (M)

im(d)

Next, we characterize im(d").

Proposition 4. The image of d* is a subspace of 'V . In particular:
im(d*) = {&p ‘ g QR (M), xy = o} = S(ker(j*%)). (10)
Proor. See Appendix E.4. O

Putting together Propositions 1, 2, 4 and Eq. (5), we obtain
Corollary 1. The space of k-forms are orthogonally decomposed into:

ker(d)
—
k(M) = im(d) & HX (M) & im(d*) (11)
- b ,
N—— ————
(Vk
im(d")
(vk
ker(d)
im(d) HE

2.4 Stream-Form

In the context of fluids, for each vorticity 2-form v € im(d) C
Q?(M), a particular solution to Problem 1 is = d*w. By Proposi-
tion 4, this velocity 1-form is given by the codifferential 51 of some
¥ € Q?(M) that satisfies co-Dirichlet boundary condition. We call i/
the stream-form.

On a 2D domain, the stream-form 1y € Q?(M) is typically repre-
sented as ¢ = *lﬁ by a scalar function lﬁ € QO(M), called the stream-
function. The co-Dirichlet boundary condition for i translates to the
Dirichlet boundary condition 1|5y = 0 for 1. For a streamfunction-
represented velocity vector field, we have u = - Vtﬁ where 7 is
the counterclockwise 90° rotation operator.

On a 3D domain, the stream-form i € Q?(M) is usually repre-
sented by a vector field ¢ € I'(TM) as ¢ = x4 The vector field g
is called vector potential, stream vector field, or just streamfunction.
The velocity is given by u = V X ¢ and the boundary condition
is that n X @|gp = 0, i.e. the stream vector field is normal to the
boundary [Bridson et al. 2007].



2.4.1 Poisson Problem for Stream-Forms. To concretely construct
¥ € Q*(M) from » € Q?(M) one solves a Poisson problem. For
details related to this Poisson problem and its boundary conditions,
see Appendix B.

2.4.2 Comments on 2D Streamfunctions. In many previous works
involving 2D streamfunctions ¢ € Q%(M), the streamfunctions are
allowed to have constant but nonzero boundary conditions. The
velocity field = 5(*1}) represented by this type of streamfunctions
do carry the harmonic components. However, the existence of such
streamfunctions only works for domains with special topology:

Proposition 5. Ifa 2D domain M is the result of the removal of a
few obstacles from a topological disk, then everyn € V1 is coexact.

Proor. See Appendix E.5. O

In general, on a domain M that is a surface with a nonzero genus
and with possibly a few obstacles removed, there are velocities that
cannot be expressed by streamfunctions.

2.5 Summary

The vorticity data w € im(d) ¢ Q2(M) is in one-to-one corre-
spondence with a stream-form-represented velocity field d*w €
im(d*) c V! (Proposition 3). However, as shown in Corollary 1,
the space im(d") of stream-form-represented velocities is not the
entirety of the space of all incompressible velocities V1. The gap is
the space of co-Dirichlet harmonic forms Wé (M) that is isomorphic
to the 1st de Rham cohomology HcllR(M) = ker(d)/im(d), which is
nontrivial whenever the domain is not simply-connected. In the
context of Problem 1, ‘HCI (M) is the space for non-uniqueness for
the velocity reconstruction.

On a general non-simply-connected fluid domain, in order to
pinpoint a velocity 1 € V! in terms of vorticity, one must use both
the vorticity data w and a co-Dirichlet harmonic form h € ‘Hé (M):

n=d‘o+h. (12)

While the evolution equation of the vorticity  is well-known, the
evolution of the co-Dirichlet harmonic form h has been overlooked
in all vorticity-streamfunction-based methods. We investigate the
time-evolution of this harmonic component of Euler equations in
Section 3.

2.6 Summary in Vector Calculus

Here we reiterate the above background in vector calculus via
Tables 1 and 2 to gain perspective in the vector counterparts of
propositions about differential forms.

The fluid velocity that we wish to study is the space of vector
fields that are divergence free and satisfying no-through boundary
condition V := {u|V -u = 0, (u-n)yy = 0}. This is the vector
calculus counterpart of V! (Definition 1).

As documented in Tables 1 and 2, the vorticity w = dn corresponds
to the vorticity vector field w = V X u in 3D or a vorticity scalar
w =V X u in 2D. Section 2.3 introduces the notion of d*, which can
be seen as taking the inverse of the curl operator. This “curl™!” is
more precisely the pseudoinverse curl® of the non-invertible curl
operator. By Proposition 4, the image of the curl* operator is given
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by velocities represented by streamfunctions (Section 2.4) subject to
a specific boundary condition

im(curlt) = {Vx g | (nx p)gy = 0} in 2D, (13a)
im(curl™) = {—JVI/; ‘ Vlom = 0} in 3D. (13b)

Known as the boundary-aware Helmholtz-Hodge decomposition,
Corollary 1 asserts that the space I'(TM) of vector fields can be
orthogonally decomposed into

ker(curl)
——
T(TM) = im(grad) ® H & im(curl*), (14)
—_————
Vv

where H is the vector counterpart of (5) collecting harmonic vector
fields satisfying the no-through boundary condition

H =ker(curl) NV
={h|V-h=0,Vxh=0,(h-n)gy =0}. (15)

Proposition 3 further shows that there is a one-to-one correspon-
dence im(curl*) = im(curl) between the space im(curl*) and im(curl).
This means that the vorticity vector field w in im(curl) (or scalar
field w in 2D) is in one-to-one correspondence with a velocity field
u = curl* w in im(curl®) (or u = curl* w in 2D) represented by a
streamfunction field g (or a scalar function lﬁA in 2D) as characterized
in (13). In particular, as demonstrated in (14), the space V of all incom-
pressible velocities is larger than the space im(curl®) = im(curl) that
can be captured by the vorticity data. The gap is the space H of har-
monic vector fields with no-through boundary conditions. This gap
H becomes nontrivial when the fluid domain is not simply-connected.
Specifically, H is the kernel of the problem of reconstructing velocity
from vorticity, which we discussed in Problem 1.

The decomposition (14) also reveals the difference between the
velocity-based pressure projection and a vorticity-streamfunction
solver in the context of advection-projection methods in fluid simu-
lations. A pressure projection step removes im(grad) from I'(TM),
keeping the information about the harmonic component H in V.
This is consistent with the Euler equation. In contrast, a vorticity-
streamfunction solver reconstructs the velocity using curl* from the
vorticity data, effectively removing both im(grad) and H compo-
nents from I'(TM). In particular, the vorticity-streamfunction solver
leaves out the dynamics in the H component. As a result, different be-
haviors occurs between these two methods on non-simply-connected
domains as demonstrated in Fig. 1.

3 THEORY

The goal of this section is to develop the full equations of motion
for both w, h in (12). We first clarify the physical intuition to the
harmonic component (Section 3.1). Next, we introduce the Lamb
form (differential form counterpart of the Lamb vector), which is
a central piece of the theory (Section 3.2). Finally, we derive the
evolution equations for the harmonic part (Section 3.3), and explain
the new physical law associated to it (Section 3.4).

ACM Trans. Graph., Vol. 42, No. 4, Article 126. Publication date: August 2023.



126:8 « Hang Yin, Mohammad Sina Nabizadeh, Baichuan Wu, Stephanie Wang, and Albert Chern

3.1 Harmonic Part and Flux

In the fluid literature, the harmonic part of a velocity field is often
loosely depicted as “flows around obstacles or holes” Some parame-
terize the harmonic components by the circulations on a set of 1st
homology basis (loops around obstacles) [Marsden and Weinstein
1983, §4; Elcott et al. 2007, §4.6]. While it is technically true that
there is an isomorphism H; (M) = H&R(M) = Wé (M), different
choices of loops lead to different parameterizations of the harmonic
part of the velocity, even if the loops are only re-chosen within the
same homology class. This is because the mapping between the
circulations and the strengths of harmonic components depends
on an arbitrary choice of representative loops for H; (M) where
we measure the circulations. For a consistent parameterization
for the harmonic component, one must fix this arbitrary choice
of loops. This is in contrast to picturing flowing loops as in the
setup of Kelvin’s circulation theorem. In fact, Kelvin’s theorem on
circulation conservation along flowing loops implies nothing about
the conservation of the harmonic components [Thomson 1868].

As detailed below, we clarify a precise mapping between the
harmonic component and a physical quantity of the fluid that is
independent of the choice of artificial test geometry.

The harmonic component h of a velocity field 7 in (12)
is directly related to the physical fluxes over cross-
sectional surfaces.

3.1.1 Cross-sectional Fluxes. Fluid flux is measured over cross-
sections of a fluid domain. A surface S € C,—1(M) as an (n—1)-chain
is called cross-sectional if S € oM or dS = @. In relative homology
theory, these cross-sectional surfaces are also known as relatively
closed surfaces, or relative cycles, denoted by S C Z,_1(M, oM).

Definition 3. For each incompressible velocity field n € V! and
cross-sectional surface S C Z,—1(M, 0M), define

Frux(n)(S) = ‘/S*r]. (16)

The definition of the FLux operator can be written in vector
calculus as well. In 3D, FLux(u)(S) := f/s u - n dS, where n is the
normal vector of surface S. In 2D, FLux(u)(S) = — /S(ju) - ds.
The operator FLux: V! x Z,_1(M, oM) —
R is a bilinear form. Using the incompress-
ibility conditions of n € V 1. one finds that
Frux(n)(S1) = FLux(n)(Sz) whenever Sy, Sy
coborder a fluid region; that is S; — Sy =
oU mod C,—1(oM) for some U € Cp(M),
or that S; — S2 € Bp_1(M,dM), or that S; and S; are homol-
ogous. Therefore, FLux(n)(-) of any velocity data n assigns a
well-defined flux data on each homology class H,—1(M, M) =
Zn-1(M,0M)/B,,_; (M,aM) of cross-sections. The specific surface repre-
senting the cross-section from the homology is not important.

The following proposition summarizes the above discussion and
formally treats FLux as a map that sends velocity data to a set of
flux data over the homology classes of cross-sections.

Sz
Sty S5

homologous
nonhomologous

Proposition 6. For each € V!, the linear functional FLux(n):
Zn-1(M, 0M) — R is well-defined over the relative (n — 1)-homology
H,—1 (M, 0M) = Zn-1(M,0M)/B,,_,(M,oM). As such we obtain a bilinear
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form FLux(n)([S]) = Frux(n)(S) overloading on the same name:
FLux: V! x Hy_1(M, aM) — R. (17)
By currying, we may view the FLUX operator as a linear map that
sends a velocity to the dual space of the relative (n — 1)-homology:
Frux: V! Jinear, Hp—1(M,oM)*. (18)
Proor. See Appendix E.6. O

Now, we show that (18) gives an isomorphism between the space
‘7‘((1: (M) ¢ V! of harmonic components and the space Hy,—1 (M, oM)*
of flux data on cross-sections. The first observation is that the flux
data FLux(n) is independent of (and only of) the stream-form part
im(d") from vorticity. This property is particularly neat as im(d*) is
the orthogonal complement of ‘HCI (M) within V! (cf. Corollary 1).

