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INTRODUCTION

Szemerédi’s regularity lemma [25] is a structure theorem for arbitrary finite graphs, and has
become a fundamental tool in graph theory (see, e.g., [15]). In the setting of a bipartite graph
(V,W; E) (which will be our focus), the regularity lemma says roughly that V and W can be parti-
tioned into a small number (depending only on a fixed €) of sets V;, W such that for all i, j outside
of a small number of “irregular pairs,” the graph (V;, W;; E n (V; X W))) is e-regular, meaning that
sufficiently large induced subgraphs have a common edge density up to error at most €. (See Sec-
tion 6.4 for discussion of how to reconcile the setting of bipartite graphs with unpartitioned graphs
(V3E).)

The regularity lemma for graphs can be recast and generalized as a decomposition theorem for
functions f : V X W — [0, 1], which is sometimes called the analytic form of Szemerédi regular-
ity. See [8, 17, 26], for example. In this regime, f is decomposed as the sum of a “structured” part,
a “pseudorandom” part, and an “error” part. In the special case where f is {0, 1}-valued, we are
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back in the setting of graphs, and it is explained in several places how one recovers the usual state-
ment of Szemerédi regularity from the analytic version (e.g., [26, Lemma 2.11]). See Section 6.3 for
further discussion as well as new results in the “stable” case.

It is rather natural to try to improve the conclusion of Szemerédi’s regularity lemma by
placing restrictions on the class of finite graphs under consideration. In their seminal paper,
Malliaris and Shelah [19] considered the restriction to “k-stable graphs,” namely, graphs that
omit the k-half graph ([k], [k]; <). The improvements in the conclusions involved better bounds
(as a function of €), no irregular pairs, and “e-homogeneity” replacing e-regularity. Here,
by e-homogeneity of a bipartite graph (V,W;E), we mean that either |[E| > (1 —¢)|V||W| or
|E| <e|VIIW].

The aim of the current paper is to prove an analytic version of stable graph regularity. We refer
to this as continuous stable regularity for various reasons to be explained later. In any case, we
say that a function f : V X W — [0,1] is (k, §)-stable if there do not exist a;,...,q; € V and
by,...,b € W such that |f(a;,b;) — f(a;,b;)| > 6 for all i < j. (This generalizes the previous
notion for graphs after possibly changing k; see Remark 1.2.) In Section 1, we will describe several
families of examples of stable functions, drawing from the model-theoretic study of Hilbert spaces
(see Corollary 1.4).

Among our main results is Theorem 5.1, which we quote now.

Theorem A. Let V and W be finite sets, and suppose f : VX W — [0,1]is a (k, )-stable function.
Then, foranye > 0 and any “decay” function o : N — (0, 1), there are partitionsV =V, UV, U ..U
Vpand W =WyU W, U...UW,, withm,n < Oy 5. ,(1), satisfying the following properties.

* Forall (i, j) € [m] X [n], the pair (V;, Wj) is (598 + ¢; o(mn))-homogeneous.
+ [Vol <elVy] and [W,| <e[W,|.

Homogeneity is defined in Section 4 (see Definition 4.1). Roughly speaking, the pair (V;, W)
is (6;¢)-homogenous (with respect to the fixed f: V X W — [0,1]), if for all but ¢|W;|-many
b € W;, for all but ¢|V;|-many a € V;, the value f(a,b) is within & of a fixed number r € [0,1]
that depends only on i and j (along with a dual statement quantifying in the reverse order). In
analogy to homogeneity for graphs, this yields the “density” bound || f |ViXWj —r|l; €8+ 2¢e(see
Remark 4.2). The proof of Theorem A also provides definability conditions on the sets V; and W
in terms of the function f (see Remark 5.3). Finally, we note that the bound Oy s . (1) is ineffective
due to the use of pseudofinite methods.

The sets V,, and W, in Theorem A are small “exceptional” sets of vertices, which can be
incorporated into V; and W, to obtain a total partition (with certain costs; see Remark 4.7 and
Theorem 5.2). We also prove a version of Theorem A involving balanced equipartitions (see Theo-
rem 6.1). Moreover, Theorem 6.8 gives a strong decomposition theorem for stable functions in the
sense of “analytic” regularity.

We now discuss our methods, as well as other aspects of this paper (including purely model-
theoretic results). In combinatorics, the analytic generalization of regularity is often viewed as
being very useful, but only requiring routine variations of existing arguments. So, we make the
important remark that this is not the case for stable regularity. This is largely because of the shift
from regularity to homogeneity, which yields a much stronger description of the object in question
using highly structured ingredients. The adaptation of these ingredients to the setting of functions
will require several nontrivial steps and new results.
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Szemerédi’s original proof of his regularity lemma was direct and finitary. Likewise, the proof
of stable graph regularity in [19] was at the finitary level but with tools from stability such as
the 2-rank. On the other hand, it is well known that a theorem about all finite objects of a cer-
tain kind can be obtained from a theorem about a single “nonstandard finite” (or pseudofinite)
object (although this method typically does not yield effective bounds, where relevant). Such an
approach to graph regularity is described in a blog post by Tao [27], with origins in broader work
of Elek and Szegedy [6]. An account can also be found in course notes of the third author [20].
Insofar as stable regularity is concerned, it is very natural to use pseudofinite methods as one can
plug into to the existing theory of local stability in model theory. This approach to stable graph
regularity was carried out in [18], giving a structure theorem for infinite bipartite graphs (V, W; E)
for which the formula E(x, y) is stable, and in the presence of finitely additive (Keisler) measures
on the relevant Boolean algebras of subsets of V .and W.

This will be our approach to stable regularity in the current paper. However, because we are
working with a function f : V X W — [0, 1], rather than a relation E C V X W, the relevant non-
standard environment is in the realm of continuous logic where the basic formulas are real-valued
rather than Boolean-valued. The change in logic is one reason for our use of the expression
“continuous stable regularity.” This also fits with combinatorics where the word “continuous”
is sometimes used to indicate the passage from graph relations to real-valued functions. Finally,
we note that our setting is related to recent work of Chernikov and Towsner [5] on tame regular-
ity for [0,1]-valued (k + 1)-ary functions of bounded VC; -dimension (a higher arity analog of NIP,
which refers to 2-ary functions and VC-dimension; for more information and definitions, see the
aforementioned citation).

There is some work on local (formula-by-formula) stability in continuous logic which we can
and will appeal to (such as [4]); but we will also need to develop new results concerning Keisler
measures and stable formulas in the continuous environment. This is done in Section 3. In fact,
we will work in large part under the weaker assumption that the given continuous formula ¢(x, y)
is “-stable” for a particular 6 > 0 (rather than fully stable, i.e., §-stable for all § > 0; see Defini-
tion 3.1). For a given model M, the relevant Keisler measures will be regular Borel (probability)
measures on the space S,,(M) of complete ¢-types over M.

In the classical first-order context, a basic theorem is that if ¢(x, y) is stable, then any Keisler
measure x on the space S,(M) is a countable weighted sum u = ¥’ a; p; of Dirac measures, where
p; € S,(M) and ¥ a; = 1. An account of this result is given by the third author in [22], drawing
from earlier work of Keisler [13]. We prove the following analog in the continuous setting (quoting
Theorem 3.12).

Theorem B. Let M be a metric structure. Suppose that ¢(x,y) is 5-stable, and u is a Keisler measure
on S, (M). Then thereis a countable collection {C;};c; of pairwise disjoint closed subsets of S,(M) each
of diameter at most 26, such that u = Y ;- a;j;, where y; is a Keisler measure concentrating on C;
and Y., o; = 1.

Here, “diameter” refers to the local “d-metric” on S¢(M ) (see Definition 3.5), which is simply
the discrete metric in the classical setting. When ¢(x, y) is fully stable, Theorem B is similar to a
result of Ben Yaacov from [1] (see Remark 3.13). In Section 4, we will use Theorem B to prove the
following model-theoretic regularity statement (paraphrasing Theorem 4.6).
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Theorem C. Let M be an w-saturated metric structure. Suppose that ¢(x, y) is 8-stable, and u and v
are Keisler measures on Sqa(M )and Sg+ (M), respectively. Then, for any € > 0, thereare m, n > 1 such
that for any y € (0, 1), there are partitions M* = AyUA; U..UA,, and MY =B,UB; U...UB,
satisfying the following properties.

* Forall (i, j) € [m] X [n], the pair (A;, B;) is (56;y)-homogeneous for y and v.
x u(Ap) < eu(A,) and w(By) < eu(B,).

Moreover, A; and B; satisfy specific “definability conditions” involving ¢(x, y).

A more elaborate version of this theorem is Lemma 4.4, which is stated in such a form that when
M is an ultraproduct of (continuous) finite structures, then the data can be transferred to the finite
to achieve Theorem A. The very delicate aspects of the transfer are carried out in Sections 5.1 and
5.2. When specialized to the classical first-order setting, the proof structure of Theorem C becomes
a kind of synthesis of the strategies from [18] and [22], with some additional simplifications.

1 | STABLE FUNCTIONS

Before stating the definition of stability for functions, let us set some general notation, which will
be used throughout the paper.

+ Given an integern > 1, let [n] = {1,...,n}.
+ Given a set X and a subset A C X, we let 1, : X — {0, 1} denote the indicator function of A.
When X is understood, we write 1 for 1y.

Definition 1.1. Let f: V X W — R be a function, where V and W are arbitrary sets. Given a
linear order I and some § > 0, we say that f is (I, §)-stable if there do notexista; € Vand b; € W,
fori € I, such that

|f(a;,b;) — f(aj,by)| > 6 foralli < j from I.

Given k > 1, we say that f is (k, §)-stable if it is ([k], §)-stable; and we say that f is §-stable if it
is (N, 8)-stable. (Here we use the standard orders on N and [k].)

It is easy to check that f : V x W — R is d-stable if and only if it is (I, §)-stable for all infinite
linear orders I. We also note that in certain contexts, f is §-stable if and only if it is (k, &)-stable for
some k > 1 (specifically, when f has bounded image and (V, W, f) is “saturated” in the model-
theoretic sense).

Our definition of stability has been formulated in a particular way so as to agree with previ-
ous work in the model-theoretic setting (e.g., [4]), and connect to the appearance of stability in
broader mathematics (as we discuss below). However, the definition differs slightly from the usual
definition of stability for (bipartite) graphs, and so, we take a moment to clarify this.

Remark 1.2. Let V and W be sets and fix a binary relation E C V X W. Then, E is k-stable if there
do not exist a;,...,a;, € V and by, ..., b, € W such that E(q;, bj) holds if and only if i < j (i.e.,
(V,W;E) omits ([k], [k]; <) as an induced subgraph). While this does not necessarily coincide
with (k, §)-stability of the indicator function 1 for some choice of §, note that if 15 is (k, 1)-
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CONTINUOUS STABLE REGULARITY | 50f 36

stable, then it easily follows that E is k-stable as defined above. (Moreover, 1 is (k, 1)-stable if
and only if it is (k, §)-stable for any 6 > 0.) Conversely, by a routine Ramsey argument, one can
show that if E is k-stable then 1y is (O, (1), 1)-stable. We will comment on a continuous analog of
this situation in the Appendix.

Call a function f: V X W — R stable if it is §-stable for all § > 0. This notion turns out to
be quite pervasive in functional analysis. First, it corresponds to Grothendieck’s “double-limit”
condition from [9], used to characterize relatively weakly compact sets in the Banach space of
bounded continuous functions on an arbitrary topological space. This connection has been used to
provide analytic proofs of several important theorems from stability theory [2, 21]. Second, Krivine
and Maurey [16] defined a Banach space B to be stable if the function f(x,y) = ||x + y|| is stable
when restricted to the unit ball U in B. They observe that any LP-space is stable for 1 < p < oo,
and their main result is that any infinite-dimensional stable Banach space contains 7 for some
1<p<oo.

Third, we discuss Hilbert spaces. Given a Hilbert space H, there is a natural interpretation of
H as a metric structure in an appropriate (multisorted) language, which includes the vector space
structure and the inner product. In this case, the complete theory T of H is stable, meaning that
every formula is stable in every model of T (see [3, Section 15]). Thus, any Hilbert space satisfies the
Krivine-Maurey definition of stability. Another natural formula to consider is the inner product
function f(x,y) = (x,y), which is stable in any Hilbert space when restricted to the unit ball. It is
now understood that the stability of the inner product in Hilbert spaces is largely responsible for
the recurring phenomenon of stable formulas arising naturally in several previous settings. A well-
known example is [11, Proposition 2.25] from Hrushovski’s breakthrough work on the structure
of approximate groups. Previous related results include [10, Lemma 6.1], [12, Lemma 5.21], and
[14, Lemma 3.4], each of which relates to the study of simple theories. The proposition from [11]
is also a key ingredient in the model-theoretic proof from [23] of Tao’s algebraic regularity lemma
for definable sets in finite fields [29].

