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Abstract
We prove an analytic version of the stable graph regular-
ity lemma by Malliaris and Shelah (Trans. Amer. Math.
Soc. 366 (2014), no. 3, 1551–1585), which applies to sta-
ble functions 𝑓∶ 𝑉 ×𝑊 → [0, 1]. Our methods involve
continuous model theory and, in particular, results on
the structure of local Keisler measures for stable con-
tinuous formulas. Along the way, we develop some
basic tools around ultraproducts of metric structures
and linear functionals on continuous formulas, and we
also describe several concrete families of examples of
stable functions.
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INTRODUCTION

Szemerédi’s regularity lemma [25] is a structure theorem for arbitrary finite graphs, and has
become a fundamental tool in graph theory (see, e.g., [15]). In the setting of a bipartite graph
(𝑉,𝑊; 𝐸) (which will be our focus), the regularity lemma says roughly that𝑉 and𝑊 can be parti-
tioned into a small number (depending only on a fixed 𝜀) of sets𝑉𝑖,𝑊𝑗 such that for all 𝑖, 𝑗 outside
of a small number of “irregular pairs,” the graph (𝑉𝑖,𝑊𝑗; 𝐸 ∩ (𝑉𝑖 ×𝑊𝑗)) is 𝜀-regular,meaning that
sufficiently large induced subgraphs have a common edge density up to error at most 𝜀. (See Sec-
tion 6.4 for discussion of how to reconcile the setting of bipartite graphswith unpartitioned graphs
(𝑉; 𝐸).)
The regularity lemma for graphs can be recast and generalized as a decomposition theorem for

functions 𝑓 ∶ 𝑉 ×𝑊 → [0, 1], which is sometimes called the analytic form of Szemerédi regular-
ity. See [8, 17, 26], for example. In this regime, 𝑓 is decomposed as the sum of a “structured” part,
a “pseudorandom” part, and an “error” part. In the special case where 𝑓 is {0, 1}-valued, we are
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back in the setting of graphs, and it is explained in several places how one recovers the usual state-
ment of Szemerédi regularity from the analytic version (e.g., [26, Lemma 2.11]). See Section 6.3 for
further discussion as well as new results in the “stable” case.
It is rather natural to try to improve the conclusion of Szemerédi’s regularity lemma by

placing restrictions on the class of finite graphs under consideration. In their seminal paper,
Malliaris and Shelah [19] considered the restriction to “𝑘-stable graphs,” namely, graphs that
omit the 𝑘-half graph ([𝑘], [𝑘]; ⩽). The improvements in the conclusions involved better bounds
(as a function of 𝜀), no irregular pairs, and “𝜀-homogeneity” replacing 𝜀-regularity. Here,
by 𝜀-homogeneity of a bipartite graph (𝑉,𝑊; 𝐸), we mean that either |𝐸| ⩾ (1 − 𝜀)|𝑉||𝑊| or|𝐸| ⩽ 𝜀|𝑉||𝑊|.
The aim of the current paper is to prove an analytic version of stable graph regularity. We refer

to this as continuous stable regularity for various reasons to be explained later. In any case, we
say that a function 𝑓 ∶ 𝑉 ×𝑊 → [0, 1] is (𝑘, 𝛿)-stable if there do not exist 𝑎1, … , 𝑎𝑘 ∈ 𝑉 and
𝑏1, … , 𝑏𝑘 ∈ 𝑊 such that |𝑓(𝑎𝑖, 𝑏𝑗) − 𝑓(𝑎𝑗, 𝑏𝑖)| ⩾ 𝛿 for all 𝑖 < 𝑗. (This generalizes the previous
notion for graphs after possibly changing 𝑘; see Remark 1.2.) In Section 1, we will describe several
families of examples of stable functions, drawing from themodel-theoretic study of Hilbert spaces
(see Corollary 1.4).
Among our main results is Theorem 5.1, which we quote now.

TheoremA. Let𝑉 and𝑊 be finite sets, and suppose 𝑓∶ 𝑉 ×𝑊 → [0, 1] is a (𝑘, 𝛿)-stable function.
Then, for any 𝜀 > 0 and any “decay” function𝜎∶ ℕ → (0, 1), there are partitions𝑉 = 𝑉0 ∪ 𝑉1 ∪ … ∪
𝑉𝑚 and𝑊 = 𝑊0 ∪𝑊1 ∪ … ∪𝑊𝑛, with𝑚, 𝑛 ⩽ 𝑂𝑘,𝛿,𝜀,𝜎(1), satisfying the following properties.

∗ For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], the pair (𝑉𝑖,𝑊𝑗) is (5𝛿 + 𝜀; 𝜎(𝑚𝑛))-homogeneous.
∗ |𝑉0| ⩽ 𝜀|𝑉1| and |𝑊0| ⩽ 𝜀|𝑊1|.
Homogeneity is defined in Section 4 (see Definition 4.1). Roughly speaking, the pair (𝑉𝑖,𝑊𝑗)

is (𝛿; 𝜀)-homogenous (with respect to the fixed 𝑓∶ 𝑉 ×𝑊 → [0, 1]), if for all but 𝜀|𝑊𝑗|-many
𝑏 ∈ 𝑊𝑗 , for all but 𝜀|𝑉𝑖|-many 𝑎 ∈ 𝑉𝑖 , the value 𝑓(𝑎, 𝑏) is within 𝛿 of a fixed number 𝑟 ∈ [0, 1]
that depends only on 𝑖 and 𝑗 (along with a dual statement quantifying in the reverse order). In
analogy to homogeneity for graphs, this yields the “density” bound ‖𝑓|𝑉𝑖×𝑊𝑗 − 𝑟‖1 ⩽ 𝛿 + 2𝜀 (see
Remark 4.2). The proof of Theorem A also provides definability conditions on the sets 𝑉𝑖 and𝑊𝑗
in terms of the function𝑓 (see Remark 5.3). Finally, we note that the bound𝑂𝑘,𝛿,𝜀,𝜎(1) is ineffective
due to the use of pseudofinite methods.
The sets 𝑉0 and 𝑊0 in Theorem A are small “exceptional” sets of vertices, which can be

incorporated into 𝑉1 and 𝑊1 to obtain a total partition (with certain costs; see Remark 4.7 and
Theorem 5.2). We also prove a version of Theorem A involving balanced equipartitions (see Theo-
rem 6.1). Moreover, Theorem 6.8 gives a strong decomposition theorem for stable functions in the
sense of “analytic” regularity.
We now discuss our methods, as well as other aspects of this paper (including purely model-

theoretic results). In combinatorics, the analytic generalization of regularity is often viewed as
being very useful, but only requiring routine variations of existing arguments. So, we make the
important remark that this is not the case for stable regularity. This is largely because of the shift
from regularity to homogeneity, which yields amuch stronger description of the object in question
using highly structured ingredients. The adaptation of these ingredients to the setting of functions
will require several nontrivial steps and new results.
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CONTINUOUS STABLE REGULARITY 3 of 36

Szemerédi’s original proof of his regularity lemma was direct and finitary. Likewise, the proof
of stable graph regularity in [19] was at the finitary level but with tools from stability such as
the 2-rank. On the other hand, it is well known that a theorem about all finite objects of a cer-
tain kind can be obtained from a theorem about a single “nonstandard finite” (or pseudofinite)
object (although this method typically does not yield effective bounds, where relevant). Such an
approach to graph regularity is described in a blog post by Tao [27], with origins in broader work
of Elek and Szegedy [6]. An account can also be found in course notes of the third author [20].
Insofar as stable regularity is concerned, it is very natural to use pseudofinite methods as one can
plug into to the existing theory of local stability in model theory. This approach to stable graph
regularity was carried out in [18], giving a structure theorem for infinite bipartite graphs (𝑉,𝑊; 𝐸)
for which the formula 𝐸(𝑥, 𝑦) is stable, and in the presence of finitely additive (Keisler) measures
on the relevant Boolean algebras of subsets of 𝑉 and𝑊.
This will be our approach to stable regularity in the current paper. However, because we are

working with a function 𝑓 ∶ 𝑉 ×𝑊 → [0, 1], rather than a relation 𝐸 ⊆ 𝑉 ×𝑊, the relevant non-
standard environment is in the realm of continuous logicwhere the basic formulas are real-valued
rather than Boolean-valued. The change in logic is one reason for our use of the expression
“continuous stable regularity.” This also fits with combinatorics where the word “continuous”
is sometimes used to indicate the passage from graph relations to real-valued functions. Finally,
we note that our setting is related to recent work of Chernikov and Towsner [5] on tame regular-
ity for [0,1]-valued (𝑘 + 1)-ary functions of bounded VC𝑘-dimension (a higher arity analog of NIP,
which refers to 2-ary functions and VC-dimension; for more information and definitions, see the
aforementioned citation).
There is some work on local (formula-by-formula) stability in continuous logic which we can

and will appeal to (such as [4]); but we will also need to develop new results concerning Keisler
measures and stable formulas in the continuous environment. This is done in Section 3. In fact,
wewill work in large part under theweaker assumption that the given continuous formula𝜑(𝑥, 𝑦)
is “𝛿-stable” for a particular 𝛿 > 0 (rather than fully stable, i.e., 𝛿-stable for all 𝛿 > 0; see Defini-
tion 3.1). For a given model 𝑀, the relevant Keisler measures will be regular Borel (probability)
measures on the space 𝑆𝜑(𝑀) of complete 𝜑-types over𝑀.
In the classical first-order context, a basic theorem is that if 𝜑(𝑥, 𝑦) is stable, then any Keisler

measure 𝜇 on the space 𝑆𝜑(𝑀) is a countable weighted sum 𝜇 =
∑
𝛼𝑖𝑝𝑖 of Dirac measures, where

𝑝𝑖 ∈ 𝑆𝜑(𝑀) and
∑
𝛼𝑖 = 1. An account of this result is given by the third author in [22], drawing

from earlier work of Keisler [13].We prove the following analog in the continuous setting (quoting
Theorem 3.12).

TheoremB. Let𝑀 be ametric structure. Suppose that𝜑(𝑥, 𝑦) is 𝛿-stable, and 𝜇 is a Keislermeasure
on𝑆𝜑(𝑀). Then there is a countable collection {𝐶𝑖}𝑖∈𝐼 of pairwise disjoint closed subsets of𝑆𝜑(𝑀) each
of diameter at most 2𝛿, such that 𝜇 =

∑
𝑖∈𝐼 𝛼𝑖𝜇𝑖 , where 𝜇𝑖 is a Keisler measure concentrating on 𝐶𝑖

and
∑
𝑖∈𝐼 𝛼𝑖 = 1.

Here, “diameter” refers to the local “𝑑-metric” on 𝑆𝜑(𝑀) (see Definition 3.5), which is simply
the discrete metric in the classical setting. When 𝜑(𝑥, 𝑦) is fully stable, Theorem B is similar to a
result of Ben Yaacov from [1] (see Remark 3.13). In Section 4, we will use Theorem B to prove the
following model-theoretic regularity statement (paraphrasing Theorem 4.6).
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4 of 36 CHAVARRIA et al.

TheoremC. Let𝑀 be an𝜔-saturatedmetric structure. Suppose that𝜑(𝑥, 𝑦) is 𝛿-stable, and𝜇 and 𝜈
are Keisler measures on 𝑆𝜑(𝑀) and 𝑆𝜑∗(𝑀), respectively. Then, for any 𝜀 > 0, there are𝑚, 𝑛 ⩾ 1 such
that for any 𝛾 ∈ (0, 1), there are partitions 𝑀𝑥 = 𝐴0 ∪ 𝐴1 ∪ … ∪ 𝐴𝑚 and 𝑀𝑦 = 𝐵0 ∪ 𝐵1 ∪ … ∪ 𝐵𝑛
satisfying the following properties.

∗ For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], the pair (𝐴𝑖, 𝐵𝑗) is (5𝛿; 𝛾)-homogeneous for 𝜇 and 𝜈.
∗ 𝜇(𝐴0) ⩽ 𝜀𝜇(𝐴1) and 𝜇(𝐵0) ⩽ 𝜀𝜇(𝐵1).

Moreover, 𝐴𝑖 and 𝐵𝑗 satisfy specific “definability conditions” involving 𝜑(𝑥, 𝑦).

Amore elaborate version of this theorem is Lemma4.4,which is stated in such a form thatwhen
𝑀 is an ultraproduct of (continuous) finite structures, then the data can be transferred to the finite
to achieve Theorem A. The very delicate aspects of the transfer are carried out in Sections 5.1 and
5.2.When specialized to the classical first-order setting, the proof structure of TheoremCbecomes
a kind of synthesis of the strategies from [18] and [22], with some additional simplifications.

1 STABLE FUNCTIONS

Before stating the definition of stability for functions, let us set some general notation, which will
be used throughout the paper.

∗ Given an integer 𝑛 ⩾ 1, let [𝑛] = {1, … , 𝑛}.
∗ Given a set 𝑋 and a subset 𝐴 ⊆ 𝑋, we let 𝟏𝐴 ∶ 𝑋 → {0, 1} denote the indicator function of 𝐴.
When 𝑋 is understood, we write 𝟏 for 𝟏𝑋 .

Definition 1.1. Let 𝑓∶ 𝑉 ×𝑊 → ℝ be a function, where 𝑉 and 𝑊 are arbitrary sets. Given a
linear order 𝐼 and some 𝛿 ⩾ 0, we say that 𝑓 is (𝐼, 𝛿)-stable if there do not exist 𝑎𝑖 ∈ 𝑉 and 𝑏𝑖 ∈ 𝑊,
for 𝑖 ∈ 𝐼, such that

|𝑓(𝑎𝑖, 𝑏𝑗) − 𝑓(𝑎𝑗, 𝑏𝑖)| ⩾ 𝛿 for all 𝑖 < 𝑗 from 𝐼.
Given 𝑘 ⩾ 1, we say that 𝑓 is (𝑘, 𝛿)-stable if it is ([𝑘], 𝛿)-stable; and we say that 𝑓 is 𝛿-stable if it
is (ℕ, 𝛿)-stable. (Here we use the standard orders on ℕ and [𝑘].)

It is easy to check that 𝑓∶ 𝑉 ×𝑊 → ℝ is 𝛿-stable if and only if it is (𝐼, 𝛿)-stable for all infinite
linear orders 𝐼. We also note that in certain contexts, 𝑓 is 𝛿-stable if and only if it is (𝑘, 𝛿)-stable for
some 𝑘 ⩾ 1 (specifically, when 𝑓 has bounded image and (𝑉,𝑊, 𝑓) is “saturated” in the model-
theoretic sense).
Our definition of stability has been formulated in a particular way so as to agree with previ-

ous work in the model-theoretic setting (e.g., [4]), and connect to the appearance of stability in
broadermathematics (aswe discuss below). However, the definition differs slightly from the usual
definition of stability for (bipartite) graphs, and so, we take a moment to clarify this.

Remark 1.2. Let 𝑉 and𝑊 be sets and fix a binary relation 𝐸 ⊆ 𝑉 ×𝑊. Then, 𝐸 is 𝑘-stable if there
do not exist 𝑎1, … , 𝑎𝑘 ∈ 𝑉 and 𝑏1, … , 𝑏𝑘 ∈ 𝑊 such that 𝐸(𝑎𝑖, 𝑏𝑗) holds if and only if 𝑖 ⩽ 𝑗 (i.e.,
(𝑉,𝑊; 𝐸) omits ([𝑘], [𝑘]; ⩽) as an induced subgraph). While this does not necessarily coincide
with (𝑘, 𝛿)-stability of the indicator function 𝟏𝐸 for some choice of 𝛿, note that if 𝟏𝐸 is (𝑘, 1)-
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CONTINUOUS STABLE REGULARITY 5 of 36

stable, then it easily follows that 𝐸 is 𝑘-stable as defined above. (Moreover, 𝟏𝐸 is (𝑘, 1)-stable if
and only if it is (𝑘, 𝛿)-stable for any 𝛿 > 0.) Conversely, by a routine Ramsey argument, one can
show that if 𝐸 is 𝑘-stable then 𝟏𝐸 is (𝑂𝑘(1), 1)-stable. We will comment on a continuous analog of
this situation in the Appendix.

Call a function 𝑓∶ 𝑉 ×𝑊 → ℝ stable if it is 𝛿-stable for all 𝛿 > 0. This notion turns out to
be quite pervasive in functional analysis. First, it corresponds to Grothendieck’s “double-limit”
condition from [9], used to characterize relatively weakly compact sets in the Banach space of
bounded continuous functions on an arbitrary topological space. This connection has been used to
provide analytic proofs of several important theorems from stability theory [2, 21]. Second, Krivine
and Maurey [16] defined a Banach space 𝐵 to be stable if the function 𝑓(𝑥, 𝑦) = ‖𝑥 + 𝑦‖ is stable
when restricted to the unit ball 𝑈 in 𝐵. They observe that any 𝐿𝑝-space is stable for 1 ⩽ 𝑝 < ∞,
and their main result is that any infinite-dimensional stable Banach space contains 𝓁𝑝 for some
1 ⩽ 𝑝 < ∞.
Third, we discuss Hilbert spaces. Given a Hilbert space 𝐻, there is a natural interpretation of

𝐻 as a metric structure in an appropriate (multisorted) language, which includes the vector space
structure and the inner product. In this case, the complete theory 𝑇 of 𝐻 is stable, meaning that
every formula is stable in everymodel of𝑇 (see [3, Section 15]). Thus, anyHilbert space satisfies the
Krivine–Maurey definition of stability. Another natural formula to consider is the inner product
function 𝑓(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩, which is stable in any Hilbert space when restricted to the unit ball. It is
now understood that the stability of the inner product in Hilbert spaces is largely responsible for
the recurring phenomenon of stable formulas arising naturally in several previous settings. Awell-
known example is [11, Proposition 2.25] from Hrushovski’s breakthrough work on the structure
of approximate groups. Previous related results include [10, Lemma 6.1], [12, Lemma 5.21], and
[14, Lemma 3.4], each of which relates to the study of simple theories. The proposition from [11]
is also a key ingredient in the model-theoretic proof from [23] of Tao’s algebraic regularity lemma
for definable sets in finite fields [29].
We now take the opportunity to explain how stability of Hilbert spaces can be used to produce

very general examples of (𝑘, 𝛿)-stable functions (such as those underlying [11, Proposition 2.25]).
Fix a formula 𝜑(𝑥, 𝑦) in the language of Hilbert spaces. Assume that 𝜑(𝑥, 𝑦) is [-1, 1]-valued when
restricted to the unit ball (e.g., ⟨𝑥, 𝑦⟩ or 1

2
‖𝑥 + 𝑦‖, but 𝑥 and 𝑦 could also be tuples of variables).

Now let𝐻 be aHilbert spacewith unit ball𝑈. Given arbitrary sets𝑉 and𝑊, and functions g ∶ 𝑉 →
𝑈 and ℎ∶ 𝑊 → 𝑈, let 𝜑g ,ℎ ∶ 𝑉 ×𝑊 → [-1, 1] be defined by 𝜑g ,ℎ(𝑎, 𝑏) = 𝜑(g(𝑎), ℎ(𝑏)).

Theorem 1.3. For any 𝜑(𝑥, 𝑦) and 𝛿 > 0, there is some 𝑘 ⩾ 1 such that for any 𝐻, 𝑉,𝑊, g , and ℎ
as above, 𝜑g ,ℎ ∶ 𝑉 ×𝑊 → [-1, 1] is (𝑘, 𝛿)-stable.

Proof. It suffices to show that for any 𝜑(𝑥, 𝑦) and 𝛿 > 0, there is some 𝑘 ⩾ 1 such that 𝜑(𝑥, 𝑦)
is (𝑘, 𝛿)-stable in any Hilbert space. But this follows from compactness and the fact that any
completion of the theory of Hilbert spaces is stable. □

Let us point out some specific cases of the previous theorem.

Corollary 1.4. For any 𝛿 > 0, there is some 𝑘 ⩾ 1 such that, in each case below, the function 𝑓 is
(𝑘, 𝛿)-stable.
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6 of 36 CHAVARRIA et al.

(i) Let𝑋,𝑉, and𝑊 be finite sets, and fix arbitrary functions g ∶ 𝑋 × 𝑉 → [-1, 1] andℎ∶ 𝑋 ×𝑊 →
[-1, 1]. Let 𝑓∶ 𝑉 ×𝑊 → [-1, 1] be defined by

𝑓(𝑎, 𝑏) =
1|𝑋| ∑
𝑥∈𝑋

g(𝑥, 𝑎)ℎ(𝑥, 𝑏).

(ii) Let 𝐺 be a locally compact group, and fix continuous functions g , ℎ∶ 𝐺 → [-1, 1] with com-
pact support 𝐶. Let 𝜇 be a left Haar measure on 𝐺, normalized so that 𝜇(𝐶 ∪ 𝐶-1) ⩽ 1. The
convolution g ∗ ℎ∶ 𝐺 → [-1, 1] is the function

(g ∗ ℎ)(𝑥) = ∫ g(𝑡)ℎ(𝑡-1𝑥) 𝑑𝜇.

Let 𝑓∶ 𝐺 × 𝐺 → [-1, 1] be defined by 𝑓(𝑥, 𝑦) = (g ∗ ℎ)(𝑥𝑦).
(iii) Let𝑀 be a metric structure and let 𝔣(𝑥) be a Keisler functional over𝑀 (see Definition 2.12). Fix

[-1, 1]-valued formulas𝜓1(𝑥, 𝑦) and𝜓2(𝑥, 𝑧). Let𝑓∶ 𝑀𝑦 ×𝑀𝑧 → [0, 1] be defined by𝑓(𝑎, 𝑏) =
𝔣(𝜓1(𝑥, 𝑎)𝜓2(𝑥, 𝑏)).