Proposition 7. ker(FLux) = im(d").
ProoF. See Appendix E.7. O

Moreover, every assignment of flux data is realizable by some
co-Dirichlet harmonic form.

Proposition 8. FLux: V1 — Hy_1(M, dM)* is surjective.
ProoF. See Appendix E.8. O

Diagrammatically, Propositions 7 and 8 can be summarized as a
short exact sequence.

. d* FLux
0 — im(d) — pyl —5 Hp—1(M,dM)* — 0. (19)
space of stream-form
vorticity, velocities
) a £
im(d) m(d?)
° e - Frux . .
HE(M) Hyp1 (M, 0M)*
harmonic space of
velocities cross-sectional
flux data

The diagram shows that the space V! of velocities is split into
two “coordinates”: the stream-form part im(d*) and the harmonic
part ﬂé (M). The stream-form part is parameterized by the vorticity
data (Proposition 3), and the harmonic part is parameterized by the
cross-sectional fluxes

FLUXlgq1 o)t HE(M) = Hp_1 (M, oM)*. (20)

In sum, each fluid state is described by two equally important
pieces of information associated with concrete physical measure-
ments. They are the vorticity field and the cross-sectional fluxes.
With this endowment of physical meaning to fluid’s cohomology, we
can discuss its expected behavior by drawing on physical intuition.

3.1.2  Unphysicality of Conservation of Harmonic Part. Many previ-
ous methods assume a time-constant harmonic part [Elcott et al. 2007,
§4.5; Azencot et al. 2014, Eq. (1); Ando et al. 2015a, §3; Rioux-Lavoie
et al. 2022, §4.1]. By Section 3.1.1, a time-constant harmonic part is
equivalent to time-constant flux on every cross-section. Constant
fluxes can lead to unphysical behavior. Imagine a traveling vortex
pair (or vortex ring) initially distant from a cross-sectional surface,
implying almost zero flux on the surface. Then the vortices will have
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Fig. 7. A vortex pair approaching two circular obstacles in the plane. The physically correct behavior for the vortices is to pass through the space between the
two obstacles (top row). An artificial fluid dynamics that preserves the harmonic component of the flow repels the vortices from passing between the obstacles
(bottom row). The simulation is computed using Kirchoff’s point vortex dynamics with Kelvin’s method of reflection for handling circular obstacles.

a much more challenging time passing through that surface since
the total flux over the surface is maintained at zero.

Fig. 7 shows a simple demonstration of this setup with the Kirchoff
point vortex model computed using Biot-Savart integration. Kelvin’s
method of reflection is employed for handling circular obstacles. To
obtain unphysical dynamics with conserved harmonic components,
one adds an additional point vortex at the center of each obstacle
so that the flux between the obstacles stays zero. These additional
compensating vortices repel the vortex pair in the physical domain.

In general, in a fluid solver where the harmonic components are
constant, the approaching vortices induce a repulsing momentum
that deflects the vortices. Section 5.2 includes a quantitative study
(Fig. 15) of this phenomenon for a general fluid solver.

3.2 Lamb 1-Form

To describe the full evolution equation in Section 3.3, we first intro-
duce a relevant quantity called the Lamb form.

Definition 4. For each velocity field n = eV, define the Lamb
1-form as

A= —iyw, wherew = dn. (21)

The vector counterpart of the Lamb form is the Lamb vector
1:= A given by

I=uxw, wherew=Vxu (22)

in 3D, and | = —wJu in 2D, where w is the scalar vorticity.

Geometrically, the Lamb 1-form, as a cloud of codimension-1
objects, is the resulting ribbon surfaces (or curve segments in 2D)
from extruding vortex lines (or point vortices in 2D) along the
(negative) velocity field for a unit of time. Since the vortices are
just passively transported by the fluid flow as described by the Lie
advection equation (4), one may think of A as the trailing, or the
“motion blur,” of the moving vortices.

Lamb 1-form “motion blur”

We may rewrite Euler’s equation in terms of the Lamb form. Using
Cartan’s formula %, = iyd + diy, we rearrange (2a) into

£n—2A=—dpg, (23)

where pg = p + %|u|2 = pr + |u|? is called the Bernoulli pressure
or the stagnation pressure. Similarly we can reexpress the vorticity
equation (4) (or by applying d to (23)) as

2w=dAr (24)

The lamb form in (23) corresponds to the convection term in the
Euler equations. Using 3D vector calculus, we havel = u x w =
uXx (VXu). Recalling that the momentum equation of Euler equation
is a%u +u- Vu = -Vp, we can plug in the vector identity u - Vu =
%V|u|2 —(Vxu)xuandux(Vxu) =1to get %u—l =-V(p+ % [u]?)
which is (23) in vector form.

Similarly, we can express (24) using 3D vector calculus and relate
dA to the advection and the stretching term of the vorticity equation
in vector form. Since A is a 1-form, taking its exterior derivative
corresponds to the curl of 1. Expanding the curl we have V x 1 =
Vx(uxw)=u(V-w)-w(V-u)+(w-V)u-(u-V)w. Note
that u and w are divergence-free. Therefore, (24) can be written
as %w = (w - V)u - (u - V)w. Rearranging terms, we obtain
%—Vtv =(w-V)u

3.3 Equations of Motion

We are ready to lay down the governing equations for fluids” har-
monic components.

Let m = dim(H(M)) = dim(Hy, (M)) = dim(H;(M)) be the
dimension of the 1st homology of the domain.” Let (¢1,..., ™), {7 €

"The number m is also known as the Ist Betti number.
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‘Hé (M), be a basis for the co-Dirichlet harmonic 1-forms. Note that

the dual space of 7—{(1: (M) is the space of Dirichlet harmonic (n — 1)-
forms

HEH(M) = {Ee Q" (M) |dE=0,66=0,jE=0}  (25)
via the following dual pairing

HEM) x HEL (M) >R, (L - [ {AE (26)

Determined uniquely by the basis ({1, .. .,{™) for ‘Hé (M) is a set
of dual basis (¢1, ..., &) for ‘]—(6"1 (M) satisfying

l/\ ~:61A:
Ja€n =9 {o i j,

With the above sets of bases, we express a velocity field €
V1 by a vorticity field € im(d) ¢ Q*(M) and an m-tuple ¢ =
(c1,...,cm)T € R™ as

N=1Nwe =d o+ XL, cidl. (28)

To extract the vorticity component, take the exterior derivative
® = dn as usual; to extract the coefficients c, apply the dual pairing
with the dual basis harmonic forms

cisz}]/\gi, i=1,.‘.,m. (29)

Theorem 1. 1, ¢ evolves under the Euler equations (2) if and only if
the vorticity w and the coefficients ¢ evolve according to

2o =d) (30a)
Loi= [ ANEG i=1...m, (30b)

where A is the Lamb 1-form for 1, c)-

One may take an orthonormal basis ({',...,{™) for WCI (M) by
applying a Gram—Schmidt process or an economic QR decomposition
on any other basis. In that case, & = *{*. Leth; = ({")ﬂ be the vector
counterparts of the harmonic forms. Then (30b) reads

foralli,j=1,...,m. (27)

Lo, = [i,(1-hy) dx = ./M -wJu-h;dA  in2D, 61
“ M /M det(u,w,h;)dV in 3D.

Proor. Eq. (30a) is the same as the vorticity equation (4) or (24).

To obtain (30b), apply % to (29) to get % = fM % A& @ fM(/l -

dps) A& = [i; A A &. The last equality is due to [, dpg A & =
ygaM(j*pB)/\(j*é'i)—fM pBdé; = 0 using the closedness and Dirichlet
boundary condition of ¢; € «le)z—l (M) (cf- (25)). O

An earlier appearance of the time-evolution of the coefficients of
any spectral basis under the Euler equations was in the velocity-
based model reduction work by [Liu et al. 2015]. Our equation (31)
is a special case of equation (7) from [Liu et al. 2015], since a basis
for the harmonic component is a subset of a full spectral basis. We
show that (30b) (or (31) in vector calculus) is the essential element
for making vorticity-based solvers applicable to general domains,
including non-simply connected ones. In the following subsection,
by elucidating the theory behind cross-sectional flux, harmonic
streamlines, and vortex lines, we demonstrate that (30b) leads to a
conservation law with concrete physical and geometric meaning.
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3.3.1 Practical Note.

Remark 1. In practice, to account for the missing dynamics of the
fluid’s harmonic component, it is sufficient to “charge” the coefficients
ci’s with the global aggregate sum of (1- h;) across the domain, in
conjunction with any vorticity-streamfunction solver.

Remark 2. Note that when the harmonic basis is orthonormal, the
coefficients c1, . . ., ¢y do not directly represent the numeral values of
the fluxes on domain’s cross-sections as described in Section 3.1. In the
following Section 3.4.1, we describe which alternative basis to take in
order to let the coefficients represent the fluxes directly.

Remark 3 (Physical units in an orthonormal setup). Including
physical units, each {* of an orthonormal harmonic basis for ‘Hé (M)
is of type {* € QY (M;Rm~"/**Y), and the dual basis is of type &; €
Q" Y (M;Rm"*1). That is, they are Rm™"/**! -valued after being
integrated over 1-chains and (n — 1)-chains respectively. The vector
counterparth; = (gvi)‘i has the unit ofm_"/z, and the coefficient c; has
the unit of m"/**1s~1.

3.4  Flux Dynamics

In the remainder of the section, we expand on (30b) and elucidate its
physical meaning by drawing a relation to cross-sectional fluxes. The
purpose is to shed light to new physically and geometrically intuitive
principles obeyed by incompressible fluids on multiply-connected
domains. These principles may facilitate productions of qualitatively
plausible fluid animations. Additional theoretic insights in terms of
Hamiltonian mechanics are discussed in Section 6.

3.4.1 When the c;’s Become the Fluxes. As described in Section 3.1,
the cross-sectional fluxes directly reflect the harmonic component
of a velocity field. To make this relation more explicit, we pick a
basis ({1, ..., ™) for M}, different from an orthonormal one used in
(31) and Section 3.3.1, so that the ¢;’s become the physical flux on
cross-sections.