We now take the opportunity to explain how stability of Hilbert spaces can be used to produce
very general examples of (k, §)-stable functions (such as those underlying [11, Proposition 2.25]).
Fix a formula ¢(x, y) in the language of Hilbert spaces. Assume that ¢(x, y) is [-1, 1]-valued when
restricted to the unit ball (e.g., (x,y) or %llx + y||, but x and y could also be tuples of variables).
Now let H be a Hilbert space with unitball U. Given arbitrary sets V and W, and functions g : V —
Uandh: W - U,letp,,: VXW — [-1,1] be defined by ¢, ,(a, b) = ¢(g(a), h(D)).

Theorem 1.3. For any ¢(x,y) and & > 0, there is some k > 1 such that forany H, V, W, g, and h
as above, ¢, : VXW — [-1,1] is (k, §)-stable.

Proof. 1t suffices to show that for any ¢(x,y) and § > 0, there is some k > 1 such that ¢(x,y)
is (k, &)-stable in any Hilbert space. But this follows from compactness and the fact that any
completion of the theory of Hilbert spaces is stable. O

Let us point out some specific cases of the previous theorem.

Corollary 1.4. For any 6§ > 0, there is some k > 1 such that, in each case below, the function f is
(k, 8)-stable.
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(i) LetX,V,andW be finite sets, and fix arbitrary functions g : X XV — [-1,1]andh: X X W —
[-1,1]. Let f : V X W — [-1,1] be defined by

1

f(a’b): m

> gCx, a)h(x, b).
xex

(ii) Let G be a locally compact group, and fix continuous functions g,h: G — [-1,1] with com-
pact support C. Let u be a left Haar measure on G, normalized so that u(C U C™') < 1. The
convolution g * h: G — [-1,1] is the function

(g % h)(x) = / SO ) dy.

Let f: GXG — [-1,1] be defined by f(x,y) = (g * h)(xy).

(iii) Let M be a metric structure and let {(x) be a Keisler functional over M (see Definition 2.12). Fix
[-1,1]-valued formulas ¥, (x,y) and ,(x, z). Let f : MY X M? — [0, 1] be defined by f(a,b) =
(1 (x, ), (x, b)).

Proof. In each case, we apply Theorem 1.3 with ¢(x, y) = (x, y). For case (i), let H = RX with the
normalized inner product. Then f is ¢/, Where ¢ : V> Umapsatog(x,a)andh’': W - U
maps b to h(x, b).

For case (ii), let H = L*(G, u) with inner product (u,v) = [uvdu. Let ¢',h’: G — U be
defined by ¢’(a) = g(at) and h’'(b) = h(t''b). Then, f is Py

For case (iii), let u be the Borel measure on S, (M) corresponding to f, and let H = L?(S,.(M), u)
with inner product as in (ii). Let g : MY — U and h: M? — U be defined by g(a) = ¥,(x, a) and
h(b) = ,(x,b). Then, fis ¢, . O

Linear functionals on metric structures will be discussed in more detail in Section 2.3. Note
that case (iii) of Corollary 1.4 generalizes case (i). Moreover, if one applies (iii) to a classical first-
order structure M, and identifies Boolean formulas with their indicator functions, then f(a, b) =
u(,(x, a) A p,(x, b)) where u is a Keisler measure on Def  (M). If M is sufficiently saturated and
u is invariant (over some small set), then stability of f is [11, Proposition 2.25]. This last point,
namely, the use of stability of the inner product in Hilbert spaces to deduce [11, Proposition 2.25],
was communicated to the third author by Remi Jaoui, after seeing it in a course by Hrushovski in
Paris.

Remark 1.5. In the context of Theorem 1.3, suppose that H is L?(X, u) for some probability space
(X, 1), (x,y) is the inner product, and g and h take values in the set of v € H such that ||v]|, =
1 (which is a subset of the unit ball). Then, in this case, one can show k = exp?(0(51)) by an
elementary argument due to Tao [28]. Note that this situation covers most of the examples in
Corollary 1.4.

2 | PRELIMINARIES ON CONTINUOUS LOGIC

We assume familiarity with the foundations of continuous logic and continuous model theory.
See [3] for an introduction to this subject.
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2.1 | Basic notions

Let £ be a continuous language. We work in the setting where formulas may take values in a
bounded subset of R. Specifically, each predicate symbol P in £ comes with a distinguished closed
bounded interval I, C R (in addition to the modulus of uniform continuity Ap), and the definition
of an L-structure includes the requirement that P is Ip-valued.

Let T be a complete £-theory, and fix an £-formula ¢(x, y). For simplicity, we assume that
@(x,y)is [0,1]-valued (but this is not crucial). Throughout this section, we work with a fixed model
MET.

Let S,(M) denote the space of local ¢-types over M. Recall that a type p € S,(M) is uniquely
determined by the function b — ¢(p, b) from M” to [0,1]. Moreover, S.,(M) is a compact Hausdorff
space under the natural quotient topology inherited from S, (M). Further details can be found in
[4, Section 6].

Definition 2.1.

(1) A ¢p-formula over M is a continuous function ¢ : S,(M) — R.
(2) A p-generated formula is a uniformly continuous combination of p(x, y;) fori < w, thatis,a
formula of the form {(x, ) = a(p(x, y;)i<,), Where a : [0,1]” — R is a continuous function.

Remark2.2. In[4], continuous functions on S, (M) are referred to as ¢-predicates (over M), and the
word “formula” is reserved for the smaller class of syntactic or finitary formulas. For our purposes,
this distinction will not be significant because we will either be working with the general class of
formulas as defined above, or with very specific families of finitary formulas.

The next result, which is part of [4, Fact 6.4], says that p-formulas (over M) coincide with
“instances” of p-generated formulas.

Fact 2.3. A function 3 : S,(M) — R is continuous if and only if there is a ¢-generated formula
¢(x, ) and some b € MY such that p(x) = ¢(x, b).

Given a ¢-formula ¢(x) over M and a set B C R, define
[¥(x) € B] :={p € 5,(M) : P(p) € B}.
Given @-formulas ¥, (x), ,(x) over M, and Borel sets B,, B, C R, we let
[%1(x) € By Ap,(x) € B,] = [91(x) € Bi] N [¢,(x) € B,],
and similarly for v.

Definition 2.4.

(1) A subbasic open set in S;,(M) is a set of the form [¢(x, b) € U] where b € MY and U C Ris
a bounded open interval.

(2) Abasic open set in S (M) is a finite intersection of subbasic open sets.

(3) Asubsetof S,(M) is explicitly open if it is a finite union of basic open sets.
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Fact 2.5. The basic open sets in S,(M) (as defined above) are a basis for the topology on S,(M).
Definition 2.6. A Keisler measure on S,(M) is a regular Borel probability measure on S,(M).

Let ¥(x) be a p-formula over M, and fix B C R. If B is Borel (resp., open, closed, etc.), then
[¥(x) € B] is Borel (resp., open, closed, etc.). In this case, if  is a Keisler measure on S, (M), then
we write u(y(x) € B) to denote u([¢p(x) € B]).

We will also use the previous notation in the global setting where u is a Keisler measure on
S(M) and y(x) is an £, -formula. In this case, we have the pushforward measure 2 of u to S,(M)
and, if ¢(x) is a p-formula and B C R is Borel, then u(¢(x) € B) = i(y(x) € B).

Definition 2.7. Givenaset U C R, letay : R — [0,1] be defined by
ay(x) = min{d(x, R\U), 1}.

Note that ay; is uniformly continuous, and so, in particular, it is a logical connective. Moreover,
if U is open, then a;;(x) > O ifand only if x € U.
Suppose V' C S, (M) is an explicitly open set. Then, we can write

m n;
v=JNleGx.b)) €Uyl

i=1 j=1
where each b, ; is from M” and each U; j isabounded open interval. Set y = i, j) and define the
@-generated formula

Y, y) = max min ay, (@(x,y;,))-

Then, 1(x, y) > 0 is logically e(_]uivalent to \/l”;1 /\7’=1 @(x,; ;) € U, ;. Therefore, V = [(x, b) >
0]. A formula of the form 1 (x, b) is called an explicit ¢-formula over M. So, we have shown that
V C S (M) is an explicitly open set if and only if it is of the form [$(x, b) > 0] for some explicit
p-formula (x, b) over M.

Remark 2.8. One can further assume that the intervals Ui j have rational endpoints. However, we
will not make this assumption in general.

Note that if ¢p(x) is a p-formula over M, and D C R is closed, then the expression ¢(x) € D is
logically equivalent to the L-condition ocR\D(zp(x)) = 0. In particular, ¢(x) € D defines a zeroset
in M*.

Definition 2.9. An explicit p-zeroset is a subset of M* in the lattice” generated by zerosets
defined by ¢(x, b) € D, where b € M” and D C R is closed.

For example, if {)(x) is an explicit ¢-formula over M, and 7 € [0, 1], then ¥(x) > 5 defines an
explicit p-zeroset in M™*.

T Recall that a lattice of subsets of some set X is a collection of subsets closed under (finite) unions and intersections.
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CONTINUOUS STABLE REGULARITY 9 of 36

2.2 | Linear functionals

Let V be an ordered real vector space with anorm ||-||. Alinear functionalon Vismapf: V —» R
such that f(rv + sw) = rf(v) + sf(w) forallv,w € V and r, s € R. A linear functional { is positive
if f(v) > 0 for all v € V such that v > 0y,. A linear functional { is bounded if there is some c > 0
such that |f(v)| < c|jv]| for all v € V. The operator norm ||f|| of a bounded linear functional f is
the infimum of all ¢ > 0 satisfying the previous condition.

Given a compact Hausdorff space X, the space C(X, R) of all continuous functions from X to R
is a real ordered normed vector space (in fact, a Banach space) under the pointwise partial order
and the uniform norm || ||, = sup,ex |f(x)I.

Fact 2.10. IfX is a compact Hausdorff space and { is a positive linear functional on C(X, R), then {
is bounded and ||f|| = f(1).

Proof. This is a basic exercise, but we will include the proof for later reference. We first fix
¢ € C(X,R), and show [{(¢)| < f(Dll¢lls- Note that |¢| < [l¢ll1, and so, [[¢]l,1—¢ > 0 and
l@llo1 + @ = 0. Thus, ||@||f(1) — f(¢) = 0 and ||¢||.f(1) + f(¢) > 0, as desired. This shows that
f is bounded and |[f|| < f(1). Conversely, f(1) = [f(D] < lIfll11lle = IIfll- d

Recall that if X is a compact Hausdorff space, then a Radon measure (on X) is a regular
Borel measure u on X such that u(X) < oo. Given a Radon measure ¢ on a compact Hausdorff
space X, one obtains a positive linear functional f, on C(X,R) such that f,(f) = /X f du. Note
that [|f, |l = u(X). The Riesz-Markov-Kakutani theorem states that the map u ~ f, is a bijection
between Radon measures on X and positive linear functionals on C(X, R). Therefore, regular Borel
probability measures correspond to positive linear functionals of operator norm 1.

2.3 | Linear functionals on metric structures

Let £ be a continuous language. Given an L-structure M and some sort x, we work with the vector
space C(S, (M), R) of L-formulas over M in x, with the pointwise partial order and uniform norm
as in the previous subsection. We may also decorate the norm as ||go||2§ for emphasis. Note that
the set of finitary (syntactic) £-formulas in x over M forms a subspace of C(S, (M), R), which is
dense by [4, Fact 6.4]. Moreover, if ¢(x) is such a formula, then ||cp||2g = Supyem lp(a)l.

Remark 2.11. Suppose that T is a complete £-theory. Then, the ordered normed vector space struc-
ture on L-formulas (over @) in some fixed sort x is part of the theory of T. In other words, if
M = N, then for any £-formula ¢(x), we have ||go||2§ = ||qo||f:’0 , and given L-formulas ¢(x) and
¥(x), we have M < M if and only if oV < ™.

Definition 2.12. Given an L-structure M, a Keisler functional (in x) over M is a positive linear
functional f on C(S,(M), R) such that ||f|| = 1.

