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Abstract

In this paper we introduce a constructive approach to study well-posedness of solutions to stochastic
fluid-structure interaction with stochastic noise. We focus on a benchmark problem in stochastic fluid-
structure interaction, and prove the existence of a unique weak solution in the probabilistically strong
sense. The benchmark problem consists of the 2D time-dependent Stokes equations describing the flow
of an incompressible, viscous fluid interacting with a linearly elastic membrane modeled by the 1D linear
wave equation. The membrane is stochastically forced by the time-dependent white noise. The fluid and
the structure are linearly coupled. The constructive existence proof is based on a time-discretization via
an operator splitting approach. This introduces a sequence of approximate solutions, which are random
variables. We show the existence of a subsequence of approximate solutions which converges, almost surely,
to a weak solution in the probabilistically strong sense. The proof is based on uniform energy estimates in
terms of the expectation of the energy norms, which are the backbone for a weak compactness argument
giving rise to a weakly convergent subsequence of probability measures associated with the approximate
solutions. Probabilistic techniques based on the Skorohod representation theorem and the Gyöngy-Krylov
lemma are then employed to obtain almost sure convergence of a subsequence of the random approximate
solutions to a weak solution in the probabilistically strong sense. The result shows that the deterministic
benchmark FSI model is robust to stochastic noise, even in the presence of rough white noise in time. To
the best of our knowledge, this is the first well-posedness result for stochastic fluid-structure interaction.

1 Introduction

In this paper, we introduce a constructive approach to study solutions of stochastic fluid-structure interaction
(SFSI) with stochastic noise. Problems of this type arise in many applications. One example is the flow of
blood in human coronary arteries, which sit of the surface of the heart. In particular, it is now well-known
that the flow of blood through the heart has a strong stochastic component. The stochastic fluctuations of the
single ion channels and the sub-cellular dynamics in tissue and organ scale get reflected in the macroscopic
random cardiac events [52]. Another example is sperm swimming, which exhibits stochastic fluctuations in
the sperm swimming paths [23]. More generally, studying SFSI is important because well-posedness of SFSI
models provides confidence that the deterministic FSI models are, indeed, robust to stochastic noise that
occurs naturally in real-life problems.

From the mathematic point of view, this manuscript is written as an introduction to the use of stochastic
techniques to study SFSI, and is aimed at audiences that have experience with deterministic FSI, but may be
new to stochastic analysis. We focus on a benchmark problem in which a stochastically forced linearly elastic
membrane interacts with the flow of a viscous incompressible Newtonian fluid in two spatial dimensions. The
membrane is modeled by the linear wave equation, while the fluid is modeled by the 2D time-dependent Stokes
equations. The problem is forced by a “rough” stochastic forcing given by a time-dependent white noise Ẇ (t),
where W is a given one-dimensional Brownian motion with respect to a complete probability space (Ω,F ,P)
with complete filtration {Ft}t≥0. The fluid and the membrane are coupled via a two-way coupling describing
continuity of fluid and structure velocities at the fluid-structure interface, and continuity of contact forces
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at the interface. The coupling is calculated at the linearized, fixed interface, rendering this problem a linear
stochastic fluid-structure interaction problem. The goal is to show that despite the rough white noise, the
resulting problem is well-posed, showing that the underlying deterministic fluid-structure interaction problem
is robust to noise. Indeed, we prove the existence of a unique weak solution in the probabilistically strong sense
(see Definition 4.2 in Section 4) to this stochastic fluid-structure interaction problem. This means that there
exist unique random variables (stochastic processes), describing the fluid velocity u, the structure velocity v,
and the structure displacement η, such that those stochastic processes are adapted to the filtration {Ft}t≥0,
i.e., they only depend on the past history of the processes up to time t and not on the future, which satisfy
the weak formulation of the original problem almost surely. This is the main result of this manuscript, stated
in Theorem 4.1.

To prove the existence of a unique weak solution in the probabilistically strong sense, we design a con-
structive existence proof. The constructive existence proof is based on semi-discretizing the problem in time
by dividing the time interval (0, T ) into N subintervals of width ∆t = T/N , and using a time-splitting scheme,
introduced in [5], to construct approximate solutions. The goal is to show that the approximate solutions
converge almost surely with respect to a certain topology, to the unique weak solution as ∆t goes to zero. In
contrast to the deterministic case, see the works of Muha and Čanić in [43–45], where a time-discretization
via operator splitting approach was used to study existence of weak solutions, our proposed splitting scheme
for the current stochastic FSI problem involves an additional subproblem that separates the stochastic con-
tribution to the FSI dynamics from the fluid/structure subproblems. This gives rise to a three-way splitting
scheme which separates each of the individual components of this multiphysical stochastic FSI problem from
each other: the random noise, the structure elastodynamics, and the fluid. More precisely, along each time
sub-interval (tnN , t

n+1
N ), n = 0, . . . , N − 1, the following three sub-problems are solved to obtain approximate

solutions consisting of the fluid and structure velocities, and the structure displacement, (u, v, η). First, in
Step 1, the structure displacement and structure velocity are updated using only the structure displacement
and structure velocity from the previous time step. The resulting random variables are measurable with
respect to the sigma algebra FtnN . Then, in Step 2, which is the stochastic step, the structure velocity is
updated by adding to the structure velocity calculated in Step 1 the stochastic noise increment from time step
tnN to time step tn+1

N . Since the structure velocity obtained in Step 1 is a random variable that is measurable
with respect to the sigma algebra FtnN , and the stochastic increment from tnN to tn+1

N is independent of it,
we will be able to obtain boundedness of the stochastic integral involving these two quantities by using their
independence. This will lead to stability. The resulting updated structure velocity is a random variable that
is measurable with respect to the sigma algebra Ftn+1

N
. Finally, in Step 3, the fluid and structure velocities

are updated by using the information from the just calculated structure velocity in Step 2. This gives rise to
random variables that are measurable with respect to the sigma algebra Ftn+1

N
. We would like to show that

the sequence or a subsequence of random variables constructed this way converges in a certain topology to a
weak solution in the probabilistically strong sense of the coupled SFSI problem.