Let S1,...,Sm € Zy—1(M, OM) be a set of representative cross-
sectional surfaces that forms a basis for H,—1(M, 9M). Construct

closed curves Cy, .. .,Cnpy € Z1(M) such that their signed intersection
products (denoted by [- N -]) are
[Cin Sj] = 5ij~ (32)

Let éc, € Q" 1(M) and Js; € Q1 (M) be the Dirac § forms concen-
trated on these curves C;’s and surfaces S;’s. Define

(M= (1-d"d) *x 5c, € HA(M), (33a)

£ = x(1—dd")Ss, € HE~H(M). (33b)
The field ¢; is the harmonic field “spread out from the concentrated
current C;,” as the result of a stream-form part removal (1 — d*d)
from the current. The field &; is the harmonic field “pumped out
from the impulse at the cross-section S;,” as the result of the pressure

projection (1 — dd") (exact form removal) of the impulse.
Using vector calculus, ¥ € ?{é (M) and ¢; € (Hg’l(M) can be

represented as harmonic vector fields Z = ¢’ and Xj = (~;'r_1§j)ﬁ
respectively. They are constructed as

Z' = (1 - curl* curl) (x5¢,)*, (34a)
X = PressureProjection(csg ). (34b)
J



Note that (n — 1)-forms £;’s geometrically represent families of
curves. These curves are the streamlines (integral curves) of the
associated vector fields X;’s. Therefore:

Definition 5 (Harmonic stream). We call ; in (33b) the harmonic
stream(lines) associated to a cross-sectional surfaceS; € Zy—1(M, oM).

Proposition 9. For{;’s and &;’s defined by (34), we have fM A &=

5; Moreover, for each velocityn € V1 (u= I]ﬁ € V), the coefficients
cj’s in (28) are the fluxes through the cross-sectional surfaces:

cJ-=/ q/\szf u - X;dV = Frux(n)(S;). (35)
M M
ProoF. See Appendix E.9. O

Remark 4. The harmonic stream £; constructed from a cross-sectional
surface Sj by (33b) depends only on the equivalence class [S;] €
Hy,—1(M, 0M), i.e. it is independent of the particular choice of repre-
sentative S; € [S;]. In fact, &; = FLuxT([S;]) where FLUXT is the
adjoint of the isomorphism FLUX: 7'{C1 (M) — Hp—1(M, oM)* in (19):
HEM) s (M, 0M)?
A A

dual space

N
FLuxT

dual space (36)

: v
g e HE T (M) == Hn-1(M,0M) 55,
Remark 5. Once the basis &1, . . ., &n is constructed from a generator
basis S1, . .., Sm, one can construct the dual basis é’l, ..., {™ through a
simple QR-decomposition followed by a small matrix inversion without
the hassle of building Cy, . . ., Cpy. The detail of this process is described
in Section 4.1.2

Remark 6 (Physical units for the flux setup). Similar to Remark 3,
we discuss the physical units for the harmonic bases (34) and the coef-
ficients. Each harmonic stream &; is of type &j € Q"1 (M; Rm"?),
and its vector counterpart (*fj)li has the unit of m™'. The dual basis
form ¢ is of type ' € QY (M; Rm™"*2), whose vector counterpart
(gv’.)tt has the unit of m™"*1. The coefficients c; has the unit of m"s™1,
which is the unit of a total flux.

3.4.2  Fluxes and Linkings between Vortices and Harmonic Streamlines.
Just as in the general theory (30b), the flux (35) through the j-th
cross-sectional surface S; has a rate of change given by

d
EFLUX(I])(Sj)Z/];/IAAgj=A1~dev. 37)

In the codimensional geometric picture of differential forms, recall
Section 3.2 that the Lamb 1-form A is the collection of the “motion
blur” ribbon surfaces trailing behind the flowing vortex lines, and &;
is the set of harmonic streamlines. The integrated wedge product
/ [y A A &j is the total number of signed intersections between the
motion blurs of vortex lines with the harmonic streamlines. In other
words, fM A A &j is the rate at which vortex lines of  cut through
the harmonic streamlines of &;. Therefore, fM A A & is the rate of
change of the “linking number” between the flowing vortex lines
of w and the static harmonic streamlines of £;. We let this linking
number be denoted by Link(w)(&;) (whose subtle mathematical
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definition for general manifolds will be discussed later). As such,
JurAE = LLNk(0)(§).

Therefore, (37) is stating about a balancing relation between two
rates of changes, one about the flux through S, and the other about
LiNk(w) (). We conclude this discovery in the following theorem.

Theorem 2. In an Euler fluid, for each cross-sectional surface S which
generates harmonic streamlines &;, the difference between fluid’s flux
over Sj and the linking number between the vortex lines and harmonic
streamlines

FLux(n)(Sj) — LINk(w) (&) (38)
is a constant of motion. (See Fig. 4.)

3.4.3 Linking in 2D Domains. In 2D, the vorticity 2-form o is ge-
ometrically represented as a cloud of point vortices, instead of a
cloud of vortex lines. In that case, LINK(w)(&;) is understood as
the total winding number of the harmonic streamlines about the
point vortices. Such linking/winding numbers can be defined for the
following special 2D domains.

Suppose M has the topology of a disk with m obstacles removed.
Then every cross-sectional curve S; connects two of the (m + 1)-
boundary components. Moreover, the associated &; € Wé(M) is
exact (Proposition 5): There exists harmonic functions U; € QO%(M),
unique up to a constant, such that

&j = dUj. 39)

Geometrically, the harmonic streamlines of ¢; are the level sets of
the scalar potential U;. Therefore, the winding number of these level
lines around the vortex points of w admits an explicit formula:

LINK(a))(fj)szij. (40)

Corollary 2. For an Euler fluid on a disk with m obstacles, the
difference between the fluid flux over S; and the quantity (40) is a
constant of motion.

Appendix D provides an analytical example for Corollary 2.
3.4.4  Linking in Euclidean Domains. When M C R", every Dirichlet
closed forms, such as ¢j, is exact £; = daj for some «; € Q"_Z(M)

[Shonkwiler 2009; Zhao et al. 2019]. Fixing any representative po-
tential «j, the linking number admits an explicit formula:

LINk(w)(&}) = / o Aaj. (41)

M
In 2D, a; corresponds to a scalar function U; in a 2D Euclidean
domain, and the harmonic vector field X, which is the vector
counterpart of ¢;, satisfies X; = —J grad U;. In a 3D Euclidean

domain, a; corresponds to a vector field a; with X; = curla;. In
terms of these vector calculus counterparts, we have

LiNnk(w)(X;) :/ wU; dA in 2D, (42a)
M

LINk(W)(X) = ‘/Mw~aj dv in 3D. (42b)
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Fig. 8. Left: vortices on a surface with genus = 2 simulated using our method.
Right: dye advected by the vortices.

3.4.5 Linking in General Domains. For general manifolds M, defin-
ing the linking number is trickier. To make sense of Theorem 2
we define the linking number between w and £; only through its
variation with respect to w. In that sense, Theorem 2 is understood
as that this linking variation always balances out with the variation
in the cross-sectional flux. For a detailed discussion on defining
linking, see Appendix C.

4 IMPLEMENTATION

In the previous section, we derived the new dynamical equations
for fluids’ harmonic parts (30b) and the underlying physical law
(Theorem 2). In Section 5, we use numerical examples to demon-
strate the effect of restoring such harmonic dynamics in vorticity-
streamfunction solvers. The results will show that (30b) is crucial
for reproducing realistic fluid dynamics in both 2D and 3D fluid
simulations. In this section, we describe the implementation de-
tails for incorporating (30b) into existing state-of-the-art vorticity-
streamfunction solvers. Our algorithm is not limited to the particular
choice of solver we integrate with, but could be applied to different
advection schemes.

For 2D examples, we adopt the method of Functional Fluids [Azen-
cot et al. 2014] with a 4th-order Runge—Kutta time integration. This
method is an accurate vorticity-streamfunction solver that applies
to general triangulated surfaces with boundaries. The algorithm
is implemented in SideFX’s Houdini 19.5, and the source code is
available in the supplementary material.

For 3D examples, we employ Covector Fluids [Nabizadeh et al.

2022]. The original Covector Fluids solver is a velocity-based advection-

projection method which provides base-line ground truth references.
By replacing the pressure projection using a streamfunction solver
[Ando et al. 2015a], the Covector Fluids solver becomes equivalent
to a circulation-preserving vorticity-streamfunction method [Elcott
et al. 2007] with a higher order advection bootstrapped by Back-
and-Forth Error Correction and Compensation (BFECC) [Kim et al.
2005; Selle et al. 2008]. The algorithm is implemented in the C++
codebase provided by [Nabizadeh et al. 2022].

In each of these vorticity-streamfunction-based fluid simulators,
we present algorithms for updating harmonic components.

4.1 2D Implementation on Triangle Meshes

We employ the method of lines for the 2D fluid simulations. That is,
we spatially discretize the PDE (30), leaving a continuous-time ODE
which is subsequently integrated using the 4th-order Runge—Kutta
(RK4) method. The spatial discretization of the advective system on
a triangle mesh follows [Azencot et al. 2014].
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Let M = (P,E,F) be a triangle mesh. A discrete vector field
is a piecewise constant vector u = (uf € TfM)¢cr assigned on
the triangles. Each vector field u is associated with a directional

"
derivative operator [Vy]: RIPI 22,
function f = (fp)pep € RIPI by

RIP! that acts on a general

([Vulflp = ﬁ 2>p Af(uy, (grad f)f) (43)

f>

where Af is the area of triangle f € F, and (grad f) is the gradient
of the piecewise linear interpolated function f in face f € F.2 An
explicit formula for the gradient is given by

(grad f)f = g4 Dp<r(=Trep) (44)

where Jr is the 90° counterclockwise rotation within the tangent
plane of the triangle f, and ef , is the (unnormalized) edge vector
opposite to the point p across the triangle f.

In our system, each fluid state is given by a scalar vorticity field
w = (wp € R)pep and a tuple of coefficients ¢ = (¢;)[Z, € R™. With
a pre-computed L?-orthonormal basis (hy, . .., hy,) for (‘Hcl(M))ﬁ
(Section 4.1.1) we build a velocity field

U(we) = (@ Gw)F+ 57 ciby
= VELocITY(w, c; h) (45)

using the algorithm below:

Algorithm 1 VELOCITY(Ww, ¢; h): Velocity reconstruction in 2D

Input: Vorticity field (wp € R)pep; harmonic coefficients (¢; €
R)™ L2-orthonormal harmonic basis (hjf € TfM)i’ZLfEF.
1: (l,/;p)pep « Solve —AI/; =w, 1/;|9M =0; > Appendix B.1
2 (up)rer — (~Jr(grad)p)fer;
3. foreachi=1,...,mdo
¢ (up)ser — (uf +cihjf)rer:
Output: (uf)fer.