Note that any nonzero positive linear functional on C(S, (M), R) can be normalized to a Keisler
functional. Let us restate the Reisz—Markov-Kakutani theorem in this context.
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10 of 36 | CHAVARRIA ET AL.

Fact 2.13. If M is an L-structure, then the map u — [ dpu is a bijection between Keisler measures
on S, (M) and Keisler functionals in x over M.

We also recall that a Keisler functional is determined entirely by its behavior on the subspace
of finitary formulas.

Proposition 2.14. Suppose that M is an L-structure, and {,, is a positive linear functional on finitary
L-formulas over M in x. Then {, extends uniquely to a positive linear functional f on C(S,. (M), R)

with [[fll = [Ifoll

Proof. Using the same steps as in the proof of Fact 2.10, one sees that f, is bounded, and hence
continuous. Thus, the claim follows from the fact that the linear subspace of finitary £-formulas
is dense in C(S,. (M), R) (see [4, Fact 6.4]), together with basic facts in functional analysis (see [24,
Exercise 1.1.19]). O

In light of the previous result, we will sometimes view linear functionals as maps on
C(S,(M),R), while in other cases as maps on the subspace of finitary £-formulas over M,
depending on the relevant context.

We end this section by examining ultraproducts of functionals. Fix an infinite index set %, a
collection (M,),cs of L-structures, and an ultrafilter 7" on X. Let M be the metric ultraproduct
1, M. Let x be a fixed sort, and suppose that for all s € X, we have a positive linear functional f
on C(S,(M,), R). Assume further that the set {||f,|| : s € £} of norms is bounded. Given a finitary
L-formula ¢(x, b) over M, define f(¢(x, b)) = lim, f,(¢(x, b*)) where (b%),c5 is a representative
of b.

Proposition 2.15. f induces a well-defined positive linear functional on C(S,(M),R). Moreover,
IFIl = limg, [If;ll.

Proof. We first show f is well defined. Fix a finitary £-formula ¢(x, y) and metrically U-equivalent

sequences (b%)cs and (c%),cs. We verify lim; - f,(¢(x, b*)) = lim;, f(¢(x, c*)). Toward this end, we
fix € > 0 and show that the set

X 1= {s € [f(px, b)) — f(e(x, )| < &)
isin V. Let R > 0 be a bound on ||f,|| for all s € . By assumption, the set
Yi={s€X:d®’c’) <Ayy,)(e/R)}
isin V. Moreover, if s € Y, then [|¢(x, b*) — ¢(x, c)||, < /R, and so,
|fs(q0(x7 bS)) - fs(go(x7 Cs))l = |fs(§0(x’ bs) - CD(x, cS))| S R”(D(x, bs) - go(x? Cs)”oo < €.
Therefore, Y C X, whence X € V.
Now, since ultralimits preserve vector space operations, it follows that f is a linear functional.

We show next that f is positive. Fix an £-formula ¢(x, b) over M such that ¢(x, b) > 0. By Lo§’s
theorem, lim;- inf . @(x, b%) > 0. Now fixe > 0. Then theset Z :={s € X : ¢(x,b%) > -e}isin U".
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CONTINUOUS STABLE REGULARITY 11 of 36

If s € Z then ¢(x, b%) + € > 0, and so, f(¢(x, b%) + €) > 0, which implies

fs(go(x’ bs)) 2 'fs(g) = 'Efs(l) = 'E“fs”-

Therefore, {(¢(x, b)) = lim;, f(¢(x, b%)) > -elim;, ||fs]| > -€R. Since € > 0 was arbitrary and R is
fixed, it follows that f(¢(x, b)) > 0. So, we have shown that f is positive. Finally, note that ||f|| =

f(D) = limy, f3(1) = limy,- || O

Example 2.16. Working in the above setting, suppose also that each M, is finite. Then, for a given
sort x, we can define the “average value functional” f, such that if p(x) is a finitary L-formula over
M, then f(p) = IMLé‘I > aeM> @(a). Note that each f, is a Keisler functional in x over M,. By the
previous proposition, it follows that f : = lim,, f, is a Keisler functional on M, which we refer to

as the pseudofinite average value functional on M in sort x.
We will also need the following standard fact (see [3, Proposition 7.6]).

Fact 2.17. Assume L is countable and let {M : s € X} be a countable family of L-structures. Then,
1, M is w,-saturated for any nonprincipal ultrafilter U" on X.

3 | KEISLER MEASURES ON STABLE FORMULAS

Let T be a complete £-theory, and fix a [0,1]-valued £-formula ¢(x, y). Since we will be working
locally around ¢(x, y), there is no harm in assuming that £ is countable.

Givenr,s € R,andsome ¢ > 0, wewriter ~, stodenote |[r — 5| < . Wealsoletr — s = max{r —
5,0} So, r = s = 0if and only if r < s.

Definition 3.1. Given § € [0, 1], we say that ¢(x,y) is -stable (in T) if for every M E T, the
function ¢ : M* X MY — [0,1] is §-stable (as defined in Section 1).
We say that p(x, y) is stable if it is §-stable for all § > 0.

It is not hard to show that when checking §-stability of ¢(x, y) with respect to T, it suffices to
consider a single w-saturated model M k T. In the next lemma, we further note that §-stability is
an “open condition.”

Lemma 3.2. There is some 5, € [0, 1] such that for any § € [0,1], ¢(x, y) is §-stable if and only if
6>9,
¢

Proof. Suppose that ¢(x,y) is §-stable for some & > 0. We find some ¢ > 0 such that p(x, y) is &’-
stable for all ' € (§ — ¢, §). This suffices to prove the lemma (take 8, = lif(x, y) is not §-stable
for any & € [0, 1]). By compactness, there is some k > 1 such that ™ is (k, §)-stable for all M k T.
Define the formula

O(X 15 wees Xjes V15 05 Vi) 1= rgl<a]x(5 = lo(x;, ¥;) — 9(x, ¥)D.
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12 of 36 | CHAVARRIA ET AL.

Then for any M k T and ay, ..., a; € M*, b, ..., b, € MY, we have 6(a,b) > 0. By compactness,
there is some ¢ > 0 such that infﬁ%{y 0(x,y) = ¢ for all M F T. Unpacking this, it follows immedi-
ately that ¢ is (k, §’)-stable for any M E T and 8’ € (8§ — ¢, §). Therefore, ¢(x, y) is §’-stable for
any 8’ € (6 —¢,9). O

Let ¢*(y,x) denote the same formula ¢(x,y), but with the roles of object and parameter
variables exchanged.

Definition 3.3. A min-max ¢*-generated formula is a formula of the form

,X) = min max o(x; ;,
S, %) KKMQ@}( i Y)

for some m,n, ...,n,, > 1.

The next result says that if ¢(x, y) is §-stable, then ¢-types are “uniformly approximately ¢*-
definable.” See [4, Lemma 7.4] for details.

Lemma 3.4. Assume that ¢(x, y) is 6-stable. Then there is a min-max ¢*-generated formula ¢ g(y, X)
such that, forany M £ T and p € S,(M), there is some ¢ € M™ such that for allb € M?, p(p, b) ~s
¢ <i(b, 0).

It is easy to see that if p(x, y) is §-stable, then so is ¢*(y, x), and thus, by the previous lemma,
we obtain a min-max g-generated formula ¢ g*(x, y) satisfying the analogous conclusion for all
types g € Sg«(M).

For the rest of this section, we fix a model M E T. We now recall the topometric space structure
on Sga(M ), as well as the associated Cantor-Bendixson ranks, as defined in [1, 4]. Recall that a
topometric space is a pair (X, d) where X is a Hausdorff space and d is a metric on X satisfying the
following properties.

(i) The metric refines the topology, that is, for every open V' C X and every p € V, there is some
¢>0suchthat{ge X : d(p,q) <e}CV.

(i) The metric function is lower semicontinuous, that is, for any € > 0, the set {(p,q) € X x X :
d(p,q) < e}isclosed in X x X.

Definition 3.5. The d-metric on S¢(M) is d(p, q) = suppepy |@(p, b) — @(g, b)|.

Despite our use of the terminology “d-metric,” we note that this metric on S,(M) can be quite
different from what is usually called the d-metric on the space of complete types (see [4, Sec-
tion 4.3]). For example, if the metric on M is discrete, then so is the d-metric on complete types,
although what we call the d-metric on S,(M) may not be discrete (for a given @).

Fact 3.6. (S,(M),d) is a (compact) topometric space.

Proof. See [4, Fact 6.2] and [1] (especially Definition 1.2 and the remarks after Lemma 1.9). Given
the definition of the metric on S,(M), properties (i) and (ii) are also easy to check directly. ~ []
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CONTINUOUS STABLE REGULARITY 13 of 36

The following is a straightforward exercise that we will use later.

Proposition 3.7. Suppose that {(y,X) is a min-max ¢*-generated formula. Then |{(q,c) —
$(q',0) <d(q,q") foranyc € M* and q,q’ € S,(M).

Given C C S, (M), let diam(C) = sup{d(p,q) : p,q € C}.

Definition 3.8. FixJ§ > 0.

(1) We define closed sets X5, C S(p(M ), for a an ordinal. Let X5, = Sy (M) and, for a limit ordinal
a,set X o = (<o X56- Finally, set

Xsa41 = ﬂ{F C X5 - Fisclosed and diam(X ,\F) < &}.
(2) Fix a nonempty closed set C C X. The §-Cantor-Bendixson rank of C is
CBs(C) :=supfa : X5, NC # @} € Ord U {oo}.
If CBs(C) = a < o0, then define CBmy(C) := C N Xy ,.

The previous definition also makes sense when d = 0, and yields the usual Cantor-Bendixson
rank of a topological space. However, we will not use this case.

Proposition 3.9. Fix§ > 0 and suppose C C S, (M) is closed and nonempty.

(a) CBmg(C) is closed and nonempty.

(b) If CB5(C) < o0, and D C C is a nonempty closed set disjoint from CBmgs(C), then CBs(D) <
CB;(0).

(c) If CBs(C) < o0, then CBmg(C) admits a finite open cover Uy, ...,U, such that diam(U; N
CBmys(C)) < Sforalll <i<n.

Proof. These follow easily from the definitions. See also the remarks following [4, Definition

7.9]. O
The following is a “§-local” analog of [4, Proposition 7.11].
Proposition 3.10. If p(x,y) is -stable, then CB25(S¢,(M)) < oo0.

Proof. Thisis more or less implicitin [4]. But we will provide a sketch. Toward a contradiction, sup-
pose CB,5(S,(M)) = co. Arguing inductively as in [4, Proposition 7.11], we may construct M, < M
of countable density character, and types {p, : 1 € 2*}in S,(M,) such that d(p,, p;) > 26 for all
distinct n,A € 2. By Lemma 3.2, we can fix §’ < & such that ¢(x, y) is §’-stable. For each 7 € 2%,
apply Lemma 3.4 to find ¢, € M, such that for all b € M, ¢(p,,b) =5 §g’(b, ¢,)- Since My has
countable density character, there are distinct 1,1 € 2% such that ||§’2/(y,c',7) -< g,(y, Clleo <
2(8 — &'). But then d(py, ps) < 26 by the triangle inequality, which is a contradiction. O
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14 of 36 | CHAVARRIA ET AL.

Our next main goal is a description of local Keisler measures for §-stable formulas. We will
obtain a continuous analog of the well-known result that in a classical discrete theory, if ¢(x, y)
is stable, then any Keisler measure on S;,(M) can be written as an infinite weighted sum of types
(see [22, Fact 1.1]).

Lemma3.11. Let u be a Keisler measure on S,(M), and fixé > 0. Then for any closed set C C S,(M),
ifu(C) > 0and CB5(C) < oo, then thereisa closed set C' C C such thatdiam(C’) < 6 and u(C") > 0.

Proof. We first prove the lemma in the special case that u(CBmg(C)) > 0. So, assume this is the
case, and let D = CBmg4(C). By Proposition 3.9(c), there are open sets Uy,...,U,, C SgD(M ) such
that D C |J;_, U; and diam(U; n D) < 8. Let Y; = U; N D, and note that each Y; is Borel. Since
u(D) > 0, there must be some 1 < i < nsuch that u(Y;) > 0.LetC’ = Y; and note that C’ C D C C
and u(C’) > u(Y;) > 0. Finally, by lower semicontinuity of the metric, and since diam(Y;) < §, it
follows that diam(C”) < 8.