Based on this splitting scheme, uniform energy estimates in terms of expectation can be derived. In
addition to estimating the expectation of the kinetic and elastic energy of the problem, it is important to
get a uniform bound on the expectation of the numerical dissipation, to show that the numerical dissipation
is bounded and that it in fact, approaches zero as the time step ∆t goes to zero, which is crucial in the
convergence proof. This is provided in Proposition 6.7. We further remark that the numerical dissipation
terms in the energy estimate describe dissipation that arises as a result of the time discretization, and is given
explicitly by the sum of the squares of the differences of the approximate solutions on adjacent time steps
measured in appropriate energy-level spatial function spaces. Hence, having a uniform bound in expectation
of the numerical dissipation terms will be essential for estimates on time shifts of the random approximate
solutions (defined as functions of both space and time), which will be used in later compactness arguments,
see for example Lemma 8.2. Furthermore, another interesting observation is that the energy estimates will
have an extra term on the right-hand side which accounts for the energy pumped into the problem by the
stochastic noise. This is in addition to the energy/work contributions by the initial and boundary data. These
energy estimates define an energy function space for the unknown functions (u, v, η). A separable subspace
of the energy space, specified in (34) in Section 8.1 is called a phase space, and is denoted by X .
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Uniform estimates are the backbone for weak compactness, giving rise to convergent subsequences whose
limits potentially satisfy the original problem in a certain sense. In the deterministic case, the uniform en-
ergy estimates typically imply existence of weakly- and weakly*-convergent subsequences in the appropriate
topologies, which is usually sufficient to pass to the limit in the linear problem and recover the weak solution.
Similarly, having uniform boundedness, even just in expectation, of the random approximate solutions con-
structed in the splitting scheme is sufficient for passing to the limit in the random approximate solutions on the
given probability space (Ω,F ,P), as one can use the weak convergence of the random approximate solutions
weakly and weakly star in function spaces involving both the probability space and the natural spacetime
function spaces in order to pass to the limit in the semidiscrete weak formulations. See the discussion in the
Appendix in Section 11. However, while such an argument works well for the specific case of this fully linear
stochastic system of PDEs, this is an approach that does not generalize to more complex cases of interest. This
includes the case of linearly coupled FSI with nonlinearities, for example in the intensity of the noise [35], and
the case of nonlinearly coupled stochastic FSI systems, in which the fluid domain is a moving domain whose
top boundary is determined by the time-dependent configuration of an elastic structure that is stochastically
forced [57]. This gives rise to a complex stochastic system of PDEs in which additional geometric nonlinear-
ities and probabilistic difficulties arise from the fact that the Navier-Stokes equations for the fluid are posed
on an a priori unknown, random, time-dependent fluid domain. Thus, the goal of the current manuscript
is to develop a general methodology for studying these complex stochastic systems. We hence develop a
framework for existence using compactness arguments and probabilistic methods from stochastic PDEs that
generalize to more complex nonlinear stochastic FSI systems. The goal of the compactness arguments that we
use is to obtain the existence of weakly convergent subsequences of probability measures , or laws , describing
the distributions of the random approximate solutions. Once weak convergence of probability measures is
established, one can work on getting almost sure convergence of the random approximate solutions, which can
be used to recover a weak solution. We emphasize that even in the fully linear case, this approach provides
stronger convergence results in terms of convergence in probability and hence convergence almost surely along
a subsequence of the (random) approximate solutions that cannot be deduced just from uniform boundedness
results alone. The additional compactness arguments that must be done to show stronger convergence in
probability of the (random) approximate solutions, in contrast to what can be deduced directly from uniform
boundedness of approximate solutions in expectation, is important for numerical method development. The
fact that the random approximate solutions generated via the splitting scheme converge in probability implies
that numerical solutions to a splitting scheme based on our constructive proof would converge in probability
to the unique true solution to the fully coupled stochastic FSI problem.

To establish weak convergence of probability measures, one must show that the probability measures
are tight. More precisely, one must show that for each ε > 0, there exists a compact set in the phase
space X of displacements and fluid and structure velocities, such that the probability that our approximate
solutions (uN , vN , ηN ) live in that compact set is greater than 1 − ε. See Definition 8.1 for tightness of
measures. The proof of tightness of the sequence of probability measures µN corresponding to the laws of
the approximate solutions (uN , vN , ηN ) will follow from a deterministic compactness argument alla Aubin-
Lions. The compactness argument will establish the existence of a compact subset of the phase space X
that contains the approximate solutions (uN , vN , ηN ) with probability greater than 1 − ε, thus verifying the
tightness property.

Once we have established the existence of a subsequence of probability measures µN that converges weakly
to some probability measure µ as N →∞, or equivalently, as ∆t→ 0, we would like to show that on a further
subsequence, the random variables (uN , vN , ηN ) will converge almost surely to a random variable with the
law µ, with respect to the probability space (Ω,F ,P). For our current fully linear benchmark stochastic FSI
model, showing this almost sure convergence with respect to the probability space (Ω,F ,P), will be done in two
parts. In the first part, we get a hold of a subsequence of approximate solutions that converge almost surely
but on another probability space, and then use this information in the second part to construct a convergent
subsequence of approximate solutions that converge on the original probability space. The following is a more
detailed albeit succinct description of the two parts.

Part 1. We use the Skorohod representation theorem to deduce that there exists a sequence of random

3



variables (ũ, ṽ, η̃)N , defined on a probability space (Ω̃, F̃ , P̃), which is not necessarily the same as the
original probability space (Ω,F ,P), such that the laws of (ũN , ṽN , η̃N ) are µN , and (ũN , ṽN , η̃N ) converge
almost surely to a random variable (ũ, ṽ, η̃) with the law µ, on the “tilde” probability space. On this “tilde”
probability space we also show that the almost sure limit (ũ, ṽ, η̃) satisfies the weak formulation of the original
problem almost surely, but with respect to the “tilde” probability space. This means that this limit is a weak
solution to the original problem in the probabilistically weak sense, see Definition 4.1. This result
will be useful in showing the existence of a unique weak solution in the probabilistically strong sense on the
original probability space (Ω,F ,P), discussed in the second part. We remark that although transferring all
of the probabilistic information to a new probability space (Ω̃, F̃ , P̃) with equivalence of laws may at first
seem to be an abstract construction, we emphasize that this is a mathematically natural construction, as it is
well-known that the new probability space can be taken to be one of the simplest probability spaces, in which
Ω̃ = [0, 1), F is the set of Borel measurable subsets on [0, 1) and P is the Lebesgue measure, see Theorem 2.4
and its proof in [51].

Part 2. We would like to be able to prove that our sequence of approximate solutions (uN , vN , ηN ),
obtained using our time-discretization via operator splitting approach described above, converges almost
surely to a random variable (u, v, η) on the original probability space, and satisfies the weak formulation
almost surely on the original probability space. Namely, we would like to prove that the limit is a weak
solution to the original problem in the probabilistically strong sense. If we could obtain that
the sequence (uN , vN , ηN ) converges in probability to a random variable on the original probability space

(Ω,F ,P), namely (uN , vN , ηN )
p−→ (u, v, η), then the almost sure convergence along a subsequence will follow

immediately. To obtain convergence in probability of (u, v, η)N , we will invoke a standard Gyöngy-Krylov
argument [28].

More precisely, to prove that XN = (u, v, η)N converge in probability to some random variable X∗ =

(u, v, η) on (Ω,F ,P), XN
p−→ X∗, based on the Gyöngy-Krylov lemma [28], we need to show that for every two

subsequences Xl and Xm, there exists a subsequence xk = (Xlk , Xmk
) such that the following two properties

hold:

1. The joint laws νXlk
,Xmk

of the subsequence xk converge to some probability measure ν as k →∞;

2. The limiting law is supported on the diagonal: ν({(X,Y ) : X = Y }) = 1.

The first property will follow from the tightness of measures µl and µm, which are the laws associated with
the random variables Xl = (ul, vl, ηl) and Xm = (um, vm, ηm). The tightness of the measures µl and µm
implies tightness of the joint measures νXl,Xm as well. To show that the second property holds, we will use
the result of Part 1 above, combined with a deterministic uniqueness argument. Namely, Part 1 gives us the
existence of the almost surely convergent subsequences X̃l = (ũl, ṽl, η̃l) and X̃m = (ũm, ṽm, η̃m) on the “tilde”
probability space that have the same laws µl and µm as Xl = (ul, vl, ηl) and Xm = (um, vm, ηm). Those two
“tilde” subsequences of random variables converge to the limits X̃1 and X̃2, respectively, each of which has
the law µ, and a joint law of (X̃1, X̃2) equal to ν from Property 1 above. Recall, from Step 1, that both X̃1

and X̃2 are weak solutions in the probabilistically weak sense. To show that this joint law ν is supported on
the diagonal, namely, to show Property 2 above, it is sufficient to show that X̃1 is equal to X̃2 almost surely,
namely it will be sufficient to show that P̃(X̃1 = X̃2) = 1. Indeed, proving the diagonal condition from the
Gyöngy-Krylov lemma is associated with proving pathwise uniqueness of weak solutions, which we present in
Section 9.1.