The reconstructed velocity (45) and the discrete directional deriv-
ative operator (43) allow us to express the right-hand sides of (30)
discretely. In particular, (30) is discretized into an ODE:

{ 4 (wp) = =([Vupyo IWp pEP, (46a)
&(e) = Srerlphip)Ar,  i=1,...,m. (46b)
Here, the Lamb vector field (If € TrM)¢cf is given by

I = (3 Zp<r Wp) (TrU (rue).f)- (47)

Our main algorithm for 2D fluid simulator is Runge—Kutta integra-
tion for (46):

8 Another discrete function space that one may consider for taking gradients is the
Crouzeix—Raviart finite element [Poelke and Polthier 2016]. We stick with the continuous
piecewise linear element following [Azencot et al. 2014].



Algorithm 2 Fluid Solver on a Triangle Mesh

1: h= (hi,f € TfM)lm

" fep < An orthonormal basis for ‘7—{(1:(M)ﬁ;
> Section 4.1.1

2 w=(wp € R)pep « Initialize vorticity;

3: ¢ = (c; € R); « Initialize harmonic coefficients;

4: At > 0 « Set time step;

5. for each frame do

6: [ ¥] <« RK4SteP (EVALRHS, [ ¥ ], At) ;

7: export VELOCITY (w, ¢, h);

8: function EVALRHS(w = (wp € R)pep, ¢ = (c; € R)Z,)

9: u « VELOCITY (w, ¢, h); > Alg. 1
10: 1 « Evaluate (47) using w, u;

11: w = (Wp)pep < Evaluate RHS of (46a) using w and u;

12: ¢ = (&), « Evaluate RHS of (46b) using 1 and h;
13: return (w, ¢);

14: function RK4STEP(F € (T — T), x € T, At € R)

15: ki « F(x); k2 « F(x +At/2 - ky);

16: k3 « F(x +At/2-ky); kg « F(x + At - k3);

17: return x + At/6 - (k1 + 2k + 2k3 + kq);

4.1.1  Orthonormal Basis for 7{(1: (M). We generate a set of orthonor-
mal basis for ‘Hé (M) by constructing a basis based on (34) followed
by a QR orthonormalization. On a triangle mesh, we first construct a
basis (S1, ..., Sm) for Hy,—1(M, dM). Each S; is a chain of dual edges
(triangle strip) that is either closed or has both ends connected to oM.
These relative homology generators S; are found using a tree-cotree
algorithm [Eppstein 2003; Erickson and Whittlesey 2005; Diotko
2012].

Next, we build the discrete fj =x"1¢ € ‘Hé (M) where ¢; €
‘Hg_l (M) describes the harmonic stream described in Definition 5.
For this process, we employ discrete exterior calculus (DEC) [Hirani
2003]. For each Sj, build a discrete primal 1-form that represents the
impulse Jg;. That is, for a primal edge e € E crossed by S;j we set
((55j )e to be +1. The sign is chosen so that d1(55j = 0, where d; is
the discrete exterior derivative operator (co-boundary operator) on
1-cochains. Each harmonic form E 7 is built by the pressure projection
(1- dd+)§5j in the DEC sense.

Next, each f j is interpolated into a piecewise constant vector
field (Xj € TtM)¢cf using Whitney interpolation [Bossavit 1998].
Now, we L2-orthonormalize Xl, .. .,Xm with respect to the inner
product structure {u,v)) = Y ¢cp(uy, vi)As. Foreach j = 1,...,m,
pre-multiply the area factor X = VAX j.£>apply a QR factorization

| | | |
hi - hp|Ruxm=[X1 - Xmul. (48)
| | | |
N—— —
Q2 |xm

Finally, we obtain an orthonormal basis (hj, ..., hy) for ‘Hé (M) by

- _1r
hj!f = \/TThJ’f

Alternatively, one can also use a randomized algorithm to obtain
a set of orthonormal harmonic basis as explained in Section 4.2.1.
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4.1.2  Harmonic Stream Basis for Flux Coefficients. While an or-
thonormal basis (hy, ..., hy) for Wé (M) is convenient in computa-
tion, its associated coeflicients do not have direct physical meaning.
Here, analogous to Section 3.4.1 we describe an alternative basis
for WCI(M) so that cy, ..., cm, represent the total fluxes through

S1,...,Sm. Continuing (48), invert R and reassemble the orthogonal
basis hy, ..., h;, into
1 | 1 |
Zy - Zm|=|hi o B[Rk (49)
| | | |
Define
(Zif)ser = V%Zi. (50)

The bases (Z;) and ()A(J) are the discrete analogs of ({")li and
(*_1§j)n defined in (34) respectively. Under these bases, one re-
places h by Z in the velocity reconstruction (45) and Alg. 1; and one
replaces h by X in the ¢ updates (46b). By doing so, the dynamics
remains the same, but the coefficients cy, .. ., ¢, now represent the
physical fluxes on the cross sections Sy, . .., Sm.

4.2 3D Implementation on Staggered Grids

For 3D numerical examples, we integrate our algorithm to the code-
base of Covector Fluids [Nabizadeh et al. 2022] for its equivalence
to a circulation-preserving vorticity method. In particular, we re-
place the pressure projection step with a streamfunction solver
applied to the vorticity. The discretization uses the standard MAC
grid M = (V, E, F, C) to store the variables. Similar to many other
grid-based streamfunction solvers [Ando et al. 2015a; Chang et al.
2022], we store the velocity on grid faces, and store vorticity and
streamfunction on grid edges. We explain solving the streamfunction
Poisson problem in details in Appendix B. So far, this is a classical
3D vorticity—streamfunction solver that does not have the dynamics
of the harmonic components.

In our method, we incorporate (31). We store our harmonic basis
as m vector fields on the MAC grid faces, similar to the velocity fields.
To evaluate the right-hand side fM det(u, w, h;) dV of (31), we inter-
polate the velocity (us)scf, vorticity (we)ecE, and harmonic basis
(hif)fer respectively into vector fields (uc)cec, (We)cec, (hic)cec
that sit on the cell centers for easy local computations. With this
discretization, we include the dynamics (31) by adding the following
step in the main solver:

ci « ¢i + At Ycec det(ue, we, hic) Vi, (51)

where V. is the cell volume. The harmonic coefficients are also used
to reconstruct velocity after the streamfunction solver step. We
summarize our overall procedure in Alg. 3.
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Algorithm 3 3D Stream function solver with harmonic components

1: hy,..., h;; <« Generate an orthonormal basis for 7{(1: (M, aM)ﬂ;

> Section 4.2.1

c1,...,Cm < Initialize harmonic coefficients;

: w « Initialize vorticity;

At « Set time step;

: for each frame do

¢ «— STREAMFUNCTIONPOISSONSOLVE(W);

v < CurL(®);

vV« v+ ) cihj;

W < VORTICITYADVECTION (W; V, Af);

A — Cross(v, curlv) > (24)

foreachi=1---m do
¢; < INNERPRODUCT (hj, A) > (31)
cj < cij + Atéq; > (51)

R A U o

[
[T

4.2.1 Generate Harmonic Basis in 3D. Methods for computing har-
monic fields in a 3D domain are discussed in [Zhao et al. 2019].
In our case, we calculate an orthonormal basis for the harmonic
components through a randomized algorithm. We generate m ran-
dom vector fields where m is the dimension of 7'{(1: (M). We store
these vector fields as flux on the faces of the staggered grid. We
subtract the exact and co-exact components of these vector fields by
applying (1 — dd* — d*d), i.e. by taking the difference between a
standard pressure solve and a streamfunction solve. This procedure
gives us m harmonic vector fields. These harmonic vector fields are
almost surely linearly independent. We then perform a QR decom-
position (e.g. a Gram-Schmidt or a Householder process) to obtain
an orthonormal basis for the harmonic components. See Alg. 4.

Algorithm 4 Generate an orthonormal basis for 7—(é (M, oM)

1: V1i,...,Vm < Generate m random vector fields.

2: foreachi=1,...,mdo

3 h; — PRESSUREPROJECT(V;) — STREAMVELOCITY (curl v;).
4: }_1,~ — \/Vfli; >V = voxel volume.

|

hy - hp,
| |
6 Q € R3(#voxels)xm p ¢ gmxm _ OR_DrcomposiTioN(H).
7: foreachi=1,...,mdo

8: h; « \/Lv(i—th column of Q).

5. Construct H = € R3(#voxels)xm

Output: hy,... hy.

5 NUMERICAL EXAMPLES

In this section, we demonstrate the results from our incorporation of
the dynamical harmonic components into vorticity-streamfunction
fluid solvers for 2D surfaces (Alg. 2) and 3D scenes (Alg. 3).

5.1 2D Oscillating Fluxes with Closed Lamb Form

We design a setup so that the vortex dynamics (30a) vanish while
a nontrivial evolution of the harmonic part (30b) is present. With
this design, we single out the effect of the new equation (30b). We
obtain the solution both numerically and analytically. In particular,
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the results demonstrate the necessity of (30b) for realistic fluid
animation in contrast to previous methods.

5.1.1 Design Rationale. How do we keep the vorticity equation
steady while keeping the harmonic part dynamic? A classically
known result in fluid mechanics directly following from (23) is that
the flow is steady (% = 0) if and only if the Lamb form is the
gradient of the Bernoulli pressure A = dpg. Now, what if we relax the
condition of A € im(d) to just A € ker(d) ? The closedness of 1 will
still ensure that the vorticity is steady (%—‘;’ = 0) using (30a). But such
a non-exact closed A, which contains harmonic components, can
yield nontrivial dynamics in (30b), making the overall flow unsteady.

In 2D, a simple way to obtain a closed A is to set vorticity constant,
say w = 1. Then A = —iyw = — % 5, which is closed since dn = 0.
Next, we need to make sure A is not exact. Observe that if the
domain is the result of the removal of a few obstacles from a simply-
connected disk, every A = — % 1 is exact (Proposition 5). Therefore,
the simplest non-trivial example is a surface with nonzero genus.
The surface must also have at least one boundary component since
a closed surface must have zero total vorticity.

2m

Catmull-Clark
subdivision

Fig. 9. A surface with genus = 1 and one boundary component.

5.1.2  Setup. Let the domain M be a surface with the topology of a
torus with one disk removed. Fig. 9 illustrates the construction of
the surface.

The domain has m = dim(?‘(cl(M)) = 2. Set w = w % 1, where
w € R(1/s) is a constant. Let ({1, {?) be an orthonormal basis for
?lé(M). Its dual basis (&, &) for 7-(5(M) is given by & = %

The initial flow has nonzero harmonic components (¢, ¢2) T |s= #
(0,0) 7. The velocity field generally takes the following form:

ot (a* (x1))¥ (@H# (¥
=w + 1 +c2 (52)

c\? 1 —C1 |
e @
=
2 05 B
:
8
c 0 |
‘c
o
E _os|
T | | | | |

0 10 20 30 40 50 60

Time (s)

Fig. 10. Evolution of the coefficients of the harmonic components for the
setup of Section 5.1.4, simulated by our method described in Section 4.1.
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Fig. 11. Surface flows computed by the previous method [Azencot et al. 2014]
and our method. The evolution of the harmonic component incorporated by
our method is crucial for realistic flow animation (see video 02:26).

