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Hidden Degrees of Freedom in Implicit Vortex Filaments
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Fig. 1. The time-evolution of a highly knotted vortex filament according to the rules of inviscid fluid dynamics. Our implicit description represents filaments as
the zero levelsets of space-time complex-valued functions, which automatically handles topological changes of curves without yielding singularities.

This paper presents a new representation of curve dynamics, with applica-
tions to vortex filaments in fluid dynamics. Instead of representing these
filaments with explicit curve geometry and Lagrangian equations of mo-
tion, we represent curves implicitly with a new co-dimensional 2 level set
description. Our implicit representation admits several redundant mathemat-
ical degrees of freedom in both the configuration and the dynamics of the
curves, which can be tailored specifically to improve numerical robustness,
in contrast to naive approaches for implicit curve dynamics that suffer from
overwhelming numerical stability problems. Furthermore, we note how these
hidden degrees of freedom perfectly map to a Clebsch representation in fluid
dynamics. Motivated by these observations, we introduce untwisted level set
functions and non-swirling dynamics which successfully regularize sources
of numerical instability, particularly in the twisting modes around curve
filaments. A consequence is a novel simulation method which produces stable
dynamics for large numbers of interacting vortex filaments and effortlessly
handles topological changes and re-connection events.
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1 INTRODUCTION

The deformation of space curves is an interesting topic in many
subjects such as differential geometry, low-dimensional topology,
classical and quantum fluid mechanics, and electromagnetism. One
example from fluid mechanics is the dynamics of vortex filaments.
In a nearly inviscid fluid, vorticity originates from codimension-1
interfaces or obstacle surfaces. The vortex sheets subsequently roll
up into codimension-2 vortex filaments, due to the Kelvin-Helmholtz
instability. Hence, most physical inviscid fluids have their vorticity
concentrated into a sparse set of space curves, rather than dis-
tributed evenly throughout space. Based on this observation, certain
physical equations model fluids only with dynamically deforming
space curves. Many fluid simulation methods take advantage of this
sparsity structure.

One major challenge for an explicit (Lagrangian) filament-based
fluid solver is to handle reconnection events when filaments collide.
Without any reconnection, the total length of filaments can grow
exponentially, exploding the computational cost and halting the
solver. Hence, existing explicit filament simulators include a tedious
process of collision detection followed by non-differentiable heuristic
geometry surgeries.

To that end, implicit (Eulerian) curve representations are more
appealing. The recently emerging Clebsch representation expresses
vortex lines as level sets of a 2-dimensional-valued function called
Clebsch variables [Clebsch 1859]. Like any level set method, topolog-
ical changes of level set geometries occur gracefully. The difficulty,
however, in a Clebsch-based fluid solver is in the dynamics of the
Clebsch variables. The Clebsch variables satisfy the transport equa-
tion advected with the fluid velocity, which unfortunately behaves
in a swirling motion with a high-spatial frequency and singularities
near the vortex filaments. Such a rough transporting vector field
is hard to resolve accurately in a computational grid. Even if the
transport equation is computed accurately, the level set function will
quickly evolve into a twisted and distorted function that is difficult
to deal with.
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This paper develops a new approach for describing the geometry
and dynamics of filaments with implicit curve functions. Our main
insight is that the problem has a huge number of redundant degrees
of freedom: both the velocity field and the level set function (i.e., the
Clebsch representation) can be varied in ways that do not change the
solution. We exploit these additional degrees of freedom to ensure
stable numerical simulation and automatic handling of topological
changes, without sacrificing accuracy. In particular, we choose an
untwisted Clebsch representation for the level set geometry, and
non-swirling dynamics for advecting vortex filaments. We regularize
these functions by identifying and constraining hidden degrees of
freedom in their representations, allowing us to greatly improve
numerical robustness compared to naive implementations.

Our algorithm is the first method for animating implicit vortex
filament geometry with automatic topological changes. Our mathe-
matical formulation offers new tools for future research on fluid
simulation and curve geometry processing, and our results show
greatly improved stability compared to a standard level set imple-
mentation, with fewer user parameters than for explicit Lagrangian
filament techniques.

2 RELATED WORK

A majority of numerical schemes for the evolution of high-codimension
geometries are developed in vortex methods in fluid animation and
computational fluid dynamics. These vortex-capturing schemes seek
arepresentation for the vorticity and solve their governing equations
of motion.

Explicit vortex methods. In previous vortex methods, vortices are
represented either as particles [Gamito et al. 1995; Park and Kim 2005;
Selle et al. 2005; Zhang and Bridson 2014; Angelidis 2017], filaments
[Cottet et al. 2000; Angelidis and Neyret 2005; Weifimann and Pinkall
2009; Weilimann and Pinkall 2010; Padilla et al. 2019], segments
[Chorin 1990; Xiong et al. 2021], sheets [Brochu et al. 2012; Pfaff
et al. 2012; Da et al. 2015] or volumes [Elcott et al. 2007; Zhang et al.
2015]. Vortex particle methods represent vortices as a disconnected
point cloud. However, the strength of vortex per particle or per unit
volume [Zhang et al. 2015] undergoes a numerically unstable vortex
stretching, requiring an artificial clamping or diffusion that sacrifices
accuracy. The stretching problem is avoided by representing vorticity
per filament, segment, or sheet, or per unit area using differential
2-forms [Elcott et al. 2007]. However, describing vortex explicitly
(Lagrangian method) with filaments, segments and sheets comes
with a cost of sophisticated and heuristic treatment for changes
of vortex topology. Volumetric (Eulerian) methods [Elcott et al.
2007] do not require managing topological changes, but they do
not have a handle on codimensional structures. Our codimension-2
level set method is an Eulerian method that can represent sharp
filament structures without any additional difficulty from vortex
reconnection.

Clebsch representations. Another Eulerian representation of vortic-
ity is to describe vortex lines as the level sets of a 2D-valued function
known as the Clebsch variable [Clebsch 1859; Lamb 1895]. The
representation was not widely adopted since all R?-valued Clebsch
variables can only describe fluids with zero helicity [Chern et al.
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2017]. The helicity problem is solved by using a sphere-valued Cleb-
sch variable [Kuznetsov and Mikhailov 1980] which can represent
nonzero (though quantized) values of helicity. Since the recognition
of these “spherical” Clebsch maps, they have become an established
method for vortex representation in computer graphics [Chern et al.
2016, 2017; Yang et al. 2021]. However, Clebsch variables represent a
smooth vorticity field by the continuum of level sets of all values.
It remains a challenge to represent a sharp codimension-2 filament,
especially with a limited grid resolution. By contrast, our method
represents a sharp filament just as the zero set of a complex-valued
function. Moreover, we show in Section 4.1 that our representation
can actually resolve continuous values of helicity (as opposed to the
quantized values mentioned earlier).