Once the properties from the Gyöngy-Krylov lemma have been verified, we can conclude that there exists
a subsequence of (uN , vN , ηN ), which we continue to denote by N , such that (uN , vN , ηN )

p−→ (u, v, η), which
implies almost sure convergence along a subsequence on the original probability space. This is presented in
Section 9.2.

Finally, the proof that the limiting function (u, v, η) recovered above is a weak solution in the probabilis-
tically strong sense is presented in Section 9.3.

To the best of our knowledge, this is the first well-posedness result in the context of stochastic fluid-
structure interaction. The result shows that our deterministic benchmark FSI model is robust to stochastic
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noise, even in the presence of rough white noise in time. This proof combines stochastic PDE analysis
tools with deterministic FSI approaches. Additionally, the constructive proof lays out a framework for the
development of a numerical scheme for this class of SFSI problems, and provides a framework for the analysis
of a broader class of more complex stochastic FSI problems, involving nonlinear dependence on the solution
and involving geometric nonlinearities due to the consideration of fluid equations posed on (random) moving
fluid domains.

In the next section, we provide a brief review of the related literature.

2 Literature review

The mathematical analysis of deterministic fluid-structure interaction began around twenty years ago by fo-
cusing on rigorous well-posedness for linearly coupled fluid-structure interaction models. Linearly coupled
FSI models are models where the fluid and structure coupling conditions are evaluated along a fixed fluid-
structure interface, and the fluid equations are posed on a fixed fluid domain, even though the structure is
assumed to be elastic and displaces from its reference configuration. The results concerning these linearly cou-
pled models typically deal with establishing existence/uniqueness of weak or strong solutions. The existence
and uniqueness of a weak solution to a linearly coupled model involving an interaction between the linear
Stokes equations and the equations of linear elasticity was established in [19] using a Galerkin method. The
Navier-Stokes equations for an incompressible, viscous fluid linearly coupled to immersed elastic solids were
considered in [2, 3, 37]. In particular, the work in [2] deals with showing the existence of energy-level weak
solutions, by a careful examination of the trace regularity of the hyperbolic structure dynamics in terms of the
normal stress at the fluid-structure interface. The results in [3,37] deal with establishing sufficient regularity
of initial data that provides existence of strong solutions of the corresponding linearly coupled systems.

The well-posedness analysis of deterministic FSI models was extended later to nonlinearly coupled models,
where the fluid domain changes in time according to the structure displacement, and hence the problem is
a moving boundary problem where the fluid domain is not known a priori. There is by now an extensive
mathematical literature dealing with the well-posedness of such models, see e.g., [4, 8–10, 13, 14, 24–26, 30,
31, 36, 39, 40, 43–47, 53] and the references therein. Of these references, we note that the approach outlined
in [27,43–47] is closely related to the approach used in the current manuscript. In particular, the approach is
based on using a splitting scheme, known as the Lie operator splitting scheme, that discretizes the nonlinearly
coupled problem in time by a time step ∆t, and separates the coupled problem into fluid and structure
subproblems. Then, compactness arguments of Aubin-Lions type (see [1, 42, 48]) are used to pass to the
limit as ∆t → 0 in the approximate weak formulations satisfied by the approximate solutions, in order to
obtain a constructive existence proof for weak solutions to nonlinearly coupled fluid-structure interaction
problems. This approach proved to be quite robust for deterministic fluid-structure interaction problems,
since it provided existence of weak solutions for several different scenarios involving thin, thick, and multi-
layered structures coupled to the flow of an incompressible, viscous fluid via the no-slip or Navier slip boundary
conditions, see [43], [44], [45], [46], [47].

In the present work, a version of this approach is extended to deal with stochastic fluid-structure interaction
problems, by combining stochastic calculus with stochastic operator splitting approaches introduced in [5] and
analyzed in [29]. More precisely, we design a time-discretized, operator splitting method in just the right way
so that all the stochastic integrals are well-defined, and the resulting time-discretized scheme is stable, allowing
us to show, using stochastic calculus, an almost sure convergence of approximate solutions to a weak solution
in the probabilistically strong sense of the coupled fluid-structure interaction problem. To the best of our
knowledge, this is the first well-posedness result on fully coupled stochastic fluid-structure interaction. Our
result builds on recent developments in the area of stochastic partial differential equations (SPDEs).

Stochastic partial differential equations are PDEs that feature some sort of random noise forcing, such
as white noise forcing in either time, or both time and space, or spatially homogeneous Gaussian noise
that is independent at every time but potentially correlated in space. They are motivated by the fact that
many real-life systems modeled by PDEs exhibit some type of random noise, which can significantly impact
the resulting dynamics of the system. The current manuscript considers a stochastic linearly coupled fluid-

5



structure interaction model involving the interaction between a fluid modeled by the linear Stokes equations
and an elastic membrane modeled by the wave equation. Although the coupled stochastic FSI model has not
been previously considered in the stochastic PDE literature, there are many works that study either stochastic
fluid dynamics or stochastic wave equations separately, as we summarize below.

In terms of stochastic fluid equations, the consideration of stochastic Navier-Stokes equations is an active
area of research, see e.g., [6, 7, 22, 38]. The study of stochastic Navier-Stokes equations was initiated in the
work of [6], which considered an abstract stochastic equation of Navier-Stokes type, with an additive random
noise forcing in time, and a random initial condition. It was shown that there exists a solution that satisfies
the problem almost surely in a distributional sense. The approach in the work [6] is semi-deterministic in
the sense that the solution map Γ for the deterministic problem, which is potentially multi-valued since the
uniqueness of a solution to the deterministic problem is not known, is studied, and then the solution to the
equation with stochastic forcing is given by a composition of a mapping from the probability space to the
random quantities of the problem with a measurable section of the solution map Γ. In contrast, the works
of [7, 22] feature genuinely probabilistic methods of studying the stochastic equations of Navier-Stokes type,
and in these works, this abstract equation of Navier-Stokes type is extended to more general settings where
there is nonlinear dependence of the intensity of the random noise forcing on the actual solution itself. These
two works [7, 22] consider different abstract conditions on this nonlinear dependence and prove existence of
martingale, or probabilistically weak, solutions to the resulting stochastic equations. Both of these works use
a Galerkin scheme to construct solutions and obtain existence by establishing uniform bounds on the sequence
of random functions satisfying the finite-dimensional Galerkin problems. We note that passing to the limit
in the Galerkin solutions in [7, 22] was done by using standard probabilistic methods, such as establishing
tightness of laws, showing weak convergence in law, and invoking the Skorohod representation theorem, which
are standard techniques that we will employ for our current problem as well. While there are many works
on stochastic fluid dynamics, we mention in particular a recent work [41], which establishes the existence of
local martingale solutions, which are martingale solutions up to some stopping time, for a system of one layer
shallow water equations for fluid velocity and water depth in two spatial dimensions, driven by random noise
forcing described by cylindrical Wiener processes. We remark that [41] employs similar probabilistic methods
in passing to the limit in a sequence of random approximate solutions (obtained by a Galerkin method) that
motivated many of the probabilistic arguments in this manuscript, though the methods used in this current
manuscript for constructing approximate solutions are different, as they are based on time discretization using
an operator splitting approach, and not spatial discretization using a Galerkin method. One reason for the
use of time-discretization via operator splitting, versus a Galerkin approach, is a possible extension to the
moving boundary case. In the Galerkin case, the basis functions for the moving boundary case will depend
on the random solution itself, which is difficult to deal with.