Now we prove the lemma in the general case. Let C C S,(M) be closed with x(C) > 0 and
CBs(C) < o0. We proceed by induction on CBs-rank. If CB5(C) = 0, then CBm4(C) = C, and
so, we can apply the special case above. So, assume the result for ranks strictly less than
CB;(C).

Let C; = CBmg(C). By the special case above, we can assume u(C;) = 0. Set X = C\C;. Then
X is Borel and u(X) = u(C) > 0. By regularity, there is a closed set D C X such that u(D) > 0. By
Proposition 3.9(b), we have CB5(D) < CBs(C). So, we can apply the induction hypothesis to find
a closed set C! € D C C such that diam(C’") < 6 and u(C’) > 0, as desired. O

Given a Keisler measure u on S,(M) and a Borel set X C S, (M), with u(X) > 0, the localization
of u at X is the Keisler measure uy on S,(M) such that py(B) = u(B N X)/u(X) for any Borel
BC S¢(M ). We now restate and prove Theorem B from the introduction.

Theorem 3.12. Assume that p(x,y) is 6-stable, and let u be a Keisler measure on Sy (M). Then there
is a countable collection (C;);c; of pairwise disjoint closed sets in S¢(M ) such that:

() foralli €1, diam(C;) < 28 and u(C;) > 0, and
(i) = Yies aific, where a; = p(Cy).

Proof. Let{C; : i € I} be a maximal family of pairwise disjoint closed sets in S,(M) with positive
measure and diameter at most 26. Then I must be countable by countable additivity of u. Let
B = [J;g; Ci» and note that B is Borel. We claim that u(B) = 1. Indeed, if not then by regularity,
there is a closed set C C S,(M) such that u(C) > 0 and C N B = @. By Proposition 3.10, we may
apply Lemma 3.11 to C to obtain a closed set C’ C C with u(C’) > 0 and diam(C’) < 28. Then C is
disjoint from C; for all i € I, contradicting maximality of the family.

Now let a; := u(C;). Then, for any Borel set X C S,(M), we have

uX) = u(BNX) =Y u(CnX)= Y aucX).
iel iel

Therefore, 1 =

ier AiMc,, as desired. -
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CONTINUOUS STABLE REGULARITY | 15 of 36

Remark 3.13. Call a subset of S,(M) e-finite if it can be covered by finitely many sets of diameter
at most ¢. It follows from Theorem 3.12 that if ¢(x, y) is §-stable and u is a Keisler measure on
Sy(M), then for any € > 0, there is some closed 25-finite set C C S,,(M) such that u(C) > 1 —e.
This is closely related to [1, Theorem 3.31] which (in our setting) says that if ¢(x, y) is stable, then
forany ¢ > 0, there is a metrically compact set C C S.,(M) such that u(C) > 1 — ¢. One can deduce

this from Theorem 3.12 by choosing a closed %-finite set C,, such that u(C,,) > 1 — 2™"¢, and setting
C=ysoCh-

Before continuing with the main theme of this paper, we state some corollaries connecting
Theorem 3.12 with the idea of approximating measures by types.

Corollary 3.14. Suppose that ¢(x, y) is 5-stable, and let j1 be a Keisler measure on S,(M). Then,
there is a finitely supported Keisler measure (' on S, (M) such that for each b € M”,

/ @(x,b) du ~,5 / o(x,b)dy.
S,(M) So(M)

®

Proof. By Lemma 3.2, we can fix some &’ < & such that ¢(x, y) is §’-stable. By Theorem 3.12, we
can write u = Y, a;uc, where I is countable and the C;’s are pairwise disjoint closed sets of
diameter at most 28’. For each i € I, pick some p; € C;. So, for any g € C; and b € M”, we have
@(q,b) ~,5 @(p;,b). It follows that for any i € I and any b € M7,

[ e b dic s | opib)duc, = e(pib) 0

Lete = 6 — ', and choose a finite set I, C I'such thata := },,.; a; > 1 — . Consider the finitely
supported Keisler measure ' = a’! Zielo a;p;, where p; is identified with its Dirac measure.
Then, by (), we have that for any b € M”,

/( )@(X, b)du = Z“i/ @(x,b) dpuc, 75 Y, @@y, b)
S

(M iel G ier

s Yagob)=a [ ot~ [ otub)dd,
) 5,(M)

i€l Sp(M
as desired. O

When ¢(x, y) is stable we obtain the following conclusion, which also follows from [1, Corollary
3.32].

Corollary 3.15. Suppose that ¢(x, y) is stable, and let u be a Keisler measure on S,(M). Then there
is a sequence (u,);"_, of finitely supported Keisler measures on S,(M) such that for all € > 0, there is
an N such that foralln > N and b € M?,

/ o(x,b)du zs/ o(x,b)du,.
Sy (M) Sy(M)

y
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‘We point out that both of the previous corollaries can be rephrased as statements about linear
functionals. Let us also note that the conclusion of Corollary 3.15 is a continuous generalization of
what is known in the classical first-order case for NIP formulas, and thus, we expect that it extends
to the setting where the continuous formula ¢(x, y) is NIP. But in any case, the approximation by
finitely supported measures in Corollary 3.15 is much weaker than the statement of Theorem 3.12.
In the classical first-order case, this is analogous to property (b) below of a Keisler gp-measure u
over M being substantially stronger than property (a) below.

(a) Foreache > 0, there are py, ..., p; € S,(M) such that for any b € M, u(¢(x, b)) is within € of
the average value of p(x, b) at the p;’s.
(b) Foreach ¢ > 0, there are py,..., p; € S¢(M) such that u({p;, ..., px}) =1 —¢.

In the discrete setting, ¢(x, y) is stable if and only if property (b) holds for all Keisler ¢-measures
u; and ¢(x,y) is NIP if and only if property (a) holds for all 4 and all ¢-generated formulas (x, y).

4 | MODEL-THEORETIC STRUCTURE OF STABLE FORMULAS

The goal of this section is to prove Theorem C, which provides a structure theorem for stable
continuous formulas in terms of “homogeneous pairs.” We first define our notion of homogeneity
precisely, and in a general setting.

Let V and W be nonempty sets, and fix a function f : V X W — [0, 1]. Let .A and B be Boolean
algebras of subsets of V and W, respectively. Assume that .4 contains any set of the form{x € V :
f(x,b) € D} where b € W is fixed and D C [0, 1] is a closed interval. Also assume the analogous
condition for 5. Let 4 and v be finitely additive probability measures on .A and 3, respectively.

Definition 4.1. Fix real numbers J,y,¢ > 0. Given V, € A and W, € B, we say that the pair
V,,W,)is (6;7,¢c)-homogeneous for i and v if there are V' C V, and W’ C W, satisfying the
following properties.

() V' € Aand u(V') = (1 = p)u(V,).
(i) W' e Bandv(W') > (1 —y)»(W,).
(iii) There is some r € [0, 1] such that for allb € W',

uda eV, : fla,b)msrp) > (1 —e)u(V,).

(iv) There is some s € [0,1] such that for alla € V’,
v(ib €W, : f(a,b) ~s s} > (1—W(W,).
If y = ¢, then we say that (V,, W,) is (§; )-homogeneous for ; and v.

Note that the fixed function f has been suppressed from the terminology. When the ambient
measures are fixed, and there is no possibility of confusion, we will also often omit “for 4 and v.”
For example, if V and W are finite, then we will generally be in the situation where ¢ and v are the
normalized counting measures on P(V') and P(W). Let us now comment more specifically on the
finite case. Given a (nonempty) finite set X and a function f : X — R, we define the normalized

¢'norm |If Iy = o ex If ).
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Remark 4.2. Assume that V and W are finite, and suppose that (V,, W, ) is (8; 7, £€)-homogeneous,
witnessed by r, s € [0, 1]. Then:

% for all but at most y|W,|-many b € W, for all but at most ¢|V,|-many a € V,, we have
f(a,b) =5 r, and dually,

+ for all but at most y|V,|-many a € V,, for all but at most ¢|W,|-many b € W, we have
f(a,b) =5 s.

In this case, it should intuitively follow that r and s are not much different. Indeed, if /' =
flv xw, then by a direct computation, IlLf'(x,y) —rll; and || f'(x,y) — s||; are both bounded by
8+ y+e.So|r—s| <2(6 +y + ¢) by the triangle inequality.

We now return to the previous setting where T is a complete continuous L-theory, with £ count-
able. Fix M E T and a [0,1]-valued £-formula ¢(x, y). The first step toward our main result is the
following corollary of Theorem 3.12.

Corollary 4.3. Assume that ¢(x, y) is 5-stable, and let u be a Keisler measure on S,(M). Then for any
€ > 0, there are pairwise disjoint closed sets C,, ..., C,, C S,(M) satisfying the following properties.

(i) diam(C;) <28 foralll1 <i<n.
(i) uUL, C) > 1—eu(Cy).
(iii) Foranyy € (0, 1), there are pairwise disjoint explicitly open sets V1, ...,V, C Sy (M) such that,
foralll1<i<n, C; CV;and uW(V\C;) < yu(V;).

Proof. Let{C; : i € I}beasin Theorem 3.12, and set¢; := u(C;). Identify I with an initial segment
of Z*, and choose n > 1 large enough so that ), a; > 1 — ea,. This yields C, ..., C,, satisfying
(i) and (ii). Toward (iii), fix y € (0, 1).

For all distinct i, j < n, we can choose disjoint open sets V; ; and W ; such that C; C V; ; and
C; CW;;.SetV] =4,V nW;;). Then V] is open, C; C V/, and if i, j < n are distinct, then
VinvVicVinW;;=g.

Now, by regularity of i, thereisan openset U; 2 C; such that u(U;) < a;/(1 —y).LetV!' =V n
U,;. Then Vl.” is open, C; C Vi”, ,u(Vl.”) <a;/(1—y),and V{’, ..., V!! are pairwise disjoint. Since C;
is compact, there is an explicitly open set V; such that C; C V; C V. Note that V;,...,V, are
pairwise disjoint and, for all 1 < i < n, we have

u(V\C) = u(Vy) — a; <yu(V;),
where the final inequality follows from w(V;) < u(V}") < u(U;) < a; /(1 = ). O

We now prove a rather technical lemma that will be used to obtain both Theorems A and C
from the introduction.

Lemma 4.4. Assume ¢(x, y) is 5-stable, and let u and v be Keisler measures on S,(M) and S,-(M),
respectively. Fix some € > 0. Then there are m,n > 1 such that for any y € (0, 1), there are:

x explicit p-formulas ¥, (x), ..., ,,,(x) over M,
x explicit ¢*-formulas 6,(y), ..., 6,,(y) over M,
x finite tuples ¢,, ..., ¢,,,d,, ..., d, from M, and
* somen >0,
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satisfying the following properties.

@ [P,(x) > 0], ..., [¢,,(x) > O] are pairwise disjoint.
) [6,(») > 0],...,[6,,(») > 0] are pairwise disjoint.
(3) (VI i) = 1) > 1—eu(x) > 7).

@ (Vi 6,00 2 1) > 1-ev(®:,(3) > 7).

(5) If1<i< m,thenforallb e M?,

#9100 > n A (. b) ms C2(0,8)) > (L= (i) > 0).
(6) If1 < j < n,thenforalla € M¥,
v(0,0) 20 A @, y) 735 ¢ (a.d)) > (L=y(E;0) > 0).

(7) Forall (i, j) € [m] X [n], there is some r € [0, 1] such that

v(0,0) 2 1AL M) > (L= 7(O,0) > 0).

(8) Forall (i, j) € [m] X [n], there is some s € [0, 1] such that

w020 AL d) s s) > (L= V) > 0).

Remark 4.5. Before starting the proof of Lemma 4.4, we take a moment to analyze properties
(5)—(8), and explain the connection to homogeneous pairs.

Fix (i, j) € [m] X [n], and consider the sets V; := [¢;(x) > n] C S,(M) and W; = [Gj(y) >
n] € S,«(M). Then (5) says that for any b € M”, the function ¢(x, b) is within 3§ of the fixed
value ¢ g(b, ¢;) on almost all of V;. For readers familiar with [19], this is a functional analog of the
notion of a “good set” in stable graph regularity. By itself, this does not give homogeneity, because
the value ¢ g(b, ¢;) depends on the choice of b. However, property (7) says that there is some single
r € [0,1] (depending only on i and j) such that the function ¢ g(y, ¢;) is within 28 of r on almost
all of W;. Applying the triangle inequality, we conclude that for almost all b € W ;(M), ¢(x, b) is
within 58 of r on almost all of V;. By symmetric arguments with properties (6) and (8), we also
have some s € [0, 1] such that for almost all a € V;(M), ¢(a, y) is within 56 of s on almost all of
W . Altogether, (V;, W) resembles a homogeneous pair.