Dynamics of Clebsch variables. In addition to the implicit repre-
sentation of vorticity, Clebsch variables also play significant roles in
a variational and Hamiltonian formulation for the incompressible
Euler equation [Clebsch 1859; Lamb 1895; Morrison 1998; Chern
2017]. In short, one (of many possible) governing equation(s) for
the Clebsch variable is exceedingly simple: the Clebsch variable is
advected by the fluid velocity. This equation of motion is recently
adopted by Yang et al. [2021]. However, referred to as the Lagrangian
chaos, a direct transportation by the fluid velocity quickly stirs
and twists any variable to a distorted one unresolved by the fi-
nite computational grid [Qu et al. 2019]. The Clebsch variable is
no exception under such dynamics. The method of Schréodinger’s
Smoke [Chern et al. 2016] bypassed the Lagrangian chaos: its total
energy (Hamiltonian) includes the Dirichlet energy of the Clebsch
variable, which is therefore bounded for all time. However, while
the dynamics of Schrédinger’s Smoke appear to be similar to that
of Euler’s equation, it is only an approximation to the Euler fluid.
There is still a large degree of freedom in the Clebsch representation
and its dynamical system. Finding an equation of motion for the
Clebsch variable that both describes the correct Euler fluid without
Lagrangian chaos is an unexplored research topic. Our paper de-
scribes an instance of a Lagrangian-chaos-free dynamical system for
an implicit representation of vortex filaments.

Implicit filament representations. We represent filaments as the
zero set of a complex-valued function. These zero sets of a com-
plex phase field are widely studied in condensed matter physics as
topological defects appearing in superfluids and superconductors
[Bethuel et al. 1994; Pismen et al. 1999]. These topological defect
models also facilitate singularity placements in flow analysis and
geometry processing [WeifSimann et al. 2014; Solomon et al. 2017;
Palmer et al. 2020]. Complex phase field models are taken more
generally as high-codimensional level set representations by [Am-
brosio and Soner 1996; Ruuth et al. 2001; Burchard et al. 2001; Min
2004]. However, in the physics and geometry processing literature,
the level set functions have specific physical meanings such as the
phase of a wave, leaving little room for a smoother representative.
In most cases, the phase field has norm 1 except for a sudden dip
to 0 near the filaments, creating a configuration that is difficult to
resolve efficiently on a computational grid. In the level set method
literature, the norm-1 condition is often adopted for (re)initializing
the level set functions despite the discontinuity [Ruuth et al. 2001].
The complex phase is constructed locally with little discussion about



global topological obstruction. Burchard et al. [2001] addressed
the challenges in reinitializing the multi-component level set func-
tions; by mimicking the codimension-1 signed distance functions,
they propose a sophisticated reinitialization by solving a “manifold
eikonal equation” along the isosurface of each function component.
Unfortunately the process will not resolve the twists of the framed
curve. To our knowledge, there has not been a thorough discussion
about the degrees of freedom in the implicit filament representations
or in their dynamics until now.

In our work, we explore the degrees of freedom of both the
codimension-2 level set functions and their equations of motion.
We further provide a simple reinitialization method comparable to
the codimension-1 signed distance function. Comparisons show
that exploiting these degrees of freedom are essential to a robust
simulation.

3 REPRESENTATIONS FOR EVOLVING CURVES

We now begin our description of implicit filament dynamics. The
main mathematical object is a union of closed space curves. This
section describes an implicit representation for these curves and their
dynamics, as well as the degrees of freedom in the representation.

3.1 Representations for curve configuration

Let the physical domain be an open region M c R3. We use y to
represent a collection of m closed curves

y: UZ, st — M, 1

where | | denotes a disjoint union, S! is the topological circle, m is
the number of filaments, and y is the mapping from the 1D curves
into 3D. The configuration space .% of these filaments is the space
of all possible placements of these curves:

(o)
F = LI {y: um, st - M}/reparametrizations. 2)
m=1

Although it is straightforward to represent curves explicitly via
objects y in (2) as parameterized curves or their discrete counterparts,
topological changes of curves such as splitting or merging are
difficult to describe mathematically and algorithmically. For instance,
the number m of components can change when curves reconnect or
split apart.

Instead of relying on an explicit curve representation, our work
adopts an implicit representation for the elements in .%. We model
every collection of closed curves in M as the zero set of a complex-
valued level set function y: M — C:

y={peM[y(p) =0} ={Rey =0} n{Imy =0}, (3
In other words, an alternative definition for y is the set of all points p
where both the real and imaginary components of a level set function
) evaluate to zero as in Figure 2. We find it useful to draw an analogy
to the scalar-valued level sets commonly used in computer graphics
applications: the zero level-set of a scalar-valued function represents
shapes of codimension 1 (a.k.a. surfaces), while our complex-valued
level set has twice as many variables and thus represents shapes of
codimension 2 (curves).
We next note that different functions i can represent the same
collection of curves if they share the same zeros. To formulate this
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Fig. 2. An example of level surfaces of two linked curves. The blue and red
surfaces are cross sections of {Imy = 0} and {Rey/ = 0} respectively.

redundancy precisely, we define the following equivalence relation
~ on the function space (M — C). We say 1 ~ i if and only if
Y1 = @y for some nowhere-vanishing function ¢: M — C\ {0}.
This means y/; ~ /; if and only if they share the same zero set.

For the implicit representation to work properly, we make a
regularity assumption that the level set functions ¢ are sufficiently
“nice” around the zero set. Precisely, we assume 1/ is smooth, and the
differential dy/|p: TyM — C = R? is surjective, i.e. its matrix form
has rank 2 at any point p on the zero-set. !

To summarize, our configuration space of filaments .% from (2)
is replaced by the space of complex-valued functions ¢ modulo a
multiple of a non-vanishing function:

G ={y: M — C}/~. (4)

While .# and ¢ describe the same configuration space of filaments
(Z = 9), the objects in & are much more continuous compared to
the disjoint spaces of .Z.

Relation to Clebsch representations. The representation of codimension-

2 curve geometries in 3D is known in fluid dynamics as Clebsch
representations [Clebsch 1859; Lamb 1895; Chern et al. 2017; Yang
et al. 2021]. For a fluid flow with a smooth vorticity field, the vor-
tices are geometrically depicted as fibrous vortex lines diffusely
distributed over the fluid domain. A Clebsch representation aims
at an implicit representation for such fibrous structure. The rep-
resentation uses a map s: M — 3 from the 3D fluid domain M
to a 2-dimensional manifold X with a measure ¢ to describe the
vortex lines as preimages s~ {p} of points p € %, and the density of
the vortex lines as the pullback s*(o) of the measure o. A smooth
Clebsch map s and a smooth measure ¢ yields a smooth distribu-
tion of vortex lines. To achieve a more singular and concentrated
vorticity field such as vortex filaments, one would consider s with
larger derivatives [Marsden and Weinstein 1983] (s sweeps out more
measure o over a small area in M).