5.1.3  Analytic Solution. For constant vorticity w = w % 1, the Lamb
formis A = —wx 7 = —w % (d*(x1) + 171 +¢20%) = w(dy — c1&1 —
c2&7), where tﬁ = %1/ is the streamfunction. Since A is closed, by
(30a) the vorticity stays static. The only dynamics left is (30b), which
now reads

ooy [(@df -t -t AG T E v [y G (59)

and similarly

L2 = —cyw [, & N . (54)

That is, (c1,c¢2) T evolves in a simple harmonic oscillation

d [C1] _
e =

which has an explicit solution

ci(t)| _

cz(t)
The frequency pw of the oscillation is proportional to the background
vorticity w € R(1/s) and a dimensionless number p depending on
the geometry. Note that the construction of y relies only on the x on

1-forms. Hence p depends only on the conformal type of the surface
[Soliman et al. 2021].

. 3)] H’ p=fybnt= fyhnt 69)

c2

(56)

cos(uwt)  sin(puwt) | |c1(0)
—sin(pwt) cos(puwt)| |c2(0)|"

5.1.4 Numerical Results. We apply our fluid solver (Alg. 2) to the
configuration of Section 5.1.2. We set w = 2571, ¢1(0) = 0.5 m%/s and
c2(0) = 0m*/s. The solver is set with time discretization At = 0.1s.
The result is compared against the previous vorticity-streamfunction
method on surfaces [Azencot et al. 2014], which is our algorithm
without (30b).

Fig. 10 shows the numerical values of ¢; and c3 over time. In par-
ticular, they agree with the analytical solution ¢ (¢) = 0.5 cos(pwt),
ca(t) = —0.5 sin(puwt) (cf: (56)). Previous methods that keep (c1, c2) =
(0.5,0) constant over time would lead to a vastly different flow both
quantitatively and qualitatively. In Fig. 11, we advect colors to com-
pare the resulting flow map of the previous method [Azencot et al.
2014] and ours. In [Azencot et al. 2014] the inertia is not correctly
transferred, creating an unnatural laminar texture that is not turned
by the background vorticity. The problem is solved in our method
which incorporates the evolution of the harmonic components.
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5.2 2D Vortex Pair Between Obstacles

Let the domain M be a flat hexagonal disk with two hexagonal holes
removed, similar to an ocean basin with two islands. The dimension
of its 1st relative homology is two, and therefore the dimension of
the harmonic basis is two, as illustrated in Fig. 13.

We set a pair of vortices with opposite values as shown in Fig. 12
at t = 0s. In principle, we expect the traveling vortex pair to pass
through the space between the islands. However, using the method
[Azencot et al. 2014] with a fixed harmonic part, the two vortices
do not pass through. Instead, they turn around and go back in the
opposite direction when they approach the islands. This unphysical
behavior is due to a vanishing total flux along the curve connect-
ing the two holes maintained by the fixed harmonic part. Using
our method which includes (30b), the vortices pass through as ex-
pected. Fig. 12 shows the dynamics of the vortices over time for
both methods.

In addition to inspecting the vortex motion, we also determine
the correctness of the competing methods quantitatively. In Fig. 14
we measure the circulations around one of the islands over time for
both methods. Since the flow is always tangential to the boundary,
the boundary curve of the island that flows with the fluid will
stay as the same boundary curve. In particular, Kelvin’s circulation
theorem or island rule [Godfrey 1989; Pedlosky et al. 1997] applies.
The circulation along the island boundary should be conserved. As
shown in Fig. 14, our method better conserves the circulation, while
the method with a fixed harmonic part violates this conservation
law. In Fig. 15, we consider a cross-section S, and measure the
corresponding FLux, LINK, and FLux — LiNk. Using our method,
FrLux — LINK is a conserved quantity. In contrast, using the method
with a fixed harmonic part, the flux is always zero, and FLux — LINK
is not conserved.

5.3 3D Examples on Non-simply-connected Domains

Similar to the 2D examples, when one does not incorporate the
dynamics of harmonic components into vorticity-streamfunction
methods, unphysical behaviors occur in a domain with non-trivial
topology. We set up three experiments by introducing different
obstacles (fan, torus, and pillars) into a closed box domain, making
the domain non-simply connected (see Fig. 16).

In Experiment 1 (Fan) we place a torus-shaped fan in the domain
which raises the dimension of its 1st cohomology to one. Experi-
ment 2 (Torus Rock) is staged with a torus-shaped rock submerged
in an aquarium. Similar to the previous setup, the 1st cohomol-
ogy’s dimension is one. Experiment 3 (Pillars Rock) is also set in an
aquarium, but the obstacles are two pillars. Since the pillars touch
both the top and the bottom of the boxed domain, the dimension
of the 1st cohomology is two. We illustrate the harmonic basis for
Experiment 1 (Fan) and Experiment 3 (Pillars Rock) in Fig. 17.

We run our experiments on uniform staggered grids with a voxel
resolution of 150 X 75 X 75 in a box size of 10 X 5 x 5m>. The
timestep duration is set to 1/24 seconds with two substeps per frame.
A vortex ring of radius 0.4 m is initialized to face in the positive
x-direction with strength 1.6 m*/s. As mentioned in Section 4, for 3D
flows, we use Covector Fluids solver [Nabizadeh et al. 2022] as our
velocity-based method reference (right). We replace the pressure
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Our method

H
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Fig. 12. The time-evolution (from left to right) of a vortex pair moving through a fluid domain with two small hexagonal obstacles, simulated by [Azencot et al.

2014] (top) and our method (bottom) (see video 01:00).

Fig. 13. A harmonic basis for a hexagonal disk with 2 hexagonal holes
removed.
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Fig. 14. Circulation around a boundary component in Fig. 12.
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Fig. 15. FLux, LINK, and FLux — LINK for a cross-section S in Fig. 12.

projection step with a streamfunction Poisson solver as the results
which represent classical methods with fixed harmonic parts (left).
Our method includes the evolution of harmonic parts (30b) (middle).
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Fig. 1, and Fig. 16 demonstrate the results of the three experiments
detailed above. A significant amount of vorticity is trapped by the ob-
stacles when one uses a traditional method that fixes harmonic parts
(left). This behavior does not match the results in the velocity-based
method reference (right). In particular, in the result of Experiment 1
(Fan) computed by the method fixing harmonic parts (left), only a
small portion of the vortex passes through the fan while the majority
of the vortex moves in the opposite direction to compensate for
a vanishing total flux across the fan. Using our method (middle),
the vortex passes through the obstacles with an overall dynamical
behavior similar to the velocity-based method reference (see video).

In conclusion, the numerical examples demonstrate that a classical
vorticity-streamfunction solver can generate incorrect flow patterns.
Our method for including the dynamics of harmonic parts solves
this problem.

6 HAMILTONIAN FORMULATION

One of the highlights in the theory of Hamiltonian Fluid Mechan-
ics is interpreting the vorticity equation (4) or (30a) as a reduced
infinite-dimensional Hamiltonian system in classical mechanics.
In this final discussion section, we extend the Hamiltonian descrip-
tion to include our new equation (30b) of the time-evolution of the
harmonic coefficients. Readers can find introductions to the most
common Hamiltonian formulation for fluid dynamics in [Salmon
1988] using elementary continuum mechanics, [Morrison 1998]
using non-canonical transformations, or [Arnold 1966; Marsden and
Weinstein 1983; Arnold and Khesin 1998] using group theory.

Background. The setup for a Hamiltonian formulation involves
several steps. One first establishes a set of variables that describe the
state of the physical system. The space of all possible states is called
the phase space M. One then describes a symplectic structure. A
symplectic structure is a non-degenerate closed 2-form o € Q?(M)
that encodes the interrelation among the variables such as position-
momentum paring. When the phase space has a symplectic structure,
it is called a symplectic manifold. In many weaker cases including
the case of fluids, the phase space M is merely foliated into many
symplectic submanifolds called symplectic leaves. Such a phase space
is called a non-canonical space or a Poisson manifold [Weinstein



(a) Method with fixed harmonic part

(b) Our method
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(c) Velocity-based method

Fig. 16. Visualizations of vorticities from Experiment 1 (Fan), Experiment 2 (Torus Rock), and Experiment 3 (Pillars Rock). Note that using the method with a
fixed harmonic part, the vorticity appears to be trapped by the obstacles, especially in Experiment 1 (Fan). Our method resolves this issue and produces visually

similar results to ground truth (velocity-based advection-projection scheme).

Fig. 17. Harmonic bases for Experiment 1 (Fan) in the left figure, and
Experiment 3 (Pillars Rock) in the middle and right figures. Note that our
domain is inside a closed box, but we only include the bottom side of the
box to better visualize the harmonic fields inside.

1998]. Finally, one describes the final dynamical system by defining a
Hamiltonian function H: M — R, which expresses the total energy
of the system for each state. The equation of motion (called the
Hamiltonian flow) is derived as the symplectic gradient flow’ of the

Symplectic gradient flow is defined identically to gradient descent flow with inner
product structure (-, -) replaced by the symplectic form o (-, -).

Hamiltonian function H. In the case where M is only a Poisson
manifold instead of a single symplectic manifold, the Hamiltonian
flow just flows within each symplectic leaf. Any functionC: M — R
defined on the phase space (such as a physical measurement) is called
a Casimir if C is constant on each symplectic leaf; i.e. symplectic
leaves are contained in the level sets of C. As a direct consequence,
every Hamiltonian flow (of any Hamiltonian function) is a dynamical
system where the measurement C is a constant of motion.

The above setup is typically easy to describe for particle systems
and their continuum limits, as one may define the positions and
momenta as the obvious ones for each particle. The non-trivial
aspect about Hamiltonian Fluid Mechanics is after the so-called
reduction by sorting out the particle-relabeling symmetry [Salmon
1988]. After the reduction, the position and momentum of each
individual particle are no-longer parts of the coordinates of the phase
space. Instead, what naturally emerges is that the phase space for
incompressible fluids is the quotient space M = Q' (M) /dQ° (M) of
velocity 1-forms modulo an exact form (d of Lagrangian pressure)
[Arnold and Khesin 1998, Theorem 1.7.5]. In fact, this phase space is
a Poisson manifold with symplectic leaves given by the orbits of Lie
transportations of velocity 1-forms under any volume-preserving
flow maps (i.e. the pullback of velocity 1-forms under the inverse of
the flow maps). In particular, Kelvin’s circulation theorem can be
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thought of as a Casimir-typed conservation law. A more concrete
example of Casimir in a 3D incompressible fluid is the helicity
/M n A o that measures the self-linking number of vortex lines.