Proof of Lemma 4.4. Apply Corollary 4.3 to both u and v to obtain pairwise disjoint closed sets
Cy, s Cpy © S,(M) and pairwise disjoint closed sets Dy, ..., D, C S,«(M) satisfying the following
properties.

(i) Forall (i, j) € [m] x [n], diam(C;) < 26 and diam(D;) < 28.
(i) u(UZ, C)>1—¢eu(C,)and V(U;.’:1 Dj)>1—ev(Dy).
(iii) Corollary 4.3(iii) holds for for both Cy, ...,C,, and Dy, ..., D,,.

Now fix y € (0,1). By (iii), there are pairwise disjoint explicitly open sets V4, ..., V,, C S, (M),
and pairwise disjoint explicitly opens sets W, ..., W, C Sg+ (M), such that if (i, j) € [m] X [n],
thenC; CV;,D; CW,, uw(V\C;) < yu(V;), and v(Wj\Dj) <yv(D)).
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CONTINUOUS STABLE REGULARITY | 19 of 36

Let 1;(x) be an explicitly open ¢-formula over M such that V; = [¢;(x) > 0]. Let 6;(y) be an
explicitly open ¢*-formula over M such that W; = [6;(y) > 0]. Note that properties (1) and (2) of
the lemma hold. For the rest of the properties, we need to define the appropriate ¢;, d;, and 7 > 0.

For each 1 < i < m, let p; be a fixed type in C; and, using Lemma 3.4, choose a finite tuple ¢;
from M such that for all b € M7, g’g(b, Ci) ~5 ¢(p;, b). Foreach 1 < j < n, let g; be a fixed type in
D;, and let d i be chosen similarly (using Lemma 3.4 applied to ¢*(x,y) and ¢ 2* (x, ).

Next, let 7 >0 be small enough so that u(V;\C;) < (y —t)u(V;) for all 1<i<m, and
V(Wj\Dj) <(y- T)V(Wj) for all 1 < j < n. Note also that, by (ii) above,

/x(U V)>1- E/,L(Vl)[.4in]andv(U Wj) >1—ev(Wy).
i=1 j=1

Altogether, by countable additivity, we may choose some 7 > 0 satisfying the following condi-
tions:

U@ (x)=n) > A —1)uV,) foralll <i<m,
V(ej(y) >n)=>0- T)V(Wj) foralllgj<gn
MOV 2 i) 2 1) > 1= eu(ipy (x) > 1), and
vV, 8,0 2 1) > 1—ev(6,(») = ).

In particular, we have properties (3) and (4) of the lemma. As for the remaining properties, we

show (5) and (7). The arguments for (6) and (8) are nearly identical.
For (5), fix 1 < i < mand b € M?, and define

) <
<

bl

* K ¥ ¥

V' = [:(x) 2 0 A p(x,b) m35 {3(b, 6.
We want to show u(V’) > (1 — y)u(V,;). Note that if p € C;, then d(p, p;) < 26 by (i), and so,

¢(p, b) ~5 @(p;, b) %5 {5 (b, &).

Thus, we have [;,(x) > n]\V’ C V;\C,. Therefore,
p([$i(x) 2 n\V) < w(V\C) < (r = DuV) <
Ptz = (1= 12 )i > .
So,
k) > 2L 5 m > A= v,

as desired.
Finally, for (7), fix (i, j) € [m] X [n] and set r = {;(qj, C;). Define

w' = e](y) ZnNA {g(y, c_i) s V] .
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We want to show v(W') > (1 — ]/)V(Wj). Ifqg e D;, then d(q, qj) < 26 by (i), and so, Q‘S(q, ;) Rys ¥
by Proposition 3.7. Thus, we have [6;(y) > n\W' cw ;\D;. By choice of  and similar steps as
above, it follows that v(W') > (1 — y)»(W ). O

In order to derive a statement about subsets of M (rather than S(p(M )) from the previous lemma,
we now assume that M is w-saturated. In this case, any Keisler measure u on S,(M) induces
a well-defined finitely additive probability measure on the Boolean algebra generated by explicit
@-zerosets in M* (see Definition 2.9). We now restate and prove Theorem C from the introduction.

Theorem 4.6. Suppose that M is w-saturated. Assume that ¢(x,y) is 5-stable, and let u and v be
Keisler measures on SqD(M ) and SQ,*(M ), respectively. Fix some € > 0. Then there are m,n > 1 such
that for any y € (0, 1), there are partitions M* = AjUA; U..UA,, and MY =B,UB;U..UB,
satisfying the following properties.

* A,,..,A,, are explicit p-zerosets, and By, ..., B,, are explicit ¢*-zerosets.
x If (i, j) € [m] X [n], then (A;, B)) is (56; y)-homogeneous for u and v.
* 1(Ag) < eu(Ay) and v(By) < ev(By).

Proof. Apply Lemma 4.4. Let A; be defined by %;(x) > 7, and B; be defined by 6,(y) > 7. Then,
A4, ..., A, are pairwise disjoint explicit ¢-zerosets, and By, ..., B,, are pairwise disjoint explicit ¢*-
zerosets. Let Ay = M*\ |J, A; and By = M?\ U;’zl B;.Then u(A,) < eu(A;) and v(By) < ev(B,)
by parts (3) and (4) of the lemma. As outlined in Remark 4.5, it follows from parts (5)-(8) and the
triangle inequality that for all (i, j) € [m] X [n], the pair (A;, B;) is (55;)-homogeneous for u
and v. O

Remark 4.7. In the previous theorem, A, and B, serve as small “exceptional” sets, and are com-
plements of zerosets. These sets can be removed at the cost of weaker control of the error in some
of the homogeneous pairs. More specifically, in the context of the theorem, let A’1 =Aj UA,.
Then for any 1 < j < n, since (4,;,B j) is (59; 7)-homogeneous and u(A,) < eu(A,), it follows that
(A}, B;) is (58;7,¢ + y)-homogeneous. Similarly, if B] = B, U By, then (4;, B)) is (56;7,¢ +7)-
homogeneous for all 1 < i < m. Moreover, (A’ ,B;) is (56;¢ + y)-homogeneous. On the other
hand, A} and Bj are no longer zerosets. In the continuous setting, we expect that is not generally
possible to obtain partitions into zerosets with no exceptional sets. However, one could replace
A, with an explicit p-zeroset A), which contains A, and satisfies u(A)) < (1 + y)u(Ay). After a
similar adjustment to B, this would result in coverings (rather than partitions) of M* and M? by
finitely many zerosets such that all pairs are homogeneous (with parameters as above), and there
is arbitrarily small overlap between the pieces in each partition.

Remark 4.8. By applying Theorem 4.6 in the setting that T is a classical discrete theory, and ¢(x, y)
is a stable formula, we recover the model-theoretic version of the Malliaris—Shelah stable regular-
ity lemma [19], proved by Malliaris and Pillay in [18]. However, we have introduced a finer control
on the error in the homogeneous pairs by means of the parameter y, which is allowed to depend
on the size of the partition. This will be reflected in our main result below for stable functions on
finite sets (Theorem 5.1), where the degree of homogeneity is controlled by an arbitrarily chosen
“decay function.”
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5 | STABLE REGULARITY FOR FUNCTIONS ON FINITE SETS

We now restate Theorem A, which is the main finite result. The proofis given in Section 5.2 below.

Theorem 5.1. Let V and W be finite sets, and suppose f : VX W — [0,1]isa (k, §)-stable function.
Then forany ¢ > 0 and any functiono : N — (0, 1), there are partitionsV =V, UV, U ..UV, and
W =W,UuW,U..UW,, withm,n < Oy s . (1), satisfying the following properties.

* Forall (i, j) € [m] X [n], the pair (V;, W) is (56 + €; 0(mn))-homogeneous.
* Vol <elVy|and [Wy| < e|W].

Before proving this result, we make a few remarks. First, using the same calculations as in
Remark 4.7, one can remove the exceptional sets V|, and W, at the cost of weaker error in some
of the homogeneous pairs. For example, by choosing o(n) = %E in the previous result, we obtain
the following simpler (but weaker) version of Theorem 5.1 without the decay function o or the
exceptional sets.

Theorem 5.2. Let V and W be finite sets and suppose f : VX W — [0,1] is a (k, §)-stable func-
tion. Then for any € > 0, there are partitionsV =V, U ..UV, andW =W, U..U W, withm,n <
Oy5,:(1), such that (V, W) is (56 + €; €)-homogeneous for all (i, j) € [m] x [n].

The proof of Theorem 5.1 will also provide strong definability conditions on the sets V; and W;.
In order to give a precise formulation, we first define some terminology. Given a rational number
a= E with r,s € Z, s > 0, and ged(r, s) = 1, define the complexity of a to be max{|r|,s}.” The
complexity of a rational interval is the maximum complexity of its endpoints.

Now let f: V X W — [0,1] be a function and fix an integer N > 1. Then, we say that a subset
V' C V is f-definable of complexity N if

m n;

i=1 j=1
for some bi’ j € W,some m, ny,...,n,, < N, and some closed rational intervals D; j of complexity at
most N. We analogously define f-definable subsets of W. Finally, we define a min-max f-function
on V of complexity N to be a function of the form

min max f(x,y;
I<i<m 1<j<n; Fo6 )

for some m, ny, ..., n,, < N. Min-max f-functions on W are defined analogously.

Remark 5.3. With the above terminology in hand, we can now elaborate on Theorem 5.1. In
particular, in the conclusion of the theorem, we also have the following.

1 Vi, Vi, W, ..., W, are f-definable of complexity Oy 5 . ,(1).
(2) There are min-max f-functions ¢;(y, X) on W and ¢,(x, ) on V of complexity Oy s . (1), and
tuples ¢, ...,¢, € V¥l and d;, ..., d,, € W satisfying the following properties.

This is the standard number-theoretic “height” function. However, no special properties of this function will be used
other than that it defines a map from Q to N.
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* If1 <i<m,thenforallb e W,
lla €V;: f(a,b) R4l ¢1(b, e} > (1 — a(mn)|V;].

* If1<j<n,thenforalla eV,

b € W) & f(@.b) myy, 1, So(a )}l > (1= o(mm)|Wl.

x Forall (i, j) € [m] X [n], there are rational numbers rij»Sij € [0, 1] of complexity Oy s . (1)
such that, if we define

Wl/,] = {b S W] : gl(b,c_i) zza_‘_%g ri’j} and

Vi”j ={a eV, :¢ad) Rossle Si b
then |Wl./j| > (1 - o(mn))|W;| and |Vl.’j| > (1 —o(mn))|V;].
In particular, it follows from the above properties that for all (i, j) € [m] x [n], (V}, W) is

(56 + &,0(mn))-homogeneous, witnessed by r; ;, s; ;, Wl.”j, and Vl.”j.

See Remark 5.8 for a summary of how the proof yields these extra details.

The decay function ¢ in Theorem 5.1 leads to strong control of the error in the homogeneous
pairs. This will be used to match our work to the setting of analytic regularity for functions (see
Section 6.3). Another application of the decay function will appear in Section 6.1, where we modify
Theorem 5.1 so that it yields equipartitions (at the cost of the definability described in Remark 5.3).

We now start toward the proof of Theorem 5.1. Despite the similarity between this result and
Theorem 4.6, the proof will not be as straightforward as corresponding results in discrete logic.
There are essentially three reasons for this. The first is that the zerosets in Theorem 4.6 are not
necessarily definable (in the strict sense of continuous logic), and so, we need to argue directly
with the underlying formulas used to construct these zerosets. The second complication has to
do with the small discrepancy that exists between an abstract ultralimit of normalized counting
measures on finite sets when compared to the pseudofinite normalized average value functional
(see Lemma 5.4 below). Finally, rather than working directly with homogeneous pairs (which
involve an “if-then” statement with measures), it will be much cleaner to instead transfer the
individual underlying components that control homogeneity, as given by Lemma 4.4.

5.1 | Approximating the counting measure

Let Def o (R, <) be the set of D C R that are first-order definable over Q in (R, <).