In our setup, we want to represent singular curves with a Dirac-§
density, instead of diffused distribution of vortex lines. Previous

!The full-rank requirement does not modify the degrees of freedom in the rescal-

ing ¢ since d(@y)|p = dolp ¥p +@pdylp = @pdy|p, and a non-zero complex
——
=0
multiplication by ¢, always preserves the rank of di/|,.

ACM Trans. Graph., Vol. 41, No. 6, Article 241. Publication date: December 2022.



241:4 .« Sadashige Ishida, Chris Wojtan, and Albert Chern

considerations in Clebsch representations would set the Clebsch map
s with enormous derivative. By contrast, we obtain such concentrated
filaments by setting ¢ singular while keeping the Clebsch map
smooth. Our complex level function : M — C is a Clebsch map
with the target space X = C equipped with a §-measure o = §y at
the origin.

An important discussion about Clebsch representations [Chern
et al. 2017] is whether or not a fluid configuration can be represented
with the choice of ¥ and o. Previous Clebsch representations [Chern
et al. 2017; Yang et al. 2021] adopt 3 = S?, since the more straight-
forward choice of % = R? = C with the standard area measure ¢ can
only represent fluid flows with zero helicity. The helicity obstruction
is reduced for % = S as it can admit a discrete set of nonzero helicity
[Chern et al. 2017]. Our Clebsch representation can represent any
space curve without any obstruction. In particular, the helicity of
a vortex filament is proportional to its writhe [Arnold and Khesin
1998] which can take any real value.

3.2 Representations for curve dynamics

In the explicit representation, a first-order time evolution of curves
y: (U™ S') x R — M can be described by an equation of the form:

0
a—i(s, £)=Vy,(s), sellSLteR. )

Here, s is the parameterization of the curve, ¢ is time, and the
velocity Vy: 7 — (14 S! — R3) is a dynamical model that tells
the filament how to move based on the current filament shape and
position.

Example 1. In the context of fluid dynamics, important examples
for the velocity model V are the ones that govern the motion of vortex
filaments. When M = R3, ie. there are no obstacles or boundaries, the
velocity models are the Biot-Savart model

r(s) —y®) o

r
vBS(s) = — f{ Y (5) x -
! i Iy(s) =y ()P
and the more regular Rosenhead—Moore model [Saffman 1992, pp. 213]
r(s) —y(©)
e=2a% +y(s) —y(9)|*

(6)

ViM(s) = % jf Y (5) x s  (7)

where the constantsT and a are the vortex strength and vortex thickness
respectively, and the integrating measure ds is the arclength element
(set a = 0 for the Biot—Savart model). Note that (6) and (7) are the
restrictions at the curve of the entire fluid velocity field over the 3D
domain
UM () = — }4 YOXE=YE) 4o yerd (3)
4 \/ 3

a2 + [x — y(5)?

That is, V?M(s) = U?M(y(s)).

Now, we translate the dynamical system (5) into an evolution
equation for a time-dependent complex level function . First, we
note that the evolution of i/ around the zeros is given as the transport
equation along some vector field, which is formally the following
lemma.
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Lemma 1. For any time-dependent complex level set function i with
the regularity assumptions in Section 3.2, there exists a neighborhood
U C M of the zero set of y and a vector field v: U — R3 such that
oy :
E+V'V¢—O inU. 9)
ProOF. By the regularity assumptions in Section 3.2, there exists
a neighborhood U of the zero set of  where the 3D-to-2D linear
map dy is full-rank and thus surjective. Hence at every point x € U
and for any value of 3y/at(x), there exists a vector vy € R3 such that
dy|x(vx) = —9¥/at(x). With this construction, we obtain a vector
field v: U — R3 satisfying oy/ot +v - Vi = 0 in U. ]

Hence the representation of the dynamics for ¢ can be encap-
sulated into a vector field. Observe that the zero level curve y of ¢
evolves by 9y/at = v|, under the transport equation (9), and that
ker(dy) at each point on y is spanned by the tangent y” as y’ lies on
the tangent spaces of both {Imy = 0} and {Rey = 0}. By matching
these induced curve dynamics in Lemma 1 with (5) we conclude:

Theorem 1. The zero level curve y of  evolves according to (5) if
and only if Y satisfies (9) for some vector field v that agrees with the
curve velocity at the curve:

v(y()) = Vy(s) + f(8)y'(5) (10)

where fy’ is the tangent vector y’ multiplied by an arbitrary scalar
function f. The degrees of freedom of the dynamics for { are the
degrees of freedom for choosing v with the condition (10).

Essentially, the only velocities that really matter for the evolution
of the curves are the velocities located on the zero level set. Further-
more, the locations of the curves will not change if we slide them
around their tangent direction (like spinning a circle around its axis
of symmetry), so we only need to pin down their normal and bi-
normal components. So we have a huge number of velocity variables
(3 for each point in the 3D domain) with very few constraints (2
for each point on the 1D curves). This under-determined system
gives us a redundancy in possible velocity fields for curve dynamics,
which is largely unexplored by previous work.

Let us apply Theorem 1 to vortex filament dynamics (c¢f. Exam-
ple 1): Plugging in (8) for v gives us the following dynamics for

Y
%¢+V-V1//:O, v(x) =U§M(X)- (11)

This is the most straightforward way to do it: simply advect the level
set ¢ in the exact same way as the rest of the fluid. However, we
know that v = UI;M is an extremely sensitive function to deal with
numerically — it tends to infinity near y, has unbounded derivatives,
and rapidly changes direction in very tight swirls. Small errors
in y inevitably create huge errors in velocity, making simulations
unstable, as demonstrated in our accompanying video. Fortunately,
according to Theorem 1 we now know that there are infinitely many
velocity fields that will all theoretically give us the same filament
motions; our mission in the next section is to swap out this unstable
Biot-Savart velocity field for one that is much more numerically
robust.



4 UNTWISTED CLEBSCH VARIABLES AND
NON-SWIRLING DYNAMICS

4.1 Untwisted Clebsch variables

Like the common codimension-1 real-valued level set methods, the
implicit representation benefits from the regularity of the level
set function. There, a level set function is well-conditioned if the
magnitude of the gradient is close to one. For that reason, the level
set function is typically initialized as the signed distance function,
and this property is typically maintained as the level set is evolved
(called re-distancing).