To make the quotient space M = Q1(M)/dQ°(M) less abstract, a
common practice is to describe M = im(d;) € Q?(M) as the space
of vorticity fields (by assuming there is no cohomology component)
[Marsden and Weinstein 1983, §4]. Such a treatment is attractive,
since vorticity has a concrete physical meaning, and the Hamiltonian
flow (H = total kinetic energy) on the vorticity variable directly
yields the familiar vorticity equation (4) or (30a). The drawback is of
course it does not describe fluids on non-simply-connected domains.

Our Modification. Similar to our Theorem 1, the fluid state is
described by both vorticity w € im(d;) € Q%(M) and coefficients of
harmonic components ¢ = (¢;)[2, € R™. Importantly, as described
in (19) and Section 3.4.1, the coefficients ¢ have the concrete physical
meaning of flux through cross-sections Sy, . . ., Sy, of the domain.
Recall that each cross section S; is associated with a harmonic field
&; defined in (33b). Our phase space M is given by the coordinate of
vorticity data and the flux data:

M = im(d;) X R™ = {(,¢) |® € im(dy),c e R™}.  (57)

This phase space is a Poisson manifold. We describe the Poisson
structure by defining its symplectic foliation as follows. A tangent
vector (@,¢)](p.c) € T(w,c)M at state (w, ) € M is tangent to the
symplectic leaf if it takes the following form

o =—dixw, ¢ = /M(—ixw) A& (58)

for some divergence-free vector field X € I'(TM). One can check that
the distribution of tangent subspaces (58) is integrable!® and hence
form a foliation. We define the symplectic form o on the symplectic
leaf: For every two tangent vectors (0, ¢) = (—dix o, fM (—ixw) A &),
(@, ¢) = (—diyo, fM(—iyw) A &) tangent to the leaf (where X,Y €
T'(TM) are arbitrary divergence-free vector fields),

T(we) ((@,0), (0,0)) = [, 0(X,Y) % 1. (59)

This symplectic form is the same as the one defined in the literature
[Marsden and Weinstein 1983] but now lifted to a larger space (57).
Note that the definition (58) ensures that FLux(n)(S;) — LNk (w) (&)
is always invariant under any variation along a symplectic leaf.
We elaborate on the variation of LINK in Appendix C. In particular,
FLux(n)(Si) — LiINk(w)(&;) is a Casimir for each i = 1,...,m (¢f.
Theorem 2). Finally, one may verify that our full equation (30) is the
Hamiltonian flow of the total kinetic energy

H(w,c) = fM Hdto+3xm, ci§i|2 * 1. (60)

In summary, the above equations complete the vorticity-based Hamil-
tonian description of incompressible fluid dynamics in domains
with general topology. This mathematical framework may serve as
a foundation for future research in mathematical fluid mechanics.

A simple way to verify the integrability of the distribution (58) is to realize that
the reconstructed velocity 1, = d*@ + 3; ¢;¢" has the corresponding motion
of n = — %x n modulo im(dp). Hence, (58) is just the tangent vectors to the known
symplectic leaves in Q! (M) /dQ°(M). In particular, the distribution (58) is integrable.
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7 CONCLUSION

In this paper, we tackle a long-existing problem in the vorticity-
streamfunction formulation of incompressible Euler fluids on non-
simply-connected domains. We demonstrate that the dynamics for
the harmonic (cohomology) components of incompressible Euler
fluids can be described by (30b) (Theorem 1). This have been over-
looked by previous vorticity-streamfunction solvers. We give a
simple and practical algorithm in Section 4 that easily incorporates
such dynamics into previous vorticity-streamfunction solvers.

Our numerical examples (Section 5) demonstrate that it is neces-
sary to include the additional equations in a vortex solver to avoid
unphysical artifacts in fluid animations.

The proposed algorithm for 2D surface simulation (Alg. 2) is
particularly significant because while vorticity-based methods (in-
volving only scalar advections) are much more straightforward to
compute on a 2D surface domain compared to a velocity-based solver
(involving covariant vector advection), previous vorticity-based sur-
face fluid solvers do not include the dynamics of the harmonic
components. Our Alg. 2 is the first vortex solver that is consistent
with the Euler equations on surfaces with arbitrary topology.

We also find a new physical conservation law associated with the
new evolution of harmonic components (Theorem 2). We describe
our new equation as a Hamiltonian system on the state space coor-
dinated by the vorticity and the cross-sectional fluxes (Section 6).
Compared to previous editions of Hamiltonian formulation for in-
compressible Euler flows, the new framework does not omit the
cohomology and each variable is a physically meaningful measure-
ment. The mathematical investigations have also led us to discover
new Casimir invariants as well as interesting analytic flows, e.g. the
example presented in Section 5.1. It would be exciting to explore if
this new conserved quantity that we discovered could serve as the
foundation for new algorithms in the future.

This paper leaves a few open questions that are beyond our cur-
rent investigation. We only work on inviscid Euler fluids on a fixed
oriented Riemannian manifold. In particular, we do not consider
moving obstacles or that the domain is an evolving surface. Expand-
ing our analysis to moving domains can yield new perspectives to
the studies of underwater swimmers and solid-vortex interactions
[Vankerschaver et al. 2009; WeifSimann 2014]. Lastly, what is the
effect of viscosity? What if the domain has changing topology? What if
the domain is non-orientable? We expect exciting research answering
these and related questions in the near future.
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A PRELIMINARIES
A.1 Differential Forms

Let M be an n-dimensional Riemannian manifold. The space of vector
fields is denoted by I'(TM), and the space of differential k-forms,
0 < k < n, is denoted by Qk(M).

A differential k-form a € Q¥ (M) is a formal object to-be-integrated
over an oriented k-dimensional test surface S. This evaluation
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method is denoted by /S a. For example, in 3D, a 3-form describes
a density field or a measure that awaits being integrated over a
volumetric region. A 2-form describes a flux that is to be evaluated
over an oriented surface. A 1-form is to be line-integrated into
circulations, and 0-forms are synonyms for scalar functions that are
to be evaluated over points.

A.1.1  Forms are Distributions of Codimensional Geometries. Dif-
ferential k-forms should not be confused with vector fields in their
visual representations. Geometrically, a vector field v is an assign-
ment of an infinitesimal “arrow” v, € T,M at every point p € M,
whose directions and magnitudes depict an instantaneous flow veloc-
ity within the domain M. A k-form a € Qk(M), on the other hand,
is a distribution of (n — k)-dimensional (codimension-k) oriented
planes over M. For example, in 3D, a 3-form is illustrated as a point
cloud, a 2-form is a line segment cloud, a 1-form is a plane field, and a
0-form is a superposition of sublevel sets of the corresponding scalar
function. The orientations and densities of the codimension-k plane
cloud are given so that the integration fs a over a test k-surface S is
the total signed intersection between S and the codimensional-k
plane cloud.!!

0-form 1-form 2-form 3-form

A.1.2  Type Conversions. The Riemannian metric over the manifold
defines a notion of distance and orthogonality. The magnitude || of
a k-form « is the throughput of the codimension cloud across an
orthogonal cross section of unit k-area. The Hodge star converts
a k-form to a (n — k)-form, *: QK(M) — QF*1(M), so that the
codimension cloud of %« is pointwise the orthogonal complement of
the codimension cloud of a, and that they share the same magnitude
|*a| = |a|. The parity is chosen so that x x a = (—l)k("_k)a for a
k-form a.

A 1-form can be converted into a vector, at
and vice versa, by the sharp f: Q1(M) —
['(TM) and flat b = §~1: T(TM) — Q1(M)
operators. For a 1-form a € Q!(M), the vec-
tor field a# is pointwise an arrow whose
direction is orthogonal to the hyperplane of a

«a at the point, and whose magnitude is set as |au| = |a|. An (n —1)-
form f (typically representing a flux) can also be converted into a
vector by (*ﬁ)ﬁ. Both 1-forms and (n — 1)-forms are often identified
as vector fields; at is a vector field orthogonal to the hyperplane
field & € Q1(M), and (*ﬁ)ﬂ is a vector tangential to the line field
B € Q""1(M). See also Tables 1 and 2.

A.1.3  Exterior Derivatives are Boundary Operators. The exterior
derivative operator d: Qk (M) - QF*1(M) takes the boundary of

UFor n = 2,3, every k-form at each tangent space admits a distinguished (n — k)-
subspace that represents the orientation of the plane field. Forn > 3and1 <k <n-1,
the codimension-k plane fields are generally no longer described by a distinguished
oriented subspace but a superposition of many.



the codimensional geometric representation. For each a € Q¥ (M),
its exterior derivative da € Q¥*1(M) has the (n—k — 1) dimensional
cloud elements given by the boundaries of the (n — k)-dimensional
cloud elements of a. The Stokes Theorem fS da = fas a can be
interpreted as the invariant of intersection number when swapping
the boundary operation. A k-form a € QK (M) is closed if da = 0. For
a closed form, the boundaries of each instance of the codimensional
cloud cancel out with the neighboring boundaries. As a consequence,
the codimensional cloud of a closed form stitches together into
global pieces of (n — k)-dimensional surfaces foliating the space.

Non-closed k-form Closed k-form

a
A.1.4 Interior Products are Extrusions.

The interior product iya of a k-form o €

0k with a vector field v € I'(TM) is a

(k — 1)-form whose codimension cloud is iva
given by the extrusion of the codimension

cloud of a along v.

A.1.5  Wedge Products are Intersections.

The wedge product a A § of a k-form « € ¢
QK (M) and an t-form f € Qf (M) isa (k+ b
¢)-form whose codimension cloud is given
by the intersection of the codimension
clouds of « and f.

alnp

A.1.6  Lie Derivatives and Advections of the Codimension Cloud. A
time varying k-form o € QK (M) is said to be advected by a velocity
field v € T(TM) if its codimension cloud is passively transported and
deformed by the flow generated by v. The corresponding advection
equation is given by % + % a = 0 where %, a € QK (M) is the Lie
derivative of a with respect to v. Using geometric pictures relating
advection and extrusion along a flow, one finds % a = diya + iyda:

= + (61)

Extrusion of
boundary

Changes during
advection

Boundary of
extrusion
known as the Cartan formula. Note that the green and white shades
represent the orientations. For a general time-dependent k-form «a,
the Lie material derivative g—‘;‘ + %, a« measures the rate of change
of a following the flow.