Fix a countable continuous language L. Let F be a countable set of (finitary) £-formulas, which
is closed under the connectives aj, for D € Def o (R, <) (see Definition 2.7). We define an expanded
language £ consisting of £ together with the following new symbols.

(i) For each ¢(x) € F, add a new [0,1]-valued predicate symbol li()'c).
(ii) Foreachrationalr € [0,1]and 8(x, y) € F,with x a singleton, add new [0,1]-valued predicate
symbols Py () and Qg (7).

Each new predicate is given a trivial modulus of uniform continuity.
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Let M be a finite £-structure with the discrete metric. We expand M to an £*-structure M™*
as follows. For each (X) € F, interpret 1;(2) in M* as the indicator function of ™ (x) > 0. For

each rational r € [0,1] and 8(x, y) € F, define
PIQV,I: : MY = [0,1] so that b — |6M(x,b) < r|/|M*|, and
Qg’: : MY - [0,1] so that b — |6M(x,b) > r|/|M*|.

Now let (M),cn be a collection of finite £-structures with discrete metrics. Fix an ultrafilter
U onNand let M* = [[,- M. Let M = [],- M be the reduct of M* to L. Note that £ and £L*
are both countable, and so, M and Mt are both w, -saturated by Fact 2.17. We identify M with its
underlying universe, and use M when emphasis on the expanded language is necessary.

Given a sort x, let 4} and f}. denote the normalized counting measure and average value func-
tional on (M")". Let f, = lim;, f$ be the pseudofinite average value functional, and let , denote
the Keisler measure induced by f,. When there is no possibility of confusion, we will omit the
subscript x in the previous notation.

Given an £*-formula ¥(x, b) over M and a set B C R, define

W ((x,b) € B) := lillfnﬂs(nbMS(x, b) € B),

where (b%),, is a choice of representative for b. Note that this is well defined because the metric
on M is discrete.

Lemma 5.4. Let (x, b) be an L-formula over M, with {(x, y) € F.

(a) IfU € Def (R, <) is open, then u((x,b) € U) < u*(%(x,b) € U).
(b) IfC € Def (R, <) is closed, then u*(p(x,b) € C) < u(3p(x,b) € C).

Proof. Note thatif C C R is closed, then u(y(x, b) € C) = 1 — u(¥(x, b) € R\C) (and similarly for
1*). Moreover, if U C R is open, then (x, y) € U is logically equivalent to a;(3(x, 7)) > 0. So,
in light of the assumptions on F, it suffices to just prove part (a), and only consider the case of
¥(x,b) > 0 (i.e., U = (0, )).

The predicate lz(x, b) induces a continuous {0, 1}-valued function on S, (M*). Let X C S,(M*)
denote the support of this function. Then

u(X) = /S e 0B = B = 106 5
= lim (0" (x5 > 0) = & (P, B) > 0)

So, to prove the result, it suffices to show [¢(x, b) > 0] C X.

Fix p € [¢(x,b) > 0], and setr = 3(p, b). Suppose a € M~ is such that |y(a,b) —r| < 3. Since
P(a, b) = lim,, p(a’, b%), it follows that for "-many s > 0, we have |(a’, b*) — r| < r. So, for U'-
many s > 0, we have ¥(a’, b*) > 0, that is, lg(as, b%) = 1. Therefore, lzz(a, b) = lim,, li(as, b%) =

1. Altogether, for any a € M~ if |(a,b) — r| < g, then lg(a, b)=1.
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24 0f 36 | CHAVARRIA ET AL.

Now, since Mt is w-saturated, it follows (e.g., via [3, Proposition 7.14]) that for any g € S,.(M™),
if |(g,b) —r| < g then lg(q, b) = 1. Since ¥(p, b) = r, we therefore have 1,(p, b) =1, that is,
p € X, as desired. Ol

Note that the previous lemma did not involve the extra predicates introduced above in (ii).
These will be used in the next subsection.

5.2 | Proofof Theorem 5.1

Suppose that the theorem fails for some fixed k > 1,8, > 0,and o : N — (0, 1). Then, foralls > 0,
we have a (k, §)-stable function f, : V, X W — [0, 1] that admits no partition as in the statement
of Theorem 5.1, with m, n < s.

Let £ be a continuous language with two sorts V' and W, along with a [0,1]-valued binary
predicate symbol f on V x W with trivial modulus of uniform continuity. For each s > 0, define
an L-structure M, such that V(M,) =V, W(M,) = W, and fMs = f.. We equip M, with the
discrete metric.

Let F be a countable set of £-formulas which contains f(x,y) and is closed under variable
substitution as well as the connectives max, min, [¢ — 8|, ¢ — r and r — ¥ for rational r, and ap
for D € Def (R, <) (see Definition 2.7). Let M be the expansion of M; to an L*-structure as
described in Section 5.1. Fix a nonprincipal ultrafilter 7" on N, and let M* = [, M. Let M =
I1.- M be the reduct of M* to £, and let 5, u,, and u; be as defined in Section 5.1. We will only
use the case where x is a singleton (in either V or W), and so, we will just write u, u*, and u* (the
relevant sort V or W will be clear from context). Set T = Th(M).

Lemma 5.5. f(x,y)is &'-stablein T for any 8’ > 6.
Proof. Set % = (xq,...,x;) and y = (¥;, ..., ¥ )- Fix 8’ > & and define the formula
0(x,y) := max;;(6" = |f(x;, ¥;) = f(x;, y)D)-

Then, forany s > 0and a € V¥, b € W*, we have 6(a, b) > 8’ — § > 0. Therefore, inf?c’{y, 0(x,y) >
&' — &8 > 0.0, f(x,y)is &§-stable in T (via Fact 2.17). O

We now view u as determining local Keisler measures on S;(M) and on S.(M) (specifically,
we will work with the pushforward of u to these local type spaces, while still using the symbol u).
In the next lemma, we transfer the properties of Lemma 4.4 to obtain suitable statements in the
finite setting.

Lemma 5.6. Let (x,b) be an explicit f-formula over M, and let 6(y,a) and ¢(y,¢) be explicit
f*-formulas over M. Fix8',y € (0,1) andn > A > 0. Set p = — A. For s € N, define

V. ={a eV :(ab’) > A} dinlandW, ={be W, : 6(b,a*) > 1}.

(a) Suppose that forallb € M?,

H(PG,b) = A f(x,b) 5 {(b,0)) > (A= PuEp(x,b) > 0).
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CONTINUOUS STABLE REGULARITY 25 of 36

Then, for U'-many s € N, we have that for allb € W,

|{a € Vs,* : f(a’b) z5’+p g(b,C_S)H > (1 - 2}/)|V5,1<|
(b) Suppose that there is some r € [0, 1] such that
O, a) znAl(y,c)rsg r) > (1 —y)ué(y,a) > 0).
Then, for U-many s € N, we have
|{b € Ws,* : {(bsés) z5’+,:) r}' > (1 - y)le,*l

Proof. Without loss of generality, we may assume that &’, 7, and 1 are rational.

Part (a). First, note that our assumptions imply u(#(x,b) > n) > 0. So, by Lemma 5.4, we
have u*((x,b) > 1) > 0. Let 7 = %,u*(l,b(x, b) > 1). Then, there is some X; € U" such that

wW@(x,b%) > 1) > tforall s € X,.
Now define the £-formula

§(x,y,9,2) 1= max{n - P(x,9), 1f(x,y) = B, )| = &'},
which is in 7. By assumption, for all b € M?, we have
u(€(x,b,b,¢) = 0) > (1 —y)up(x,b) > 0).
By Lemma 5.4, for all b € M?”, we have
H (G, b,b,6) < p) > (L =y @(x, b) > 4.
So, if we define the £*-formula
7y, 3,2) 1= 1 =y)Qy, (9 = P¢ ,(y, 7, 2),

then supﬁ/’+ 7(y,b,¢) = 0. By Lo$’s theorem, there is some X, € U such that if s € X,, then

+

Supys 7n(y,b*, &%) < yt. Therefore, if s € X; N X,, then, forall b € W,
HECb, b, ) < p) 2 A=, b%) 2 ) =yt > (1= 20K’ ((x, b°) > 1),

and so, [{a € V., : (a,b) s, (b, > (L= 29IV, .
Part (b). Define the L£-formula

X, %,2) := max{n = 6(y, %), 1{(»,2) —r| =~ &'}.
Then, u(x(y,a,c) = 0) > (1 — y)u(6(y, a) > 0) by assumption. By Lemma 5.4,

wWx(y,a,0)<p) > u(x(y,a,6)=0) > A=y 6@y, a) > 1).
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26 of 36 | CHAVARRIA ET AL.

So, for U'-many s € N, we have
wx»,a’e) <p) > A -pnp'@Qy,a’) > 2),
thatis, [{b € Wy, : {(b,C°) g4 1} > 1 =)W, | N

Choose some 8’ € (5,6 + éa). By Lemma 5.5, f(x,y)is (k, §')-stable in T. We apply Lemma 4.4
(with our fixed € > 0) to obtain some m,n > 1, and then choose y := %a(mn) in the conclu-
sion. For the reader’s convenience, we reiterate the full statement. Set {;(y,x) :=¢ jf/ (y,X%) and

$H(x,y) = §'?; (x,¥). Then there are:

explicit f-formulas ¥, (x, b ), ..., %,,(x, b,,) over M,
explicit f*-formulas 6,(y, a,), ...,6,(», @,) over M,

finite tuples ¢y, ..., ¢,,, d1, ..., d,, from M, and
some 7 > 0,

* Kk ¥ ¥

satisfying the following properties.

(1) [¥,(x,b)) > 0],...,[¥,,(x,b,,) > 0] are pairwise disjoint.
2) [6,(y,a,) > 0],...,[6,(3,a,) > 0] are pairwise disjoint.
3wV, i(x,b) =) > 1—eu(,(x,b)) > n).

@ u(\Vi_, 6,(3.a) 2n) > 1—eu®,(y,ay) > n).

(5) If1 <i<m,thenforallb € M,

u(9;0e, b)) = A f(x,b) m30 $1(b,E)) > (1 —Y)u(pi(x, b;) > 0).
(6) If1 < j < n,thenforall a € M¥,
u(6,(0.¢) 2 0 A f(@y) Ry (a(a,d)) > (1= PIu®;(,¢)) > 0).
(7) For all (i, j) € [m] X [n], there is some rij € [0,1] such that
18,3, €)= n A, ) mps 1y j) > (= 1IuE;(y) > 0).
(8) Forall (i, j) € [m] X [n], there is some s; ; € [0, 1] such that

#(lpi(X,Ei) ZNA §z(x,d-) Riys! Si,j) > (1- V)M(lpi(x,l;i) > 0).

Note that properties (3)-(8) remain true if 7 is replaced by something smaller. So, we may assume
7 < 66 — 68’ + ¢ (the right side is positive by choice of §’). Leta = (a,, ..., d,)and b = (b, ..., b,,),
and define

P(x,b) = min ¥;(x, b)[.4in]andd(y,a) = min 0,(y,a;).

Givens>0,1<i<m,and1sjsn,setVS,i:{aGVS : ¢i(a,Bf)>%n}andWSj ={beW,:
_ 1
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CONTINUOUS STABLE REGULARITY 27 of 36

Claim 5.7. The following properties hold for '-many s € N.

(@ Viq,..., Vs, are pairwise disjoint and W, ..., W, ,, are pairwise disjoint.
() TUZ, Vil > IVl —elVi land | U, Wl > IW| —elW,].
(c) f1<i<m,thenforallb e W,

o€ Vet f(@b) my, 1, Si(b.EDH > (1= o(mm)IV.
(d) If1 < j<n,thenforalla € V,
l{be Wy, : f(a,b) Rl S“z(a,d_j)}l > (1 —o(mn)|Wy;l.

(e) Forall (i, j) € [m] X [n], [{b € W; : ¢ (b,¢) Rastle rij}l > 1 —o(mn)|W;l.
(f) Forall (i, j) € [m]x [n]. {a € Vy; : {3(a.d) osile i B> @ =amn)|V,l.