Proof. In each case, we apply Theorem 1.3 with 𝜑(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩. For case (𝑖), let𝐻 = ℝ𝑋 with the
normalized inner product. Then 𝑓 is 𝜑g′,ℎ′ , where g ′ ∶ 𝑉 → 𝑈 maps 𝑎 to g(𝑥, 𝑎) and ℎ′ ∶ 𝑊 → 𝑈
maps 𝑏 to ℎ(𝑥, 𝑏).
For case (𝑖𝑖), let 𝐻 = 𝐿2(𝐺, 𝜇) with inner product ⟨𝑢, 𝑣⟩ = ∫ 𝑢𝑣 𝑑𝜇. Let g ′, ℎ′ ∶ 𝐺 → 𝑈 be

defined by g ′(𝑎) = g(𝑎𝑡) and ℎ′(𝑏) = ℎ(𝑡-1𝑏). Then, 𝑓 is 𝜑g′,ℎ′ .
For case (𝑖𝑖𝑖), let 𝜇 be the Borel measure on 𝑆𝑥(𝑀) corresponding to 𝔣, and let𝐻 = 𝐿2(𝑆𝑥(𝑀), 𝜇)

with inner product as in (𝑖𝑖). Let g ∶ 𝑀𝑦 → 𝑈 and ℎ∶ 𝑀𝑧 → 𝑈 be defined by g(𝑎) = 𝜓1(𝑥, 𝑎) and
ℎ(𝑏) = 𝜓2(𝑥, 𝑏). Then, 𝑓 is 𝜑g ,ℎ. □

Linear functionals on metric structures will be discussed in more detail in Section 2.3. Note
that case (𝑖𝑖𝑖) of Corollary 1.4 generalizes case (𝑖). Moreover, if one applies (𝑖𝑖𝑖) to a classical first-
order structure𝑀, and identifies Boolean formulas with their indicator functions, then 𝑓(𝑎, 𝑏) =
𝜇(𝜓1(𝑥, 𝑎) ∧ 𝜓2(𝑥, 𝑏))where 𝜇 is a Keisler measure onDef𝑥(𝑀). If𝑀 is sufficiently saturated and
𝜇 is invariant (over some small set), then stability of 𝑓 is [11, Proposition 2.25]. This last point,
namely, the use of stability of the inner product in Hilbert spaces to deduce [11, Proposition 2.25],
was communicated to the third author by Remi Jaoui, after seeing it in a course by Hrushovski in
Paris.

Remark 1.5. In the context of Theorem 1.3, suppose that 𝐻 is 𝐿2(𝑋, 𝜇) for some probability space
(𝑋, 𝜇), 𝜑(𝑥, 𝑦) is the inner product, and g and ℎ take values in the set of 𝑣 ∈ 𝐻 such that ‖𝑣‖∞ =
1 (which is a subset of the unit ball). Then, in this case, one can show 𝑘 = exp2(𝑂(𝛿-1)) by an
elementary argument due to Tao [28]. Note that this situation covers most of the examples in
Corollary 1.4.

2 PRELIMINARIES ON CONTINUOUS LOGIC

We assume familiarity with the foundations of continuous logic and continuous model theory.
See [3] for an introduction to this subject.
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CONTINUOUS STABLE REGULARITY 7 of 36

2.1 Basic notions

Let  be a continuous language. We work in the setting where formulas may take values in a
bounded subset ofℝ. Specifically, each predicate symbol 𝑃 in comes with a distinguished closed
bounded interval 𝐼𝑃 ⊆ ℝ (in addition to themodulus of uniform continuityΔ𝑃), and the definition
of an -structure includes the requirement that 𝑃 is 𝐼𝑃-valued.
Let 𝑇 be a complete -theory, and fix an -formula 𝜑(𝑥, 𝑦). For simplicity, we assume that

𝜑(𝑥, 𝑦) is [0,1]-valued (but this is not crucial). Throughout this section,weworkwith a fixedmodel
𝑀 ⊧ 𝑇.
Let 𝑆𝜑(𝑀) denote the space of local 𝜑-types over𝑀. Recall that a type 𝑝 ∈ 𝑆𝜑(𝑀) is uniquely

determined by the function 𝑏 ↦ 𝜑(𝑝, 𝑏) from𝑀𝑦 to [0,1].Moreover, 𝑆𝜑(𝑀) is a compactHausdorff
space under the natural quotient topology inherited from 𝑆𝑥(𝑀). Further details can be found in
[4, Section 6].

Definition 2.1.

(1) A 𝜑-formula over𝑀 is a continuous function 𝜓∶ 𝑆𝜑(𝑀) → ℝ.
(2) A𝜑-generated formula is a uniformly continuous combination of𝜑(𝑥, 𝑦𝑖) for 𝑖 < 𝜔, that is, a

formula of the form 𝜁(𝑥, 𝑦̄) = 𝛼(𝜑(𝑥, 𝑦𝑖)𝑖<𝜔), where 𝛼∶ [0, 1]𝜔 → ℝ is a continuous function.

Remark 2.2. In [4], continuous functions on 𝑆𝜑(𝑀) are referred to as𝜑-predicates (over𝑀), and the
word “formula” is reserved for the smaller class of syntactic or finitary formulas. For our purposes,
this distinction will not be significant because we will either be working with the general class of
formulas as defined above, or with very specific families of finitary formulas.

The next result, which is part of [4, Fact 6.4], says that 𝜑-formulas (over 𝑀) coincide with
“instances” of 𝜑-generated formulas.

Fact 2.3. A function 𝜓∶ 𝑆𝜑(𝑀) → ℝ is continuous if and only if there is a 𝜑-generated formula
𝜁(𝑥, 𝑦̄) and some 𝑏̄ ∈ 𝑀𝑦̄ such that 𝜓(𝑥) = 𝜁(𝑥, 𝑏̄).

Given a 𝜑-formula 𝜓(𝑥) over𝑀 and a set 𝐵 ⊆ ℝ, define

[𝜓(𝑥) ∈ 𝐵] ∶= {𝑝 ∈ 𝑆𝜑(𝑀) ∶ 𝜓(𝑝) ∈ 𝐵}.

Given 𝜑-formulas 𝜓1(𝑥), 𝜓2(𝑥) over𝑀, and Borel sets 𝐵1, 𝐵2 ⊆ ℝ, we let

[𝜓1(𝑥) ∈ 𝐵1 ∧ 𝜓2(𝑥) ∈ 𝐵2] ∶= [𝜓1(𝑥) ∈ 𝐵1] ∩ [𝜓2(𝑥) ∈ 𝐵2],

and similarly for ∨.

Definition 2.4.

(1) A subbasic open set in 𝑆𝜑(𝑀) is a set of the form [𝜑(𝑥, 𝑏) ∈ 𝑈]where 𝑏 ∈ 𝑀𝑦 and𝑈 ⊆ ℝ is
a bounded open interval.

(2) A basic open set in 𝑆𝜑(𝑀) is a finite intersection of subbasic open sets.
(3) A subset of 𝑆𝜑(𝑀) is explicitly open if it is a finite union of basic open sets.
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8 of 36 CHAVARRIA et al.

Fact 2.5. The basic open sets in 𝑆𝜑(𝑀) (as defined above) are a basis for the topology on 𝑆𝜑(𝑀).

Definition 2.6. AKeisler measure on 𝑆𝜑(𝑀) is a regular Borel probability measure on 𝑆𝜑(𝑀).

Let 𝜓(𝑥) be a 𝜑-formula over 𝑀, and fix 𝐵 ⊆ ℝ. If 𝐵 is Borel (resp., open, closed, etc.), then
[𝜓(𝑥) ∈ 𝐵] is Borel (resp., open, closed, etc.). In this case, if 𝜇 is a Keisler measure on 𝑆𝜑(𝑀), then
we write 𝜇(𝜓(𝑥) ∈ 𝐵) to denote 𝜇([𝜓(𝑥) ∈ 𝐵]).
We will also use the previous notation in the global setting where 𝜇 is a Keisler measure on

𝑆𝑥(𝑀) and 𝜓(𝑥) is an𝑀-formula. In this case, we have the pushforwardmeasure 𝜇̃ of 𝜇 to 𝑆𝜑(𝑀)
and, if 𝜓(𝑥) is a 𝜑-formula and 𝐵 ⊆ ℝ is Borel, then 𝜇(𝜓(𝑥) ∈ 𝐵) = 𝜇̃(𝜓(𝑥) ∈ 𝐵).

Definition 2.7. Given a set 𝑈 ⊆ ℝ, let 𝛼𝑈 ∶ ℝ → [0, 1] be defined by

𝛼𝑈(𝑥) = min{𝑑(𝑥, ℝ∖𝑈), 1}.

Note that 𝛼𝑈 is uniformly continuous, and so, in particular, it is a logical connective. Moreover,
if 𝑈 is open, then 𝛼𝑈(𝑥) > 0 if and only if 𝑥 ∈ 𝑈.
Suppose 𝑉 ⊆ 𝑆𝜑(𝑀) is an explicitly open set. Then, we can write

𝑉 =

𝑚⋃
𝑖=1

𝑛𝑖⋂
𝑗=1

[𝜑(𝑥, 𝑏𝑖,𝑗) ∈ 𝑈𝑖,𝑗],

where each 𝑏𝑖,𝑗 is from𝑀𝑦 and each𝑈𝑖,𝑗 is a bounded open interval. Set 𝑦̄ = (𝑦𝑖,𝑗) and define the
𝜑-generated formula

𝜓(𝑥, 𝑦̄) ∶= max
1⩽𝑖⩽𝑚

min
1⩽𝑗⩽𝑛𝑖

𝛼𝑈𝑖,𝑗 (𝜑(𝑥, 𝑦𝑖,𝑗)).

Then, 𝜓(𝑥, 𝑦̄) > 0 is logically equivalent to
⋁𝑚
𝑖=1

⋀𝑛𝑖
𝑗=1
𝜑(𝑥, 𝑦𝑖,𝑗) ∈ 𝑈𝑖,𝑗 . Therefore, 𝑉 = [𝜓(𝑥, 𝑏̄) >

0]. A formula of the form 𝜓(𝑥, 𝑏̄) is called an explicit 𝜑-formula over𝑀. So, we have shown that
𝑉 ⊆ 𝑆𝜑(𝑀) is an explicitly open set if and only if it is of the form [𝜓(𝑥, 𝑏̄) > 0] for some explicit
𝜑-formula 𝜓(𝑥, 𝑏̄) over𝑀.

Remark 2.8. One can further assume that the intervals𝑈𝑖,𝑗 have rational endpoints. However, we
will not make this assumption in general.

Note that if 𝜓(𝑥) is a 𝜑-formula over𝑀, and 𝐷 ⊆ ℝ is closed, then the expression 𝜓(𝑥) ∈ 𝐷 is
logically equivalent to the -condition 𝛼ℝ∖𝐷(𝜓(𝑥)) = 0. In particular, 𝜓(𝑥) ∈ 𝐷 defines a zeroset
in𝑀𝑥.

Definition 2.9. An explicit 𝜑-zeroset is a subset of 𝑀𝑥 in the lattice† generated by zerosets
defined by 𝜑(𝑥, 𝑏) ∈ 𝐷, where 𝑏 ∈ 𝑀𝑦 and 𝐷 ⊆ ℝ is closed.

For example, if 𝜓(𝑥) is an explicit 𝜑-formula over𝑀, and 𝜂 ∈ [0, 1], then 𝜓(𝑥) ⩾ 𝜂 defines an
explicit 𝜑-zeroset in𝑀𝑥.

†Recall that a lattice of subsets of some set 𝑋 is a collection of subsets closed under (finite) unions and intersections.
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CONTINUOUS STABLE REGULARITY 9 of 36

2.2 Linear functionals

Let𝑉 be an ordered real vector spacewith a norm ‖⋅‖. A linear functional on𝑉 ismap 𝔣∶ 𝑉 → ℝ
such that 𝔣(𝑟𝑣 + 𝑠𝑤) = 𝑟𝔣(𝑣) + 𝑠𝔣(𝑤) for all 𝑣, 𝑤 ∈ 𝑉 and 𝑟, 𝑠 ∈ ℝ. A linear functional 𝔣 is positive
if 𝔣(𝑣) ⩾ 0 for all 𝑣 ∈ 𝑉 such that 𝑣 ⩾ 0𝑉 . A linear functional 𝔣 is bounded if there is some 𝑐 ⩾ 0
such that |𝔣(𝑣)| ⩽ 𝑐‖𝑣‖ for all 𝑣 ∈ 𝑉. The operator norm ‖𝔣‖ of a bounded linear functional 𝔣 is
the infimum of all 𝑐 ⩾ 0 satisfying the previous condition.
Given a compact Hausdorff space 𝑋, the space (𝑋, ℝ) of all continuous functions from 𝑋 to ℝ

is a real ordered normed vector space (in fact, a Banach space) under the pointwise partial order
and the uniform norm ‖𝑓‖∞ = sup𝑥∈𝑋 |𝑓(𝑥)|.
Fact 2.10. If 𝑋 is a compact Hausdorff space and 𝔣 is a positive linear functional on (𝑋, ℝ), then 𝔣
is bounded and ‖𝔣‖ = 𝔣(𝟏).
Proof. This is a basic exercise, but we will include the proof for later reference. We first fix
𝜑 ∈ (𝑋, ℝ), and show |𝔣(𝜑)| ⩽ 𝔣(𝟏)‖𝜑‖∞. Note that |𝜑| ⩽ ‖𝜑‖∞𝟏, and so, ‖𝜑‖∞𝟏 − 𝜑 ⩾ 0 and‖𝜑‖∞𝟏 + 𝜑 ⩾ 0. Thus, ‖𝜑‖∞𝔣(𝟏) − 𝔣(𝜑) ⩾ 0 and ‖𝜑‖∞𝔣(𝟏) + 𝔣(𝜑) ⩾ 0, as desired. This shows that
𝔣 is bounded and ‖𝔣‖ ⩽ 𝔣(𝟏). Conversely, 𝔣(𝟏) = |𝔣(𝟏)| ⩽ ‖𝔣‖‖𝟏‖∞ = ‖𝔣‖. □

Recall that if 𝑋 is a compact Hausdorff space, then a Radon measure (on 𝑋) is a regular
Borel measure 𝜇 on 𝑋 such that 𝜇(𝑋) < ∞. Given a Radon measure 𝜇 on a compact Hausdorff
space 𝑋, one obtains a positive linear functional 𝔣𝜇 on (𝑋, ℝ) such that 𝔣𝜇(𝑓) = ∫𝑋 𝑓 𝑑𝜇. Note
that ‖𝔣𝜇‖ = 𝜇(𝑋). The Riesz–Markov–Kakutani theorem states that the map 𝜇 ↦ 𝔣𝜇 is a bijection
betweenRadonmeasures on𝑋 and positive linear functionals on(𝑋, ℝ). Therefore, regular Borel
probabilitymeasures correspond to positive linear functionals of operator norm 1.

2.3 Linear functionals on metric structures

Let be a continuous language. Given an-structure𝑀 and some sort 𝑥, weworkwith the vector
space (𝑆𝑥(𝑀), ℝ) of -formulas over𝑀 in 𝑥, with the pointwise partial order and uniform norm
as in the previous subsection. We may also decorate the norm as ‖𝜑‖𝑀∞ for emphasis. Note that
the set of finitary (syntactic) -formulas in 𝑥 over𝑀 forms a subspace of (𝑆𝑥(𝑀), ℝ), which is
dense by [4, Fact 6.4]. Moreover, if 𝜑(𝑥) is such a formula, then ‖𝜑‖𝑀∞ = sup𝑎∈𝑀𝑥 |𝜑(𝑎)|.
Remark 2.11. Suppose that 𝑇 is a complete-theory. Then, the ordered normed vector space struc-
ture on -formulas (over ∅) in some fixed sort 𝑥 is part of the theory of 𝑇. In other words, if
𝑀 ≡ 𝑁, then for any -formula 𝜑(𝑥), we have ‖𝜑‖𝑀∞ = ‖𝜑‖𝑁∞, and given -formulas 𝜑(𝑥) and
𝜓(𝑥), we have 𝜑𝑀 ⩽ 𝜓𝑀 if and only if 𝜑𝑁 ⩽ 𝜓𝑁 .

Definition 2.12. Given an-structure𝑀, aKeisler functional (in 𝑥) over𝑀 is a positive linear
functional 𝔣 on (𝑆𝑥(𝑀), ℝ) such that ‖𝔣‖ = 1.
Note that any nonzero positive linear functional on (𝑆𝑥(𝑀), ℝ) can be normalized to a Keisler

functional. Let us restate the Reisz–Markov–Kakutani theorem in this context.
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10 of 36 CHAVARRIA et al.

Fact 2.13. If𝑀 is an -structure, then the map 𝜇 ↦ ∫ 𝑑𝜇 is a bijection between Keisler measures
on 𝑆𝑥(𝑀) and Keisler functionals in 𝑥 over𝑀.

We also recall that a Keisler functional is determined entirely by its behavior on the subspace
of finitary formulas.

Proposition 2.14. Suppose that𝑀 is an-structure, and 𝔣0 is a positive linear functional on finitary-formulas over𝑀 in 𝑥. Then 𝔣0 extends uniquely to a positive linear functional 𝔣 on (𝑆𝑥(𝑀), ℝ)
with ‖𝔣‖ = ‖𝔣0‖.
Proof. Using the same steps as in the proof of Fact 2.10, one sees that 𝔣0 is bounded, and hence
continuous. Thus, the claim follows from the fact that the linear subspace of finitary -formulas
is dense in (𝑆𝑥(𝑀), ℝ) (see [4, Fact 6.4]), together with basic facts in functional analysis (see [24,
Exercise I.I.19]). □

In light of the previous result, we will sometimes view linear functionals as maps on
(𝑆𝑥(𝑀), ℝ), while in other cases as maps on the subspace of finitary -formulas over 𝑀,
depending on the relevant context.
We end this section by examining ultraproducts of functionals. Fix an infinite index set Σ, a

collection (𝑀𝑠)𝑠∈Σ of -structures, and an ultrafilter  on Σ. Let 𝑀 be the metric ultraproduct∏
 𝑀𝑠. Let 𝑥 be a fixed sort, and suppose that for all 𝑠 ∈ Σ, we have a positive linear functional 𝔣𝑠

on (𝑆𝑥(𝑀𝑠), ℝ). Assume further that the set {‖𝔣𝑠‖ ∶ 𝑠 ∈ Σ} of norms is bounded. Given a finitary-formula 𝜑(𝑥, 𝑏) over𝑀, define 𝔣(𝜑(𝑥, 𝑏)) = lim 𝔣𝑠(𝜑(𝑥, 𝑏𝑠)) where (𝑏𝑠)𝑠∈Σ is a representative
of 𝑏.

Proposition 2.15. 𝔣 induces a well-defined positive linear functional on (𝑆𝑥(𝑀), ℝ). Moreover,‖𝔣‖ = lim ‖𝔣𝑠‖.
Proof. We first show 𝔣 is well defined. Fix a finitary-formula𝜑(𝑥, 𝑦) andmetrically -equivalent
sequences (𝑏𝑠)𝑠∈Σ and (𝑐𝑠)𝑠∈Σ.We verify lim 𝔣𝑠(𝜑(𝑥, 𝑏𝑠)) = lim 𝔣𝑠(𝜑(𝑥, 𝑐𝑠)). Toward this end,we
fix 𝜀 > 0 and show that the set

𝑋 ∶= {𝑠 ∈ Σ ∶ |𝔣𝑠(𝜑(𝑥, 𝑏𝑠)) − 𝔣𝑠(𝜑(𝑥, 𝑐𝑠))| ⩽ 𝜀}
is in . Let 𝑅 > 0 be a bound on ‖𝔣𝑠‖ for all 𝑠 ∈ Σ. By assumption, the set

𝑌 ∶= {𝑠 ∈ Σ ∶ 𝑑(𝑏𝑠, 𝑐𝑠) < Δ𝜑(𝑥,𝑦)(𝜀∕𝑅)}

is in . Moreover, if 𝑠 ∈ 𝑌, then ‖𝜑(𝑥, 𝑏𝑠) − 𝜑(𝑥, 𝑐𝑠)‖∞ ⩽ 𝜀∕𝑅, and so,
|𝔣𝑠(𝜑(𝑥, 𝑏𝑠)) − 𝔣𝑠(𝜑(𝑥, 𝑐𝑠))| = |𝔣𝑠(𝜑(𝑥, 𝑏𝑠) − 𝜑(𝑥, 𝑐𝑠))| ⩽ 𝑅‖𝜑(𝑥, 𝑏𝑠) − 𝜑(𝑥, 𝑐𝑠)‖∞ ⩽ 𝜀.

Therefore, 𝑌 ⊆ 𝑋, whence 𝑋 ∈  .
Now, since ultralimits preserve vector space operations, it follows that 𝔣 is a linear functional.

We show next that 𝔣 is positive. Fix an -formula 𝜑(𝑥, 𝑏) over 𝑀 such that 𝜑(𝑥, 𝑏) ⩾ 0. By Łoś’s
theorem, lim inf𝑥 𝜑(𝑥, 𝑏𝑠) ⩾ 0. Now fix 𝜀 > 0. Then the set 𝑍 ∶= {𝑠 ∈ Σ ∶ 𝜑(𝑥, 𝑏𝑠) ⩾ -𝜀} is in .
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CONTINUOUS STABLE REGULARITY 11 of 36

If 𝑠 ∈ 𝑍 then 𝜑(𝑥, 𝑏𝑠) + 𝜀 ⩾ 0, and so, 𝔣𝑠(𝜑(𝑥, 𝑏𝑠) + 𝜀) ⩾ 0, which implies

𝔣𝑠(𝜑(𝑥, 𝑏
𝑠)) ⩾ -𝔣𝑠(𝜀) = -𝜀𝔣𝑠(𝟏) = -𝜀‖𝔣𝑠‖.