A.1.7 Dirac §-Forms. A Dirac §-form, also known as an integral
current [Wang and Chern 2021; Palmer et al. 2022], is a differential
form whose codimension cloud is concentrated to a single geometry.
For a codimension-k surface I' ¢ M, the associated Dirac-6 form
5r € Qk(M) is a k-form such that Sy B A = fpforall fe
Q"~k(M). Equivalently, /S or is the signed intersection between T’
and any k-dimensional test surface S. For codimension-k surface
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I and codimension-£ surface X, we have dér = (—1)k+153r and
or A Sy = drnz.

A.1.8 Dirichlet Data are Intersections with Boundary. Suppose the
domain M has a boundary oM. Let j: 0M — M denote the in-
clusion map. For each k-form a € Q¥ (M), we call the pullback
j*a € QF(aM) of a by j the Dirichlet boundary data of a. Geo-
metrically, the codimension-k cloud for j*@, which is (n — 1 — k)-
dimensional elements within the (n — 1)-dimensional oM, is given
by the intersection of M with the codimension cloud of a.

A.1.9 Dirichlet and Co-Dirichlet Boundary Conditions. A k-form
a € QK (M) is said to be Dirichlet if j*o = 0.1t is said to be co-Dirichlet
if j* * @ = 0. Under the Dirichlet boundary (resp. co-Dirichlet
boundary) condition, the codimensional geometry is tangential (resp.
normal) to the boundary. See Tables 1 and 2 for these boundary
conditions in terms of the scalar and vector notations.

A.1.10  L? Inner Products and Codifferentials. The L? inner prod-
uct between two k-forms a, f € QK (M) is denoted and given by
(. B) = /M a A *p. The codifferential 5o € QK~1(M) of a k-form

a is defined by 8a = (=1)% x~1 d * a. Up to a boundary term, the
codifferential §: QK1 (M) — QK (M) is the adjoint of d with respect
to the L? inner product using Green’s Identity

(dy.a) = (y.60) + £, (i*Y) A (* % o) (62)

which holds for all y € Q¥ (M) and ¢ € QF*1(M).

A.2  Homology Theory

We review the definitions and the notations in the (singular) homol-
ogy theory. Let M be a smooth manifold with boundary j: oM — M.
A k-chain is a formal linear combination of k-dimensional primitive
geometries in M. Concretely, each primitive k-dimensional geometry
is a smooth map that places a k-dimensional simplex into M. The
notion of boundary of a k-chain is inherited from the notion of
boundary of a simplex.

A.2.1 Absolute Homology. The linear space of k-chains in M is de-
noted by Cy. (M). The boundary operator is a linear map 9y : Cy. (M) —
Cr_1(M) given by its definition for each primitive geometry. The

boundary operators satisfy dg_; © 9 = 0. A k-chain T’ € Cr(M)

is said to be closed, or a cycle, if 9T = 0. A k-chain T € Ci.(M) is

called exact, or a boundary, if T = 9,12 for some (k + 1)-chain

3 € Ciy1(M). The subspace of k-cycles and k-boundaries are re-
spectively denoted by

Z1 (M) = ker(dg) C Cp(M), (63)
B (M) = im(9g41) C Zr(M) C Cr(M). (64)
Two cycles I'1, I, € Zp (M) are said to be homologous if Ty — I €
By (M); that is, I'1, Iz coborder a (k + 1)-chain. The k-th homology
is the collection of “types” (equivalence classes) of cycles after

identifying homologous cycles. Algebraically, the k-th homology is
defined by the quotient space

Hi (M) = Zi.(M) /B (M). (65)
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A.2.2  Relative Homology. The general idea of homology theory
relative to dM is to allow cycles to have boundaries attached to oM.
The algebraic trick for regarding these geometries as cycles is to
“ignore oM.

Define the space of relative k-chains by

Cr.(M, 0M) = Cr.(M)/Cr(aM). (66)

That is, two k-chains represent the same object in Cy. (M, M) if they
differ only on oM. One may verify that the boundary operator oy
is well-defined on Cy (M, o0M). Hence we have 9y : Ci. (M, M) —
Cr_1(M, M) satisfying the same structural equation dg_; o d = 0.
Analogous to the absolute homology theory, one defines the spaces
of relative cycles and relative boundaries respectively by

Zr. (M, oM) = ker(dy) C Cr.(M, oM) (67)

B (M, 0M) = im(0ky1) C Zr(M,0M) C Cr.(M, oM). (68)
A representative of a relative cycle may have a boundary that is
contained in dM. Two relative cycles Iy, Iz are homologous if I'1 — I,
is the boundary of some X~ modulo oM. The k-th relative homology

Hy. (M, aM) = Zy. (M, M) / B (M, aM) (69)

is the collection of types of relative cycles after the identification of
homologous cycles.

B POISSON PROBLEM FOR STREAM FORM

In this appendix, we describe the system of equations one needs to
solve for constructing d*w € Q% (M) fora (k+1)-form € im(d) C
Qk+1 (M)
By Proposition 4, we know that d*w takes the form of

d*tw =38y for some y € Q¥ (M), j* % ¢ = 0. (70)
This stream form ¢ is not unique by additive factors of ker(J).
Definition 6 (Coulomb gauge). The particular solution i to (70) is
said to satisfy the Coulomb gauge if dy = 0 and ¢ L ‘7-((]:‘Jr1 (M).

Proposition 10. The Coulomb gauge solution i to (70) is the unique
solution to the boundary-value Poisson problem

(dS+8d)y =0 inM, (71a)
J xy=0 on oM, (71b)
J xdy=0 on oM, (71c)
¥ L HE (M), (71d)

Proor. By the invertibility of d, d* between im(d) and im(d™*)
(Proposition 3), (70) is equivalent to

sy =w, j xy=0. (72)

The addition of the Coulomb gauge conditions (especially dy = 0)
ensures (71a) and (71c). Conversely, suppose 1 solves (71).12 We only
need to show dy = 0; if so, then (72) and the rest of the Coulomb
conditions follow. To show dy = 0, apply d on both sides of (71a)
to obtain dddy = 0. This equation implies ||5dy/||? = (5dy, ddy) =
{dédy,dy ) = 0 by (62) and (71c). Therefore, §dy = 0. This once
again implies {dy, dy)) = (¢, 6dy') = 0 using (62) and (71b). Hence
dy = 0, which completes the proof. O

12The existence and the uniqueness for the solution to (71) is given by [Schwarz 2006,
Corollary 3.4.8].
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Remark 7. The condition (71d) in the Coulomb gauge ensures the
uniqueness of (71). In practice, the condition (71d) is sometimes neither
mentioned nor enforced. This is fine, as the remaining system of (71)
only has a small finite dimensional kernel ofﬂg“ (M), which does
not jeopardize most linear solvers and does not influence the result of

5 in (70).

B.1 Solving Streamfunctions in 2D
In 2D, the stream form ¢ € Q% (M) is a top-degree form, and therefore
(71c) drops. With the both the vorticity 2-form w and the stream

form ¢ written as their scalar counterparts w, tﬁ (0 =%w, ¥ = *1,/;),
Eq. (71) becomes a Dirichlet value problem:

—Al/; =w, (73a)
Ylom =0, (73b)
¥ L HS (M), (73¢)

where —A = §d is the scalar Laplacian. On a connected domain M
without boundary, we have ‘H]g (M) = {constant functions} = R.
In that case, (73b) drops, and (73c) reads as a zero-mean condition
Jy¥dA = 0.If M has boundary, then H3(M) = {0}, and the
condition (73c) drops.

On a triangle mesh, we set both w and lﬁA on vertices following
[Azencot et al. 2014]. Another possible approach is to let the values
of w and 1/; sit on edge centers, and represent 1/; using the Crouzeix-
Raviart elements [Poelke and Polthier 2016].

B.2 Solving Streamfunctions on a 3D MAC Grid

Here, we describe an implementation of (71) in 3D under the Marker-
And-Cell (MAC) discretization scheme [Harlow and Welch 1965;
Bridson 2015]. The streamfunction solve is a simplified special case
of [Ando et al. 2015a] without a varying density. In the MAC scheme,
the velocity field is given as fluxes assigned to the faces on a regular
grid. The vorticity and the streamfunction are defined on edges. That
is, the MAC scheme is equivalent to a Discrete Exterior Calculus
(DEC) scheme for our exterior calculus formulation up to a Hodge
dual. For notation distinction, let 7 = x1 € Q?(M) be the velocity
flux defined on faces, & = *w € Q'(M) be the vorticity 1-form
defined on edges, and ¢A = %1/ be the stream 1-form on edges.

Let the grid (V, E, F, C) be organized by the vertex set V, edge
set E, face set F and cell set C. We assume every edge has length
h. The adjacency and orientation between the cubical complex
are summarized in the discrete exterior derivative matrices (a.k.a.
coboundary operators) forming a (co)chain complex

RIVI &, gIEL 31, RIFI %2, plct

didp =0, dpd;=0. (74)

Note that each matrix di has entries either —1, 0, 1. The division by
h in a finite difference derivative will be denoted separately, keeping
d;’s purely topological.

To assign obstacles, for each cell in C, label “fluid (interior I)” or
“solid (boundary B).” Next, label fluid and solid on V, E, F by taking the
closure of the solid cells. That is, first initialize each element of V, E, F
as fluid, and then label every boundary face of a solid cell a “solid”
face; subsequently, label every boundary edge of every solid face as
solid, and finally label every boundary vertex of every boundary



edge as solid. After consistently labeling of fluid (I) and solid (B)
elements V=V; U Vg, E=EfUEg, F=FUFg, C=CjuUCgp,slice
the coboundary operators into

15 [Es|

4 =7 durr | duB || piEl g plEsl _, plFil g RIFS! (75)

[Fsl

and similarly for the other di’s. One checks that the interior (fluid)
blocks form a cochain complex:

‘ dosr | dyrr | doar

RIVII =5 RIE =2 I 25 RIGH a4y pdg =0, (76)

which is known as the relative cochain complex.

Now, the no-through boundary condition j*# = 0 and the Dirichlet
condition j*tﬁ = 0 translates to the fact that /) and (// only live on Fj
and Eg respectively, and vanish over Fp, Eg. The discrete relation
between the streamfunction 1/; e RIEl and e RIFI s given by

= +dy iy (77)

Take “curl” 1 dT on both sides of the equation:

1,11

(Z)I = %d{Hﬁ = #dindl,ﬂw' (78)

We label &y € RIFIl with subscript I to acknowledge that O =
1 d1 ;71 does not need to be zero. However, we will see &p € RIEs!

do not play a role in determining i € RIE/I.
Given interior vorticity data &y € RIE! we solve a particular
solution ¢ to (78) by the linear system

o (A7 pdunr + dond] ;) ¥ = o, (719)

=L

Proposition 11. Any solutionl/; e RIEI 10(79) satisfies (78) and a
Coulomb gauge condition d(.)rHlﬁ =0.