For our codimension-2 complex level set representation, we shall
also characterize a set of desirable qualities of the complex level set
function ¢: M — C. Due to the higher codimension, the discussion
involves the notion of twist from the mathematical ribbon theory.
Finally, we describe a concrete construction of ¢ that will be used
for initialization and re-distancing.

4.1.1 Conditioning of a complex level set function. We want ¢ to be
continuous everywhere and non-zero outside the curvesy = {¢ = 0}.
Near the curves y, we want the differential di/ to be well-conditioned:
if we only consider the function restricted to the plane spanned
by the curve normal and bi-normal, d/|, . is close to an isometry;
that is dy/| . : y+ — C = R? has singular values ~ (1,1). Notice,
however, that even when dy//|,+ is well-behaved on each normal
plane, the level set function ¢ can still exhibit significant shearing if
the complex phase varies significantly along the tangent direction.

This variation of complex phase along the curve’s tangent can be
seen more intuitively via the geometry of the surface S, formed by
the level sets of the positive real part of { (S, = {Re(y) > 0,Im(y) =
0} = {arg(y) = 0}). Note that the boundary of the surface Sy, is y, as
illustrated in Figure 3. The tangential variation of the phase arg(y)
is embodied by the twist of Sy, at its boundary y.

For the specific method presented in this paper, we take a simple
construction of ¥ that is known to have a smooth S, with little
twisting at y. Readers who are only concerned about the method can
skip ahead to Section 4.1.3; for researchers interested in extending
this work, we will now lay out a few geometric and topological
properties about the twist.

4.1.2  The twist of a complex level set function. To discuss the twist
precisely, we consider the normal vector Uy, of the curve y that is
tangent to the surface Sy.

Definition 1 (-induced framing). Each complex level set function
y: M — C fory gives rise to a normal vector field Uy: y — R3,
Uyl =1, ', Uy) = 0 that points to the direction where is real and
positive. Explicitly, at each point on y,

o )T
VT Gyl Tl

This normal vector field Uy, makes y a framed curve.

(12)

Definition 2 (Twist). The twist of  at each point on y is given by
= Ul/'/ (Y xUy). (13)

Here, () is the derivative along curve’s tangent relative to arclength.
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When dy/,. : ¥yt — C is conformal (which is true in our case
introduced in Section 4.1.3 since it is isometric), the twist directly
relates to the derivative of ¢ along the curve:

o=—(d0)(y’) =—Re (%) 0 = argy, (14)

in a small neighborhood of y.

Fig. 3. The surface Sy (translucent blue) and the ribbon Uy, (opaque cyan).

Now, a natural consideration for designing i is to minimize the
twist. For example, one may try to construct Bishop’s parallel frame
[Bergou et al. 2008], which has no twist. However, one would find
the construction impossible for a closed curve and a union of closed
curves in general. This is due to the following theorem that the total
twist

Tw(y) = %?{w (15)
Y

is fixed by the curve geometry y € .% or the equivalent class of level
functions [¢/] € ¢ and is generally non-zero.

Theorem 2 (Invariance of total twist). Suppose M is simply con-
nected. Let [{] € . Then any representative y € [{/] has the same
total twist Tw ().

ProOF. In the special case that y is a single connected curve in R3,
the statement is the result of the Célugareanu Theorem: The total
twist of the frame Tw(¢/) and the total writhe of the curve Wr(y)
must add up to the linking number between the two boundaries of
the ribbon swept out by the frame Uy, Here, we note that any closed
curve admits a Seifert surface i.e. a compact, connected, and oriented
surface spanning the curve [Seifert 1935; Murasugi 1996]. Without
loss of generality, we can assume a constant phase-shift to ¥ so
that Sy is a Seifert surface of y. Since the ribbon Uy, lies in a Seifert
surface, the linking must be zero. Therefore, Tw(y) = —Wr(y),
which only depends on y. See Figure 3 for a visualization of S, and
Uy. For the definitions of quantities for curves such as writhe, twist,
or linking numbers, we refer to [Arnold and Khesin 1998].

In the general case, observe that under any change of representa-
tive i = gy in [¢/] with a nowhere-vanishing ¢: M — C \ {0}, the
twist transforms according to & = w — dy (arg(¢)). Since ¢ has no
zero in a simply connected M, the angle arg(¢) can be defined as a
real-valued function globally over M rather than a 27-ambiguous
angle-valued function. In particular, Stokes’ theorem applies and
the integral along the closed curve vanishes: fy d(arg(e)) = 0. So

fyd):fyw. O
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dist(y, x)
X .7\)

SolidAngle (y; x)

¥(x) = dist(y, x) e Solidangle(y:x)

Fig. 4. The solid-angle distance function ¢ for a space curve y is constructed
by the distance and the angle subtended by the curve.

Note that even though the total twist is fixed, strong local twist
can still be present.

4.1.3  Solid-angle distance function. As explained above, we desire a
complex level set function ¢ that is numerically well-conditioned: it
should be nearly isometric near the curve y and non-zero outside y.
In order to isolate these properties and enforce them explicitly, we
model ¢ with a complex wave function:

P(x) = r(x)eld ™. (16)

Similar to signed distance functions for the codimension-1 level set
functions, we set

[Y(x)[ =r(x) = dist(y, x),

This setup ensures that the value /(x) is non-zero for x ¢ y. What
remains is a choice for the complex phase 8: M\ y — S! = R04 275
which we set to the half solid-angle subtended by y:

xeMcCR3. (17)

1
0(x) = 3 SolidAngle(y;x) mod 27 (18)

where SolidAngle(y;x) € Ryyod 45 is @ dimensionless quantity given
by the signed spherical area 2 enclosed by the projection of y on the
unit sphere centered at x i.e. Proj yx(s) := (y(s) —x)/|y(s) — x| . We
call this construct of i the solid-angle distance function (Figure 4).

The solid-angle distance function meets our desired conditions for
the codimension-2 level set representation. On each normal plane
0l,+ is asymptotically the 2D angle function about the zero y, so
that dy|,. : yt — Cis close to an isometry. Moreover, as studied
by [Binysh and Alexander 2018], the surface Sy, = {6 = 0} features
little twist at y. Figure 5 illustrates this concept.

We note that our choice of the Clebsch variables ¥ is an instance
of many reasonable ones that exploit degrees of freedom in curve
representations rather than the optimal one for a speficic dynamics
such as vortex filaments. Nevertheless, our ¢/ has a number of
desirable properties, which we list in Appendix A.