Therefore, 𝔣(𝜑(𝑥, 𝑏)) = lim 𝔣𝑠(𝜑(𝑥, 𝑏𝑠)) ⩾ -𝜀 lim ‖𝔣𝑠‖ ⩾ -𝜀𝑅. Since 𝜀 > 0 was arbitrary and 𝑅 is
fixed, it follows that 𝔣(𝜑(𝑥, 𝑏)) ⩾ 0. So, we have shown that 𝔣 is positive. Finally, note that ‖𝔣‖ =
𝔣(𝟏) = lim 𝔣𝑠(𝟏) = lim ‖𝔣𝑠‖. □

Example 2.16. Working in the above setting, suppose also that each𝑀𝑠 is finite. Then, for a given
sort 𝑥, we can define the “average value functional” 𝔣𝑠 such that if 𝜑(𝑥) is a finitary 𝐿-formula over
𝑀𝑠, then 𝔣𝑠(𝜑) =

1|𝑀𝑥𝑠 |
∑
𝑎∈𝑀𝑥𝑠

𝜑(𝑎). Note that each 𝔣𝑠 is a Keisler functional in 𝑥 over 𝑀𝑠. By the
previous proposition, it follows that 𝔣 ∶= lim 𝔣𝑠 is a Keisler functional on𝑀, which we refer to
as the pseudofinite average value functional on𝑀 in sort 𝑥.

We will also need the following standard fact (see [3, Proposition 7.6]).

Fact 2.17. Assume  is countable and let {𝑀𝑠 ∶ 𝑠 ∈ Σ} be a countable family of -structures. Then,∏
 𝑀𝑠 is 𝜔1-saturated for any nonprincipal ultrafilter on Σ.

3 KEISLERMEASURES ON STABLE FORMULAS

Let 𝑇 be a complete -theory, and fix a [0,1]-valued -formula 𝜑(𝑥, 𝑦). Since we will be working
locally around 𝜑(𝑥, 𝑦), there is no harm in assuming that  is countable.
Given 𝑟, 𝑠 ∈ ℝ, and some 𝜀 > 0, wewrite 𝑟 ≈𝜀 𝑠 to denote |𝑟 − 𝑠| ⩽ 𝜀.We also let 𝑟 .− 𝑠 = max{𝑟 −

𝑠, 0}. So, 𝑟 .− 𝑠 = 0 if and only if 𝑟 ⩽ 𝑠.

Definition 3.1. Given 𝛿 ∈ [0, 1], we say that 𝜑(𝑥, 𝑦) is 𝛿-stable (in 𝑇) if for every 𝑀 ⊧ 𝑇, the
function 𝜑∶ 𝑀𝑥 ×𝑀𝑦 → [0, 1] is 𝛿-stable (as defined in Section 1).
We say that 𝜑(𝑥, 𝑦) is stable if it is 𝛿-stable for all 𝛿 > 0.

It is not hard to show that when checking 𝛿-stability of 𝜑(𝑥, 𝑦) with respect to 𝑇, it suffices to
consider a single 𝜔-saturated model𝑀 ⊧ 𝑇. In the next lemma, we further note that 𝛿-stability is
an “open condition.”

Lemma 3.2. There is some 𝛿𝜑 ∈ [0, 1] such that for any 𝛿 ∈ [0, 1], 𝜑(𝑥, 𝑦) is 𝛿-stable if and only if
𝛿 > 𝛿𝜑.

Proof. Suppose that 𝜑(𝑥, 𝑦) is 𝛿-stable for some 𝛿 > 0. We find some 𝜀 > 0 such that 𝜑(𝑥, 𝑦) is 𝛿′-
stable for all 𝛿′ ∈ (𝛿 − 𝜀, 𝛿). This suffices to prove the lemma (take 𝛿𝜑 = 1 if 𝜑(𝑥, 𝑦) is not 𝛿-stable
for any 𝛿 ∈ [0, 1]). By compactness, there is some 𝑘 ⩾ 1 such that 𝜑𝑀 is (𝑘, 𝛿)-stable for all𝑀 ⊧ 𝑇.
Define the formula

𝜃(𝑥1, … , 𝑥𝑘, 𝑦1, … , 𝑦𝑘) ∶= max
𝑖<𝑗
(𝛿
.
− |𝜑(𝑥𝑖, 𝑦𝑗) − 𝜑(𝑥𝑗, 𝑦𝑖)|).
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12 of 36 CHAVARRIA et al.

Then for any 𝑀 ⊧ 𝑇 and 𝑎1, … , 𝑎𝑘 ∈ 𝑀𝑥, 𝑏1 … , 𝑏𝑘 ∈ 𝑀𝑦 , we have 𝜃(𝑎̄, 𝑏̄) > 0. By compactness,
there is some 𝜀 > 0 such that inf𝑀𝑥̄,𝑦̄ 𝜃(𝑥̄, 𝑦̄) = 𝜀 for all𝑀 ⊧ 𝑇. Unpacking this, it follows immedi-
ately that 𝜑𝑀 is (𝑘, 𝛿′)-stable for any𝑀 ⊧ 𝑇 and 𝛿′ ∈ (𝛿 − 𝜀, 𝛿). Therefore, 𝜑(𝑥, 𝑦) is 𝛿′-stable for
any 𝛿′ ∈ (𝛿 − 𝜀, 𝛿). □

Let 𝜑∗(𝑦, 𝑥) denote the same formula 𝜑(𝑥, 𝑦), but with the roles of object and parameter
variables exchanged.

Definition 3.3. Amin-max 𝜑∗-generated formula is a formula of the form

𝜁(𝑦, 𝑥̄) = min
1⩽𝑖⩽𝑚

max
1⩽𝑗⩽𝑛𝑖

𝜑(𝑥𝑖,𝑗, 𝑦)

for some𝑚, 𝑛1, … , 𝑛𝑚 ⩾ 1.

The next result says that if 𝜑(𝑥, 𝑦) is 𝛿-stable, then 𝜑-types are “uniformly approximately 𝜑∗-
definable.” See [4, Lemma 7.4] for details.

Lemma3.4. Assume that𝜑(𝑥, 𝑦) is𝛿-stable. Then there is amin-max𝜑∗-generated formula 𝜁𝛿𝜑(𝑦, 𝑥̄)
such that, for any𝑀 ⊧ 𝑇 and 𝑝 ∈ 𝑆𝜑(𝑀), there is some 𝑐 ∈ 𝑀𝑥̄ such that for all 𝑏 ∈ 𝑀𝑦 , 𝜑(𝑝, 𝑏) ≈𝛿
𝜁𝛿𝜑(𝑏, 𝑐).

It is easy to see that if 𝜑(𝑥, 𝑦) is 𝛿-stable, then so is 𝜑∗(𝑦, 𝑥), and thus, by the previous lemma,
we obtain a min-max 𝜑-generated formula 𝜁𝛿

𝜑∗
(𝑥, 𝑦̄) satisfying the analogous conclusion for all

types 𝑞 ∈ 𝑆𝜑∗(𝑀).
For the rest of this section, we fix a model𝑀 ⊧ 𝑇. We now recall the topometric space structure

on 𝑆𝜑(𝑀), as well as the associated Cantor–Bendixson ranks, as defined in [1, 4]. Recall that a
topometric space is a pair (𝑋, 𝑑)where𝑋 is a Hausdorff space and 𝑑 is a metric on 𝑋 satisfying the
following properties.

(i) The metric refines the topology, that is, for every open 𝑉 ⊆ 𝑋 and every 𝑝 ∈ 𝑉, there is some
𝜀 > 0 such that {𝑞 ∈ 𝑋 ∶ 𝑑(𝑝, 𝑞) < 𝜀} ⊆ 𝑉.

(ii) The metric function is lower semicontinuous, that is, for any 𝜀 > 0, the set {(𝑝, 𝑞) ∈ 𝑋 × 𝑋 ∶
𝑑(𝑝, 𝑞) ⩽ 𝜀} is closed in 𝑋 × 𝑋.

Definition 3.5. The 𝑑-metric on 𝑆𝜑(𝑀) is 𝑑(𝑝, 𝑞) = sup𝑏∈𝑀𝑦 |𝜑(𝑝, 𝑏) − 𝜑(𝑞, 𝑏)|.
Despite our use of the terminology “𝑑-metric,” we note that this metric on 𝑆𝜑(𝑀) can be quite

different from what is usually called the 𝑑-metric on the space of complete types (see [4, Sec-
tion 4.3]). For example, if the metric on𝑀 is discrete, then so is the 𝑑-metric on complete types,
although what we call the 𝑑-metric on 𝑆𝜑(𝑀)may not be discrete (for a given 𝜑).

Fact 3.6. (𝑆𝜑(𝑀), 𝑑) is a (compact) topometric space.

Proof. See [4, Fact 6.2] and [1] (especially Definition 1.2 and the remarks after Lemma 1.9). Given
the definition of the metric on 𝑆𝜑(𝑀), properties (𝑖) and (𝑖𝑖) are also easy to check directly. □
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CONTINUOUS STABLE REGULARITY 13 of 36

The following is a straightforward exercise that we will use later.

Proposition 3.7. Suppose that 𝜁(𝑦, 𝑥̄) is a min-max 𝜑∗-generated formula. Then |𝜁(𝑞, 𝑐) −
𝜁(𝑞′, 𝑐)| ⩽ 𝑑(𝑞, 𝑞′) for any 𝑐 ∈ 𝑀𝑥̄ and 𝑞, 𝑞′ ∈ 𝑆𝜑∗(𝑀).
Given 𝐶 ⊆ 𝑆𝜑(𝑀), let diam(𝐶) = sup{𝑑(𝑝, 𝑞) ∶ 𝑝, 𝑞 ∈ 𝐶}.

Definition 3.8. Fix 𝛿 > 0.

(1) We define closed sets𝑋𝛿,𝛼 ⊆ 𝑆𝜑(𝑀), for 𝛼 an ordinal. Let𝑋𝛿,0 = 𝑆𝜑(𝑀) and, for a limit ordinal
𝛼, set 𝑋𝛿,𝛼 =

⋂
𝛽<𝛼 𝑋𝛿,𝛽 . Finally, set

𝑋𝛿,𝛼+1 =
⋂
{𝐹 ⊆ 𝑋𝛿,𝛼 ∶ 𝐹 is closed and diam(𝑋𝛿,𝛼∖𝐹) ⩽ 𝛿}.

(2) Fix a nonempty closed set 𝐶 ⊆ 𝑋. The 𝛿-Cantor–Bendixson rank of 𝐶 is

CB𝛿(𝐶) ∶= sup{𝛼 ∶ 𝑋𝛿,𝛼 ∩ 𝐶 ≠ ∅} ∈ Ord ∪ {∞}.
If CB𝛿(𝐶) = 𝛼 < ∞, then define CBm𝛿(𝐶) ∶= 𝐶 ∩ 𝑋𝛿,𝛼.

The previous definition also makes sense when 𝛿 = 0, and yields the usual Cantor–Bendixson
rank of a topological space. However, we will not use this case.

Proposition 3.9. Fix 𝛿 > 0 and suppose 𝐶 ⊆ 𝑆𝜑(𝑀) is closed and nonempty.

(a) CBm𝛿(𝐶) is closed and nonempty.
(b) If CB𝛿(𝐶) < ∞, and 𝐷 ⊆ 𝐶 is a nonempty closed set disjoint from CBm𝛿(𝐶), then CB𝛿(𝐷) <
CB𝛿(𝐶).

(c) If CB𝛿(𝐶) < ∞, then CBm𝛿(𝐶) admits a finite open cover 𝑈1,… ,𝑈𝑛 such that diam(𝑈𝑖 ∩
CBm𝛿(𝐶)) ⩽ 𝛿 for all 1 ⩽ 𝑖 ⩽ 𝑛.

Proof. These follow easily from the definitions. See also the remarks following [4, Definition
7.9]. □

The following is a “𝛿-local” analog of [4, Proposition 7.11].

Proposition 3.10. If 𝜑(𝑥, 𝑦) is 𝛿-stable, then CB2𝛿(𝑆𝜑(𝑀)) < ∞.

Proof. This ismore or less implicit in [4]. Butwewill provide a sketch. Toward a contradiction, sup-
poseCB2𝛿(𝑆𝜑(𝑀)) = ∞. Arguing inductively as in [4, Proposition 7.11], wemay construct𝑀0 ⪯ 𝑀
of countable density character, and types {𝑝𝜂 ∶ 𝜂 ∈ 2𝜔} in 𝑆𝜑(𝑀0) such that 𝑑(𝑝𝜂, 𝑝𝜆) > 2𝛿 for all
distinct 𝜂, 𝜆 ∈ 2𝜔. By Lemma 3.2, we can fix 𝛿′ < 𝛿 such that 𝜑(𝑥, 𝑦) is 𝛿′-stable. For each 𝜂 ∈ 2𝜔,
apply Lemma 3.4 to find 𝑐𝜂 ∈ 𝑀𝑥̄0 such that for all 𝑏 ∈ 𝑀

𝑦
0
, 𝜑(𝑝𝜂, 𝑏) ≈𝛿′ 𝜁𝛿

′

𝜑 (𝑏, 𝑐𝜂). Since𝑀
𝑥̄
0
has

countable density character, there are distinct 𝜂, 𝜆 ∈ 2𝜔 such that ‖𝜁𝛿′𝜑 (𝑦, 𝑐𝜂) − 𝜁𝛿′𝜑 (𝑦, 𝑐𝜆)‖∞ <
2(𝛿 − 𝛿′). But then 𝑑(𝑝𝜂, 𝑝𝜆) < 2𝛿 by the triangle inequality, which is a contradiction. □
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14 of 36 CHAVARRIA et al.

Our next main goal is a description of local Keisler measures for 𝛿-stable formulas. We will
obtain a continuous analog of the well-known result that in a classical discrete theory, if 𝜑(𝑥, 𝑦)
is stable, then any Keisler measure on 𝑆𝜑(𝑀) can be written as an infinite weighted sum of types
(see [22, Fact 1.1]).

Lemma3.11. Let𝜇 be aKeislermeasure on𝑆𝜑(𝑀), and fix𝛿 > 0. Then for any closed set𝐶 ⊆ 𝑆𝜑(𝑀),
if𝜇(𝐶) > 0andCB𝛿(𝐶) < ∞, then there is a closed set𝐶′ ⊆ 𝐶 such thatdiam(𝐶′) ⩽ 𝛿 and𝜇(𝐶′) > 0.

Proof. We first prove the lemma in the special case that 𝜇(CBm𝛿(𝐶)) > 0. So, assume this is the
case, and let 𝐷 = CBm𝛿(𝐶). By Proposition 3.9(𝑐), there are open sets 𝑈1,… ,𝑈𝑛 ⊆ 𝑆𝜑(𝑀) such
that 𝐷 ⊆

⋃𝑛
𝑖=1 𝑈𝑖 and diam(𝑈𝑖 ∩ 𝐷) ⩽ 𝛿. Let 𝑌𝑖 = 𝑈𝑖 ∩ 𝐷, and note that each 𝑌𝑖 is Borel. Since

𝜇(𝐷) > 0, theremust be some 1 ⩽ 𝑖 ⩽ 𝑛 such that𝜇(𝑌𝑖) > 0. Let𝐶′ = 𝑌𝑖 and note that𝐶′ ⊆ 𝐷 ⊆ 𝐶
and 𝜇(𝐶′) ⩾ 𝜇(𝑌𝑖) > 0. Finally, by lower semicontinuity of the metric, and since diam(𝑌𝑖) ⩽ 𝛿, it
follows that diam(𝐶′) ⩽ 𝛿.
Now we prove the lemma in the general case. Let 𝐶 ⊆ 𝑆𝜑(𝑀) be closed with 𝜇(𝐶) > 0 and

CB𝛿(𝐶) < ∞. We proceed by induction on CB𝛿-rank. If CB𝛿(𝐶) = 0, then CBm𝛿(𝐶) = 𝐶, and
so, we can apply the special case above. So, assume the result for ranks strictly less than
CB𝛿(𝐶).
Let 𝐶1 = CBm𝛿(𝐶). By the special case above, we can assume 𝜇(𝐶1) = 0. Set 𝑋 = 𝐶∖𝐶1. Then

𝑋 is Borel and 𝜇(𝑋) = 𝜇(𝐶) > 0. By regularity, there is a closed set 𝐷 ⊆ 𝑋 such that 𝜇(𝐷) > 0. By
Proposition 3.9(𝑏), we have CB𝛿(𝐷) < CB𝛿(𝐶). So, we can apply the induction hypothesis to find
a closed set 𝐶′ ⊆ 𝐷 ⊆ 𝐶 such that diam(𝐶′) ⩽ 𝛿 and 𝜇(𝐶′) > 0, as desired. □

Given a Keisler measure 𝜇 on 𝑆𝜑(𝑀) and a Borel set𝑋 ⊆ 𝑆𝜑(𝑀), with 𝜇(𝑋) > 0, the localization
of 𝜇 at 𝑋 is the Keisler measure 𝜇𝑋 on 𝑆𝜑(𝑀) such that 𝜇𝑋(𝐵) = 𝜇(𝐵 ∩ 𝑋)∕𝜇(𝑋) for any Borel
𝐵 ⊆ 𝑆𝜑(𝑀). We now restate and prove Theorem B from the introduction.

Theorem 3.12. Assume that𝜑(𝑥, 𝑦) is 𝛿-stable, and let 𝜇 be a Keisler measure on 𝑆𝜑(𝑀). Then there
is a countable collection (𝐶𝑖)𝑖∈𝐼 of pairwise disjoint closed sets in 𝑆𝜑(𝑀) such that:

(i) for all 𝑖 ∈ 𝐼, diam(𝐶𝑖) ⩽ 2𝛿 and 𝜇(𝐶𝑖) > 0, and
(ii) 𝜇 =

∑
𝑖∈𝐼 𝛼𝑖𝜇𝐶𝑖 , where 𝛼𝑖 = 𝜇(𝐶𝑖).

Proof. Let {𝐶𝑖 ∶ 𝑖 ∈ 𝐼} be a maximal family of pairwise disjoint closed sets in 𝑆𝜑(𝑀) with positive
measure and diameter at most 2𝛿. Then 𝐼 must be countable by countable additivity of 𝜇. Let
𝐵 =

⋃
𝑖∈𝐼 𝐶𝑖 , and note that 𝐵 is Borel. We claim that 𝜇(𝐵) = 1. Indeed, if not then by regularity,

there is a closed set 𝐶 ⊆ 𝑆𝜑(𝑀) such that 𝜇(𝐶) > 0 and 𝐶 ∩ 𝐵 = ∅. By Proposition 3.10, we may
apply Lemma 3.11 to 𝐶 to obtain a closed set 𝐶′ ⊆ 𝐶 with 𝜇(𝐶′) > 0 and diam(𝐶′) ⩽ 2𝛿. Then 𝐶 is
disjoint from 𝐶𝑖 for all 𝑖 ∈ 𝐼, contradicting maximality of the family.
Now let 𝛼𝑖 ∶= 𝜇(𝐶𝑖). Then, for any Borel set 𝑋 ⊆ 𝑆𝜑(𝑀), we have

𝜇(𝑋) = 𝜇(𝐵 ∩ 𝑋) =
∑
𝑖∈𝐼

𝜇(𝐶𝑖 ∩ 𝑋) =
∑
𝑖∈𝐼

𝛼𝑖𝜇𝐶𝑖 (𝑋).

Therefore, 𝜇 =
∑
𝑖∈𝐼 𝛼𝑖𝜇𝐶𝑖 , as desired. □
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CONTINUOUS STABLE REGULARITY 15 of 36

Remark 3.13. Call a subset of 𝑆𝜑(𝑀) 𝜀-finite if it can be covered by finitely many sets of diameter
at most 𝜀. It follows from Theorem 3.12 that if 𝜑(𝑥, 𝑦) is 𝛿-stable and 𝜇 is a Keisler measure on
𝑆𝜑(𝑀), then for any 𝜀 > 0, there is some closed 2𝛿-finite set 𝐶 ⊆ 𝑆𝜑(𝑀) such that 𝜇(𝐶) > 1 − 𝜀.
This is closely related to [1, Theorem 3.31] which (in our setting) says that if 𝜑(𝑥, 𝑦) is stable, then
for any 𝜀 > 0, there is ametrically compact set𝐶 ⊆ 𝑆𝜑(𝑀) such that 𝜇(𝐶) > 1 − 𝜀. One can deduce
this fromTheorem 3.12 by choosing a closed 1

𝑛
-finite set𝐶𝑛 such that 𝜇(𝐶𝑛) > 1 − 2-𝑛𝜀, and setting

𝐶 =
⋂
𝑛>0 𝐶𝑛.

Before continuing with the main theme of this paper, we state some corollaries connecting
Theorem 3.12 with the idea of approximating measures by types.

Corollary 3.14. Suppose that 𝜑(𝑥, 𝑦) is 𝛿-stable, and let 𝜇 be a Keisler measure on 𝑆𝜑(𝑀). Then,
there is a finitely supported Keisler measure 𝜇′ on 𝑆𝜑(𝑀) such that for each 𝑏 ∈ 𝑀𝑦 ,

∫𝑆𝜑(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇 ≈2𝛿 ∫𝑆𝜑(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇
′.