In terms of stochastic wave equations, there is extensive work on well-posedness and properties of solutions.
It is classically well-known that the stochastic wave equation with spacetime white noise has a mild solution
only in dimension one, but not in dimensions two and higher (see for example [16]), where spacetime white
noise is a type of random noise defined for (t, x) ∈ R+×Rn with a random intensity that is independent at every
point in space and time. Spacetime white noise, due to its independence properties in both space and time, is
very rough, and hence defining a mild solution via integration against spacetime white noise requires sufficient
regularity of the integrand. The stochastic wave equation with spacetime white noise does not have a mild
solution in spatial dimensions two and higher because the fundamental solution of the linear wave equation
for spatial dimensions two and higher does not possess enough regularity to be integrated against spacetime
white noise, as it is not square integrable in spacetime in dimension two, and in higher dimensions, it is not
even function-valued. Hence, work on the stochastic wave equation in dimensions two and higher, focuses
on considering stochastic wave equations with a more general type of noise, such as spatially homogeneous
Gaussian noise (see for example [51]) which is independent in time but is correlated in space. In particular,
the authors of [15, 17, 32] consider conditions for this spatially homogeneous Gaussian noise, such that the
resulting stochastic wave equation has a solution that is function-valued (rather than just a distribution) in
dimensions two and higher. Existence results for such stochastic wave equations in higher dimensions are also
considered in [12], and the Hölder continuity and regularity properties of stochastic wave equations in higher
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dimensions are considered in [12,18]. We remark that for our current benchmark stochastic FSI model, in the
case of a two-dimensional fluid domain, our problem similarly requires the use of a random noise forcing that
is independent at different times, but is correlated (and is in fact constant) in space, as the analysis of such
a stochastic FSI system with spacetime white noise forcing does not yield a bounded energy estimate.

We conclude this literature review by mentioning a recent work [34] by the current authors, where a
stochastic viscous wave equation was derived as a model for a stochastic linearly coupled fluid-structure
interaction problem in a geometry that allowed the entire fluid-structure system to be modeled by a single
stochastic viscous wave equation, describing the random displacement of the structure from its reference
configuration. This model describes the interaction between a two-dimensional infinite plate, modeled by
the 2D wave equation, and a 3D fluid in the lower half space, modeled by the stationary Stokes equations,
under the additional influence of spacetime white noise (random noise that is formally independent at every
point in space and time). The work in [34] considers well-posedness for the stochastic viscous wave equation
and establishes existence and uniqueness of a mild solution in spatial dimensions one and two, in addition to
improved Hölder regularity properties. This result is interesting because the classical heat and wave equations
driven by spacetime white noise in dimension two, do not possess a mild solution. The main reason why
the stochastic viscous wave equation studied in [34] admits a Hölder continuous mild solution in dimension
two (which is the physical dimension) is the “right” scaling and the regularity properties of the fractional
derivative operator (Dirichlet-to-Neumann operator), which models the effects of viscous fluid regularization
on the elastodynamics of a stochastically perturbed 2D membrane.

While the results in [34] provide an insight into the behavior of solutions to stochastic FSI, they are
restricted by the fact that the stochastic viscous wave equation is not a fully coupled model, it is defined
in a special geometry on the entire R2, and it does not include the fluid inertia effects. This allowed the
use of mathematical techniques that are not available in the fully coupled case of stochastic FSI. The goal
of the current manuscript is to develop techniques for studying fully coupled stochastic fluid-structure in-
teraction systems, defined on physically relevant geometries, including fluid inertia effects described by the
time-dependent Stokes equations.

3 Description of the model

The model problem considered here is defined on a fixed fluid domain, which is a rectangle Ωf = [0, L]× [0, R].
The boundary ∂Ωf of the fluid domain consists of four parts: the moving boundary part denoted by Γ (it
is the reference configuration of the moving boundary), the bottom of the “channel” denoted by Γb, and the
inlet and outlet parts of the boundary Γin and Γout where the pressure data is prescribed. The flow in the
fluid domain Ωf is driven by the inlet and outlet pressure data, and by the motion of the moving boundary.
See Fig. 1. We will use x = (z, r) to denote the coordinates of points in the fluid domain.

The fluid flow in Ωf will be modeled by the time-dependent Stokes equations for an incompressible,
viscous fluid:

∂tu = ∇ · σ,
∇ · u = 0,

}
in Ωf , (1)

where u(t,x) = (uz(t,x), ur(t,x)) is the fluid velocity, σ = −pI + 2µD(u) is the Cauchy stress tensor
describing a Newtonian fluid, and p is the fluid pressure. This gives rise to the following system:

∂tu− µ∆u+∇p = 0,
∇ · u = 0,

}
in Ωf . (2)

At the top boundary Γ of the fluid domain, an elastic membrane interacts with the fluid flow. We
assume that this elastic structure experiences displacement only in the vertical direction from its reference
configuration Γ, and we denote the magnitude of this displacement by η(t, z). The elastodynamics of the
structure will be modeled by the wave equation:

ηtt −∆η = f, on Γ, (3)

where f is an external forcing term.
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Figure 1: Left: A sketch of the linearly coupled stochastic FSI problem, with Ωf denoting the reference fluid domain, Γ

denoting the reference configuration of the structure, and Ẇ (t) denoting stochastic white noise forcing on the structure.

Right: The different colors represent different possible outcomes for the random configuration Γ(t) of the structure at

some time t. The lightly shaded region represents a confidence interval of where the structure is likely to be.

The fluid and structure are coupled via two sets of coupling conditions, the kinematic and dynamic coupling
conditions, which are evaluated along the fixed interface. This is known as linear coupling. The kinematic
coupling condition considered in this work describes the continuity of velocities at the fluid-structure
interface

u = ηter, on Γ, (4)

also known as the no-slip condition. The dynamic coupling condition describes balance of forces at the
interface. Namely, it states that the elastodynamics of the thin elastic structure is driven by the jump in the
force acting on the structure, coming from the normal component of the normal fluid stress σer · er on one
side, and the external forcing Fext on the other:

ηtt −∆η = −σer · er + Fext, on Γ,

where er is the unit outer normal to the fixed fluid-structure interface Γ.
In this manuscript, we consider the external force Fext to be a stochastic force. In particular, as a start,

we consider
Fext = Ẇ (t),

where W is a one-dimensional Brownian motion in time. Note that the stochastic force is constant on the
whole structure at each time. As a result, the stochastic noise is rough temporally but is constant spatially.
We remark that although this is a simplified model, we use it to demonstrate the difficulties present in the
stochastic case in the simplest possible setting.