4.2 Non-swirling dynamics

In Section 4.1, we leveraged the degrees of freedom in the complex
level set function ¢ to design a sufficiently regular implicit repre-
sentation. Here, we exploit similar degrees of freedom to construct

2Qur definition of the solid angle is modulated by 47 as the spherical polygon of
projected curves may cover the sphere multiple times.
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Fig. 5. Plotting @ on a 2D plane which intersects a circular vortex ring at
two points (left). The color indicates the value of the 8, and the black lines
are its level curves. The curves meet where the filament intersects the plane.
Zooming into the white box (right) shows evenly-spaced curves closer to
the filament, where e’? resembles the complex plane C.

evolution equations that produce theoretically equivalent dynamics
but are more numerically robust.

Many dynamical systems for curves already come with a known
physical evolution equation. For example, the vortex filament dy-
namics can be simulated with (11), i.e. by advecting ¢ using the
Biot-Savart or the Rosenhead—Moore flow (Example 1). Hence,
redesigning the equation may seem unnecessary. However, when it
comes to numerically advancing the variables, the highly oscillatory
or discontinuous nature of the Biot-Savart and the Rosenhead—
Moore flows near the vortex core (as illustrated in Figure 6) can
cause significant interpolation error. We point out that these errors
are avoidable by redesigning the flow of the advection.

We consider dynamical systems as discussed in Section 3.2. Sup-
pose the evolution of the curve is given by % = Vy where V is the
velocity field defined on the curve. The evolution for i must be an
advection by an extension v of the velocity field Vy in a neighbor-
hood of the curve (cf: (9)). A straightforward construction of v is a
constant extrapolation. That is, v(x) is set to Vy at the closest point
on y from x. This extrapolation is, however, singular where closest
points are not unique as in the middle row of Figure 6.

To gain continuity without changing the velocity on the filaments,
we smooth away these singularities by taking the weighted average
of the filament velocity as

R P AT (19)
Here, N (x) is the normalization factor
N(x) = (x,y(s))ds, (20)
b jl{yw x,y(s))ds

and w is some weight function that applies less smoothing as it
gets closer to the filament, i.e. w(x, y(s)) /N (x) — 8(y "1 (x) —s) as
dist(x, y) — 0. For example, we observed that a Gaussian function
with distance-dependent variance works stably:

_Ix=y))?

——— |, o some constant. 21
odist(x, y)) @

w(x,s) = exp (

To accelerate computation for v, we can further multiply the
integrand of Equation 19 by a smooth cutoff function which equals
to 1 near y and 0 far away from y. Then v is non-vanishing only



Fig. 6. Different vector fields for two linked rings. The original Rosenhead-
Moore model (top), the nearest point velocity field (middle), and a smooth
weighted average field (bottom). While these three velocity fields coincide
on the filaments, they differ significantly outside the filaments.

near y. By applying this smooth cutoff, we only need to evaluate v
in a narrow band close to the filament.

Note that v is in general not divergence-free. The velocitiy near
the curve is determined according to the curve velocities so that
the motion of the zeros of ¥ emulates the motion of the curves.
Imposing an additional constraint like incompressibility to the
velocitity field may trade off the fidelity to the original curve motion
or the numerical smoothness of the surrounding vector field.

5 ALGORITHMS

In this section, we describe an algorithm for simulating filament
dynamics.

Throughout the simulation, we maintain a complex level set
function ¢. The main algorithm computes the transport equation of
1 along a velocity field v in a neighborhood of the zeros of ¢. This
main algorithm is accompanied by a few subroutines for evaluating
the velocity and redistancing: one subroutine extracts the zero set y
of i/; another subroutine constructs the solid-angle distance function
1 from y (Section 4.1.3); a third subroutine evaluates the filament
motion V) using y; and the last subroutine extends V), to a velocity
field v in a neighborhood of y (Section 4.2).
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We store the level set function i and the velocity v on a 3D lattice
and discretize the curves y as oriented collections of line segments.

Algorithm 1 The main time integration

Input: Initial filament y € .%;
1: ¥ « construct ¢ from y;
2: while simulating do

> Section 5.1.3

3 v « evaluate vy and extend it on grids near y;

4 Y « advect ¢ along v; > Section 5.1.1
5 y « extract the zero set of ¢/; > Algorithm 2
6 Y « construct ¥ from y; > redistance; Section 5.1.3
7. end while

Algorithm 2 Extract the zero curve y from ¢

1: for each cell c do

2 for each face f in c do

3 Compute incidence ny € {-1,0,1}; > Eq. (22)
4 if ny = +1 then

5: Find p;i =y~ 1(0) eR%in f; > bilinear interp.
6: end if

7: end for

8: Connect p]; and p; of some faces f, g in c;

9: end for

5.1 Details of the main algorithm

5.1.1 Advection. To advect ¢ with a given flow v, one can adopt
any Eulerian advection scheme. In our implementation, we use the
modified MacCormack method [Selle et al. 2008] with 4th order
Runge—-Kutta back-tracing.

5.1.2  Construction of y from. After updating /, we need to update
the filaments y by extracting {1 = 0}. We summarize this subroutine
in Algorithm 2, which is adopted from [Weiflmann et al. 2014]. In
our setting, each vertex of y lives on a face f of the volumetric
grid. We first evaluate for each face f the {-1,0,+1}-valued signed
intersection ny with the zero curve of  using the argument principle:
If the vertices of a face f are i, j, k, £ in an oriented order, then
np= % (arg () +arg(F) +arg(F1) +arg())  (22)
using the principal branch —z < arg(-) < z. Geometrically, (22)
describes how many times the quadrilateral v, ¥/;, Yk, ¥r € C winds
around the origin. For each face where ny # 0 we evaluate the more
precise location of the zero using a bilinear interpolation. That is,
we regard f = [0, 1]? by scaling and ¢ is bilinearly interpolated as

Yr(xy) =(1-x)(1 - y)¥(0,0) + x(1 - y)y(1,0)
+ (1 - x)y‘ﬁ(O, 1) + xy[//(la 1)> (23)
and ¢ : f — C has the inverse when ny = +1. The location 1,0]?1 (0)

is a vertex py of the curve y. Finally, we build the edges of y by
running over the grid cells where we connect the pairs of zeros on
the face with a consistent orientation. Each cube ¢ may have up to
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two pairs of zeros with positive and negative ny. A cube with two
pairs of vertices has an ambiguity similarly to the marching cube
algorithm [Lorensen and Cline 1987]. We resolve this ambiguity
by connecting vertices arbitrarily in a way that preserves curve
orientation. We have not investigated higher order algorithms to
connect curves more accurately at the sub-grid scale.