Proof. By Lemma 3.2, we can fix some 𝛿′ < 𝛿 such that 𝜑(𝑥, 𝑦) is 𝛿′-stable. By Theorem 3.12, we
can write 𝜇 =

∑
𝑖∈𝐼 𝛼𝑖𝜇𝐶𝑖 where 𝐼 is countable and the 𝐶𝑖 ’s are pairwise disjoint closed sets of

diameter at most 2𝛿′. For each 𝑖 ∈ 𝐼, pick some 𝑝𝑖 ∈ 𝐶𝑖 . So, for any 𝑞 ∈ 𝐶𝑖 and 𝑏 ∈ 𝑀𝑦 , we have
𝜑(𝑞, 𝑏) ≈2𝛿′ 𝜑(𝑝𝑖, 𝑏). It follows that for any 𝑖 ∈ 𝐼 and any 𝑏 ∈ 𝑀𝑦 ,

∫𝐶𝑖 𝜑(𝑥, 𝑏) 𝑑𝜇𝐶𝑖 ≈2𝛿′ ∫𝐶𝑖 𝜑(𝑝𝑖, 𝑏) 𝑑𝜇𝐶𝑖 = 𝜑(𝑝𝑖, 𝑏). (†)

Let 𝜀 = 𝛿 − 𝛿′, and choose a finite set 𝐼0 ⊆ 𝐼 such that 𝛼 ∶=
∑
𝑖∈𝐼0
𝛼𝑖 ⩾ 1 − 𝜀. Consider the finitely

supported Keisler measure 𝜇′ = 𝛼-1
∑
𝑖∈𝐼0
𝛼𝑖𝑝𝑖 , where 𝑝𝑖 is identified with its Dirac measure.

Then, by (†), we have that for any 𝑏 ∈ 𝑀𝑦 ,

∫𝑆𝜑(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇 =
∑
𝑖∈𝐼

𝛼𝑖 ∫𝐶𝑖 𝜑(𝑥, 𝑏) 𝑑𝜇𝐶𝑖 ≈2𝛿′
∑
𝑖∈𝐼

𝛼𝑖𝜑(𝑝𝑖, 𝑏)

≈𝜀
∑
𝑖∈𝐼0

𝛼𝑖𝜑(𝑝𝑖, 𝑏) = 𝛼 ∫𝑆𝜑(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇
′ ≈𝜀 ∫𝑆𝜑(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇

′,

as desired. □

When𝜑(𝑥, 𝑦) is stablewe obtain the following conclusion, which also follows from [1, Corollary
3.32].

Corollary 3.15. Suppose that 𝜑(𝑥, 𝑦) is stable, and let 𝜇 be a Keisler measure on 𝑆𝜑(𝑀). Then there
is a sequence (𝜇𝑛)∞𝑛=0 of finitely supported Keisler measures on 𝑆𝜑(𝑀) such that for all 𝜀 > 0, there is
an𝑁 such that for all 𝑛 ⩾ 𝑁 and 𝑏 ∈ 𝑀𝑦 ,

∫𝑆𝑦(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇 ≈𝜀 ∫𝑆𝑦(𝑀) 𝜑(𝑥, 𝑏) 𝑑𝜇𝑛.
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16 of 36 CHAVARRIA et al.

We point out that both of the previous corollaries can be rephrased as statements about linear
functionals. Let us also note that the conclusion of Corollary 3.15 is a continuous generalization of
what is known in the classical first-order case for NIP formulas, and thus, we expect that it extends
to the setting where the continuous formula 𝜑(𝑥, 𝑦) is NIP. But in any case, the approximation by
finitely supported measures in Corollary 3.15 is much weaker than the statement of Theorem 3.12.
In the classical first-order case, this is analogous to property (𝑏) below of a Keisler 𝜑-measure 𝜇
over𝑀 being substantially stronger than property (𝑎) below.

(a) For each 𝜀 > 0, there are 𝑝1, … , 𝑝𝑘 ∈ 𝑆𝜑(𝑀) such that for any 𝑏 ∈ 𝑀, 𝜇(𝜑(𝑥, 𝑏)) is within 𝜀 of
the average value of 𝜑(𝑥, 𝑏) at the 𝑝𝑖 ’s.

(b) For each 𝜀 > 0, there are 𝑝1, … , 𝑝𝑘 ∈ 𝑆𝜑(𝑀) such that 𝜇({𝑝1, … , 𝑝𝑘}) ⩾ 1 − 𝜀.

In the discrete setting, 𝜑(𝑥, 𝑦) is stable if and only if property (𝑏) holds for all Keisler 𝜑-measures
𝜇; and 𝜑(𝑥, 𝑦) is NIP if and only if property (𝑎) holds for all 𝜇 and all 𝜑-generated formulas 𝜃(𝑥, 𝑦̄).

4 MODEL-THEORETIC STRUCTURE OF STABLE FORMULAS

The goal of this section is to prove Theorem C, which provides a structure theorem for stable
continuous formulas in terms of “homogeneous pairs.”We first define our notion of homogeneity
precisely, and in a general setting.
Let 𝑉 and𝑊 be nonempty sets, and fix a function 𝑓∶ 𝑉 ×𝑊 → [0, 1]. Let and be Boolean

algebras of subsets of𝑉 and𝑊, respectively. Assume that contains any set of the form {𝑥 ∈ 𝑉 ∶
𝑓(𝑥, 𝑏) ∈ 𝐷} where 𝑏 ∈ 𝑊 is fixed and 𝐷 ⊆ [0, 1] is a closed interval. Also assume the analogous
condition for . Let 𝜇 and 𝜈 be finitely additive probability measures on and , respectively.
Definition 4.1. Fix real numbers 𝛿, 𝛾, 𝜀 > 0. Given 𝑉∗ ∈  and 𝑊∗ ∈ , we say that the pair
(𝑉∗,𝑊∗) is (𝛿; 𝛾, 𝜀)-homogeneous for 𝜇 and 𝜈 if there are 𝑉′ ⊆ 𝑉∗ and𝑊′ ⊆ 𝑊∗ satisfying the
following properties.

(i) 𝑉′ ∈  and 𝜇(𝑉′) ⩾ (1 − 𝛾)𝜇(𝑉∗).
(ii) 𝑊′ ∈  and 𝜈(𝑊′) ⩾ (1 − 𝛾)𝜈(𝑊∗).
(iii) There is some 𝑟 ∈ [0, 1] such that for all 𝑏 ∈ 𝑊′,

𝜇({𝑎 ∈ 𝑉∗ ∶ 𝑓(𝑎, 𝑏) ≈𝛿 𝑟}) ⩾ (1 − 𝜀)𝜇(𝑉∗).

(iv) There is some 𝑠 ∈ [0, 1] such that for all 𝑎 ∈ 𝑉′,

𝜈({𝑏 ∈ 𝑊∗ ∶ 𝑓(𝑎, 𝑏) ≈𝛿 𝑠}) ⩾ (1 − 𝜀)𝜈(𝑊∗).

If 𝛾 = 𝜀, then we say that (𝑉∗,𝑊∗) is (𝛿; 𝛾)-homogeneous for 𝜇 and 𝜈.

Note that the fixed function 𝑓 has been suppressed from the terminology. When the ambient
measures are fixed, and there is no possibility of confusion, we will also often omit “for 𝜇 and 𝜈.”
For example, if𝑉 and𝑊 are finite, thenwewill generally be in the situation where 𝜇 and 𝜈 are the
normalized countingmeasures on(𝑉) and(𝑊). Let us now comment more specifically on the
finite case. Given a (nonempty) finite set 𝑋 and a function 𝑓∶ 𝑋 → ℝ, we define the normalized
𝓁1-norm ‖𝑓‖1 = 1|𝑋| ∑𝑥∈𝑋 |𝑓(𝑥)|.
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CONTINUOUS STABLE REGULARITY 17 of 36

Remark 4.2. Assume that𝑉 and𝑊 are finite, and suppose that (𝑉∗,𝑊∗) is (𝛿; 𝛾, 𝜀)-homogeneous,
witnessed by 𝑟, 𝑠 ∈ [0, 1]. Then:

∗ for all but at most 𝛾|𝑊∗|-many 𝑏 ∈ 𝑊∗, for all but at most 𝜀|𝑉∗|-many 𝑎 ∈ 𝑉∗, we have
𝑓(𝑎, 𝑏) ≈𝛿 𝑟, and dually,

∗ for all but at most 𝛾|𝑉∗|-many 𝑎 ∈ 𝑉∗, for all but at most 𝜀|𝑊∗|-many 𝑏 ∈ 𝑊∗, we have
𝑓(𝑎, 𝑏) ≈𝛿 𝑠.

In this case, it should intuitively follow that 𝑟 and 𝑠 are not much different. Indeed, if 𝑓′ =
𝑓|𝑉∗×𝑊∗ , then by a direct computation, ‖𝑓′(𝑥, 𝑦) − 𝑟‖1 and ‖𝑓′(𝑥, 𝑦) − 𝑠‖1 are both bounded by
𝛿 + 𝛾 + 𝜀. So |𝑟 − 𝑠| ⩽ 2(𝛿 + 𝛾 + 𝜀) by the triangle inequality.
Wenow return to the previous settingwhere𝑇 is a complete continuous-theory, with count-

able. Fix𝑀 ⊧ 𝑇 and a [0,1]-valued -formula 𝜑(𝑥, 𝑦). The first step toward our main result is the
following corollary of Theorem 3.12.

Corollary 4.3. Assume that𝜑(𝑥, 𝑦) is𝛿-stable, and let𝜇 be aKeislermeasure on𝑆𝜑(𝑀). Then for any
𝜀 > 0, there are pairwise disjoint closed sets 𝐶1, … , 𝐶𝑛 ⊆ 𝑆𝜑(𝑀) satisfying the following properties.

(i) diam(𝐶𝑖) ⩽ 2𝛿 for all 1 ⩽ 𝑖 ⩽ 𝑛.
(ii) 𝜇(

⋃𝑛
𝑖=1 𝐶𝑖) > 1 − 𝜀𝜇(𝐶1).

(iii) For any 𝛾 ∈ (0, 1), there are pairwise disjoint explicitly open sets 𝑉1,… , 𝑉𝑛 ⊆ 𝑆𝜑(𝑀) such that,
for all 1 ⩽ 𝑖 ⩽ 𝑛, 𝐶𝑖 ⊆ 𝑉𝑖 and 𝜇(𝑉𝑖∖𝐶𝑖) < 𝛾𝜇(𝑉𝑖).

Proof. Let {𝐶𝑖 ∶ 𝑖 ∈ 𝐼} be as in Theorem 3.12, and set 𝛼𝑖 ∶= 𝜇(𝐶𝑖). Identify 𝐼 with an initial segment
of ℤ+, and choose 𝑛 ⩾ 1 large enough so that

∑𝑛
𝑖=1 𝛼𝑖 > 1 − 𝜀𝛼1. This yields 𝐶1, … , 𝐶𝑛 satisfying

(𝑖) and (𝑖𝑖). Toward (𝑖𝑖𝑖), fix 𝛾 ∈ (0, 1).
For all distinct 𝑖, 𝑗 ⩽ 𝑛, we can choose disjoint open sets 𝑉𝑖,𝑗 and𝑊𝑖,𝑗 such that 𝐶𝑖 ⊆ 𝑉𝑖,𝑗 and

𝐶𝑗 ⊆ 𝑊𝑖,𝑗 . Set 𝑉′𝑖 =
⋂
𝑗≠𝑖(𝑉𝑖,𝑗 ∩ 𝑊𝑗,𝑖). Then 𝑉′𝑖 is open, 𝐶𝑖 ⊆ 𝑉′𝑖 , and if 𝑖, 𝑗 ⩽ 𝑛 are distinct, then

𝑉′
𝑖
∩ 𝑉′

𝑗
⊆ 𝑉𝑖,𝑗 ∩ 𝑊𝑖,𝑗 = ∅.

Now, by regularity of𝜇, there is an open set𝑈𝑖 ⊇ 𝐶𝑖 such that𝜇(𝑈𝑖) < 𝛼𝑖∕(1 − 𝛾). Let𝑉′′𝑖 = 𝑉
′
𝑖
∩

𝑈𝑖 . Then 𝑉′′𝑖 is open, 𝐶𝑖 ⊆ 𝑉
′′
𝑖
, 𝜇(𝑉′′

𝑖
) < 𝛼𝑖∕(1 − 𝛾), and 𝑉′′1 , … , 𝑉

′′
𝑛 are pairwise disjoint. Since 𝐶𝑖

is compact, there is an explicitly open set 𝑉𝑖 such that 𝐶𝑖 ⊆ 𝑉𝑖 ⊆ 𝑉′′𝑖 . Note that 𝑉1,… , 𝑉𝑛 are
pairwise disjoint and, for all 1 ⩽ 𝑖 ⩽ 𝑛, we have

𝜇(𝑉𝑖∖𝐶𝑖) = 𝜇(𝑉𝑖) − 𝛼𝑖 < 𝛾𝜇(𝑉𝑖),

where the final inequality follows from 𝜇(𝑉𝑖) ⩽ 𝜇(𝑉′′𝑖 ) ⩽ 𝜇(𝑈𝑖) < 𝛼𝑖∕(1 − 𝛾). □

We now prove a rather technical lemma that will be used to obtain both Theorems A and C
from the introduction.

Lemma 4.4. Assume 𝜑(𝑥, 𝑦) is 𝛿-stable, and let 𝜇 and 𝜈 be Keisler measures on 𝑆𝜑(𝑀) and 𝑆𝜑∗(𝑀),
respectively. Fix some 𝜀 > 0. Then there are𝑚, 𝑛 ⩾ 1 such that for any 𝛾 ∈ (0, 1), there are:

∗ explicit 𝜑-formulas 𝜓1(𝑥), … , 𝜓𝑚(𝑥) over𝑀,
∗ explicit 𝜑∗-formulas 𝜃1(𝑦), … , 𝜃𝑛(𝑦) over𝑀,
∗ finite tuples 𝑐1, … , 𝑐𝑚, 𝑑1, … , 𝑑𝑛 from𝑀, and
∗ some 𝜂 > 0,
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18 of 36 CHAVARRIA et al.

satisfying the following properties.

(1) [𝜓1(𝑥) > 0], … , [𝜓𝑚(𝑥) > 0] are pairwise disjoint.
(2) [𝜃1(𝑦) > 0], … , [𝜃𝑛(𝑦) > 0] are pairwise disjoint.
(3) 𝜇(

⋁𝑚
𝑖=1 𝜓𝑖(𝑥) ⩾ 𝜂) > 1 − 𝜀𝜇(𝜓1(𝑥) ⩾ 𝜂).

(4) 𝜈(
⋁𝑛
𝑗=1 𝜃𝑗(𝑦) ⩾ 𝜂) > 1 − 𝜀𝜈(𝜃1(𝑦) ⩾ 𝜂).

(5) If 1 ⩽ 𝑖 ⩽ 𝑚, then for all 𝑏 ∈ 𝑀𝑦 ,

𝜇
(
𝜓𝑖(𝑥) ⩾ 𝜂 ∧ 𝜑(𝑥, 𝑏) ≈3𝛿 𝜁

𝛿
𝜑(𝑏, 𝑐𝑖)

)
> (1 − 𝛾)𝜇(𝜓𝑖(𝑥) > 0).

(6) If 1 ⩽ 𝑗 ⩽ 𝑛, then for all 𝑎 ∈ 𝑀𝑥 ,

𝜈
(
𝜃𝑗(𝑦) ⩾ 𝜂 ∧ 𝜑(𝑎, 𝑦) ≈3𝛿 𝜁

𝛿
𝜑∗(𝑎, 𝑑𝑗)

)
> (1 − 𝛾)𝜈(𝜃𝑗(𝑦) > 0).

(7) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], there is some 𝑟 ∈ [0, 1] such that

𝜈
(
𝜃𝑗(𝑦) ⩾ 𝜂 ∧ 𝜁

𝛿
𝜑(𝑦, 𝑐𝑖) ≈2𝛿 𝑟

)
> (1 − 𝛾)𝜈(𝜃𝑗(𝑦) > 0).

(8) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], there is some 𝑠 ∈ [0, 1] such that

𝜇
(
𝜓𝑖(𝑥) ⩾ 𝜂 ∧ 𝜁

𝛿
𝜑∗(𝑥, 𝑑𝑗) ≈2𝛿 𝑠

)
> (1 − 𝛾)𝜇(𝜓𝑖(𝑥) > 0).

Remark 4.5. Before starting the proof of Lemma 4.4, we take a moment to analyze properties
(5)–(8), and explain the connection to homogeneous pairs.
Fix (𝑖, 𝑗) ∈ [𝑚] × [𝑛], and consider the sets 𝑉𝑖 ∶= [𝜓𝑖(𝑥) ⩾ 𝜂] ⊆ 𝑆𝜑(𝑀) and 𝑊𝑗 ∶= [𝜃𝑗(𝑦) ⩾

𝜂] ⊆ 𝑆𝜑∗(𝑀). Then (5) says that for any 𝑏 ∈ 𝑀𝑦 , the function 𝜑(𝑥, 𝑏) is within 3𝛿 of the fixed
value 𝜁𝛿𝜑(𝑏, 𝑐𝑖) on almost all of 𝑉𝑖 . For readers familiar with [19], this is a functional analog of the
notion of a “good set” in stable graph regularity. By itself, this does not give homogeneity, because
the value 𝜁𝛿𝜑(𝑏, 𝑐𝑖) depends on the choice of 𝑏. However, property (7) says that there is some single
𝑟 ∈ [0, 1] (depending only on 𝑖 and 𝑗) such that the function 𝜁𝛿𝜑(𝑦, 𝑐𝑖) is within 2𝛿 of 𝑟 on almost
all of𝑊𝑗 . Applying the triangle inequality, we conclude that for almost all 𝑏 ∈ 𝑊𝑗(𝑀), 𝜑(𝑥, 𝑏) is
within 5𝛿 of 𝑟 on almost all of 𝑉𝑖 . By symmetric arguments with properties (6) and (8), we also
have some 𝑠 ∈ [0, 1] such that for almost all 𝑎 ∈ 𝑉𝑖(𝑀), 𝜑(𝑎, 𝑦) is within 5𝛿 of 𝑠 on almost all of
𝑊𝑗 . Altogether, (𝑉𝑖,𝑊𝑗) resembles a homogeneous pair.

Proof of Lemma 4.4. Apply Corollary 4.3 to both 𝜇 and 𝜈 to obtain pairwise disjoint closed sets
𝐶1, … , 𝐶𝑚 ⊆ 𝑆𝜑(𝑀) and pairwise disjoint closed sets 𝐷1,… , 𝐷𝑛 ⊆ 𝑆𝜑∗(𝑀) satisfying the following
properties.

(i) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], diam(𝐶𝑖) ⩽ 2𝛿 and diam(𝐷𝑗) ⩽ 2𝛿.
(ii) 𝜇(

⋃𝑚
𝑖=1 𝐶𝑖) > 1 − 𝜀𝜇(𝐶1) and 𝜈(

⋃𝑛
𝑗=1 𝐷𝑗) > 1 − 𝜀𝜈(𝐷1).

(iii) Corollary 4.3(𝑖𝑖𝑖) holds for for both 𝐶1, … , 𝐶𝑚 and 𝐷1,… , 𝐷𝑛.

Now fix 𝛾 ∈ (0, 1). By (𝑖𝑖𝑖), there are pairwise disjoint explicitly open sets 𝑉1,… , 𝑉𝑚 ⊆ 𝑆𝜑(𝑀),
and pairwise disjoint explicitly opens sets 𝑊1,… ,𝑊𝑛 ⊆ 𝑆𝜑∗(𝑀), such that if (𝑖, 𝑗) ∈ [𝑚] × [𝑛],
then 𝐶𝑖 ⊆ 𝑉𝑖 , 𝐷𝑗 ⊆ 𝑊𝑗 , 𝜇(𝑉𝑖∖𝐶𝑖) < 𝛾𝜇(𝑉𝑖), and 𝜈(𝑊𝑗∖𝐷𝑗) < 𝛾𝜈(𝐷𝑗).
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CONTINUOUS STABLE REGULARITY 19 of 36

Let 𝜓𝑖(𝑥) be an explicitly open 𝜑-formula over 𝑀 such that 𝑉𝑖 = [𝜓𝑖(𝑥) > 0]. Let 𝜃𝑗(𝑦) be an
explicitly open 𝜑∗-formula over𝑀 such that𝑊𝑗 = [𝜃𝑗(𝑦) > 0]. Note that properties (1) and (2) of
the lemma hold. For the rest of the properties, we need to define the appropriate 𝑐𝑖 , 𝑑𝑗 , and 𝜂 > 0.
For each 1 ⩽ 𝑖 ⩽ 𝑚, let 𝑝𝑖 be a fixed type in 𝐶𝑖 and, using Lemma 3.4, choose a finite tuple 𝑐𝑖

from𝑀 such that for all 𝑏 ∈ 𝑀𝑦 , 𝜁𝛿𝜑(𝑏, 𝑐𝑖) ≈𝛿 𝜑(𝑝𝑖, 𝑏). For each 1 ⩽ 𝑗 ⩽ 𝑛, let 𝑞𝑗 be a fixed type in
𝐷𝑗 , and let 𝑑𝑗 be chosen similarly (using Lemma 3.4 applied to 𝜑∗(𝑥, 𝑦) and 𝜁𝛿𝜑∗(𝑥, 𝑦̄)).
Next, let 𝜏 > 0 be small enough so that 𝜇(𝑉𝑖∖𝐶𝑖) < (𝛾 − 𝜏)𝜇(𝑉𝑖) for all 1 ⩽ 𝑖 ⩽ 𝑚, and

𝜈(𝑊𝑗∖𝐷𝑗) < (𝛾 − 𝜏)𝜈(𝑊𝑗) for all 1 ⩽ 𝑗 ⩽ 𝑛. Note also that, by (𝑖𝑖) above,

𝜇(

𝑚⋃
𝑖=1

𝑉𝑖) > 1 − 𝜀𝜇(𝑉1)[.4𝑖𝑛]𝑎𝑛𝑑𝜈(
𝑛⋃
𝑗=1

𝑊𝑗) > 1 − 𝜀𝜈(𝑊1).