Proof. Since the metric on M is discrete, part (a) follows easily from f.0o§’s theorem and properties
(1) and (2) above. For part (b), note that by (3) and Lemma 5.4, we have /,t*(\/l."l1 ¥i(x,b;) > %n) >
1—ep*(y(x, by) > %77), andso, | JI_, Vil > [Vi| — €|V | holds for U/-many s € N. We similarly
get | U;’zl Wi il > W] —e|W, | for U'-many s € Nfrom (4) and Lemma 5.4. For parts (c) through
(f), apply Lemma 5.6 to (5) through (8), while choosing 1 = %n. O

Since U" is nonprincipal, we may choose s > m, n satisfying the properties in the previous claim.
Set Vo =V\UL, Vyiand Wy = W\ U, Wy ;. Then [V, < eV, | and Wl <e|W,,| by
part (b) of Claim 5.7. By parts (c¢), (d), (e), and (f) of Claim 5.7, and the triangle inequality, it
follows that for all (i, j) € [m] x [n], (V;, W )18 (56 + ¢;0(mn))-homogeneous. Altogether, this

contradicts the choice of f, : V, X W, — [0, 1], and we have finished the proof of Theorem 5.1.

Remark 5.8. In order to obtain the extra definability conditions described in Remark 5.3, one
only needs to further assume that f admits no such partition in which the complexity of the
ingredients is bounded by s. Then, at the end of the proof, choose s to be larger than the complexity
of the objects constructed. This requires one to also assume that various parameters are rational,
in particular, 7, Fij» Sij» and the endpoints of the intervals involved in each ; and 6 It For 7, this is
easy, and for 1; and 6; use Remark 2.8. Finally, replace r; ; and s; ; by a sufficiently close rational
number, and use ¢ to absorb the difference.

6 | FURTHER RESULTS
6.1 | Equipartitions

A common tension between regularity lemmas proved using finitary methods versus those proved
using model-theoretic methods is that the model-theoretic proofs typically do not provide equipar-
titions without further work. In the case of regularity for arbitrary graphs or functions, a partition
can be turned into an equipartition using a number of standard methods. However, for sta-
ble regularity, which involves homogeneity and and no irregular pairs, more care is required
to build an equipartition. In this section, we will demonstrate how the decay function in The-
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orem 5.1 makes this relatively easy.” On the other hand, we note that the process of turning
a partition into an equipartition usually results in a loss of “definability” of the pieces (as in
Remark 5.3).

Theorem 6.1. Let V and W be finite sets, and suppose f : V X W — [0, 1] isa (k, §)-stable function.
Then forany e > 0 and any function o : N — (0, 1), there are partitionsV =V, UV, U ..UV, and
W =W,UW,U..UW,, withm,n < Oy s . ,(1), satisfying the following properties.

(i) Forall(i,j) € [m] x [n] thepair i, W; )is (56 +¢; cr(mn)) homogeneous.
(i) Vil =1Vl foralll< < m; and |W; | = |W;| forall1 < <n
(iii) Vol < elV]and |[Wy| < £|W|

Proof. Without loss of generality, assume that o is decreasing. Let 7: N — (0,1) be defined
by (n) = 50(41’12 [¢1]%), and let N be the bound Oy, /,.(1) from Theorem 5.1. Now let
f: VXW —[0,1] be (k,d)-stable. By Theorem 5.1, there are partitions V =V;UV]U..U
V:n, and W =W/ UuW|uU..U W;l,, with m’,n’ <N, such that [V(| <e[V]]/2, W] <e|W)]/2,
and (Vi’,W;.) is (56 + ¢; 7(m'n’))-homogeneous for all (i, j) € [m'] X [n']. Set N* = 2N%¢c! =
Ok d,€, 0(1)

For each 1< i< m/, partition V] = V’ U.. UV “UX; so that |V’ | = [ |V|] for all 1
p<t;, and |X;| < |V| (note that we allow t = 0) Similarly, for each 1< j < n, partition
w =W’ U...UW’ UY; sothat|W’ | = [ —IWlland Y| < 5 IW]. LetVl, .,V enumer-

J J1 n’ mn
ate{V’ r1<ismwm, 1 <tk andleth,.. W, enumerate{W’ 11<jgn,1<9q <ujh
Then (11) holds by construction. For each 1 <i < m/, we have tl2 -V < |Vi’| < |V], and so,
t; <2m’e’l. Thus, m < 2(m’) el < N*. Slmllarly, n< 2(n’) el < N*.

To show (i), we fix Vl.’p and W} " and show that (Vl.’p, W; q) is (58 + ¢; o(mn))-homogeneous.
By construction, there are r € [0,1] and W’ C W;. such that |W/| > (1 — z(m'n’ ))|W;.| and, for all
bew,

Ha €V} : fa,b) mssy. 1} > (1= 2(m'n))|V]|. )
LetW"” =W'n W} . Then,
W' > |W;-q| - T(m'n’)|W}| > |W;-q| —t(m'n")|W| > |le~q| —t(m'n )2n |W/ [.

Recall that mn < 4(m’n’) 5'2, and so t(m’ n) . < o(mn) by choice of 7. So, |[W”|>(1 -
a(mn))lWl.’ql. Moreover, if b € W', then by (),

fae V], : f(a,b)mssyc r}l 2 V] | —t(m'nHV]| > A — o(mn)|V] I,

where the final inequality follows by similar calculations. By a symmetric argument, we obtain
the desired homogeneity for (V’ W’ )

Finally, set V, = V] U JiZ, X and Wo =W{u U 1 Y. Note that we now have partitions V =
VouV,u..uvV, and W= W0 uWw,u...uU W satlsfylng (i) and (ii). So, it remains to prove the

7 This was also observed by Terry in the setting of stable graph regularity.
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CONTINUOUS STABLE REGULARITY 29 of 36

bounds in (iii). For this, we have
Vol = IVl + 2% 10 < Vi1 +m (551V1) <elvi
By a similar argument, we get |W,| < ¢|W|. O

Remark 6.2. Asin Theorem 5.1, the sets V, and W, are exceptional sets of vertices, which are used
to ensure strong homogeneity with a decay function (c.f. Theorem 5.2) and to achieve perfectly
balanced equipartitions. The use of an exceptional set to achieve the latter feature is typical in
general regularity as well (see, e.g., [15, Theorem 1.7]). A standard alternate approach is to evenly
distribute the exceptional set among the remaining pieces of the partition, which yields a new
partition satisfying ||V;| — |V;|| < 1 for all i, j (see, e.g., [15, Theorem 1.8]). In our situation, one
could do this to remove V,, and W, but it would again result in homogeneity controlled only by
¢ rather than o (as in Theorem 5.2).

6.2 | The case of graphs

Continuing with Remarks 1.2 and 4.8, we note that our previous results yield a qualitative version
of stable graph regularity [19] with homogeneity controlled by a decay function. Our formulation
is in terms of bipartitioned graph relations, which differs from [19] (see Section 6.4 for further
discussion).

Corollary 6.3. Let V and W be finite sets and suppose E C V X W is k-stable. Then for any ¢ > 0
and any function o : N — (0, 1), there are partitionsV =V,UV,U..UV, and W = W, U W, U
. UW,, with m,n < Oy . ,(1), such that for all (i, j) € [m] X [n],

[EN (Vi x W)l < a(mn)|Vi[|W;]or [EN(V; X W))| 2 (A —a(mn))|[V;[|W)].

Moreover, one of the following cases holds.

@ 1V
(ii) |V,

| <elVyl, IWyl| < elWql, and Vy,...,V,,, Wy, ..., W, are E-definable of complexity Oy . ,(1).
| <elVI, Wl <elW|, |Vi| = |Vl forall1 < i, j <m,and |W;| = |W,| forall1 <i,j < n.
Proof. Let f = 1. As explained in Remark 1.2, f is (O;(1), §)-stable for any § > 0. So, we can
apply Theorem 5.1 with § < % — ¢ (without loss of generality, assume ¢ < %). It follows that in
a (56 + ¢; o(mn))-homogeneous pair (V;, Wj), we may take the uniform value r; ; to be either 0
or 1. This yields the main claim with case (i) (via Remark 5.3). To instead obtain case (ii), replace
Theorem 5.1 with Theorem 6.1 in the previous argument. O

A quantitative proof of the previous result for graphs (stated with case (ii)) was recently given
by Terry and Wolf [30, Theorem 4.7].
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6.3 | Function decomposition

In this section, we use Theorem 5.1 to derive a stable analog of the analytic form of Szemerédi’s
regularity lemma for functions. We follow the formalism described by Tao in [26]. Since the ana-
lytic setting involves decompositions of functions into sums of various components, we will need
to develop terminology for functions that are not necessarily [0,1]-valued.

Given a (nonempty) finite set X and functions f,g: X - R, define the normalized inner
product

(f9) = 77 Zex J@)g(0).

The normalized ¢#*>-norm of f is ||f|l, = V/{f,f). Note that ||f]l; = (|f],1), and recall also
that || f||, = max,cx |f(x)|. So, the inequalities ||f||; < [[fll, < ||f]l hold for any f (the first
inequality follows from Cauchy-Schwarz).

Definition 6.4. Let V and W be finite sets, and fix f: VX W — [-1,1].

(1) fis (m, n)-structured it is of the form }’; iTijlvixw, for some partitions V =V, UV, U ..U
Vpand W =W,UW,U..UW,, withr; ; € [-1,1].
(2) fise-pseudorandom if |[(f,1,,p5)| <cforalACVandBCW.

The previous definitions are adapted from [26], although we remark that the “structured”
notion there applies to R-valued functions, and thus includes an additional parameter K bounding
|r;,j| (which we do not require). The notion of pseudorandomness is a special case of the definition
from [26], which involves a more general schematic. We have specialized to the “product struc-
ture” setting described in [26, Example 2.3]. We can now state the analytic regularity lemma for
functions (quoting [8, Lemma 1.1], with some clarification to follow).

Lemma 6.5 (Szemerédi’s regularity lemma, analytic form). Let V and W be finite sets, and let
f 1 VXW —[0,1] be a function. Then for any ¢ > 0 and o : N — (0, 1), there are m,n < O, ,(1)
and a decomposition f = fy, + fpsa + ferr Such that fg. is (m,n)-structured, f,y is o(mn)-
pseudorandom, and || fe.|l, < € Moreover, fq is [-1,1]-valued, whereas f, and fy, + fe. are
[0,1]-valued.

In [8], pseudorandomness is formulated using the “box norm,” and the equivalence with the
definition above is a fundamental result in graph theory (see, e.g., [7, Theorem 2.4] for a pre-
cise statement in the context of functions). We also note that the previous lemma is stated in a
“bipartite form,” which differs from [8] (see Section 6.4 for further discussion).

As a segue to stability, let us discuss how classical graph regularity can be used to obtain a
prototype of Lemma 6.5 for the indicator function of a bipartite graph. Fix some E CV X W
and € > 0. Given (nonempty) A C V and B C W, set a, 3 := |[E N (A X B)|/|A X B| (the density
of E on A X B). Then, Szemerédi’s regularity lemma provides partitions V =V, u.. UV, and
W =W, U..uW,(withm,n < 0,(1)),and aset Z of pairs (i, j), such thatif Z = U(i,j)eZ VixW,,
then |Z| < |V x W|,and if (i, j) ¢ Z, then (V}, Wj)is e-regular. So, for (i, j) ¢ Z, aj =y,
ayp forany ACV; and B C W, with |A| > ¢|V;| and |B| > |W;|. An easy calculation then
shows that Lpnwsw)) — %, is 2¢-pseudorandom as a function on V; X W;. Thus, if we set f;, =

Z(i,j)¢2 ai,le,-ij’ ferr = 1pnz, and fpsd =1p = fsr — ferr then1p = f + fpsd + ferr> and we
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have that f, is (m, n)-structured, fq is 2e-pseudorandom, and || fer Il < \/E Also, fy, and f.,
are [0,1]-valued, while f psd 18 [-1,1]-valued.

In the setting of stable graphs, the previous situation is qualitatively strengthened in two ways.
First, the set X of irregular pairs does not appear, which removes the f, term. Second, e-regularity
is replaced by e-homogeneity, which is to say that each density «; ; is within € of some &; ; €
{0,1}." Thus, (V;, Wj;E) is almost complete or empty, and &; jis the “generic” value of 1 on
Vi X W;. Consequently, if one redefines f;, above so that ; ; is replaced by &; ;, then f, is still
(m, n)-structured (in fact, it is the indicator function of the union of all V; X W; on which E is
almost complete), and f o4 = f — f,isa{-1,0, 1}-valued function whose support has size at most
€|V x W|. This motivates the following remark.

Remark 6.6. Suppose f : V X W — [-1, 1] is an arbitrary function such that |[supp(f)| < €|V X W|.
Then || f||; < &, which implies that for any other function g : VX W — [-1, 1], we have |{f, g)| <
Ifll; <e. So, f is automatically e-pseudorandom. In other words, having small support can be
viewed as a very strong form of pseudorandomness.