Proor. It suffices to show that any solution to (79) satisfies
= 0. Apply d0 ;7 on (79) to obtain d0 1790, Udo Hlﬁ = 0 using

1 II) and (76). This equation ensures that |dg, Hd H‘M
g d0 do.rrd] Hl// = 0. Therefore, d, Udo H(p = 0. Hence, |do,U¢|2
y7do1d] ¥ = 0, and thus 47 i = 0. g

OHlp
&r € im(dT

C LINKING NUMBER IN GENERAL DOMAIN

Here we provide a well-defined linking number (Theorem 2) between
two fields on a general manifold M. This linking number between
smooth fields is also called the cross-helicity. For general domain,
define the linking LINk(w) (&) between a closed k-form « and a
closed Dirichlet (n — k + 1)-form & by its variation with respect to
local transportations & = % « while fixing ¢&:

M[{Z o] = [yliyo) A& (50)

Now, we verify this variational gradient is indeed a gradient by
checking that the second derivatives commute. Take two vector
fields Y3, Y2 with Lie commutivity [Y3, Y2] = 0 (i.e. two coordinate
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directions on the diffeomorphism group Diff (M)). The mixed second
derivative is

& (A D g o]) 24, 0] 51
= [uliv, Ly, 0) NE= [ (L, ivo — iy, @) ANE (82)
= [ulivdiy,o +diy,iy,0) ANE= [, (iy, Ly, @) AE (83)
= & (2O [, 0] ) L4, 0] (84)

where we have used dw = 0 and the Dirichlet closedness of &
for fM d(-) A & = 0 in the second to last equality. Therefore, for

each fixed &, LINK(w) (€) is well-defined locally in the space of w’s
Lie-transported by diffeomorphisms.

D ANALYTICAL EXAMPLE

We demonstrate an analytical example P

of Corollary 2 by considering point vor- pi
tices with strengths k1, ..., kN located at o pi
P1,--., PN in the plane exterior to a cir- pj

cular obstacle Dy of radius R centered at PR

the origin. Note that p;’s move over time
while k;’s remain constant. Using the method of images, the vortex
dynamics can be represented without the obstacle by introducing
mirrored vortices reflected in the disk. These mirrored vortices have
strengths k; = —«; and positions p; = ‘f—jzpi. The domain R? \ Dg
admits a harmonic vector field given by the clockwise 90° rotated
gradient of U(x) = L” log |x|. The corresponding vortex—harmonic
streamline linking number is

Pj

Link = XN U (py) = EN, 5L log |pil. (85)

The flux over any cross-section extending from the obstacle boundary
to infinity can be computed by the difference of the streamfunction at
the endpoints of the cross-section. In this case, the flux is the negative
streamfunction value —/(p) = — Zﬁl (kiG(p, pi) + kiG(p, pi)) at
any p € dDg, where G(x,y) = —ﬁ log |x — y| is the R?-Green’s
function. Using the geometric identity that the ratio Ip—p:l/|p-p;| is
the constant Ip:|/R, we obtain

FLux = —y/(p) = XN, (5% log|p — pil — 3= loglp - pil)  (86)
= IN, frlog B = S, 52 log . (57)

In particular, we find that
FLux — LINK = —logR (Zl 1K ), (88)

which is indeed constant over time.

E PROOFS

E.1  Proof of Proposition 1

To prove im(d)* = V¥, we show that (da, ) = 0 for all a €
Qk=1(M) if and only if § € VK. By Green’s identity (62), the con-
dition {da, B) = 0 for all « is equivalent to {a, 55)) + faM (j*a) A
(j* % p) = 0 for arbitrary a. The latter condition holds if and only if
both 8f and j* % § vanish, i.e. § € VK. o
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E.2 Proof of Proposition 2

We first demonstrate (8b). Since d* (7) always first operates the
orthogonal projection (6) onto im(d), we have ker(d*) > im(d)*.
To show the final result of ker(d*) = im(d)>, it suffices to check
ker(d*) Nim(d) = {0}. Suppose € ker(d*) Nim(d). The condition
B € im(d) asserts that the preimage d~1({}) is non-empty. The
condition f € ker(d") says that 0 € d~1({8}). In particular we must
have f = d0 = 0. This completes the proof for (8b).

Next we show (8a). Eq. (7) implies that each element in im(d*) is
an orthogonal projection of the origin onto an affine subspace (preim-
age d_l({Pim(d)ﬂ})) that is parallel to ker(d). Therefore im(d*) c
ker(d)*. On the other hand, every element oy € ker(d)* is the mini-
mizer 0fminda=dtxo %||0l||2 = mina—ag eker(d) %(”‘ZO ”2 +|la—ao ”2)
That is, g = d* (dap), and hence g € im(d*). Therefore im(d*) =
ker(d)*. This completes the proof for (8a).

The splittings (8) imply that d, d* are isomorphisms between the
subspaces im(d*) and im(d). Moreover, when being restricted to
im(d*),im(d), they are the inverse of each other by construction.
These properties imply (9) and Proposition 3. O

E.3 Proof of Proposition 3
See Appendix E.2. O

E.4 Proof of Proposition 4

To characterize the general form of elements in im(d*), we study
ay = d*p for a general f € QX*1(M). By Proposition 3 we may
assume B € im(d) (Pyy(q)f = B) without loss of generality. By
(7), ap is the solution for the problem of searching for an « that
minimizes ll«l%/2 subject to da = . Taking a variation ag + e of
the constrained optimization at the optimizer a = @ yields

(a0, @) — (day) =0 foralla € QF(M) (89)

for some Lagrange multiplier ¢ € QK+1(M). By Green’s identity
(62), eq. (89) becomes

(oo = 8,a) = §,,(j"&) A (j* x ) =0 forall @ € QK (M), (90)
which implies that both ap — ¢ = 0 and j* x {/ = 0. In conclusion,

each element ay = d*f € im(d") takes the form of ag = 8y for
some ¥/ that satisfies the co-Dirichlet boundary condition. O

E.5 Proof of Proposition 5

To show the coexactness of 7, or equivalently the exactness of
fj := *n, it suffices to check that fc i = 0 for all closed curve C C M.
If M is the complement of a few obstacles in a simply-connected
domain, then every C is homologous to a boundary curve along
which fC fi = 0 using the no-through condition j* x 7. O

E.6  Proof of Proposition 6

Here, we check that for each fixed 7 € V! the linear functional
Frux(n)(-): Zp-1(M,0M) - R, S — /S %7 as defined in (16), is
well-defined over Hy,—1(M, dM). Let S1,S2 € Z,—1(M, dIM) be ho-
mologous relative cycles. That is, when S1, Sz are treated as absolute
(n — 1)-chains, we have Sy = S1 + oU + X for some U € C,(M)
and X € C,,—1(0M). Our goal is to show /51 *n = sz *7. Using the
conditions d x 7 = 0 and j* * = 0 given by n € V!, and that >
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completely lies in oM, we find sz *n = fSl *n + faU *n + fz *n =
fsl*r]+fUd*ry+ij**q=/51*r]. m}

E.7 Proof of Proposition 7

Here, we show that ker(FLux) = im(d*). For notation convenience,
we write fj = %1 for each n € V1 to absorb the Hodge star. Let us
also call Qlk) (M) = {a € QX(M) | j*a = 0} the space of Dirichlet-
condition-satisfying k-forms. Note that the Dirichlet de Rham com-
plex - -- i Q]k) (M) i> Q]k)“(M) i -+ - is the cochain complex
that is dual to the relative chain complex C* (M, M) through the
standard de Rham pairing (4, &) — /A a.

Now, each # = x5, 1 € V1, is a general member 7 € Q]’S_l(M)
satisfying dij = 0. Our goal is to show that /S fj for all relative cycles
Se€Zp-1(M,0M) if and only if fj = dlﬁ for some 1,/; € Qg‘z(M) (cf
Proposition 4).

One of the directions (“<”) in the equivalence statement only re-
quires elementary calculus. Suppose 7j = dlﬁ for some tﬁ € Q" 2(M),
j*l/; = 0. We claim /Sﬁ = 0 forall S € Z,_1(M,oM). Note that
these surfaces S has the property that 9S is either empty or 9S lies
completely in 9M. Thus fsﬁ = fs dy = faS )= jas j* =o.

Now let us show the other direction (“=") using linear algebraic
techniques. The statement we want to show is that if 7j € Qg_l (M)
satyisfies fs i =0 for all cycles S € Z,—1(M, dM), then 7 is exact in
the Dirichlet de Rham complex. To see this, inspect the following
diagram in which o and d are adjoint of each other

Cr1(M, 0M) —2> Cp_y (M, OM)
A A

dual space dual space (91)
1 d Y
he Qg_l(M) -~ QB_Z(M)'

By the Theorem of Four Fundamental Subspaces in linear alge-
bra, we have that im(d) C Qg’l equals to the annihilator of

ker(9) c Cp—1(M, d9M). The condition ./Sﬁ = 0 for all S € ker(d)
in Cp—1(M, OM) ensures that 7 is in the annihilator of ker(9), and
therefore 7 is exact. O

E.8 Proof of Proposition 8

To show that the FLux: V(M) — H,_; (M, dM)* is surjective, it
suffices to take a generator basis (Si, . .., Sm) for Hy—1(M, oM) and
for each j = 1,...,m construct a harmonic field ¢’ € Wé (M) such

that /S g = 5{ . This construction is described in Section 3.4.1 and
verified by Proposition 9. ]

E.9 Proof of Proposition 9
Ourﬁrstgoalistoshow/M {i/\§j = 5;.Letuscall_gj = *_1§j =(1-

dd+)55j € Wé (M). Note that /M d+(~)/\*5€j = 0 by the orthogonality
between im(d*) and co-Dirichlet harmonic 1-forms. Now,

JulnE = [y 0 axé = [,,(1—d*d)(x0c,) A *E;
= [}, (x8¢c,) A *E;. (92)



By substituting g,- =(1- dd+)55j and Appendix A.1.7, we obtain

Sl AE = [, (k0c) A *Ej
= [, (%8¢, A% ((1 - dd+)55j)
= [y 6c, A (1—dd*5s))

= fudc, A Ss, +(-1)" fc,- dd*5s;
N——
=6c;ns;

= [Ci N S;] = bij.

—_—
=0 since 9C; = 0

(93)
(94)
(95)

(96)

(97)
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This dual basis property fM 7EA & = 5; also ensures that the
coefficients c; in (28) are given by c; = /M n A &j. What is left to
show is that /M n A & = FLux(n)(Sj):

Jun A& = fyn Ax (1= dass,) (98)
= /M 8s; A *n = /S,» *1 = FLux(n)(S;), (99)
where we have used nL im(d) (Proposition 1). O
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