Altogether, by countable additivity, we may choose some 𝜂 > 0 satisfying the following condi-
tions:

∗ 𝜇(𝜓𝑖(𝑥) ⩾ 𝜂) ⩾ (1 − 𝜏)𝜇(𝑉𝑖) for all 1 ⩽ 𝑖 ⩽ 𝑚,
∗ 𝜈(𝜃𝑗(𝑦) ⩾ 𝜂) ⩾ (1 − 𝜏)𝜈(𝑊𝑗) for all 1 ⩽ 𝑗 ⩽ 𝑛,
∗ 𝜇(

⋁𝑚
𝑖=1 𝜓𝑖(𝑥) ⩾ 𝜂) > 1 − 𝜀𝜇(𝜓1(𝑥) ⩾ 𝜂), and

∗ 𝜈(
⋁𝑛
𝑗=1 𝜃𝑗(𝑦) ⩾ 𝜂) > 1 − 𝜀𝜈(𝜃1(𝑦) ⩾ 𝜂).

In particular, we have properties (3) and (4) of the lemma. As for the remaining properties, we
show (5) and (7). The arguments for (6) and (8) are nearly identical.
For (5), fix 1 ⩽ 𝑖 ⩽ 𝑚 and 𝑏 ∈ 𝑀𝑦 , and define

𝑉′ = [𝜓𝑖(𝑥) ⩾ 𝜂 ∧ 𝜑(𝑥, 𝑏) ≈3𝛿 𝜁
𝛿
𝜑(𝑏, 𝑐𝑖)].

We want to show 𝜇(𝑉′) > (1 − 𝛾)𝜇(𝑉𝑖). Note that if 𝑝 ∈ 𝐶𝑖 , then 𝑑(𝑝, 𝑝𝑖) ⩽ 2𝛿 by (𝑖), and so,

𝜑(𝑝, 𝑏) ≈2𝛿 𝜑(𝑝𝑖, 𝑏) ≈𝛿 𝜁
𝛿
𝜑(𝑏, 𝑐𝑖).

Thus, we have [𝜓𝑖(𝑥) ⩾ 𝜂]∖𝑉′ ⊆ 𝑉𝑖∖𝐶𝑖 . Therefore,

𝜇([𝜓𝑖(𝑥) ⩾ 𝜂]∖𝑉
′) ⩽ 𝜇(𝑉𝑖∖𝐶𝑖) < (𝛾 − 𝜏)𝜇(𝑉𝑖) ⩽

𝛾 − 𝜏

1 − 𝜏
𝜇(𝜓𝑖(𝑥) ⩾ 𝜂) =

(
1 −
1 − 𝛾

1 − 𝜏

)
𝜇(𝜓𝑖(𝑥) ⩾ 𝜂).

So,

𝜇(𝑉′) >
1 − 𝛾

1 − 𝜏
𝜇(𝜓𝑖(𝑥) ⩾ 𝜂) ⩾ (1 − 𝛾)𝜇(𝑉𝑖),

as desired.
Finally, for (7), fix (𝑖, 𝑗) ∈ [𝑚] × [𝑛] and set 𝑟 = 𝜁𝛿𝜑(𝑞𝑗, 𝑐𝑖). Define

𝑊′ =
[
𝜃𝑗(𝑦) ⩾ 𝜂 ∧ 𝜁

𝛿
𝜑(𝑦, 𝑐𝑖) ≈2𝛿 𝑟

]
.
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20 of 36 CHAVARRIA et al.

Wewant to show 𝜈(𝑊′) > (1 − 𝛾)𝜈(𝑊𝑗). If 𝑞 ∈ 𝐷𝑗 , then 𝑑(𝑞, 𝑞𝑗) ⩽ 2𝛿 by (𝑖), and so, 𝜁𝛿𝜑(𝑞, 𝑐𝑖) ≈2𝛿 𝑟
by Proposition 3.7. Thus, we have [𝜃𝑗(𝑦) ⩾ 𝜂]∖𝑊′ ⊆ 𝑊𝑗∖𝐷𝑗 . By choice of 𝜂 and similar steps as
above, it follows that 𝜈(𝑊′) > (1 − 𝛾)𝜈(𝑊𝑗). □

In order to derive a statement about subsets of𝑀 (rather than 𝑆𝜑(𝑀)) from the previous lemma,
we now assume that 𝑀 is 𝜔-saturated. In this case, any Keisler measure 𝜇 on 𝑆𝜑(𝑀) induces
a well-defined finitely additive probability measure on the Boolean algebra generated by explicit
𝜑-zerosets in𝑀𝑥 (see Definition 2.9).We now restate and prove TheoremC from the introduction.

Theorem 4.6. Suppose that𝑀 is 𝜔-saturated. Assume that 𝜑(𝑥, 𝑦) is 𝛿-stable, and let 𝜇 and 𝜈 be
Keisler measures on 𝑆𝜑(𝑀) and 𝑆𝜑∗(𝑀), respectively. Fix some 𝜀 > 0. Then there are 𝑚, 𝑛 ⩾ 1 such
that for any 𝛾 ∈ (0, 1), there are partitions 𝑀𝑥 = 𝐴0 ∪ 𝐴1 ∪ … ∪ 𝐴𝑚 and 𝑀𝑦 = 𝐵0 ∪ 𝐵1 ∪ … ∪ 𝐵𝑛
satisfying the following properties.

∗ 𝐴1, … ,𝐴𝑚 are explicit 𝜑-zerosets, and 𝐵1, … , 𝐵𝑛 are explicit 𝜑∗-zerosets.
∗ If (𝑖, 𝑗) ∈ [𝑚] × [𝑛], then (𝐴𝑖, 𝐵𝑗) is (5𝛿; 𝛾)-homogeneous for 𝜇 and 𝜈.
∗ 𝜇(𝐴0) ⩽ 𝜀𝜇(𝐴1) and 𝜈(𝐵0) ⩽ 𝜀𝜈(𝐵1).

Proof. Apply Lemma 4.4. Let 𝐴𝑖 be defined by 𝜓𝑖(𝑥) ⩾ 𝜂, and 𝐵𝑗 be defined by 𝜃𝑗(𝑦) ⩾ 𝜂. Then,
𝐴1,… ,𝐴𝑚 are pairwise disjoint explicit 𝜑-zerosets, and 𝐵1, … , 𝐵𝑛 are pairwise disjoint explicit 𝜑∗-
zerosets. Let𝐴0 = 𝑀𝑥∖

⋃𝑚
𝑖=1 𝐴𝑖 and𝐵0 = 𝑀

𝑦∖
⋃𝑛
𝑗=1 𝐵𝑗 . Then 𝜇(𝐴0) ⩽ 𝜀𝜇(𝐴1) and 𝜈(𝐵0) ⩽ 𝜀𝜈(𝐵1)

by parts (3) and (4) of the lemma. As outlined in Remark 4.5, it follows from parts (5)–(8) and the
triangle inequality that for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], the pair (𝐴𝑖, 𝐵𝑗) is (5𝛿; 𝛾)-homogeneous for 𝜇
and 𝜈. □

Remark 4.7. In the previous theorem, 𝐴0 and 𝐵0 serve as small “exceptional” sets, and are com-
plements of zerosets. These sets can be removed at the cost of weaker control of the error in some
of the homogeneous pairs. More specifically, in the context of the theorem, let 𝐴′

1
= 𝐴0 ∪ 𝐴1.

Then for any 1 ⩽ 𝑗 ⩽ 𝑛, since (𝐴1, 𝐵𝑗) is (5𝛿; 𝛾)-homogeneous and 𝜇(𝐴0) ⩽ 𝜀𝜇(𝐴1), it follows that
(𝐴′
1
, 𝐵𝑗) is (5𝛿; 𝛾, 𝜀 + 𝛾)-homogeneous. Similarly, if 𝐵′1 = 𝐵0 ∪ 𝐵1, then (𝐴𝑖, 𝐵

′
1
) is (5𝛿; 𝛾, 𝜀 + 𝛾)-

homogeneous for all 1 ⩽ 𝑖 ⩽ 𝑚. Moreover, (𝐴′
1
, 𝐵′
1
) is (5𝛿; 𝜀 + 𝛾)-homogeneous. On the other

hand, 𝐴′
1
and 𝐵′

1
are no longer zerosets. In the continuous setting, we expect that is not generally

possible to obtain partitions into zerosets with no exceptional sets. However, one could replace
𝐴0 with an explicit 𝜑-zeroset 𝐴′0, which contains 𝐴0 and satisfies 𝜇(𝐴

′
0
) ⩽ (1 + 𝛾)𝜇(𝐴0). After a

similar adjustment to 𝐵0, this would result in coverings (rather than partitions) of𝑀𝑥 and𝑀𝑦 by
finitely many zerosets such that all pairs are homogeneous (with parameters as above), and there
is arbitrarily small overlap between the pieces in each partition.

Remark 4.8. By applying Theorem 4.6 in the setting that 𝑇 is a classical discrete theory, and 𝜑(𝑥, 𝑦)
is a stable formula, we recover the model-theoretic version of theMalliaris–Shelah stable regular-
ity lemma [19], proved byMalliaris and Pillay in [18]. However, we have introduced a finer control
on the error in the homogeneous pairs by means of the parameter 𝛾, which is allowed to depend
on the size of the partition. This will be reflected in our main result below for stable functions on
finite sets (Theorem 5.1), where the degree of homogeneity is controlled by an arbitrarily chosen
“decay function.”
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CONTINUOUS STABLE REGULARITY 21 of 36

5 STABLE REGULARITY FOR FUNCTIONS ON FINITE SETS

Wenow restate TheoremA, which is themain finite result. The proof is given in Section 5.2 below.

Theorem5.1. Let𝑉 and𝑊 be finite sets, and suppose𝑓∶ 𝑉 ×𝑊 → [0, 1] is a (𝑘, 𝛿)-stable function.
Then for any 𝜀 > 0 and any function 𝜎∶ ℕ → (0, 1), there are partitions𝑉 = 𝑉0 ∪ 𝑉1 ∪ … ∪ 𝑉𝑚 and
𝑊 = 𝑊0 ∪𝑊1 ∪ … ∪𝑊𝑛, with𝑚, 𝑛 ⩽ 𝑂𝑘,𝛿,𝜀,𝜎(1), satisfying the following properties.

∗ For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], the pair (𝑉𝑖,𝑊𝑗) is (5𝛿 + 𝜀; 𝜎(𝑚𝑛))-homogeneous.
∗ |𝑉0| ⩽ 𝜀|𝑉1| and |𝑊0| ⩽ 𝜀|𝑊1|.
Before proving this result, we make a few remarks. First, using the same calculations as in

Remark 4.7, one can remove the exceptional sets 𝑉0 and𝑊0 at the cost of weaker error in some
of the homogeneous pairs. For example, by choosing 𝜎(𝑛) = 1

2
𝜀 in the previous result, we obtain

the following simpler (but weaker) version of Theorem 5.1 without the decay function 𝜎 or the
exceptional sets.

Theorem 5.2. Let 𝑉 and𝑊 be finite sets and suppose 𝑓∶ 𝑉 ×𝑊 → [0, 1] is a (𝑘, 𝛿)-stable func-
tion. Then for any 𝜀 > 0, there are partitions𝑉 = 𝑉1 ∪ … ∪ 𝑉𝑚 and𝑊 = 𝑊1 ∪ … ∪𝑊𝑛, with𝑚, 𝑛 ⩽
𝑂𝑘,𝛿,𝜀(1), such that (𝑉𝑖,𝑊𝑗) is (5𝛿 + 𝜀; 𝜀)-homogeneous for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛].

The proof of Theorem 5.1 will also provide strong definability conditions on the sets𝑉𝑖 and𝑊𝑗 .
In order to give a precise formulation, we first define some terminology. Given a rational number
𝛼 = 𝑟

𝑠
, with 𝑟, 𝑠 ∈ ℤ, 𝑠 > 0, and gcd(𝑟, 𝑠) = 1, define the complexity of 𝛼 to be max{|𝑟|, 𝑠}.† The

complexity of a rational interval is the maximum complexity of its endpoints.
Now let 𝑓∶ 𝑉 ×𝑊 → [0, 1] be a function and fix an integer 𝑁 ⩾ 1. Then, we say that a subset

𝑉′ ⊆ 𝑉 is 𝑓-definable of complexity 𝑁 if

𝑉′ =

𝑚⋃
𝑖=1

𝑛𝑖⋂
𝑗=1

{𝑎 ∈ 𝑉 ∶ 𝑓(𝑎, 𝑏𝑖,𝑗) ∈ 𝐷𝑖,𝑗}

for some 𝑏𝑖,𝑗 ∈ 𝑊, some𝑚, 𝑛1, … , 𝑛𝑚 ⩽ 𝑁, and some closed rational intervals𝐷𝑖,𝑗 of complexity at
most𝑁. We analogously define 𝑓-definable subsets of𝑊. Finally, we define amin-max 𝑓-function
on 𝑉 of complexity 𝑁 to be a function of the form

min
1⩽𝑖⩽𝑚

max
1⩽𝑗⩽𝑛𝑖

𝑓(𝑥, 𝑦𝑖,𝑗)

for some𝑚, 𝑛1, … , 𝑛𝑚 ⩽ 𝑁. Min-max 𝑓-functions on𝑊 are defined analogously.

Remark 5.3. With the above terminology in hand, we can now elaborate on Theorem 5.1. In
particular, in the conclusion of the theorem, we also have the following.

(1) 𝑉1,… , 𝑉𝑚,𝑊1,… ,𝑊𝑛 are 𝑓-definable of complexity 𝑂𝑘,𝛿,𝜀,𝜎(1).
(2) There are min-max 𝑓-functions 𝜁1(𝑦, 𝑥̄) on𝑊 and 𝜁2(𝑥, 𝑦̄) on 𝑉 of complexity 𝑂𝑘,𝛿,𝜀,𝜎(1), and

tuples 𝑐1, … , 𝑐𝑛 ∈ 𝑉|𝑥̄| and 𝑑1, … , 𝑑𝑚 ∈ 𝑊|𝑦̄| satisfying the following properties.

† This is the standard number-theoretic “height” function. However, no special properties of this function will be used
other than that it defines a map from ℚ to ℕ.
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22 of 36 CHAVARRIA et al.

∗ If 1 ⩽ 𝑖 ⩽ 𝑚, then for all 𝑏 ∈ 𝑊𝑠,

|{𝑎 ∈ 𝑉𝑖 ∶ 𝑓(𝑎, 𝑏) ≈3𝛿+ 1
2
𝜀
𝜁1(𝑏, 𝑐𝑖)}| > (1 − 𝜎(𝑚𝑛))|𝑉𝑖|.

∗ If 1 ⩽ 𝑗 ⩽ 𝑛, then for all 𝑎 ∈ 𝑉𝑠,

|{𝑏 ∈ 𝑊𝑗 ∶ 𝑓(𝑎, 𝑏) ≈3𝛿+ 1
2
𝜀
𝜁2(𝑎, 𝑑𝑗)}| > (1 − 𝜎(𝑚𝑛))|𝑊𝑗|.

∗ For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], there are rational numbers 𝑟𝑖,𝑗, 𝑠𝑖,𝑗 ∈ [0, 1] of complexity𝑂𝑘,𝛿,𝜀,𝜎(1)
such that, if we define

𝑊′𝑖,𝑗 ∶= {𝑏 ∈ 𝑊𝑗 ∶ 𝜁1(𝑏, 𝑐𝑖) ≈2𝛿+ 1
2
𝜀
𝑟𝑖,𝑗} and

𝑉′𝑖,𝑗 ∶= {𝑎 ∈ 𝑉𝑖 ∶ 𝜁2(𝑎, 𝑑𝑗) ≈2𝛿+ 1
2
𝜀
𝑠𝑖,𝑗},

then |𝑊′
𝑖,𝑗
| > (1 − 𝜎(𝑚𝑛))|𝑊𝑗| and |𝑉′𝑖,𝑗| > (1 − 𝜎(𝑚𝑛))|𝑉𝑖|.

In particular, it follows from the above properties that for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], (𝑉𝑖,𝑊𝑗) is
(5𝛿 + 𝜀, 𝜎(𝑚𝑛))-homogeneous, witnessed by 𝑟𝑖,𝑗 , 𝑠𝑖,𝑗 ,𝑊′𝑖,𝑗 , and 𝑉

′
𝑖,𝑗
.

See Remark 5.8 for a summary of how the proof yields these extra details.

The decay function 𝜎 in Theorem 5.1 leads to strong control of the error in the homogeneous
pairs. This will be used to match our work to the setting of analytic regularity for functions (see
Section 6.3). Another application of the decay functionwill appear in Section 6.1, wherewemodify
Theorem 5.1 so that it yields equipartitions (at the cost of the definability described in Remark 5.3).
We now start toward the proof of Theorem 5.1. Despite the similarity between this result and

Theorem 4.6, the proof will not be as straightforward as corresponding results in discrete logic.
There are essentially three reasons for this. The first is that the zerosets in Theorem 4.6 are not
necessarily definable (in the strict sense of continuous logic), and so, we need to argue directly
with the underlying formulas used to construct these zerosets. The second complication has to
do with the small discrepancy that exists between an abstract ultralimit of normalized counting
measures on finite sets when compared to the pseudofinite normalized average value functional
(see Lemma 5.4 below). Finally, rather than working directly with homogeneous pairs (which
involve an “if-then” statement with measures), it will be much cleaner to instead transfer the
individual underlying components that control homogeneity, as given by Lemma 4.4.

5.1 Approximating the counting measure

Let Defℚ(ℝ, <) be the set of 𝐷 ⊆ ℝ that are first-order definable over ℚ in (ℝ, <).
Fix a countable continuous language. Let be a countable set of (finitary)-formulas, which

is closed under the connectives𝛼𝐷 for𝐷 ∈ Defℚ(ℝ, <) (seeDefinition 2.7).We define an expanded
language + consisting of  together with the following new symbols.

(i) For each 𝜓(𝑥̄) ∈  , add a new [0,1]-valued predicate symbol 𝟏+
𝜓
(𝑥̄).

(ii) For each rational 𝑟 ∈ [0, 1] and 𝜃(𝑥, 𝑦̄) ∈  , with 𝑥 a singleton, add new [0,1]-valued predicate
symbols 𝑃𝜃,𝑟(𝑦̄) and 𝑄𝜃,𝑟(𝑦̄).

Each new predicate is given a trivial modulus of uniform continuity.
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CONTINUOUS STABLE REGULARITY 23 of 36

Let 𝑀 be a finite -structure with the discrete metric. We expand 𝑀 to an +-structure 𝑀+
as follows. For each 𝜓(𝑥̄) ∈  , interpret 𝟏+

𝜓
(𝑥̄) in𝑀+ as the indicator function of 𝜓𝑀(𝑥̄) > 0. For

each rational 𝑟 ∈ [0, 1] and 𝜃(𝑥, 𝑦̄) ∈  , define
𝑃𝑀

+

𝜃,𝑟
∶ 𝑀𝑦̄ → [0, 1] so that 𝑏̄ ↦ |𝜃𝑀(𝑥, 𝑏̄) ⩽ 𝑟|∕|𝑀𝑥|, and

𝑄𝑀
+

𝜃,𝑟
∶ 𝑀𝑦̄ → [0, 1] so that 𝑏̄ ↦ |𝜃𝑀(𝑥, 𝑏̄) ⩾ 𝑟|∕|𝑀𝑥|.

Now let (𝑀𝑠)𝑠∈ℕ be a collection of finite -structures with discrete metrics. Fix an ultrafilter on ℕ and let 𝑀+ =
∏

 𝑀+𝑠 . Let 𝑀 =
∏

 𝑀𝑠 be the reduct of 𝑀+ to . Note that  and +
are both countable, and so,𝑀 and𝑀+ are both 𝜔1-saturated by Fact 2.17. We identify𝑀 with its
underlying universe, and use𝑀+ when emphasis on the expanded language is necessary.
Given a sort 𝑥, let 𝜇𝑠𝑥 and 𝔣

𝑠
𝑥 denote the normalized counting measure and average value func-

tional on (𝑀+𝑠 )
𝑥. Let 𝔣𝑥 = lim 𝔣𝑠𝑥 be the pseudofinite average value functional, and let 𝜇𝑥 denote

the Keisler measure induced by 𝔣𝑥. When there is no possibility of confusion, we will omit the
subscript 𝑥 in the previous notation.
Given an +-formula 𝜓(𝑥, 𝑏̄) over𝑀 and a set 𝐵 ⊆ ℝ, define

𝜇∗(𝜓(𝑥, 𝑏̄) ∈ 𝐵) ∶= lim 𝜇𝑠(𝜓𝑀𝑠 (𝑥, 𝑏̄𝑠) ∈ 𝐵),

where (𝑏̄𝑠)𝑠⩾0 is a choice of representative for 𝑏̄. Note that this is well defined because the metric
on𝑀 is discrete.

Lemma 5.4. Let 𝜓(𝑥, 𝑏̄) be an -formula over𝑀, with 𝜓(𝑥, 𝑦̄) ∈  .
(a) If𝑈 ∈ Defℚ(ℝ, <) is open, then 𝜇(𝜓(𝑥, 𝑏̄) ∈ 𝑈) ⩽ 𝜇∗(𝜓(𝑥, 𝑏̄) ∈ 𝑈).
(b) If 𝐶 ∈ Defℚ(ℝ, <) is closed, then 𝜇∗(𝜓(𝑥, 𝑏̄) ∈ 𝐶) ⩽ 𝜇(𝜓(𝑥, 𝑏̄) ∈ 𝐶).