5.1.3  Construction of y fromy. Given y, we construct i as described
in Section 4.1.3. For each grid point x near y, we evaluate |/(x)| =
dist(y, x) as the distance to the closest polygon edge. We evaluate
arg(y(x)) = 0(x) = %SolidAngle(y; x) by computing the signed
area of a spherical polygon with vertices { pi}ﬁ ; that are the discrete
points of y projected onto the unit sphere centered at x. To ensure
differentiability and the local isometry properties of di/|, , , the sign
of # must depend on curve orientation: we compute the signed area
by introducing a pole Z: = (1,0,0):

N
Signedarea ({pi}¥, ) = > sign ((pi X pist) - 2) Area(pi, pir1, Z)
i=1
(24)
where the unsigned area of each spherical triangle {q1, g2, g3} is
computed using a standard area formula [Bevis and Cambareri 1987;
Arvo 1995],

3
Area(q1,q2,q3) = -7 + Z arccos

((%‘—1 x qi) - (qi X qi+1)) .
i=1

llgi-1 % qill llgi X gi+1l
(25)

These equations assume cyclic vertex indexing, so pN+1 = P1,93+1 = q1,

and q1-1 = g3.

5.1.4 Extending velocity to grid. In order to advect i, we need
to extend the velocity field defined on y to the grid points near
the curves. To produce non-swirling dynamics, we used a smooth
average field (Equation 19, 20, and 21) for the examples in this paper,
unless otherwise explained. In Equation 21, we observed that o
ranging from 0.1 to 10 times the grid size works stably without
smoothing out detailed dynamics.

6 APPLICATIONS

This section discusses applications of our approach, specifically
applied to vortex filament dynamics. We implemented our algorithms
on Houdini 18.5.759 and ran all simulations on a MacBook Pro
(13-inch, 2020) with a 2.3 GHz Quad-Core Intel Core i7 processor.
For an example implementation, see https://github.com/sdsgisd/
ImplicitVortexFilaments

We use our algorithm to animate two “leapfrogging” vortex rings
in Figure 7 and our accompanying video. We note that the system
remains stable and highly symmetric even at the end of a long simu-
lation with several high-speed ring interactions. Figure 8 visualizes
two vortex rings colliding with one another at right angles, recon-
necting, and detaching into two new rings. We note that the final
rings retain plenty of energy after the collision event, in contrast
to Eulerian simulations of this phenomenon which tend to damp
out over time. The visual detail in our simulations is also practically
independent of grid resolution, as the motion of marker particles are
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Fig. 7. Two filaments leapfrog through one another, dragging marker par-
ticles into the shape of a mushroom cloud. The initial filament geometry
consists of two co-planar vortex rings, one with half the radius of the other.

10 O

Fig. 8. Two smoke rings (left) colliding at orthogonal angles (middle) and
re-connecting (right). Rendered as filaments (top) and marker particles
(bottom). The colliding rings leave swirly trails of smoke particles after their
collision and reconnection.

described analytically by Biot-Savart-style velocities (Equation 8),
instead of a vector field stored on a coarse grid.

Figure 9 illustrates a jet of smoke created by generating a new
smoke ring at the left side of the domain every three time steps.
For transporting smoke as a scalar field stored on grid points, we
again used Equation 8. This simulation shows the robustness of our
topology changes: each re-connection event is the result of a curve
extraction from a level set function, so there is no possibility of any
unexpected edge cases, and no need for any geometric intersection
code. The simple set-up creates a large variety of chaotic motions
resulting from fast leap-frogging rings squeezing in between others
and reconnecting filaments causing sudden changes in direction.


https://github.com/sdsgisd/ImplicitVortexFilaments
https://github.com/sdsgisd/ImplicitVortexFilaments

When rings shrink smaller than the grid resolution, our algorithm
deletes them (similar to codimension-1 level set methods).

Lastly, Figure 1 illustrates how our method can evolve intricate
filament geometry, specifically the (5,8)-torus knot defined by

y(s) = ((cos(gs) + 2) cos(ps), (cos(gs) + 2) sin(ps), —sin(gs))
with (p,q) = (5,8) and s € [0, 27).

Fig. 9. A jet of smoke, rendered as raw filament geometry (top) and an
advected smoke density function (bottom).

6.1 Influence of Numerical Parameters

Figure 10 demonstrates the importance of each step in our approach
by selectively removing or modifying different algorithmic compo-
nents and illustrating the consequences. First we illustrate what
happens when we vary the free degrees of freedom in the velocity
field v used to advect the filaments. In agreement with the discussion
in Section 3.2, we see that setting v to the fluid velocity (based on
Biot-Savart kernels) field causes the level set function ¢ to rapidly
twist up and become unstable. Setting v to equal the velocity at the
nearest point on the filament creates similar noise, presumably due
to spatial discontinuities in the field. Compare these results to the
smooth geometry generated by our velocity field at the bottom of
Figure 10.

Lower down in the same figure, we illustrate the effect of varying
the free degrees of freedom in our level set function . Starting with
an initially smooth ¢ and advecting it without any re-distancing
or regularization works well at the beginning, but it eventually
accumulates topological noise. To illustrate the impact of ¢’s free
parameters on numerical stability and accuracy, the fourth row in
Figure 10 replaces our smooth choice of ¢ with one that is intention-
ally twisted by a phase shift of Af(x) := 0.05 dist(x, y); the twisted
) causes high-frequency geometric noise and artificially shrinks
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Advection along the Biot-Savart velocity field

e

Advection along the nearest point velocity field

& &

Without redistancing ¢

Gl VA

Artificially twisted ¢

Our proposed setting

Fig. 10. Comparisons with different settings. Initial state is the 1st row of
Figure 13. The left and right columns show states at frames 20 and 45.

the filaments. Again, we can compare these results to the smooth
geometry generated by our un-twisted i at the bottom of Figure 10.

Another important numerical parameter is the spatial resolution
of the filament. Lagrangian methods constrain the curve resolution
by subdividing and collapsing edges when they become too long
or short. In contrast, our method controls the curve details via the
resolution of the grid used for the level set /. Figure 11 illustrates a
simulation of an evolving trefoil knot on a 50 X 50 X 60 grid and one
twice as detailed at 100 X 100 X 120. As expected, higher resolution
grids create filaments with sharper details. Note, however, that the
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D

Resolution 50 X 50 X 60

"

7 ~—p

QLD

Resolution 100 X 100 x 120

A

Fig. 11. Simulation of a trefoil knot with different grid resolutions, as viewed
from the side (left column) and front (right column).

common way to visualize fluids is with marker particles or smoke
densities, not by visualizing the filaments themselves. Thus, even
very low resolution vortex filaments can still produce high resolution
visual details. More detailed filaments make themselves evident via
there more detailed velocity fields and complex smoke dynamics.