More precisely, we let W denote a one-dimensional Brownian motion with respect to an underlying prob-
ability space with filtration, (Ω,F , {Ft}t≥0,P), in which case dW is formally the derivative of this Brownian
motion. This is a purely formal notation that we will give precise meaning to later, as Brownian motion is
almost surely nowhere differentiable.

In addition, we will assume that the filtration {Ft}t≥0 is a complete filtration, which means that Ft
contains all null sets of (Ω,F ,P) for every t ≥ 0, where a null set is defined to be any measurable set in F
that has probability zero. This technical assumption will be useful to pass to the limit in our analysis of the
stochastic problem above, as it allows us to bypass technicalities regarding null sets when considering almost
sure limits of stochastic processes. In particular, the almost sure limit of Ft measurable random variables
for any arbitrary t ≥ 0 is still Ft measurable under the assumption of a complete filtration. This is not a
restrictive assumption, as one can complete a filtration by simply adding all null sets to Ft for all t ≥ 0, and
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W will still be a Brownian motion with respect to the completed filtration. See Section 1.4 in Revuz and
Yor [55] for more information about complete filtrations.

In summary, the coupled stochastic fluid-structure interaction problem studied in this manuscript, sup-
plemented with initial and boundary data, is given by the following: Find (u, η) such that

ηtt −∆η = −σer · er + dW (t),
u = ηter,

}
on Γ,

∂tu = ∇ · σ,
∇ · u = 0,

}
in Ωf , (5)

with boundary data:

ur = 0,
p = Pin/out(t),

}
on Γin/out, ur = ∂ruz = 0, on Γb, (6)

and the following deterministic initial data:

u(0, z, r) = u0(z, r), η(0, z, R) = η0(z), ∂tη(0, z, R) = v0(z), (7)

where u0 ∈ L2(Ωf ), η0 ∈ H1
0 (Γ), and v0 ∈ L2(Γ), and W is a given one-dimensional Brownian motion with

respect to the complete probability space (Ω,F ,P) with complete filtration {Ft}t≥0.
Thus, the problem is driven by deterministic inlet and outlet pressure data Pin/out(t) prescribed on

Γin/out, with the flow symmetry condition imposed at the bottom boundary Γb. Notice that throughout
this manuscript, we will be using Ω to denote the underlying probability space, while Ωf denotes the fluid
domain.

4 Definition of a weak solution and main result

To define the space of weak solutions to the above problem, we first introduce the function space for the fluid
velocity:

VF = {u = (uz, ur) ∈ H1(Ωf )2 : ∇ · u = 0, uz = 0 on Γ, ur = 0 on ∂Ωf\Γ}. (8)

Since the structure subproblem is given by the wave equation with clamped ends, the natural space of functions
for the structure is

VS = H1
0 (Γ). (9)

Motivated by the energy inequality presented in Sec. 5, we introduce the following solution spaces in time for
the fluid and structure subproblems:

WF (0, T ) = L2(Ω;L∞(0, T ;L2(Ωf ))) ∩ L2(Ω;L2(0, T ;VF )). (10)

WS(0, T ) = L2(Ω;W 1,∞(0, T ;L2(Γ))) ∩ L2(Ω;L∞(0, T ;VS)). (11)

We emphasize that u and η are random variables, and that the L2(Ω) part of the solution spaces reflects the
fact that the energy estimate will hold in expectation.

Finally, we introduce the solution space for the stochastic coupled FSI problem :

W(0, T ) = {(u, η) ∈ WF (0, T )×WS(0, T ) : u|Γ = ηter for almost every t ∈ [0, T ], a.s.}. (12)

Notice that in this solution space, the kinematic coupling condition is enforced strongly.
As in the deterministic case, we define weak solutions by integrating in space and time against an appro-

priate space of test functions, which we define to be:

Q(0, T ) = {(q, ψ) ∈ C1
c ([0, T );VF × VS) : q(t, z, R) = ψ(t, z)er}. (13)

These test functions are deterministic functions. Because the fluid domain does not change in time with the
assumption of linear coupling, we can define

Q = {(q, ψ) ∈ VF × VS : q|Γ = ψer}, (14)
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and hence view the test functions as differentiable, compactly supported functions on [0, T ) that take values
in the fixed function space Q.

To motivate the definition of a weak solution, we will proceed as in [43]. For the purposes of the derivation
of the weak solution, we consider, for the moment, the case of a general deterministic external force Fext(t)
in place of Ẇ (t), so that the first equation for the structure becomes

ηtt −∆η = −σer · er + Fext(t).

We will derive the standard deterministic partial differential equation definition of a weak solution, assuming
that Fext(t) is a purely deterministic function in time, and then generalize this to the stochastic case.

We start by taking a test function (q, ψ) ∈ Q(0, T ), and multiplying the linear Stokes equation by q and
integrating in space and time. We obtain

ˆ T

0

ˆ
Ωf

∂tu · qdxdt =

ˆ T

0

ˆ
Ωf

(∇ · σ) · qdxdt.

By integrating the first term by parts in time, we obtain:

ˆ T

0

ˆ
Ωf

∂tu · qdxdt =

ˆ
Ωf

u · qdx
∣∣∣t=T
t=0
−
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt = −
ˆ

Ωf

u0 · q(0)dx−
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt.

By integrating the second term by parts in space and using the divergence free condition on q, we obtain:

ˆ
Ωf

(∇ · σ) · qdx =

ˆ
∂Ωf

(σn) · qdS − 2µ

ˆ
Ωf

D(u) : D(q)dx,

where D(u) and D(q) represent the symmetrized gradient. Using the definition of the Cauchy stress tensor,
σ = −pI + 2µD(u), and integrating in time, we obtain

ˆ T

0

ˆ
Ωf

(∇ · σ) · qdxdt =

ˆ T

0

ˆ
Γin

pqzdrdt−
ˆ T

0

ˆ
Γout

pqzdrdt− 2µ

ˆ T

0

ˆ
Ωf

D(u) : D(q)dxdt

−
ˆ T

0

ˆ
Γ
∇η · ∇ψdzdt+

ˆ T

0

ˆ
Γ
∂tη∂tψdzdt+

ˆ
Γ
v0ψ(0)dz +

ˆ T

0

(ˆ
Γ
ψdz

)
Fext(t)dt.

Putting this all together, we get that

−
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(u) : D(q)dxdt−
ˆ T

0

ˆ
Γ

∂tη∂tψdzdt+

ˆ T

0

ˆ
Γ

∇η · ∇ψdzdt

=

ˆ T

0

Pin(t)

(ˆ
Γin

qzdr

)
dt−

ˆ T

0

Pout(t)

(ˆ
Γout

qzdr

)
dt+

ˆ
Ωf

u0 · q(0)dx+

ˆ
Γ

v0ψ(0)dz+

ˆ T

0

(ˆ
Γ

ψdz

)
Fext(t)dt,

where we used the fact that Pin/out(t) = p on Γin/out.

Now, we formally substitute Fext(t) = Ẇ (t), into the definition of the deterministic weak solution, to get
that the term containing Fext(t) can be interpreted in the stochastic case as:

ˆ T

0

(ˆ
Γ
ψdz

)
dW (t).