Proof. Note that if𝐶 ⊆ ℝ is closed, then 𝜇(𝜓(𝑥, 𝑏̄) ∈ 𝐶) = 1 − 𝜇(𝜓(𝑥, 𝑏̄) ∈ ℝ∖𝐶) (and similarly for
𝜇∗). Moreover, if 𝑈 ⊆ ℝ is open, then 𝜓(𝑥, 𝑦̄) ∈ 𝑈 is logically equivalent to 𝛼𝑈(𝜓(𝑥, 𝑦̄)) > 0. So,
in light of the assumptions on  , it suffices to just prove part (𝑎), and only consider the case of
𝜓(𝑥, 𝑏̄) > 0 (i.e., 𝑈 = (0,∞)).
The predicate 𝟏+

𝜓
(𝑥, 𝑏̄) induces a continuous {0, 1}-valued function on 𝑆𝑥(𝑀+). Let𝑋 ⊆ 𝑆𝑥(𝑀+)

denote the support of this function. Then

𝜇(𝑋) = ∫𝑆𝑥(𝑀+) 𝟏
+
𝜓
(𝑥, 𝑏̄) 𝑑𝜇 = 𝔣(𝟏+

𝜓
(𝑥, 𝑏̄)) = lim 𝔣𝑠(𝟏+

𝜓
(𝑥, 𝑏̄𝑠))

= lim 𝜇𝑠(𝜓𝑀𝑠(𝑥, 𝑏̄𝑠) > 0) = 𝜇∗(𝜓(𝑥, 𝑏̄) > 0).

So, to prove the result, it suffices to show [𝜓(𝑥, 𝑏̄) > 0] ⊆ 𝑋.
Fix 𝑝 ∈ [𝜓(𝑥, 𝑏̄) > 0], and set 𝑟 = 𝜓(𝑝, 𝑏̄). Suppose 𝑎 ∈ 𝑀𝑥 is such that |𝜓(𝑎, 𝑏̄) − 𝑟| ⩽ 𝑟

2
. Since

𝜓(𝑎, 𝑏̄) = lim 𝜓(𝑎𝑠, 𝑏̄𝑠), it follows that for -many 𝑠 ⩾ 0, we have |𝜓(𝑎𝑠, 𝑏̄𝑠) − 𝑟| < 𝑟. So, for -
many 𝑠 ⩾ 0, we have 𝜓(𝑎𝑠, 𝑏̄𝑠) > 0, that is, 𝟏+

𝜓
(𝑎𝑠, 𝑏̄𝑠) = 1. Therefore, 𝟏+

𝜓
(𝑎, 𝑏̄) = lim 𝟏+𝜓(𝑎𝑠, 𝑏̄𝑠) =

1. Altogether, for any 𝑎 ∈ 𝑀𝑥 if |𝜓(𝑎, 𝑏̄) − 𝑟| ⩽ 𝑟

2
, then 𝟏+

𝜓
(𝑎, 𝑏̄) = 1.
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24 of 36 CHAVARRIA et al.

Now, since𝑀+ is𝜔-saturated, it follows (e.g., via [3, Proposition 7.14]) that for any 𝑞 ∈ 𝑆𝑥(𝑀+),
if |𝜓(𝑞, 𝑏̄) − 𝑟| ⩽ 𝑟

2
, then 𝟏+

𝜓
(𝑞, 𝑏̄) = 1. Since 𝜓(𝑝, 𝑏̄) = 𝑟, we therefore have 𝟏𝜓(𝑝, 𝑏̄) = 1, that is,

𝑝 ∈ 𝑋, as desired. □

Note that the previous lemma did not involve the extra predicates introduced above in (𝑖𝑖).
These will be used in the next subsection.

5.2 Proof of Theorem 5.1

Suppose that the theorem fails for some fixed 𝑘 ⩾ 1, 𝛿, 𝜀 > 0, and𝜎∶ ℕ → (0, 1). Then, for all 𝑠 ⩾ 0,
we have a (𝑘, 𝛿)-stable function 𝑓𝑠 ∶ 𝑉𝑠 ×𝑊𝑠 → [0, 1] that admits no partition as in the statement
of Theorem 5.1, with𝑚, 𝑛 ⩽ 𝑠.
Let  be a continuous language with two sorts 𝑉 and 𝑊, along with a [0,1]-valued binary

predicate symbol 𝑓 on 𝑉 ×𝑊 with trivial modulus of uniform continuity. For each 𝑠 ⩾ 0, define
an -structure 𝑀𝑠 such that 𝑉(𝑀𝑠) = 𝑉𝑠, 𝑊(𝑀𝑠) = 𝑊𝑠, and 𝑓𝑀𝑠 = 𝑓𝑠. We equip 𝑀𝑠 with the
discrete metric.
Let  be a countable set of -formulas which contains 𝑓(𝑥, 𝑦) and is closed under variable

substitution as well as the connectives max, min, |𝜓 − 𝜃|, 𝜓 .− 𝑟 and 𝑟 .− 𝜓 for rational 𝑟, and 𝛼𝐷
for 𝐷 ∈ Defℚ(ℝ, <) (see Definition 2.7). Let 𝑀+𝑠 be the expansion of 𝑀𝑠 to an +-structure as
described in Section 5.1. Fix a nonprincipal ultrafilter  on ℕ, and let 𝑀+ =

∏
 𝑀+𝑠 . Let 𝑀 =∏

 𝑀𝑠 be the reduct of𝑀+ to , and let 𝜇𝑠𝑥, 𝜇𝑥, and 𝜇∗𝑥 be as defined in Section 5.1. We will only
use the case where 𝑥 is a singleton (in either 𝑉 or𝑊), and so, we will just write 𝜇, 𝜇𝑠, and 𝜇∗ (the
relevant sort 𝑉 or𝑊 will be clear from context). Set 𝑇 = Th(𝑀).

Lemma 5.5. 𝑓(𝑥, 𝑦) is 𝛿′-stable in 𝑇 for any 𝛿′ > 𝛿.

Proof. Set 𝑥̄ = (𝑥1, … , 𝑥𝑘) and 𝑦̄ = (𝑦1, … , 𝑦𝑘). Fix 𝛿′ > 𝛿 and define the formula

𝜃(𝑥̄, 𝑦̄) ∶= max𝑖<𝑗(𝛿
′ .− |𝑓(𝑥𝑖, 𝑦𝑗) − 𝑓(𝑥𝑗, 𝑦𝑖)|).

Then, for any 𝑠 ⩾ 0 and 𝑎̄ ∈ 𝑉𝑘𝑠 , 𝑏̄ ∈ 𝑊
𝑘
𝑠 , we have 𝜃(𝑎̄, 𝑏̄) > 𝛿

′ − 𝛿 > 0. Therefore, inf𝑀𝑥̄,𝑦̄ 𝜃(𝑥̄, 𝑦̄) ⩾
𝛿′ − 𝛿 > 0. So, 𝑓(𝑥, 𝑦) is 𝛿′-stable in 𝑇 (via Fact 2.17). □

We now view 𝜇 as determining local Keisler measures on 𝑆𝑓(𝑀) and on 𝑆𝑓∗(𝑀) (specifically,
we will work with the pushforward of 𝜇 to these local type spaces, while still using the symbol 𝜇).
In the next lemma, we transfer the properties of Lemma 4.4 to obtain suitable statements in the
finite setting.

Lemma 5.6. Let 𝜓(𝑥, 𝑏̄) be an explicit 𝑓-formula over 𝑀, and let 𝜃(𝑦, 𝑎̄) and 𝜁(𝑦, 𝑐) be explicit
𝑓∗-formulas over𝑀. Fix 𝛿′, 𝛾 ∈ (0, 1) and 𝜂 > 𝜆 > 0. Set 𝜌 = 𝜂 − 𝜆. For 𝑠 ∈ ℕ, define

𝑉𝑠,∗ = {𝑎 ∈ 𝑉𝑠 ∶ 𝜓(𝑎, 𝑏̄
𝑠) ⩾ 𝜆}[.4𝑖𝑛]𝑎𝑛𝑑𝑊𝑠,∗ = {𝑏 ∈ 𝑊𝑠 ∶ 𝜃(𝑏, 𝑎̄𝑠) ⩾ 𝜆}.

(a) Suppose that for all 𝑏 ∈ 𝑀𝑦 ,

𝜇
(
𝜓(𝑥, 𝑏̄) ⩾ 𝜂 ∧ 𝑓(𝑥, 𝑏) ≈𝛿′ 𝜁(𝑏, 𝑐)

)
> (1 − 𝛾)𝜇(𝜓(𝑥, 𝑏̄) > 0).
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CONTINUOUS STABLE REGULARITY 25 of 36

Then, for -many 𝑠 ∈ ℕ, we have that for all 𝑏 ∈ 𝑊𝑠,

|{𝑎 ∈ 𝑉𝑠,∗ ∶ 𝑓(𝑎, 𝑏) ≈𝛿′+𝜌 𝜁(𝑏, 𝑐𝑠)}| > (1 − 2𝛾)|𝑉𝑠,∗|.
(b) Suppose that there is some 𝑟 ∈ [0, 1] such that

𝜇(𝜃(𝑦, 𝑎̄) ⩾ 𝜂 ∧ 𝜁(𝑦, 𝑐) ≈𝛿′ 𝑟) > (1 − 𝛾)𝜇(𝜃(𝑦, 𝑎̄) > 0).

Then, for -many 𝑠 ∈ ℕ, we have

|{𝑏 ∈ 𝑊𝑠,∗ ∶ 𝜁(𝑏, 𝑐𝑠) ≈𝛿′+𝜌 𝑟}| > (1 − 𝛾)|𝑊𝑠,∗|.
Proof. Without loss of generality, we may assume that 𝛿′, 𝜂, and 𝜆 are rational.
Part (𝑎). First, note that our assumptions imply 𝜇(𝜓(𝑥, 𝑏̄) ⩾ 𝜂) > 0. So, by Lemma 5.4, we

have 𝜇∗(𝜓(𝑥, 𝑏̄) ⩾ 𝜆) > 0. Let 𝜏 = 1

2
𝜇∗(𝜓(𝑥, 𝑏̄) ⩾ 𝜆). Then, there is some 𝑋1 ∈  such that

𝜇𝑠(𝜓(𝑥, 𝑏̄𝑠) ⩾ 𝜆) > 𝜏 for all 𝑠 ∈ 𝑋1.
Now define the -formula

𝜉(𝑥, 𝑦, 𝑦̄, 𝑧̄) ∶= max{𝜂
.
− 𝜓(𝑥, 𝑦̄), |𝑓(𝑥, 𝑦) − 𝜁(𝑦, 𝑧̄)| .− 𝛿′},

which is in  . By assumption, for all 𝑏 ∈ 𝑀𝑦 , we have
𝜇(𝜉(𝑥, 𝑏, 𝑏̄, 𝑐) = 0) > (1 − 𝛾)𝜇(𝜓(𝑥, 𝑏̄) > 0).

By Lemma 5.4, for all 𝑏 ∈ 𝑀𝑦 , we have

𝜇∗(𝜉(𝑥, 𝑏, 𝑏̄, 𝑐) ⩽ 𝜌) > (1 − 𝛾)𝜇∗(𝜓(𝑥, 𝑏̄) ⩾ 𝜆).

So, if we define the +-formula
𝜋(𝑦, 𝑦̄, 𝑧̄) ∶= (1 − 𝛾)𝑄𝜓,𝜆(𝑦̄)

.
− 𝑃𝜉,𝜌(𝑦, 𝑦̄, 𝑧̄),

then sup𝑀+𝑦 𝜋(𝑦, 𝑏̄, 𝑐) = 0. By Łoś’s theorem, there is some 𝑋2 ∈  such that if 𝑠 ∈ 𝑋2, then

sup
𝑀+𝑠
𝑦 𝜋(𝑦, 𝑏̄𝑠, 𝑐𝑠) ⩽ 𝛾𝜏. Therefore, if 𝑠 ∈ 𝑋1 ∩ 𝑋2, then, for all 𝑏 ∈ 𝑊𝑠,

𝜇𝑠(𝜉(𝑥, 𝑏, 𝑏̄𝑠, 𝑐𝑠) ⩽ 𝜌) ⩾ (1 − 𝛾)𝜇𝑠(𝜓(𝑥, 𝑏̄𝑠) ⩾ 𝜆) − 𝛾𝜏 > (1 − 2𝛾)𝜇𝑠(𝜓(𝑥, 𝑏̄𝑠) ⩾ 𝜆),

and so, |{𝑎 ∈ 𝑉𝑠,∗ ∶ 𝑓(𝑎, 𝑏) ≈𝛿′+𝜌 𝜁(𝑏, 𝑐𝑠)}| > (1 − 2𝛾)|𝑉𝑠,∗|.
Part (𝑏). Define the -formula

𝜒(𝑦, 𝑥̄, 𝑧̄) ∶= max{𝜂
.
− 𝜃(𝑦, 𝑥̄), |𝜁(𝑦, 𝑧̄) − 𝑟| .− 𝛿′}.

Then, 𝜇(𝜒(𝑦, 𝑎̄, 𝑐) = 0) > (1 − 𝛾)𝜇(𝜃(𝑦, 𝑎̄) > 0) by assumption. By Lemma 5.4,

𝜇∗(𝜒(𝑦, 𝑎̄, 𝑐) ⩽ 𝜌) ⩾ 𝜇(𝜒(𝑦, 𝑎̄, 𝑐) = 0) > (1 − 𝛾)𝜇∗(𝜃(𝑦, 𝑎̄) ⩾ 𝜆).

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12822 by O

hio State U
niversity O

hio Sta, W
iley O

nline Library on [21/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



26 of 36 CHAVARRIA et al.

So, for -many 𝑠 ∈ ℕ, we have

𝜇𝑠(𝜒(𝑦, 𝑎̄𝑠, 𝑐𝑠) ⩽ 𝜌) > (1 − 𝛾)𝜇𝑠(𝜃(𝑦, 𝑎̄𝑠) ⩾ 𝜆),

that is, |{𝑏 ∈ 𝑊𝑠,∗ ∶ 𝜁(𝑏, 𝑐𝑠) ≈𝛿′+𝜌 𝑟}| > (1 − 𝛾)|𝑊𝑠,∗|. □

Choose some 𝛿′ ∈ (𝛿, 𝛿 + 1
6
𝜀). By Lemma 5.5, 𝑓(𝑥, 𝑦) is (𝑘, 𝛿′)-stable in 𝑇. We apply Lemma 4.4

(with our fixed 𝜀 > 0) to obtain some 𝑚, 𝑛 ⩾ 1, and then choose 𝛾 ∶= 1

2
𝜎(𝑚𝑛) in the conclu-

sion. For the reader’s convenience, we reiterate the full statement. Set 𝜁1(𝑦, 𝑥̄) ∶= 𝜁𝛿
′

𝑓
(𝑦, 𝑥̄) and

𝜁2(𝑥, 𝑦̄) ∶= 𝜁
𝛿′

𝑓∗
(𝑥, 𝑦̄). Then there are:

∗ explicit 𝑓-formulas 𝜓1(𝑥, 𝑏̄1), … , 𝜓𝑚(𝑥, 𝑏̄𝑚) over𝑀,
∗ explicit 𝑓∗-formulas 𝜃1(𝑦, 𝑎̄1), … , 𝜃𝑛(𝑦, 𝑎̄𝑛) over𝑀,
∗ finite tuples 𝑐1, … , 𝑐𝑚, 𝑑1, … , 𝑑𝑛 from𝑀, and
∗ some 𝜂 > 0,

satisfying the following properties.

(1) [𝜓1(𝑥, 𝑏̄1) > 0], … , [𝜓𝑚(𝑥, 𝑏̄𝑚) > 0] are pairwise disjoint.
(2) [𝜃1(𝑦, 𝑎̄1) > 0], … , [𝜃𝑛(𝑦, 𝑎̄𝑛) > 0] are pairwise disjoint.
(3) 𝜇(

⋁𝑚
𝑖=1 𝜓𝑖(𝑥, 𝑏̄𝑖) ⩾ 𝜂) > 1 − 𝜀𝜇(𝜓1(𝑥, 𝑏̄1) ⩾ 𝜂).

(4) 𝜇(
⋁𝑛
𝑗=1 𝜃𝑗(𝑦, 𝑎̄𝑗) ⩾ 𝜂) > 1 − 𝜀𝜇(𝜃1(𝑦, 𝑎̄1) ⩾ 𝜂).

(5) If 1 ⩽ 𝑖 ⩽ 𝑚, then for all 𝑏 ∈ 𝑀𝑦 ,

𝜇
(
𝜓𝑖(𝑥, 𝑏̄𝑖) ⩾ 𝜂 ∧ 𝑓(𝑥, 𝑏) ≈3𝛿′ 𝜁1(𝑏, 𝑐𝑖)

)
> (1 − 𝛾)𝜇(𝜓𝑖(𝑥, 𝑏̄𝑖) > 0).

(6) If 1 ⩽ 𝑗 ⩽ 𝑛, then for all 𝑎 ∈ 𝑀𝑥,

𝜇
(
𝜃𝑗(𝑦, 𝑐𝑗) ⩾ 𝜂 ∧ 𝑓(𝑎, 𝑦) ≈3𝛿′ 𝜁2(𝑎, 𝑑𝑗)

)
> (1 − 𝛾)𝜇(𝜃𝑗(𝑦, 𝑐𝑗) > 0).

(7) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], there is some 𝑟𝑖,𝑗 ∈ [0, 1] such that

𝜇
(
𝜃𝑗(𝑦, 𝑐𝑗) ⩾ 𝜂 ∧ 𝜁1(𝑦, 𝑐𝑖) ≈2𝛿′ 𝑟𝑖,𝑗

)
> (1 − 𝛾)𝜇(𝜃𝑗(𝑦) > 0).

(8) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], there is some 𝑠𝑖,𝑗 ∈ [0, 1] such that

𝜇
(
𝜓𝑖(𝑥, 𝑏̄𝑖) ⩾ 𝜂 ∧ 𝜁2(𝑥, 𝑑𝑗) ≈2𝛿′ 𝑠𝑖,𝑗

)
> (1 − 𝛾)𝜇(𝜓𝑖(𝑥, 𝑏̄𝑖) > 0).

Note that properties (3)–(8) remain true if 𝜂 is replaced by something smaller. So, we may assume
𝜂 ⩽ 6𝛿 − 6𝛿′ + 𝜀 (the right side is positive by choice of 𝛿′). Let 𝑎̄ = (𝑎̄1, … , 𝑎̄𝑛) and 𝑏̄ = (𝑏̄1, … , 𝑏̄𝑚),
and define

𝜓(𝑥, 𝑏̄) = min
1⩽𝑖⩽𝑚

𝜓𝑖(𝑥, 𝑏̄𝑖)[.4𝑖𝑛]𝑎𝑛𝑑𝜃(𝑦, 𝑎̄) = min
1⩽𝑗⩽𝑛

𝜃𝑗(𝑦, 𝑎̄𝑗).

Given 𝑠 ⩾ 0, 1 ⩽ 𝑖 ⩽ 𝑚, and 1 ⩽ 𝑗 ⩽ 𝑛, set 𝑉𝑠,𝑖 = {𝑎 ∈ 𝑉𝑠 ∶ 𝜓𝑖(𝑎, 𝑏̄𝑠𝑖 ) ⩾
1

2
𝜂} and𝑊𝑠,𝑗 = {𝑏 ∈ 𝑊𝑠 ∶

𝜃𝑗(𝑏, 𝑎̄
𝑠
𝑗
) ⩾ 1

2
𝜂}.
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CONTINUOUS STABLE REGULARITY 27 of 36

Claim 5.7. The following properties hold for -many 𝑠 ∈ ℕ.

(a) 𝑉𝑠,1, … , 𝑉𝑠,𝑚 are pairwise disjoint and𝑊𝑠,1, … ,𝑊𝑠,𝑛 are pairwise disjoint.
(b) |⋃𝑚𝑖=1 𝑉𝑠,𝑖| > |𝑉𝑠| − 𝜀|𝑉𝑠,1| and |⋃𝑛𝑗=1 𝑊𝑠,𝑗| > |𝑊𝑠| − 𝜀|𝑊𝑠,1|.
(c) If 1 ⩽ 𝑖 ⩽ 𝑚, then for all 𝑏 ∈ 𝑊𝑠,

|{𝑎 ∈ 𝑉𝑠,𝑖 ∶ 𝑓(𝑎, 𝑏) ≈3𝛿+ 1
2
𝜀
𝜁1(𝑏, 𝑐

𝑠
𝑖
)}| > (1 − 𝜎(𝑚𝑛))|𝑉𝑠,𝑖|.

(d) If 1 ⩽ 𝑗 ⩽ 𝑛, then for all 𝑎 ∈ 𝑉𝑠,

|{𝑏 ∈ 𝑊𝑠,𝑗 ∶ 𝑓(𝑎, 𝑏) ≈3𝛿+ 1
2
𝜀
𝜁2(𝑎, 𝑑

𝑠
𝑗)}| > (1 − 𝜎(𝑚𝑛))|𝑊𝑠,𝑗|.

(e) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], |{𝑏 ∈ 𝑊𝑠,𝑗 ∶ 𝜁1(𝑏, 𝑐𝑠𝑖 ) ≈2𝛿+ 1
2
𝜀
𝑟𝑖,𝑗}| > (1 − 𝜎(𝑚𝑛))|𝑊𝑠,𝑗|.