~—"

£ AN o

Weiflmann and Pinkall [2010]

o~/

N : ~— w
Our method

Fig. 12. Comparing a buoyant trefoil knot simulation by Weiimann and
Pinkall [2010] to ours. The simulations evolve from left to right.

6.2 Comparisons with Lagrangian filaments

Next, we qualitatively compare implicit and explicit representaitons
of curve dynamics using our algorithm and the Lagrangian vortex
filament technique of Weilmann and Pinkall [2010], as implemented
in Houdini software by SideFX. Figure 12 shows the evolution
of a knotted vortex filament with both methods. The filament is
initialized as

y(s) = (sin(s) + 2 sin(2s), cos(t) — 2 cos(2s), — sin(3s))

with s € [0,2). Aside from some small differences arising from
the particulars of how filaments break apart and reconnect, the two
methods produce roughly the same dynamics.
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Weifimann and Pinkall [2010], with aggressive re-connection
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/
/

Our method

a

.

Weifimann and Pinkall [2010], with conservative re-connection
Fig. 13. Simulating two linked vortex rings (top) with our method (2"¢ panel),
and with the explicit filament approach of Weifimann and Pinkall [2010]
(bottom two panels). Lagrangian methods can be sensitive to numerical
parameters for topological changes.

On the other hand, the two methods have significantly different
mechanisms for handling topological changes, which can produce
divergent results. The Lagrangian method depends on user parame-
ters like the thresholds for distances and angles between curves; the
only relevant user parameter for changing topology in our method
is the grid spacing, which prescribes the resolution of the level set
. Figure 13 shows a simulation of two linked rings: our approach
both preserves long thin tendrils and filters out topological noise.
The Lagrangian simulation is sensitive to re-connection parameters:
setting these parameters too aggressively leads to smooth geometry
but loses thin features, while setting parameters too conservatively
preserves thin features but creates noisy, persistent, high-speed
“ringlets” that dominate the fluid velocity field. We stress here that
the purpose of this comparison is to show how explicit and implicit



descriptions handle topological changes of curves result in qualita-
tively different ways; the accuracy of these methods are not easily
comparable as they have different mechanisms, and the accuracy
depends on the type of curve dynamics.

6.3 Obstacles

Like many methods for vortex dynamics, our method can also make
filaments circumvent obstacles. A typical approach is to find a
smooth harmonic potential ¢ such that for a given obstacle B c M,
it solves

(vy=vop — Vé,n)ps = 0 on 9B (26)
¢ — 0 at infinity 27)

where vyp is the boundary velocity at each point of 9B. Weifimann
and Pinkall [2012] construct such a potential by regarding points in-
side B as sources of localized potentials so their weighted sum solves
Equation 26, and Brochu et al. [2012] and Zhang et al. [2014] solve a
similar system using boundary element techniques. Nabizadeh et al.
[2021] address an equivalent problem by solving linear PDEs on
infinite domains using the Kelvin transform.

Another approach by Weifimann and Pinkall [2010] is more
specialized to vortex filaments and phenomena like vortex shedding;
it regards the obstacle as a collection of artificial filaments yjs such
that the normal component of the velocity is zero. Other approaches,
like that of Park and Kim [2005] and Da et al. [2015] add point
constraints to the boundary which zero out both the normal and
tangential velocity components.

Our vortex filament algorithm is compatible with any of these
obstacle-handling methods; our particular implementation uses
[Nabizadeh et al. 2021], as seen in Figure 14. We can observe that
filaments near the obstacle are accelerated due to the induced mir-
rored image of themselves in the obstacle (or vortex sheet on the
surface).

Note that for the evolution of curves, only the evaluation of the
velocity field needs the treatment of the boundary. Other components
of the algorithm including the construction of levelset function
ignore the boundary and do not require any additional treatments.

6.4 Other types of filament dynamics

Our idea of implicit representation of filament dynamics is not
limited to vortex filaments. In theory, this should be applicable to
any first-order time evolution of curves. Figure 15 shows an example
with the curve-shortening flow,

Zisty=—r"(s1). (28)

As expected, this velocity causes the filament to shrink over time,
similar to mean-curvature flow for surfaces [Osher and Sethian
1988].

6.5 Discussion

Our method represents a fundamental new way to animate fluids and
vortex filament dynamics. Its unique features give it some strengths
and weaknesses relative to existing approaches.

First of all, we represent our filaments with implicit functions
. While there are many ways to encode an implicit function, our

Hidden Degrees of Freedom in Implicit Vortex Filaments « 241:11

Fig. 14. Turbulence caused by a spherical obstacle. We generate a new vortex
filament ring every 10 frames.

O= 0= = =

Fig. 15. Curves evolving under the curve shortening flow, from left to right.

implementation uses a regular grid, which implies a finite bounding
box. While common for Eulerian fluid simulations, bounded domains
are a constraint not shared by Lagrangian methods. This constraint
could be mitigated if we use sparse grids or trees [Museth et al.
2019].

The main parameter in our method is the grid resolution. As
discussed earlier, this parameter affects the geometric detail and
topology of our filaments, influencing the velocity field directly,
but influencing the final visual results only indirectly. The grid
resolution also directly influences topological changes; the only
mechanism for topological changes in our algorithm is to merge
curves when they intersect the same grid cell. We believe this
automatic and robust method for handling topological changes
is a strength of our method; it minimizes the need to fine-tune
parameters (especially the relationship between minimum/maximum
edge length and topological change interaction lengths) and seems
immune to the types of numerical blow-ups that we have seen
in Lagrangian methods when filaments get close or exhibit near-
degenerate geometry.

On the other hand, this grid-based method for re-connecting
curves will also delete small features when they shrink below the
grid cell size (similar to level set methods for surfaces). This behavior
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Table 1. Parameters and timing breakdown per frame for all simulations in this paper and the accompanying video. Symbols I and a are the intensity and the
thickness of filaments. All simulations are 24fps and and the time step size 1.0/24s except for Figure 15, which we used 120fps. Average timings are taken over
the entire simulation. The “Other” column includes the remaining operations, including obstacle handling and generation of new curves at the sources in

Figure 9 and Figure 14.