Since W is a one dimensional Brownian motion and since
´

Γ ψdz is a deterministic function in time, we can
interpret this term as a stochastic integral.

Before we give the definition of a weak solution to the stochastic FSI problem above, we recall the definition
of a stochastic basis. A stochastic basis S is an ordered quintuple (see [41] for the notation)

S = (Ω,F , {Ft}t≥0,P,W ),
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where (Ω,F ,P) is a probability space, {Ft}t≥0 is a complete filtration with respect to this probability space,
and W is a one-dimensional Brownian motion on the probability space with respect to the filtration {Ft}t≥0,
meaning that: (1) W has continuous paths, almost surely, (2) W is adapted to the filtration {Ft}t≥0, and (3)
W (t) −W (s) is independent of Fs for all t ≥ s and W (t) −W (s) ∼ N(0, t − s) for all 0 ≤ s ≤ t, where N
denotes the normal distribution.

We will define two notions of solution: (1) a weak solution in a probabilistically weak sense, and (2) a
weak solution in a probabilistically strong sense. The second one is stronger than the first, but we will need
the first to be able to prove the existence of a weak solution in a probabilistically strong sense.

Definition 4.1. An ordered triple (S̃, ũ, η̃) is a weak solution in a probabilistically weak sense if there exists
a stochastic basis

S̃ = (Ω̃, F̃ , {F̃t}t≥0, P̃, W̃ )

and (ũ, η̃) ∈ W(0, T ) with paths almost surely in C(0, T ;Q′), which satisfies:

• (ũ, η̃) is adapted to the filtration {F̃t}t≥0,

• η̃(0) = η0 almost surely, and

• for all (q, ψ) ∈ Q(0, T ),

−
ˆ T

0

ˆ
Ωf

ũ · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(ũ) : D(q)dxdt−
ˆ T

0

ˆ
Γ

∂tη̃∂tψdzdt+

ˆ T

0

ˆ
Γ

∇η̃ · ∇ψdzdt

=

ˆ T

0

Pin(t)

(ˆ
Γin

qzdr

)
dt−
ˆ T

0

Pout(t)

(ˆ
Γout

qzdr

)
dt+

ˆ
Ωf

u0 ·q(0)dx+

ˆ
Γ

v0ψ(0)dz+

ˆ T

0

(ˆ
Γ

ψdz

)
dW̃ ,

almost surely.

Definition 4.2. Let S = (Ω,F , {Ft}t≥0,P,W ) be a stochastic basis with a complete filtration {Ft}t≥0 and a
one-dimensional Brownian motion {Wt}t≥0 on a given probability space (Ω,F ,P). An ordered pair (u, η) is a
weak solution in a probabilistically strong sense if (u, η) ∈ W(0, T ) with paths almost surely in C(0, T ;Q′),
satisfies:

• (u, η) is adapted to the filtration {Ft}t≥0

• η(0) = η0 almost surely, and

• for all (q, ψ) ∈ Q(0, T ),

−
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(u) : D(q)dxdt−
ˆ T

0

ˆ
Γ

∂tη∂tψdzdt+

ˆ T

0

ˆ
Γ

∇η · ∇ψdzdt

=

ˆ T

0

Pin(t)

(ˆ
Γin

qzdr

)
dt−
ˆ T

0

Pout(t)

(ˆ
Γout

qzdr

)
dt+

ˆ
Ωf

u0 ·q(0)dx+

ˆ
Γ

v0ψ(0)dz+

ˆ T

0

(ˆ
Γ

ψdz

)
dW.

almost surely.

In a probabilistically strong solution as in the second definition above, we have a random solution satisfying
the initial conditions on the originally given (arbitrary) probability space with a one dimensional Brownian
motion with respect to a complete filtration. In a probabilistically weak solution, we have a weaker requirement
that the random solution exists on a particular (not arbitrary) probability space, where the initial conditions
are satisfied “in law”. We will show the existence of a weak solution in the probabilistically strong sense.
To get to that solution, we will introduce a general methodology for passing to the limit almost surely in
the (random) approximate solutions, that will generalize to more complex stochastic FSI systems. This will
involve first showing existence of a convergent subsequence of probability measures corresponding to the laws
of the approximate solutions. Then we will construct a weak solution in the probabilistically weak sense using
the Skorohod representation theorem, and we will conclude by using the Gyöngy-Krylov argument [28] to get
to a weak solution in the probabilistically strong sense.

The main result of this work is stated in the following theorem.
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Theorem 4.1 (Main Result). Let u0 ∈ L2(Ωf ), v0 ∈ L2(Γ), and η0 ∈ H1
0 (Γ). Let Pin/out ∈ L2

loc(0,∞) and
let (Ω,F ,P) be a probability space with a Brownian motion W with respect to a given complete filtration
{Ft}t≥0. Then, for any T > 0, there exists a unique weak solution in a probabilistically strong sense to the
given stochastic fluid-structure interaction problem (5)–(7).

5 A priori energy estimate

We derive a formal energy estimate by assuming that the solution is pathwise regular enough to justify the
integration by parts. We use ‖ ·‖L2(Γ) and (·, ·) to denote the norm and inner product on L2(Γ), and ‖ ·‖L2(Ωf )

and 〈·, ·〉 to denote the norm and inner product on L2(Ωf ).
We define the total energy at time T by

E(T ) :=
1

2

ˆ
Γ
|∇η|2dz +

1

2

ˆ
Γ
|v|2dz +

1

2

ˆ
Ωf

|u|2dx =
1

2

(
‖∇η‖2L2(Γ) + ‖v‖2L2(Γ) + ‖u‖2L2(Ωf )

)
,

and the total dissipation by time T by

D(T ) =

ˆ T

0

ˆ
Ωf

|D(u)|2dx.

To estimate the total energy and dissipation for the stochastic processes u, v and η, we rewrite the stochastic
fluid-structure interaction problem in the following stochastic differential formulation:

dη = vdt,

dv = (∆η − σer · er)dt+ dW,

du = (∇ · σ)dt.

Notice that the first equation implies d(∇η) = (∇v)dt. To obtain an energy estimate, we first apply Itö’s
formula to express the differentials of the L2-norms of the stochastic processes that define the total energy of
the problem:

d(‖∇η‖2L2(Γ)) = 2(∇η,∇v)dt,

d(‖v‖2L2(Γ)) = [2(∆η, v)− 2(σer · er, v) + L]dt+ 2(1, v)dW,

d(‖u‖2L2(Ωf )) = 2〈∇ · σ,u〉dt.