In the setting of stable functions, we will see the same picture emerge, in the sense that f ;. will
be determined by the “generic value” of f on each homogeneous pair, and f .4 will have small
support. At this level, one could obtain from Theorem 5.2 a decomposition for stable functions
that is very much like the one described above for stable graphs (see Remark 6.11). However, note
that the above discussion of stable graphs does not include the stronger control on pseudoran-
domness using a decay function, as in Lemma 6.5. In order to reintroduce this aspect, we will
need to deal with the issues of the exceptional sets V|, and W, and the appearance of § and ¢ in
the homogeneous pairs. To handle the latter issue, we will relax the “structured” component f,
by allowing for some uniformly bounded fluctuation.

Definition 6.7. A function f: V X W — [0,1] is (J; m, n)-structured if there is some (m, n)-
structured function g : V X W — [0,1] such that || f — g]|, < 6.

As for the exceptional sets, we will deal with those in the same way as one deals with irregular
pairs, which is to put them in an error term. This will yield an error term supported on a set of the
formZ’' = (Vo x W)U (V x W), where |V,| < €|V |and |W,| < €|W|. Note that |Z'| < 2¢|V X W|.
So, Z' is comparable to the error set Z above in terms of size, and we similarly get bounded £2-
norm for any function supported on Z’. On the other hand, it is important to note that Z and Z’
are qualitatively different in a way undetected by norms. Indeed, Z' is built from essentially unary
ingredients, whereas Z is necessarily binary. More precisely, if a function f: V X W — [0,1] is
decomposed as g + h, where h is supported on Z’ (and g has some desirable properties), then after
removing a small amount of V. and W individually, one can assume f = ¢. On the other hand, if h
were supported on Z, then one would need to remove some possibly complicated subset of V- x W,
which represents a more drastic change to the nature of f.

To close this discussion, we will say that a function f : V X W — [-1,1] has e-structured sup-
portifits support is contained in a set of the form Z’ above. Note that if f has e-structured support,
then |supp(f)| < 2¢[V x W1, and so, || f, < V/2e.

TThis is essentially equivalent to a suitable graph-theoretic analog of functional homogeneity (as in Definition 4.1), up to
uniform change in e.
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Theorem 6.8. LetV and W be finite sets, and suppose f : VX W — [0,1]isa (k, §)-stable function.
Then forany e > 0 and any functionc : N — (0, 1), therearem,n < Oy s . (1) and a decomposition

f= fstr + fpsd + ferr such that:

(1) fg s (56 + €; m, n)-structured,
(i) [supp(fpsa)l < o(mn)|V X W|, and
(iii) fo has e-structured support.

Moreover, f i is [-1,1]-valued, f, and f. are [0,1]-valued, and f .. € {f ;| fpsdl}l.

Proof. Apply Theorem 5.1 to obtain partitions V=V, UV, U..UV,, and W = W,UW, U ..U
W, with m,n < Okam(l) so that |V,| <e|V,], Wyl < e|W,]|, and for all (i, j) € [m] X [n],
Vi, W) is (56 + ¢ a(mn)) -homogeneous. For each (i, j) € [m] x [n], choose r; ; € [0,1] and
W CW; such that [W; (1- Ea(mn))lel and, for all b € Wi, H{aeV;: f(a,b) xss5,,
l,}l 1 = o(mn)|V;].
SetZ = (Vo XW)U(V X Wy). Let fg,: VXW — [0,1] be defined by

Ll >

f(a,b) if(a,b) € V; xW;jand f(a,b) #ss. 1y js
fsula,b) =97 if (a,b) € V; xW; and f(a,b) #ss,. I; j, and
0 if (a,b) € Z.

Define fo, = f1; and f = f — fsr — ferr- Then, other than (ii), the claims in the theorem
follow easily by construction. So, we show (ii).

Sety = l0'(mn) Given (i, j) € [m] X [n] and b € W, partition V; = Xb U Yb sothata € Xb if
and only if f(a, b) 55, 1; j. So,if b € W, ;, then |Yb | <y|V;l and fpsd(a b)=0foralla eXb
It follows that

l]’

Supp(fpsd) c U(l JE[m]x[n ((V X (W \Wl])) U UbEW (Yb X {b}))
S0, ISUpP(f )| < 3 FIVIIW, |+ VIVIIW, D) < 201V X W] = o(mm)|V x W], O

Remark 6.9. The previous proof also implies that the underlying partition of f, involves
f-definable pieces of bounded complexity. We could instead use Theorem 6.1 and obtain an
equipartition. (Note that we only need |V,| < ¢|V| and |W,| < ¢|W] to know that f., has
e-structured support.)

Remark 6.10. Call a function f: V X W — [0,1] k-stable if it is (k, §)-stable for some § > 0 such
that forall x,y € V x W, if f(x) # f(y) then | f(x) — f(¥)| > 108. For example, this includes the
setting of k-stable bipartite graphs (after changing k as discussed in Remark 1.2). Suppose f : V X
W — [0,1] is k-stable, and fix V! C V and W’ C W such that (V/, W) is (58 + ¢; £)-homogeneous
for sufficiently small . Then, it follows that there is some r € Im(f) such that for all but at most
g|W'|-many b € W', for all but at most ¢|V’|-many a € V', f(a,b) = r, and dually, for all but
at most ¢|V’|-many a € V', for all but at most ¢|W’|-many b € W/, f(a, b) = r. Altogether, one
obtains a version of Theorem 6.8 for k-stable functions in which f, is (m, n)-structured.
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Remark 6.11. One can obtain a decomposition of (k, §)-stable functions involving no error term, at
the cost of the decay function. Indeed, in Theorem 6.8, if we replace fiq With f,q + ferr, then we
have [supp(f sq)| < (o(mn) + 2¢)|V x W|. Note that we can also write fy, = f! + h where f[
is (m, n)-structured and [|h||, < 56 + €. So, if one is willing to allow f 4 to involve &, then f,
can be made perfectly structured by replacing f o4 with f,iq + h. In this case, f|,,q no longer has
small support, but one still has a bound on || f,i4ll; in terms of 6, ¢, and o(mn). Therefore, f psd 18

still pseudorandom in a strong qualitative sense (see Remark 6.6).

6.4 | Bipartite versus symmetric

In this section, we clarify some subtleties regarding our bipartite viewpoint on graphs and func-
tions. First, recall that any graph (V; E) can be “coded” as bipartite graph (V,V; E) (sometimes
called the bipartite double cover of (V; E)). Similarly, a [0,1]-valued binary function f on a set V'
can be viewed as a bipartitioned function f : V XV — [0, 1]. From this perspective, the bipartite
setting is more flexible because it allows one to distinguish between the two sets. This is also a very
natural setting in which to apply model-theoretic tools. On the other hand, there is one issue with
the bipartite approach, which is usually not discussed in the model-theoretic literature on regu-
larity. In particular, given a graph (V; E) if one applies a bipartite regularity lemma to (V,V; E),
then this results in two potentially different partitions of V.

One way to remedy this issue is to again exploit the decay function. In particular, suppose that
we have partitions V; U...UV,, and W, U...U W, of the same finite set V, in which each pair
(V;, W) satisfies a desired homogeneity property with respect to some f: V' XV — [0,1] (we
ignore the issue of exceptional sets for the moment). Then, we have a common refinement, which
partitions V into at most mn sets. Thus, given a target decay function o : N — (0, 1), one can
define a modified function 7 (similar to the proof of Theorem 6.1) so that if the initial partitions
are homogeneous with respect to 7, then any sufficiently large piece of the common refinement
maintains homogeneity using o, while the remaining small pieces can be put into an exceptional
set. Moreover, if we also start out with two exceptional sets V, and W, then these can be added
to the larger exceptional set, along with any W; that intersects V, in a large set (and vice versa).

As a final remark, we note that when f : V XV — [0, 1] is a symmetric function, one can also
address this issue “upstairs” at the model-theoretic stage. Indeed, given a continuous structure M
and a symmetric [0,1]-valued formula ¢(x,y), with x and y variables of the same sort, the type
spaces S¢,(M ) and Sgo*(M ) can be naturally identified. Therefore, in the setting of Lemma 4.4, if
the measures y and v are the same (e.g., if they both arise from the pseudofinite average value
functional), then one can prove the lemma using the same g-formulas on both sides. Carrying
this through the rest of the steps, we obtain a single partition of V.

APPENDIX
We discuss a natural variation of (k, §)-stability (as defined in Definition 1.1), which is closer to

the definition of k-stability for bipartite graphs.

Definition A.1. A function f : V X W — [0, 1]is *(k, §)-stable if there donot exist a,, ...,a; € V,
by,..,by € W,and r € [0,1] such thatf(ai,bj) >r+difigj, andf(ai,bj) grifi> j.

A “1 ¥T0T "0SLLE9YT

sdny woy

:sdny) suontpuo)) pue swud | oy 99 “[£70z/Z1/1¢] uo Areiqry aurjuQ Ad[IA ‘IS 01y ANSIATUN IS OO Aq ZZ]T [ 'SWI[Z [ 1°01/10p/W0d Ka[Im'

0y wod Kaja Kreiq|

P

25U91] SUOWILIO)) 91 9[qEat|dde oy Kq POUIdAOS SIE SO[OIE V() 08N JO SN 0] A1eIqr] FUIUQ A9JIA UO



34 0f 36 | CHAVARRIA ET AL.

Note that a binary relation E C V X W is k-stable (as defined in Remark 1.2) if and only if 15
is *(k, 1)-stable (if and only if 1 is *(k, §)-stable for all § > 0). As we previously observed, for
“discretely valued” functions such as 1, *(k, §)-stability implies (Z, §)-stability for suitable . On
the other hand, there is a small discrepancy for arbitrary functions.

Proposition A.2.

(a) Any (k,d)-stable [0,1]-valued function is *(k, §)-stable.
(b) For any k > 1 and 8’ > 6§ > 0, there is some ¢ > 1 such that any *(k,§)-stable [0,1]-valued
function is (¢, 8")-stable.

Proof. Part (a). This is straightforward to check.

Part (b). Given m, n > 1, let R,,,(n) be an integer such that any m-coloring of ( ’"2(”)]) admits
a monochromatic subset of size n. Fix k >1and 8’ > 6 > 0. Set e = 8’ — § and fix m > L. Set
¢ = Ry(R,,(2k + 1)). Suppose f : VX W — [0,1] is not (Z, §')-stable. We will show that f is not
(k, &)-stable.

Fixa,,..,a, € Vandby,...,b, € Wsuch that|f(a;, J) f(aj,b )| = &8 foralli < j.Consider
a2-coloring of([i ) according to whether f(a;,b;) > f(a;,b;) + 8 or f(a;,b;) < f(a;, b;) — &' Set
n = R,,(2k + 1). By choice of #, and after relabeling and reversing the order (if necessary), we may
assume that there are ay, ...,a, € V and by, ...,b, € W such that f(a;,b;) > f(a;, b;) + &' for all
i<j.

Forl1<t<m,setl, = [7 —] Consider an m-coloring of ( ) by the minimal ¢ such that
f(aj,b) € I (for i < j). By ch01ce of n, and after relabeling, we may assume that we have
1<t<m,ay,..,ay,, €V,andby, ..., by, € Wsuch thatforalli < j, f(a;,b;) > f(a],b )+ 6
andf(aj,bi) €l,.Setr = #.Then,foralll < J,wehavef(aj, b)) < randf(al,bj) >r— E +5 >
r + 6. Altogether, the sequences (azl-)i.‘=1 and (by; +1)§<=1 witness that f is not (k, §)-stable. 1

In the context of a complete theory, however, the discrepancy can be removed.

Corollary A.3. Let T be a complete theory in a continuous language L, and fix a [0,1]-valued L-
Sformula ¢(x, y). Fix§ > 0, and assume that ¢(x, y) is ‘(k, 6)-stablein T for somek > 1. Then ¢(x,y)
is (¢,0)-stablein T for some ¢ > 1

Proof. First, one checks that *(k, §)-stability in T is an open condition in the sense of Lemma 3.2.
So, there is some §, < & such that ¢(x,y) is (k, §,)-stable in T. By Proposition A.2, ¢(x,y) is
(¢, 6)-stable in T for some £ > 1. O

The previous corollary also follows from [4, Lemma 7.2], whose proof involves similar
Ramsey arguments.
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