l Scene H Resolution [ T [ a H Total time H Evaluate v [ Advect [ Construct y | Construct [ Other
Figure 13 100 X 100 x 100 1.0 0.05 0.159s 0.041s 0.017s 0.041s 0.056s 0.002s
Figure 12 100 X 100 x 120 1.0 0.05 0.274s 0.056s 0.026s 0.049s 0.102s 0.001s
Figure 7 60 X 60 X 200 2.0 0.08 0.090s 0.013s 0.021s 0.023s 0.031s 0.001s
Figure 8 80 X 120 X 140 1.0 0.05 0.152s 0.031s 0.030s 0.046s 0.044s 0.001s
Figure 1 100 X 100 x 140 1.0 0.05 0.655s 0.144s 0.085s 0.091s 0.332s 0.002s
Figure 9 100 X 100 x 180 2.0 0.08 1.423s 0.177s 0.099s 0.812s 0.324s 0.011s
Figure 14 100 X 100 X 160 2.0 0.08 0.969s 0.047s 0.087s 0.473s 0.226s 0.135s
Figure 15 100 X 100 X 100 | N/A | N/A 0.152s 0.028s 0.012s 0.068s 0.043s 0.001s

Table 2. Computational timings compared with Houdini’s built-in imple-
mentation of Weissmann & Pinkall [2010]. “Same DOF” refers to simulations
with approximately the same number of computational degrees of freedom
as our method: we set the relevant parameters (re-connection distance,
minimum and maximum edge lengths ) so that the number of explicit curve
vertices are similar to ours.

|| W&P | W&P (Same DOF) | Ours |

0.052s 0.065s 0.159s
0.045s 0.101s 0.274s

l Scene description

Linked rings (Figure 13)
Trefoil knot (Figure 12

is most evident in our jet example (Figure 9). We believe that the
deletion of small features can be reduced in the future in a number
of ways. More accurate advection schemes will probably preserve
higher frequency features of i better without deleting them. Also,
although we took care to introduce a v and ¢ which alleviates
egregious numerical stability problems, we have not quite optimized
for accuracy or geometric durability for the specific dynamics of
vortex filaments. Finding a pair of v and ¢ that is more suitable
for each curve dynamics in the degrees of freedom discussed in
Section 3 would lead to even better numerical performance.

Although our method relies on Eulerian advection to evolve the
geometry, it does not suffer from the artificial viscosity typically
associated with Eulerian fluid simulations. Our fluid velocity is
reconstructed from filament dynamics, so the velocity field is not
recursively re-sampled and does not accumulate damping errors.
Consequently, our method produces swirly and energetic fluid flows
even at low grid resolutions.

Table 1 lists the simulation parameters and timing breakdown
for each of the simulations in our paper and accompanying video.
We stress that our prototype implementation is meant as a proof of
concept, and it has plenty of room for optimization. Our current
implementation employs regular grids for ease of implementation;
future implementations can make great use of sparse grids, since our
filaments only use a 1-dimensional path through the 3D grid. Our
implementation of “Evaluate v” and “Construct ¢” iterates over the
entire curve geometry for each point in the narrow band where y
and ¢ are required; future implementations could use a sparse data
structure and approximated fast summation via tree-codes like the
fast multipole method to reduce total evaluation time. Additionally,
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our current implementation of “Construct y” redundantly doubles
the work per curve vertex, so that step can be sped up by at least a
factor of 2.

With these inefficiencies in mind, our implementation appears to
run modestly slower than Houdini’s optimized implementation of
Weissmann & Pinkall [2010] for the scenarios we tested. The two
methods have completely different numerical degrees of freedom,
so we find it difficult to compare them directly. Table 2 compares
the computational cost of the two methods for figures in this paper.
We aimed to keep the number of curve vertices roughly the same as
our method’s in the “Same DOF” simulations, so we believe these
are the most relevant for comparing timings.

In our examples of vortex filaments, we assumed inviscid filaments,
but we can handle viscous motions too once the time-derivative
of viscous curves is speficied. We also assumed a uniform vortex
strength. Just as in the explicit description, our implicit description
requires a well-defined equation of motion for curves, and it out-
puts only new curve configurations without processing additional
quantities like vortex strengths. Simulating vortex filaments with
different strengths is an independent challenge. Merging filaments
with different strengths would create a graph of filaments rather
than just disjoint closed curves, which would require a new implicit
representation for filament graphs.

7 CONCLUSION AND FUTURE WORK

We have shown that implicit representations of geometric curves
exhibit large degrees of freedom in both their mathematical rep-
resentation, as well as their dynamics. We then took advantage
of these redundant degrees of freedom to improve the stability of
vortex filament simulations.

We see a number of avenues that can be explored in future work.
Our current strategy exploits redundancy in the 3D velocity field
and level set outside the filaments, but we can also incorporate free
degrees of freedom in the tangential components of the velocity on
the filament itself. More generally, one can attempt to formalize the
regularization of v and ¢ for various purposes. A possible instance
is an optimization problem for certain energies aiming provable
guarantees on numerical accuracy and stability. Besides, the use of



redundancy in dynamics should also be possible for other codimen-
sional cases such as level surfaces in 3D or level sets of an arbitrary
codimension in a higher dimensional space.

Our numerical scheme can be made more sophisticated as well:
higher order advection schemes and geometric curve representations,
as well as sparse and adaptive grids can make our method both more
efficient and more numerically accurate.

Finally, this paper explores vortex filaments and curve shortening
flows, but our ideas are not limited to these specific dynamical
systems. We expect that the idea of exploiting hidden degrees of
freedom in implicitly represented curve dynamics will generalize to
many more types of dynamics appearing in both scientific fields and
engineering applications.
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A PROPERTIES OF THE UNTWISTED CLEBSCH
VARIABLES

As explained in Section 4.1, our untwisted Clebsch variable is com-
posed of the distance function and the solid angle of projected curves.
It has following desirable properties for curve dynamics:
(1) it has an explicit formula and is uniquely computed from
given curves;
(2) it is locally little twisted and dy/|,+ is locally nearly-isometry;
(3) it is harmonic;
(4) the zeros of the real and the imaginary parts intersect orthog-
onally, which ensures the zeros to be always codimension-2
and makes numerically extracting zeros robust.
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Open curves. We also note that our construction of i is not limited
to closed curves but is also valid for open curves with end points
located on the boundary or obstacles subject to the following inte-
grability condition. The orientation of each curve assigns a positive
or negative signature for its two end points. The collection of curves
is said to be integrable if all ends of the curves lie on the boundary
and each connected component of the boundary contains an equal
number of positive and negative ends. Note that vortex filaments
must be integrable since this integrability condition is precisely the
integrability condition for curl: The vorticity 2-form is the exterior
derivative of a velocity 1-form (i.e. exact) if and only if it is closed
(divergence-free) and its restriction to every boundary component
has zero total flux. In this case, the integrability of curl ensures
that the endpoints of open filaments landing on boundaries must
give equal positive and negative ends per boundary component.
Therefore, it is possible to pair the endpoints along the boundary
and complete the filaments as closed curves, from which we know
how to construct ¢.
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