In the preceding calculation, we emphasize an important distinction from the corresponding energy estimates
in the deterministic case. In particular, because of the influence of the random noise forcing, there is an extra
Ldt term in the differential of ||v||2L2(Γ), which is a result of an extra “correction term” in Itô’s formula, which

intuitively can be regarded as a stochastic analogue of the chain rule, see Theorem 4.1.2 in [50], pg. 70-71
of [21], and Theorem 3.3 in Chapter IV of [55] for example. This additional term in Itô’s formula arises from
the fact that the quadratic variation of Brownian motion on a given closed interval is given by the change in
the time parameter, see the discussion in Theorem 2.4 in Chapter I of [55], which can be easily seen in the
current discussion of squaring the velocity v to obtain the kinetic energy of the membrane, in the computation
above. By adding these equations together, we obtain that the differential of the total energy satisfies:

d(‖∇η‖2L2(Γ) + ‖v‖2L2(Γ) + ‖u‖2L2(Ωf )) = [2〈∇ · σ,u〉 − 2(σer · er, v) + L]dt+ 2(1, v)dW,

where we have used that (∆η, v) = −(∇η,∇v) under the assumption that η and v are smooth and vanish at
the endpoints of Γ. Recalling the kinematic coupling condition u|Γ = v, we obtain that

ˆ
Ωf

(∇ · σ) · udx =

ˆ
Γin

puzdr −
ˆ

Γout

puzdr +

ˆ
Γ
(σer · er)vdz − 2µ

ˆ
Ωf

|D(u)|2dx,
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which implies

d

(
1

2

ˆ
Γ
|∇η|2dz +

1

2

ˆ
Γ
|v|2dz +

1

2

ˆ
Ωf

|u|2dx

)

=

(
L

2
− 2µ

ˆ
Ωf

|D(u)|2dx+

ˆ
Γin

puzdr −
ˆ

Γout

puzdr

)
dt+

(ˆ
Γ
vdz

)
dW.

Therefore, after integration, for all T ≥ 0, we have

E(T )+2µ

ˆ T

0

ˆ
Ωf

|D(u)|2dxdt = E0+
LT

2
+

ˆ T

0

ˆ
Γin

Pin(t)uzdrdt−
ˆ T

0

ˆ
Γout

Pout(t)uzdrdt+

ˆ T

0

(ˆ
Γ
vdz

)
dW.

(15)
We estimate the terms on the right hand side of (15) as follows. For the pressure term we use Hölder’s
inequality, the trace inequality, Poincaré’s inequality, and Korn’s inequality [33] to get∣∣∣∣ˆ T

0

(ˆ
Γin

uzdr

)
Pin(t)dt

∣∣∣∣ ≤ C
∣∣∣∣∣
ˆ T

0

(ˆ
Γin

|uz|2dr
)1/2

Pin(t)dt

∣∣∣∣∣ ≤ C
∣∣∣∣ˆ T

0
||∇u||L2(Ωf )Pin(t)dt

∣∣∣∣
≤ C

∣∣∣∣ˆ T

0
||D(u)||L2(Ωf )Pin(t)dt

∣∣∣∣ ≤ C(D(T ))1/2||Pin(t)||L2(0,T ) ≤ εD(T ) + C(ε)||Pin(t)||2L2(0,T ). (16)

We note that the constant C(ε) depends only on ε and the parameters of the problem. The same computation
holds for the outlet pressure.

For the stochastic integral, we will bound the expectation E
(
max0≤τ≤T

∣∣´ τ
0

(´
Γ ∂tηdz

)
dW

∣∣) since the final
energy estimate will be given in terms of expectation of the total energy and dissipation at time T . To bound
this quantity, we use the Burkholder-Davis-Gundy (BDG) inequality under the assumption that the process
∂tη is a predictable stochastic process with respect to the given filtration {Ft}t≥0:

E
(

max
0≤s≤T

∣∣∣∣ˆ s

0

(ˆ
Γ
∂tηdz

)
dW

∣∣∣∣) ≤ E

∣∣∣∣∣
ˆ T

0

(ˆ
Γ
∂tηdz

)2

dt

∣∣∣∣∣
1/2
 ≤ CE(∣∣∣∣ˆ T

0
||∂tη||2L2(Γ)dt

∣∣∣∣1/2
)

≤ C
(
E
∣∣∣∣ˆ T

0
||∂tη||2L2(Γ)dt

∣∣∣∣)1/2

≤ CT 1/2 ·
[
E
(

max
0≤t≤T

||∂tη(t, ·)||2L2(Γ)

)]1/2

≤ C(ε)T + εE
(

max
0≤t≤T

||∂tη(t, ·)||2L2(Γ)

)
≤ C(ε)T + εE

(
max

0≤t≤T
E(t)

)
. (17)

Now, we first use (16) in (15) to obtain

E(T ) + 2µD(T ) ≤ E(0) +
LT

2
+ 2εD(T ) + C(ε)

(
||Pin(t)||2L2(0,T ) + ||Pout(t)||2L2(0,T )

)
+

ˆ T

0

(ˆ
Γ
vdz

)
dW,

and then choose ε < µ
2 and ε < 1

2 to get

E(T ) + µD(T ) ≤ E(0) +
LT

2
+ C(ε)

(
||Pin(t)||2L2(0,T ) + ||Pout(t)||2L2(0,T )

)
+

ˆ T

0

(ˆ
Γ
vdz

)
dW.

Taking a maximum over times t ∈ [0, T ], taking an expectation, and then using the estimate in (17), we
obtain the following a priori energy estimate for the coupled problem (5)–(7):

E

(
max

0≤t≤T
E(t) + µ

ˆ t

0

ˆ
Ωf

|D(u)|2dxds

)
≤ C

(
T + E(0) + ||Pin(t)||2L2(0,T ) + ||Pout(t)||2L2(0,T )

)
,

where C is independent of T , depending only on the parameters of the problem.

Remark 5.1. The right hand side of the energy estimate shows the four sources of energy input into the
system: E(0) represents the initial kinetic and potential energy, the two final terms represent the energy input
from the inlet and outlet pressure, and CT represents the energy input from the stochastic forcing on the
structure.
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6 The splitting scheme

To prove the existence of a weak solution to the given stochastic FSI problem we adapt a Lie operator
splitting scheme that was first designed in the context of nonlinear fluid-structure interaction by Muha and
Čanić in [43]. See also [27]. In this section, we introduce a new splitting scheme that splits each of the three
different contributions to the fully coupled dynamics of the problem (the stochastic noise, the structure, and
the fluid) apart from each other. To do this, we use a stochastic splitting introduced in [5], which has been
used in stochastic differential equations to split stochastic effects from all other deterministic effects. We
design a three part splitting scheme that involves a structure subproblem, a stochastic subproblem, and a
fluid subproblem, which gives rise to a stable and convergent scheme, as we show below. While it is
possible to design a scheme that combines the stochastic and structure subproblems (see [57]), the advantage
of using a three-way scheme is that all of the different multiphysical components of the problem are fully split
from each other, which allows one to isolate the influence of the stochasticity, structure elastodynamics, and
the fluid on the fully coupled dynamics numerically.

Given a fixed time T > 0, for each positive integer N , let ∆t = T
N denote the associated time step, and

let tnN = n∆t denote the discrete times for n = 0, 1, ...., N − 1, N . At each time step, we update the following
vector using a three step method described below:

X
n+ i

3
N =

(
u
n+ i

3
N , v

n+ i
3

N , η
n+ i

3
N

)T
, n = 0, 1, ...., N − 1, i = 1, 2, 3,

where i = 1 corresponds to the result after updating the structure subproblem, i = 2 corresponds to the
stochastic subproblem, and i = 3 corresponds to the fluid subproblem, with the initial data X0

N = (u0, v0, η0)T

for each N .