(f) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], |{𝑎 ∈ 𝑉𝑠,𝑖 ∶ 𝜁2(𝑎, 𝑑𝑠𝑗) ≈2𝛿+ 1
2
𝜀
𝑠𝑖,𝑗}| > (1 − 𝜎(𝑚𝑛))|𝑉𝑠,𝑖|.

Proof. Since the metric on𝑀 is discrete, part (𝑎) follows easily from Łoś’s theorem and properties
(1) and (2) above. For part (𝑏), note that by (3) and Lemma 5.4, we have 𝜇∗(

⋁𝑚
𝑖=1 𝜓𝑖(𝑥, 𝑏̄𝑖) ⩾

1

2
𝜂) >

1 − 𝜀𝜇∗(𝜓1(𝑥, 𝑏̄𝑖) ⩾
1

2
𝜂), and so, |⋃𝑚𝑖=1 𝑉𝑠,𝑖| > |𝑉𝑠| − 𝜀|𝑉𝑠,1| holds for -many 𝑠 ∈ ℕ. We similarly

get |⋃𝑛𝑗=1 𝑊𝑠,𝑗| > |𝑊𝑠| − 𝜀|𝑊𝑠,1| for -many 𝑠 ∈ ℕ from (4) andLemma5.4. For parts (𝑐) through
(𝑓), apply Lemma 5.6 to (5) through (8), while choosing 𝜆 = 1

2
𝜂. □

Since is nonprincipal, wemay choose 𝑠 ⩾ 𝑚, 𝑛 satisfying the properties in the previous claim.
Set 𝑉𝑠,0 = 𝑉𝑠∖

⋃𝑚
𝑖=1 𝑉𝑠,𝑖 and𝑊𝑠,0 = 𝑊𝑠∖

⋃𝑛
𝑗=1 𝑊𝑠,𝑗 . Then |𝑉𝑠,0| < 𝜀|𝑉𝑠,1| and |𝑊𝑠,0| < 𝜀|𝑊𝑠,1| by

part (𝑏) of Claim 5.7. By parts (𝑐), (𝑑), (𝑒), and (𝑓) of Claim 5.7, and the triangle inequality, it
follows that for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], (𝑉𝑠,𝑖 ,𝑊𝑠,𝑗) is (5𝛿 + 𝜀; 𝜎(𝑚𝑛))-homogeneous. Altogether, this
contradicts the choice of 𝑓𝑠 ∶ 𝑉𝑠 ×𝑊𝑠 → [0, 1], and we have finished the proof of Theorem 5.1.

Remark 5.8. In order to obtain the extra definability conditions described in Remark 5.3, one
only needs to further assume that 𝑓𝑠 admits no such partition in which the complexity of the
ingredients is bounded by 𝑠. Then, at the end of the proof, choose 𝑠 to be larger than the complexity
of the objects constructed. This requires one to also assume that various parameters are rational,
in particular, 𝜂, 𝑟𝑖,𝑗 , 𝑠𝑖,𝑗 , and the endpoints of the intervals involved in each 𝜓𝑖 and 𝜃𝑗 . For 𝜂, this is
easy, and for 𝜓𝑖 and 𝜃𝑗 use Remark 2.8. Finally, replace 𝑟𝑖,𝑗 and 𝑠𝑖,𝑗 by a sufficiently close rational
number, and use 𝜀 to absorb the difference.

6 FURTHER RESULTS

6.1 Equipartitions

Acommon tension between regularity lemmas proved using finitarymethods versus those proved
usingmodel-theoreticmethods is that themodel-theoretic proofs typically do not provide equipar-
titions without further work. In the case of regularity for arbitrary graphs or functions, a partition
can be turned into an equipartition using a number of standard methods. However, for sta-
ble regularity, which involves homogeneity and and no irregular pairs, more care is required
to build an equipartition. In this section, we will demonstrate how the decay function in The-
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28 of 36 CHAVARRIA et al.

orem 5.1 makes this relatively easy.† On the other hand, we note that the process of turning
a partition into an equipartition usually results in a loss of “definability” of the pieces (as in
Remark 5.3).

Theorem6.1. Let𝑉 and𝑊 be finite sets, and suppose𝑓∶ 𝑉 ×𝑊 → [0, 1] is a (𝑘, 𝛿)-stable function.
Then for any 𝜀 > 0 and any function 𝜎∶ ℕ → (0, 1), there are partitions𝑉 = 𝑉0 ∪ 𝑉1 ∪ … ∪ 𝑉𝑚 and
𝑊 = 𝑊0 ∪𝑊1 ∪ … ∪𝑊𝑛, with𝑚, 𝑛 ⩽ 𝑂𝑘,𝛿,𝜀,𝜎(1), satisfying the following properties.

(i) For all (𝑖, 𝑗) ∈ [𝑚] × [𝑛], the pair (𝑉𝑖,𝑊𝑗) is (5𝛿 + 𝜀; 𝜎(𝑚𝑛))-homogeneous.
(ii) |𝑉𝑖| = |𝑉𝑗| for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚; and |𝑊𝑖| = |𝑊𝑗| for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛.
(iii) |𝑉0| ⩽ 𝜀|𝑉| and |𝑊0| ⩽ 𝜀|𝑊|.
Proof. Without loss of generality, assume that 𝜎 is decreasing. Let 𝜏∶ ℕ → (0, 1) be defined
by 𝜏(𝑛) = 𝜀

2𝑛
𝜎(4𝑛2⌈𝜀-1⌉2), and let 𝑁 be the bound 𝑂𝑘,𝛿,𝜀∕2,𝜏(1) from Theorem 5.1. Now let

𝑓∶ 𝑉 ×𝑊 → [0, 1] be (𝑘, 𝛿)-stable. By Theorem 5.1, there are partitions 𝑉 = 𝑉′
0
∪ 𝑉′

1
∪ … ∪

𝑉′
𝑚′

and 𝑊 = 𝑊′
0
∪𝑊′

1
∪ … ∪𝑊′

𝑛′
, with 𝑚′, 𝑛′ ⩽ 𝑁, such that |𝑉′

0
| ⩽ 𝜀|𝑉′

1
|∕2, |𝑊′

0
| ⩽ 𝜀|𝑊′

1
|∕2,

and (𝑉′
𝑖
,𝑊′

𝑗
) is (5𝛿 + 𝜀; 𝜏(𝑚′𝑛′))-homogeneous for all (𝑖, 𝑗) ∈ [𝑚′] × [𝑛′]. Set 𝑁∗ = 2𝑁2𝜀-1 =

𝑂𝑘,𝛿,𝜀,𝜎(1).
For each 1 ⩽ 𝑖 ⩽ 𝑚′, partition 𝑉′

𝑖
= 𝑉′

𝑖,1
∪ … ∪ 𝑉′

𝑖,𝑡𝑖
∪ 𝑋𝑖 so that |𝑉′𝑖,𝑝| = ⌈ 𝜀

2𝑚′
|𝑉|⌉ for all 1 ⩽

𝑝 ⩽ 𝑡𝑖 , and |𝑋𝑖| ⩽ 𝜀

2𝑚′
|𝑉| (note that we allow 𝑡𝑖 = 0). Similarly, for each 1 ⩽ 𝑗 ⩽ 𝑛′, partition

𝑊′
𝑗
= 𝑊′

𝑗,1
∪ … ∪𝑊′

𝑗,𝑢𝑗
∪ 𝑌𝑗 so that |𝑊′𝑖,𝑞| = ⌈ 𝜀

2𝑛′
|𝑊|⌉ and |𝑌𝑗| ⩽ 𝜀

2𝑛′
|𝑊|. Let𝑉1,… , 𝑉𝑚 enumer-

ate {𝑉′
𝑖,𝑝
∶ 1 ⩽ 𝑖 ⩽ 𝑚′, 1 ⩽ 𝑝 ⩽ 𝑡𝑖}; and let𝑊1,… ,𝑊𝑛 enumerate {𝑊′𝑗,𝑞 ∶ 1 ⩽ 𝑗 ⩽ 𝑛

′, 1 ⩽ 𝑞 ⩽ 𝑢𝑗}.
Then (𝑖𝑖) holds by construction. For each 1 ⩽ 𝑖 ⩽ 𝑚′, we have 𝑡𝑖

𝜀

2𝑚′
|𝑉| ⩽ |𝑉′

𝑖
| ⩽ |𝑉|, and so,

𝑡𝑖 ⩽ 2𝑚
′𝜀-1. Thus,𝑚 ⩽ 2(𝑚′)2𝜀-1 ⩽ 𝑁∗. Similarly, 𝑛 ⩽ 2(𝑛′)2𝜀-1 ⩽ 𝑁∗.

To show (𝑖), we fix 𝑉′
𝑖,𝑝
and𝑊′

𝑗,𝑞
, and show that (𝑉′

𝑖,𝑝
,𝑊′

𝑗,𝑞
) is (5𝛿 + 𝜀; 𝜎(𝑚𝑛))-homogeneous.

By construction, there are 𝑟 ∈ [0, 1] and𝑊′ ⊆ 𝑊′
𝑗
such that |𝑊′| ⩾ (1 − 𝜏(𝑚′𝑛′))|𝑊′

𝑗
| and, for all

𝑏 ∈ 𝑊′,

|{𝑎 ∈ 𝑉′𝑖 ∶ 𝑓(𝑎, 𝑏) ≈5𝛿+𝜀 𝑟}| ⩾ (1 − 𝜏(𝑚′𝑛′))|𝑉′𝑖 |. (†)

Let𝑊′′ = 𝑊′ ∩𝑊′
𝑗,𝑞
. Then,

|𝑊′′| ⩾ |𝑊′𝑗,𝑞| − 𝜏(𝑚′𝑛′)|𝑊′𝑗| ⩾ |𝑊′𝑗,𝑞| − 𝜏(𝑚′𝑛′)|𝑊| ⩾ |𝑊′
𝑗,𝑞
| − 𝜏(𝑚′𝑛′) 2𝑛′

𝜀
|𝑊′
𝑖,𝑞
|.

Recall that 𝑚𝑛 ⩽ 4(𝑚′𝑛′)2𝜀-2, and so 𝜏(𝑚′𝑛′) 2𝑛
′

𝜀
⩽ 𝜎(𝑚𝑛) by choice of 𝜏. So, |𝑊′′| ⩾ (1 −

𝜎(𝑚𝑛))|𝑊′
𝑖,𝑞
|. Moreover, if 𝑏 ∈ 𝑊′′, then by (†),
|{𝑎 ∈ 𝑉′𝑖,𝑝 ∶ 𝑓(𝑎, 𝑏) ≈5𝛿+𝜀 𝑟}| ⩾ |𝑉′𝑖,𝑝| − 𝜏(𝑚′𝑛′)|𝑉′𝑖 | ⩾ (1 − 𝜎(𝑚𝑛))|𝑉′𝑖,𝑝|,

where the final inequality follows by similar calculations. By a symmetric argument, we obtain
the desired homogeneity for (𝑉′

𝑖,𝑝
,𝑊′

𝑗,𝑞
).

Finally, set𝑉0 = 𝑉′0 ∪
⋃𝑚′
𝑖=1 𝑋𝑖 and𝑊0 = 𝑊

′
0
∪
⋃𝑛′
𝑗=1 𝑌𝑗 . Note that we now have partitions𝑉 =

𝑉0 ∪ 𝑉1 ∪ … ∪ 𝑉𝑚 and𝑊 = 𝑊0 ∪𝑊1 ∪ … ∪𝑊𝑛 satisfying (𝑖) and (𝑖𝑖). So, it remains to prove the

† This was also observed by Terry in the setting of stable graph regularity.
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CONTINUOUS STABLE REGULARITY 29 of 36

bounds in (𝑖𝑖𝑖). For this, we have

|𝑉0| = |𝑉′
0
| +∑𝑚′

𝑖=1 |𝑋𝑖| ⩽ 𝜀

2
|𝑉′
1
| +𝑚′( 𝜀

2𝑚′
|𝑉|) ⩽ 𝜀|𝑉|.

By a similar argument, we get |𝑊0| ⩽ 𝜀|𝑊|. □

Remark 6.2. As in Theorem 5.1, the sets𝑉0 and𝑊0 are exceptional sets of vertices, which are used
to ensure strong homogeneity with a decay function (c.f. Theorem 5.2) and to achieve perfectly
balanced equipartitions. The use of an exceptional set to achieve the latter feature is typical in
general regularity as well (see, e.g., [15, Theorem 1.7]). A standard alternate approach is to evenly
distribute the exceptional set among the remaining pieces of the partition, which yields a new
partition satisfying ||𝑉𝑖| − |𝑉𝑗|| ⩽ 1 for all 𝑖, 𝑗 (see, e.g., [15, Theorem 1.8]). In our situation, one
could do this to remove 𝑉0 and𝑊0, but it would again result in homogeneity controlled only by
𝜀 rather than 𝜎 (as in Theorem 5.2).

6.2 The case of graphs

Continuing with Remarks 1.2 and 4.8, we note that our previous results yield a qualitative version
of stable graph regularity [19] with homogeneity controlled by a decay function. Our formulation
is in terms of bipartitioned graph relations, which differs from [19] (see Section 6.4 for further
discussion).

Corollary 6.3. Let 𝑉 and𝑊 be finite sets and suppose 𝐸 ⊆ 𝑉 ×𝑊 is 𝑘-stable. Then for any 𝜀 > 0
and any function 𝜎∶ ℕ → (0, 1), there are partitions 𝑉 = 𝑉0 ∪ 𝑉1 ∪ … ∪ 𝑉𝑚 and𝑊 = 𝑊0 ∪𝑊1 ∪
… ∪𝑊𝑛, with𝑚, 𝑛 ⩽ 𝑂𝑘,𝜀,𝜎(1), such that for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛],

|𝐸 ∩ (𝑉𝑖 ×𝑊𝑗)| ⩽ 𝜎(𝑚𝑛)|𝑉𝑖||𝑊𝑗| or |𝐸 ∩ (𝑉𝑖 ×𝑊𝑗)| ⩾ (1 − 𝜎(𝑚𝑛))|𝑉𝑖||𝑊𝑗|.
Moreover, one of the following cases holds.

(i) |𝑉0| ⩽ 𝜀|𝑉1|, |𝑊0| ⩽ 𝜀|𝑊1|, and𝑉1,… , 𝑉𝑚,𝑊1,… ,𝑊𝑛 are 𝐸-definable of complexity𝑂𝑘,𝜀,𝜎(1).
(ii) |𝑉0| ⩽ 𝜀|𝑉|, |𝑊0| ⩽ 𝜀|𝑊|, |𝑉𝑖| = |𝑉𝑗| for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚, and |𝑊𝑖| = |𝑊𝑗| for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛.
Proof. Let 𝑓 = 𝟏𝐸 . As explained in Remark 1.2, 𝑓 is (𝑂𝑘(1), 𝛿)-stable for any 𝛿 > 0. So, we can
apply Theorem 5.1 with 𝛿 < 1

10
− 𝜀 (without loss of generality, assume 𝜀 < 1

10
). It follows that in

a (5𝛿 + 𝜀; 𝜎(𝑚𝑛))-homogeneous pair (𝑉𝑖,𝑊𝑗), we may take the uniform value 𝑟𝑖,𝑗 to be either 0
or 1. This yields the main claim with case (𝑖) (via Remark 5.3). To instead obtain case (𝑖𝑖), replace
Theorem 5.1 with Theorem 6.1 in the previous argument. □

A quantitative proof of the previous result for graphs (stated with case (𝑖𝑖)) was recently given
by Terry and Wolf [30, Theorem 4.7].
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6.3 Function decomposition

In this section, we use Theorem 5.1 to derive a stable analog of the analytic form of Szemerédi’s
regularity lemma for functions. We follow the formalism described by Tao in [26]. Since the ana-
lytic setting involves decompositions of functions into sums of various components, we will need
to develop terminology for functions that are not necessarily [0,1]-valued.
Given a (nonempty) finite set 𝑋 and functions 𝑓, g ∶ 𝑋 → ℝ, define the normalized inner

product

⟨𝑓, g⟩ = 1|𝑋| ∑𝑥∈𝑋 𝑓(𝑥)g(𝑥).
The normalized 𝓁2-norm of 𝑓 is ‖𝑓‖2 =√⟨𝑓, 𝑓⟩. Note that ‖𝑓‖1 = ⟨|𝑓|, 𝟏⟩, and recall also
that ‖𝑓‖∞ = max𝑥∈𝑋 |𝑓(𝑥)|. So, the inequalities ‖𝑓‖1 ⩽ ‖𝑓‖2 ⩽ ‖𝑓‖∞ hold for any 𝑓 (the first
inequality follows from Cauchy–Schwarz).

Definition 6.4. Let 𝑉 and𝑊 be finite sets, and fix 𝑓∶ 𝑉 ×𝑊 → [-1, 1].

(1) 𝑓 is (𝑚, 𝑛)-structured it is of the form
∑
𝑖,𝑗 𝑟𝑖,𝑗𝟏𝑉𝑖×𝑊𝑗 for some partitions 𝑉 = 𝑉0 ∪ 𝑉1 ∪ … ∪

𝑉𝑚 and𝑊 = 𝑊0 ∪𝑊1 ∪ … ∪𝑊𝑛, with 𝑟𝑖,𝑗 ∈ [-1, 1].
(2) 𝑓 is 𝜀-pseudorandom if |⟨𝑓, 𝟏𝐴×𝐵⟩| ⩽ 𝜀 for all 𝐴 ⊆ 𝑉 and 𝐵 ⊆ 𝑊.

The previous definitions are adapted from [26], although we remark that the “structured”
notion there applies toℝ-valued functions, and thus includes an additional parameter𝐾 bounding|𝑟𝑖,𝑗| (whichwe do not require). The notion of pseudorandomness is a special case of the definition
from [26], which involves a more general schematic. We have specialized to the “product struc-
ture” setting described in [26, Example 2.3]. We can now state the analytic regularity lemma for
functions (quoting [8, Lemma 1.1], with some clarification to follow).

Lemma 6.5 (Szemerédi’s regularity lemma, analytic form). Let 𝑉 and 𝑊 be finite sets, and let
𝑓∶ 𝑉 ×𝑊 → [0, 1] be a function. Then for any 𝜀 > 0 and 𝜎∶ ℕ → (0, 1), there are 𝑚, 𝑛 ⩽ 𝑂𝜀,𝜎(1)
and a decomposition 𝑓 = 𝑓str + 𝑓psd + 𝑓err such that 𝑓str is (𝑚, 𝑛)-structured, 𝑓psd is 𝜎(𝑚𝑛)-
pseudorandom, and ‖𝑓err‖2 ⩽ 𝜀. Moreover, 𝑓psd is [-1, 1]-valued, whereas 𝑓str and 𝑓str + 𝑓err are
[0,1]-valued.

In [8], pseudorandomness is formulated using the “box norm,” and the equivalence with the
definition above is a fundamental result in graph theory (see, e.g., [7, Theorem 2.4] for a pre-
cise statement in the context of functions). We also note that the previous lemma is stated in a
“bipartite form,” which differs from [8] (see Section 6.4 for further discussion).
As a segue to stability, let us discuss how classical graph regularity can be used to obtain a

prototype of Lemma 6.5 for the indicator function of a bipartite graph. Fix some 𝐸 ⊆ 𝑉 ×𝑊
and 𝜀 > 0. Given (nonempty) 𝐴 ⊆ 𝑉 and 𝐵 ⊆ 𝑊, set 𝛼𝐴,𝐵 ∶= |𝐸 ∩ (𝐴 × 𝐵)|∕|𝐴 × 𝐵| (the density
of 𝐸 on 𝐴 × 𝐵). Then, Szemerédi’s regularity lemma provides partitions 𝑉 = 𝑉1 ∪ … ∪ 𝑉𝑚 and
𝑊 = 𝑊1 ∪ … ∪𝑊𝑛 (with𝑚, 𝑛 ⩽ 𝑂𝜀(1)), and a setΣ of pairs (𝑖, 𝑗), such that if𝑍 =

⋃
(𝑖,𝑗)∈Σ 𝑉𝑖 ×𝑊𝑗 ,

then |𝑍| ⩽ 𝜀|𝑉 ×𝑊|, and if (𝑖, 𝑗) ∉ Σ, then (𝑉𝑖,𝑊𝑗) is 𝜀-regular. So, for (𝑖, 𝑗) ∉ Σ, 𝛼𝑖,𝑗 ∶= 𝛼𝑉𝑖,𝑊𝑗 ≈𝜀
𝛼𝐴,𝐵 for any 𝐴 ⊆ 𝑉𝑖 and 𝐵 ⊆ 𝑊𝑗 with |𝐴| ⩾ 𝜀|𝑉𝑖| and |𝐵| ⩾ 𝜀|𝑊𝑗|. An easy calculation then
shows that 𝟏𝐸∩(𝑉𝑖×𝑊𝑗) − 𝛼𝑖,𝑗 is 2𝜀-pseudorandom as a function on 𝑉𝑖 ×𝑊𝑗 . Thus, if we set 𝑓str =∑
(𝑖,𝑗)∉Σ 𝛼𝑖,𝑗𝟏𝑉𝑖×𝑊𝑗 , 𝑓err = 𝟏𝐸∩𝑍 , and 𝑓psd = 𝟏𝐸 − 𝑓str − 𝑓err, then 𝟏𝐸 = 𝑓str + 𝑓psd + 𝑓err, and we
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CONTINUOUS STABLE REGULARITY 31 of 36

have that 𝑓str is (𝑚, 𝑛)-structured, 𝑓psd is 2𝜀-pseudorandom, and ‖𝑓err‖2 ⩽√
𝜀. Also, 𝑓str and 𝑓err

are [0,1]-valued, while 𝑓psd is [-1, 1]-valued.
In the setting of stable graphs, the previous situation is qualitatively strengthened in two ways.

First, the setΣ of irregular pairs does not appear, which removes the𝑓err term. Second, 𝜀-regularity
is replaced by 𝜀-homogeneity, which is to say that each density 𝛼𝑖,𝑗 is within 𝜀 of some 𝛼̂𝑖,𝑗 ∈
{0, 1}.† Thus, (𝑉𝑖,𝑊𝑗; 𝐸) is almost complete or empty, and 𝛼̂𝑖,𝑗 is the “generic” value of 𝟏𝐸 on
𝑉𝑖 ×𝑊𝑗 . Consequently, if one redefines 𝑓str above so that 𝛼𝑖,𝑗 is replaced by 𝛼̂𝑖,𝑗 , then 𝑓str is still
(𝑚, 𝑛)-structured (in fact, it is the indicator function of the union of all 𝑉𝑖 ×𝑊𝑗 on which 𝐸 is
almost complete), and 𝑓psd = 𝑓 − 𝑓str is a {-1, 0, 1}-valued functionwhose support has size atmost
𝜀|𝑉 ×𝑊|. This motivates the following remark.
Remark 6.6. Suppose𝑓∶ 𝑉 ×𝑊 → [-1, 1] is an arbitrary function such that |supp(𝑓)| ⩽ 𝜀|𝑉 ×𝑊|.
Then ‖𝑓‖1 ⩽ 𝜀, which implies that for any other function g ∶ 𝑉 ×𝑊 → [-1, 1], we have |⟨𝑓, g⟩| ⩽‖𝑓‖1 ⩽ 𝜀. So, 𝑓 is automatically 𝜀-pseudorandom. In other words, having small support can be
viewed as a very strong form of pseudorandomness.

In the setting of stable functions, we will see the same picture emerge, in the sense that 𝑓str will
be determined by the “generic value” of 𝑓 on each homogeneous pair, and 𝑓psd will have small
support. At this level, one could obtain from Theorem 5.2 a decomposition for stable functions
that is very much like the one described above for stable graphs (see Remark 6.11). However, note
that the above discussion of stable graphs does not include the stronger control on pseudoran-
domness using a decay function, as in Lemma 6.5. In order to reintroduce this aspect, we will
need to deal with the issues of the exceptional sets 𝑉0 and𝑊0, and the appearance of 𝛿 and 𝜀 in
the homogeneous pairs. To handle the latter issue, we will relax the “structured” component 𝑓str
by allowing for some uniformly bounded fluctuation.

Definition 6.7. A function 𝑓∶ 𝑉 ×𝑊 → [0, 1] is (𝛿;𝑚, 𝑛)-structured if there is some (𝑚, 𝑛)-
structured function g ∶ 𝑉 ×𝑊 → [0, 1] such that ‖𝑓 − g‖∞ ⩽ 𝛿.
As for the exceptional sets, we will deal with those in the same way as one deals with irregular

pairs, which is to put them in an error term. This will yield an error term supported on a set of the
form𝑍′ = (𝑉0 ×𝑊) ∪ (𝑉 ×𝑊0), where |𝑉0| ⩽ 𝜀|𝑉| and |𝑊0| ⩽ 𝜀|𝑊|. Note that |𝑍′| ⩽ 2𝜀|𝑉 ×𝑊|.
So, 𝑍′ is comparable to the error set 𝑍 above in terms of size, and we similarly get bounded 𝓁2-
norm for any function supported on 𝑍′. On the other hand, it is important to note that 𝑍 and 𝑍′
are qualitatively different in a way undetected by norms. Indeed, 𝑍′ is built from essentially unary
ingredients, whereas 𝑍 is necessarily binary. More precisely, if a function 𝑓∶ 𝑉 ×𝑊 → [0, 1] is
decomposed as g + ℎ, where ℎ is supported on𝑍′ (and g has some desirable properties), then after
removing a small amount of𝑉 and𝑊 individually, one can assume 𝑓 = g . On the other hand, if ℎ
were supported on𝑍, then onewould need to remove some possibly complicated subset of𝑉 ×𝑊,
which represents a more drastic change to the nature of 𝑓.
To close this discussion, we will say that a function 𝑓∶ 𝑉 ×𝑊 → [-1, 1] has 𝜀-structured sup-

port if its support is contained in a set of the form𝑍′ above. Note that if𝑓 has 𝜀-structured support,
then |supp(𝑓)| ⩽ 2𝜀|𝑉 ×𝑊|, and so, ‖𝑓‖2 ⩽√

2𝜀.

† This is essentially equivalent to a suitable graph-theoretic analog of functional homogeneity (as in Definition 4.1), up to
uniform change in 𝜀.
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Theorem6.8. Let𝑉 and𝑊 be finite sets, and suppose𝑓∶ 𝑉 ×𝑊 → [0, 1] is a (𝑘, 𝛿)-stable function.
Then for any 𝜀 > 0 and any function𝜎∶ ℕ → (0, 1), there are𝑚, 𝑛 ⩽ 𝑂𝑘,𝛿,𝜀,𝜎(1) and a decomposition
𝑓 = 𝑓str + 𝑓psd + 𝑓err such that:

(i) 𝑓str is (5𝛿 + 𝜀;𝑚, 𝑛)-structured,
(ii) |supp(𝑓psd)| ⩽ 𝜎(𝑚𝑛)|𝑉 ×𝑊|, and
(iii) 𝑓err has 𝜀-structured support.

Moreover, 𝑓psd is [-1, 1]-valued, 𝑓str and 𝑓err are [0,1]-valued, and 𝑓err ∈ {𝑓str, |𝑓psd|}⟂.
Proof. Apply Theorem 5.1 to obtain partitions 𝑉 = 𝑉0 ∪ 𝑉1 ∪ … ∪ 𝑉𝑚 and 𝑊 = 𝑊0 ∪𝑊1 ∪ … ∪
𝑊𝑛, with 𝑚, 𝑛 ⩽ 𝑂𝑘,𝛿,𝜀,𝜎(1), so that |𝑉0| ⩽ 𝜀|𝑉1|, |𝑊0| ⩽ 𝜀|𝑊1|, and for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛],
(𝑉𝑖,𝑊𝑗) is (5𝛿 + 𝜀;

1

2
𝜎(𝑚𝑛))-homogeneous. For each (𝑖, 𝑗) ∈ [𝑚] × [𝑛], choose 𝑟𝑖,𝑗 ∈ [0, 1] and

𝑊𝑖,𝑗 ⊆ 𝑊𝑗 such that |𝑊𝑖,𝑗| ⩾ (1 − 12𝜎(𝑚𝑛))|𝑊𝑗| and, for all 𝑏 ∈ 𝑊𝑖,𝑗 , |{𝑎 ∈ 𝑉𝑖 ∶ 𝑓(𝑎, 𝑏) ≈5𝛿+𝜀
𝑟𝑖,𝑗}| ⩾ (1 − 12𝜎(𝑚𝑛))|𝑉𝑖|.
Set 𝑍 = (𝑉0 ×𝑊) ∪ (𝑉 ×𝑊0). Let 𝑓str ∶ 𝑉 ×𝑊 → [0, 1] be defined by

𝑓str(𝑎, 𝑏) =

⎧⎪⎨⎪⎩
𝑓(𝑎, 𝑏) if (𝑎, 𝑏) ∈ 𝑉𝑖 ×𝑊𝑗 and 𝑓(𝑎, 𝑏) ≈5𝛿+𝜀 𝑟𝑖,𝑗 ,
𝑟𝑖,𝑗 if (𝑎, 𝑏) ∈ 𝑉𝑖 ×𝑊𝑗 and 𝑓(𝑎, 𝑏) ≉5𝛿+𝜀 𝑟𝑖,𝑗 , and
0 if (𝑎, 𝑏) ∈ 𝑍.

Define 𝑓err ∶= 𝑓𝟏𝑍 and 𝑓psd ∶= 𝑓 − 𝑓str − 𝑓err. Then, other than (𝑖𝑖), the claims in the theorem
follow easily by construction. So, we show (𝑖𝑖).
Set 𝛾 = 1

2
𝜎(𝑚𝑛). Given (𝑖, 𝑗) ∈ [𝑚] × [𝑛] and 𝑏 ∈ 𝑊, partition𝑉𝑖 = 𝑋𝑏𝑖,𝑗 ∪ 𝑌

𝑏
𝑖,𝑗
so that 𝑎 ∈ 𝑋𝑏

𝑖,𝑗
if

and only if 𝑓(𝑎, 𝑏) ≈5𝛿+𝜀 𝑟𝑖,𝑗 . So, if 𝑏 ∈ 𝑊𝑖,𝑗 , then |𝑌𝑏
𝑖,𝑗
| ⩽ 𝛾|𝑉𝑖| and 𝑓psd(𝑎, 𝑏) = 0 for all 𝑎 ∈ 𝑋𝑏𝑖,𝑗 .

It follows that

supp(𝑓psd) ⊆
⋃
(𝑖,𝑗)∈[𝑚]×[𝑛]

(
(𝑉𝑖 × (𝑊𝑗∖𝑊𝑖,𝑗)) ∪

⋃
𝑏∈𝑊𝑖,𝑗

(𝑌𝑏
𝑖,𝑗
× {𝑏})

)
.

So, |supp(𝑓psd)| ⩽ ∑
𝑖,𝑗(𝛾|𝑉𝑖||𝑊𝑗| + 𝛾|𝑉𝑖||𝑊𝑖,𝑗|) ⩽ 2𝛾|𝑉 ×𝑊| = 𝜎(𝑚𝑛)|𝑉 ×𝑊|. □

Remark 6.9. The previous proof also implies that the underlying partition of 𝑓str involves
𝑓-definable pieces of bounded complexity. We could instead use Theorem 6.1 and obtain an
equipartition. (Note that we only need |𝑉0| ⩽ 𝜀|𝑉| and |𝑊0| ⩽ 𝜀|𝑊| to know that 𝑓err has
𝜀-structured support.)

Remark 6.10. Call a function 𝑓∶ 𝑉 ×𝑊 → [0, 1] 𝑘-stable if it is (𝑘, 𝛿)-stable for some 𝛿 > 0 such
that for all 𝑥, 𝑦 ∈ 𝑉 ×𝑊, if 𝑓(𝑥) ≠ 𝑓(𝑦) then |𝑓(𝑥) − 𝑓(𝑦)| > 10𝛿. For example, this includes the
setting of 𝑘-stable bipartite graphs (after changing 𝑘 as discussed in Remark 1.2). Suppose 𝑓∶ 𝑉 ×
𝑊 → [0, 1] is 𝑘-stable, and fix𝑉′ ⊆ 𝑉 and𝑊′ ⊆ 𝑊 such that (𝑉′,𝑊′) is (5𝛿 + 𝜀; 𝜀)-homogeneous
for sufficiently small 𝜀. Then, it follows that there is some 𝑟 ∈ Im(𝑓) such that for all but at most
𝜀|𝑊′|-many 𝑏 ∈ 𝑊′, for all but at most 𝜀|𝑉′|-many 𝑎 ∈ 𝑉′, 𝑓(𝑎, 𝑏) = 𝑟, and dually, for all but
at most 𝜀|𝑉′|-many 𝑎 ∈ 𝑉′, for all but at most 𝜀|𝑊′|-many 𝑏 ∈ 𝑊′, 𝑓(𝑎, 𝑏) = 𝑟. Altogether, one
obtains a version of Theorem 6.8 for 𝑘-stable functions in which 𝑓str is (𝑚, 𝑛)-structured.
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Remark 6.11. One can obtain a decomposition of (𝑘, 𝛿)-stable functions involving no error term, at
the cost of the decay function. Indeed, in Theorem 6.8, if we replace 𝑓psd with 𝑓psd + 𝑓err, then we
have |supp(𝑓psd)| ⩽ (𝜎(𝑚𝑛) + 2𝜀)|𝑉 ×𝑊|. Note that we can also write 𝑓str = 𝑓′str + ℎ where 𝑓′str
is (𝑚, 𝑛)-structured and ‖ℎ‖∞ ⩽ 5𝛿 + 𝜀. So, if one is willing to allow 𝑓psd to involve 𝛿, then 𝑓str
can be made perfectly structured by replacing 𝑓psd with 𝑓psd + ℎ. In this case, 𝑓psd no longer has
small support, but one still has a bound on ‖𝑓psd‖1 in terms of 𝛿, 𝜀, and 𝜎(𝑚𝑛). Therefore, 𝑓psd is
still pseudorandom in a strong qualitative sense (see Remark 6.6).

6.4 Bipartite versus symmetric

In this section, we clarify some subtleties regarding our bipartite viewpoint on graphs and func-
tions. First, recall that any graph (𝑉; 𝐸) can be “coded” as bipartite graph (𝑉, 𝑉; 𝐸) (sometimes
called the bipartite double cover of (𝑉; 𝐸)). Similarly, a [0,1]-valued binary function 𝑓 on a set 𝑉
can be viewed as a bipartitioned function 𝑓∶ 𝑉 × 𝑉 → [0, 1]. From this perspective, the bipartite
setting ismore flexible because it allows one to distinguish between the two sets. This is also a very
natural setting in which to apply model-theoretic tools. On the other hand, there is one issue with
the bipartite approach, which is usually not discussed in the model-theoretic literature on regu-
larity. In particular, given a graph (𝑉; 𝐸) if one applies a bipartite regularity lemma to (𝑉, 𝑉; 𝐸),
then this results in two potentially different partitions of 𝑉.
One way to remedy this issue is to again exploit the decay function. In particular, suppose that

we have partitions 𝑉1 ∪ … ∪ 𝑉𝑚 and 𝑊1 ∪ … ∪𝑊𝑛 of the same finite set 𝑉, in which each pair
(𝑉𝑖,𝑊𝑗) satisfies a desired homogeneity property with respect to some 𝑓∶ 𝑉 × 𝑉 → [0, 1] (we
ignore the issue of exceptional sets for the moment). Then, we have a common refinement, which
partitions 𝑉 into at most 𝑚𝑛 sets. Thus, given a target decay function 𝜎∶ ℕ → (0, 1), one can
define a modified function 𝜏 (similar to the proof of Theorem 6.1) so that if the initial partitions
are homogeneous with respect to 𝜏, then any sufficiently large piece of the common refinement
maintains homogeneity using 𝜎, while the remaining small pieces can be put into an exceptional
set. Moreover, if we also start out with two exceptional sets 𝑉0 and𝑊0, then these can be added
to the larger exceptional set, along with any𝑊𝑗 that intersects 𝑉0 in a large set (and vice versa).
As a final remark, we note that when 𝑓∶ 𝑉 × 𝑉 → [0, 1] is a symmetric function, one can also

address this issue “upstairs” at the model-theoretic stage. Indeed, given a continuous structure𝑀
and a symmetric [0,1]-valued formula 𝜑(𝑥, 𝑦), with 𝑥 and 𝑦 variables of the same sort, the type
spaces 𝑆𝜑(𝑀) and 𝑆𝜑∗(𝑀) can be naturally identified. Therefore, in the setting of Lemma 4.4, if
the measures 𝜇 and 𝜈 are the same (e.g., if they both arise from the pseudofinite average value
functional), then one can prove the lemma using the same 𝜑-formulas on both sides. Carrying
this through the rest of the steps, we obtain a single partition of 𝑉.

APPENDIX

We discuss a natural variation of (𝑘, 𝛿)-stability (as defined in Definition 1.1), which is closer to
the definition of 𝑘-stability for bipartite graphs.

DefinitionA.1. A function𝑓∶ 𝑉 ×𝑊 → [0, 1] is ∗(𝑘, 𝛿)-stable if there donot exist𝑎1, … , 𝑎𝑘 ∈ 𝑉,
𝑏1, … , 𝑏𝑘 ∈ 𝑊, and 𝑟 ∈ [0, 1] such that 𝑓(𝑎𝑖, 𝑏𝑗) ⩾ 𝑟 + 𝛿 if 𝑖 ⩽ 𝑗, and 𝑓(𝑎𝑖, 𝑏𝑗) ⩽ 𝑟 if 𝑖 > 𝑗.
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Note that a binary relation 𝐸 ⊆ 𝑉 ×𝑊 is 𝑘-stable (as defined in Remark 1.2) if and only if 𝟏𝐸
is ∗(𝑘, 1)-stable (if and only if 𝟏𝐸 is ∗(𝑘, 𝛿)-stable for all 𝛿 > 0). As we previously observed, for
“discretely valued” functions such as 𝟏𝐸 , ∗(𝑘, 𝛿)-stability implies (𝓁, 𝛿)-stability for suitable 𝓁. On
the other hand, there is a small discrepancy for arbitrary functions.

Proposition A.2.

(a) Any (𝑘, 𝛿)-stable [0,1]-valued function is ∗(𝑘, 𝛿)-stable.
(b) For any 𝑘 ⩾ 1 and 𝛿′ > 𝛿 > 0, there is some 𝓁 ⩾ 1 such that any ∗(𝑘, 𝛿)-stable [0,1]-valued

function is (𝓁, 𝛿′)-stable.

Proof. Part (𝑎). This is straightforward to check.
Part (𝑏). Given 𝑚, 𝑛 ⩾ 1, let 𝑅𝑚(𝑛) be an integer such that any 𝑚-coloring of

([𝑅𝑚(𝑛)]
2

)
admits

a monochromatic subset of size 𝑛. Fix 𝑘 ⩾ 1 and 𝛿′ > 𝛿 > 0. Set 𝜀 = 𝛿′ − 𝛿 and fix 𝑚 ⩾ 𝜀-1. Set
𝓁 = 𝑅2(𝑅𝑚(2𝑘 + 1)). Suppose 𝑓∶ 𝑉 ×𝑊 → [0, 1] is not (𝓁, 𝛿′)-stable. We will show that 𝑓 is not
∗(𝑘, 𝛿)-stable.
Fix 𝑎1, … , 𝑎𝓁 ∈ 𝑉 and 𝑏1, … , 𝑏𝓁 ∈ 𝑊 such that |𝑓(𝑎𝑖, 𝑏𝑗) − 𝑓(𝑎𝑗, 𝑏𝑖)| ⩾ 𝛿′ for all 𝑖 < 𝑗. Consider

a 2-coloring of
([𝓁]
2

)
according towhether𝑓(𝑎𝑖, 𝑏𝑗) ⩾ 𝑓(𝑎𝑗, 𝑏𝑖) + 𝛿′ or𝑓(𝑎𝑖, 𝑏𝑗) ⩽ 𝑓(𝑎𝑗, 𝑏𝑖) − 𝛿′. Set

𝑛 = 𝑅𝑚(2𝑘 + 1). By choice of 𝓁, and after relabeling and reversing the order (if necessary), wemay
assume that there are 𝑎1, … , 𝑎𝑛 ∈ 𝑉 and 𝑏1, … , 𝑏𝑛 ∈ 𝑊 such that 𝑓(𝑎𝑖, 𝑏𝑗) ⩾ 𝑓(𝑎𝑗, 𝑏𝑖) + 𝛿′ for all
𝑖 < 𝑗.
For 1 ⩽ 𝑡 ⩽ 𝑚, set 𝐼𝑡 = [

𝑡−1

𝑚
, 𝑡
𝑚
]. Consider an 𝑚-coloring of

([𝑛]
2

)
by the minimal 𝑡 such that

𝑓(𝑎𝑗, 𝑏𝑖) ∈ 𝐼𝑡 (for 𝑖 < 𝑗). By choice of 𝑛, and after relabeling, we may assume that we have
1 ⩽ 𝑡 ⩽ 𝑚, 𝑎1, … , 𝑎2𝑘+1 ∈ 𝑉, and 𝑏1, … , 𝑏2𝑘+1 ∈ 𝑊 such that for all 𝑖 < 𝑗, 𝑓(𝑎𝑖, 𝑏𝑗) ⩾ 𝑓(𝑎𝑗, 𝑏𝑖) + 𝛿′

and𝑓(𝑎𝑗, 𝑏𝑖) ∈ 𝐼𝑡. Set 𝑟 =
𝑡

𝑚
. Then, for all 𝑖 < 𝑗, we have𝑓(𝑎𝑗, 𝑏𝑖) ⩽ 𝑟 and𝑓(𝑎𝑖, 𝑏𝑗) ⩾ 𝑟 −

1

𝑚
+ 𝛿′ ⩾

𝑟 + 𝛿. Altogether, the sequences (𝑎2𝑖)𝑘𝑖=1 and (𝑏2𝑖+1)
𝑘
𝑖=1

witness that 𝑓 is not ∗(𝑘, 𝛿)-stable. □

In the context of a complete theory, however, the discrepancy can be removed.

Corollary A.3. Let 𝑇 be a complete theory in a continuous language , and fix a [0,1]-valued -
formula𝜑(𝑥, 𝑦). Fix 𝛿 > 0, and assume that𝜑(𝑥, 𝑦) is ∗(𝑘, 𝛿)-stable in𝑇 for some 𝑘 ⩾ 1. Then𝜑(𝑥, 𝑦)
is (𝓁, 𝛿)-stable in 𝑇 for some 𝓁 ⩾ 1.

Proof. First, one checks that ∗(𝑘, 𝛿)-stability in 𝑇 is an open condition in the sense of Lemma 3.2.
So, there is some 𝛿0 < 𝛿 such that 𝜑(𝑥, 𝑦) is ∗(𝑘, 𝛿0)-stable in 𝑇. By Proposition A.2, 𝜑(𝑥, 𝑦) is
(𝓁, 𝛿)-stable in 𝑇 for some 𝓁 ⩾ 1. □

The previous corollary also follows from [4, Lemma 7.2], whose proof involves similar
Ramsey arguments.
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