6.1 The structure subproblem

In this subproblem, we keep the fluid velocity fixed, so that

u
n+ 1

3
N = unN ,

and update the structure displacement and the structure velocity by requiring that (η
n+ 1

3
N , v

n+ 1
3

N ) satisfy the
following first order system in weak variational form:

ˆ
Γ

η
n+ 1

3
N − ηnN

∆t
φdz =

ˆ
Γ
v
n+ 1

3
N φdz, for all φ ∈ L2(Γ),

ˆ
Γ

v
n+ 1

3
N − vnN

∆t
ψdz +

ˆ
Γ
∇ηn+ 1

3
N · ∇ψdz = 0, for all ψ ∈ H1

0 (Γ), (18)

where this system is solved pathwise for each ω ∈ Ω separately. We note that (η
n+ 1

3
N , v

n+ 1
3

N ) is a random
variable taking values in H1

0 (Γ)×H1
0 (Γ). To verify this, we must check that it is a measurable function of the

probability space.

Proposition 6.1. Suppose that ηnN and vnN are FtnN measurable random variables taking values in H1
0 (Γ) and

L2(Γ) respectively. Then, the structure problem (18) has a unique solution (η
n+ 1

3
N , v

n+ 1
3

N ), which is a random
variable taking values in H1

0 (Γ)×H1
0 (Γ) that is measurable with respect to FtnN .

Proof. Let FnN : (ηnN , v
n
N ) → (η

n+ 1
3

N , v
n+ 1

3
N ) be the deterministic linear map that sends deterministic data

(ηnN , v
n
N ) ∈ H1

0 (Γ)×L2(Γ) to the unique solution (η
n+ 1

3
N , v

n+ 1
3

N ) ∈ H1
0 (Γ)×H1

0 (Γ) satisfying the weak formulation

(18) as a deterministic problem. We claim that this deterministic linear map FnN : (ηnN , v
n
N ) → (η

n+ 1
3

N , v
n+ 1

3
N )

is a continuous (or equivalently, bounded) linear map from H1
0 (Γ)× L2(Γ) to H1

0 (Γ)×H1
0 (Γ).
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By plugging the first equation in (18) into the second equation, η
n+ 1

3
N satisfies the weak formulation:

ˆ
Γ
η
n+ 1

3
N ψdz + (∆t)2

ˆ
Γ
∇ηn+ 1

3
N · ∇ψdz = (∆t)

ˆ
Γ
vnNψdz +

ˆ
Γ
ηnNψdz, for all ψ ∈ H1

0 (Γ). (19)

The existence of a unique η
n+ 1

3
N ∈ H1

0 (Γ) satisfying (19) is given by the Lax-Milgram lemma, and v
n+ 1

3
N =

η
n+ 1

3
N − ηnN

∆t
∈ H1

0 (Γ). The linear map Fn : (ηnN , v
n
N ) → (η

n+ 1
3

N , v
n+ 1

3
N ) is a bounded linear map from H1

0 (Γ) ×

L2(Γ) to H1
0 (Γ) × H1

0 (Γ), which can be seen by substituting ψ = η
n+ 1

3
N in (19). Thus, FnN : (ηnN , v

n
N ) →

(η
n+ 1

3
N , v

n+ 1
3

N ) is a bounded linear map from H1
0 (Γ) × L2(Γ) to H1

0 (Γ) × H1
0 (Γ), and so the result of the

structure subproblem, which consists of the random functions (η
n+ 1

3
N , v

n+ 1
3

N ) = FnN ◦ (ηnN , v
n
N ), is a pair of FtnN

measurable random variables, taking values in H1
0 (Γ)×H1

0 (Γ).

To show that the approximate solutions defined by the subproblems converge to the weak solution of
the continuous problem as ∆t→ 0, we will need uniform bounds on the approximating sequences, which will
follow from the uniform bounds on the discrete energy of the problem. For this purpose, we define the discrete
energy at time tn by

E
n+ i

3
N =

1

2

(ˆ
Ωf

|un+ i
3

N |2dx+ ||vn+ i
3

N ||2L2(Γ) + ||∇ηn+ i
3

N ||2L2(Γ)

)
, (20)

and we define the fluid dissipation at time tn by

Dn
N = (∆t)µ

ˆ
Ωf

|D(unN )|2dx. (21)

We emphasize that these are random variables.

Proposition 6.2. The following discrete energy equality is satisfied pathwise:

E
n+ 1

3
N +

1

2

(
||vn+ 1

3
N − vnN ||2L2(Γ)

)
+

1

2

(
||∇ηn+ 1

3
N −∇ηnN ||2L2(Γ)

)
= EnN .

Proof. Because v
n+ 1

3
N ∈ H1

0 (Γ), we can substitute ψ = v
n+ 1

3
N in the weak formulation to obtain that pathwise,

ˆ
Γ
(v
n+ 1

3
N − vnN ) · vn+ 1

3
N dz + (∆t)

ˆ
Γ
∇ηn+ 1

3
N · ∇vn+ 1

3
N dz = 0.

By using the identity (a− b) ·a = 1
2(|a|2 + |a− b|2−|b|2), along with the fact that v

n+ 1
3

N =
η
n+ 1

3
N −ηnN

∆t , we obtain
that the following identity holds pathwise:

1

2
||vn+ 1

3

N ||2L2(Γ) +
1

2
||∇ηn+ 1

3

N ||2L2(Γ) +
1

2
||vn+ 1

3

N − vnN ||2L2(Γ) +
1

2
||∇ηn+ 1

3

N −∇ηnN ||2L2(Γ) =
1

2
||vnN ||2L2(Γ) +

1

2
||∇ηnN ||2L2(Γ).

The result follows once we note that u
n+ 1

3
N = unN .

6.2 The stochastic subproblem

In this subproblem, we incorporate only the effects of the stochastic forcing, which appears only in the
structure equation. In this step, we keep the structure displacement and fluid velocity fixed

η
n+ 2

3
N = η

n+ 1
3

N , u
n+ 2

3
N = u

n+ 1
3

N ,
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and only update the structure velocity as

v
n+ 2

3
N = v

n+ 1
3

N + [W ((n+ 1)∆t)−W (n∆t)]. (22)

In particular, we are splitting the stochastic part of the structure problem from the deterministic part. This
is necessary to obtain a stable scheme. We state the following simple proposition.

Proposition 6.3. Suppose that v
n+ 1

3
N is an FtnN measurable random variable taking values in H1

0 (Γ). Then,

v
n+ 2

3
N is an Ftn+1

N
measurable random variable taking values in H1(Γ).

Notice that the solution v
n+ 2

3
N to the stochastic subproblem taking values in H1(Γ), satisfies pathwise the

following integral equality, which will be useful later:

ˆ
Γ

v
n+ 2

3
N − vn+ 1

3
N

∆t
ψdz =

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdz, for all ψ ∈ H1

0 (Γ). (23)

Proposition 6.4. The following discrete energy identity holds pathwise:

E
n+ 2

3
N = E

n+ 1
3

N + [W ((n+ 1)∆t)−W (n∆t)]

ˆ
Γ
v
n+ 1

3
N dz +

L

2
[W ((n+ 1)∆t)−W (n∆t)]2.

Proof. From v
n+ 2

3
N = v

n+ 1
3

N + [W ((n+ 1)∆t)−W (n∆t)], we get that

1

2
|vn+ 2

3
N |2 =

1

2
|vn+ 1

3
N |2 + v

n+ 1
3

N · [W ((n+ 1)∆t)−W (n∆t)] +
1

2
[W ((n+ 1)∆t)−W (n∆t)]2.

Therefore, after integrating over Γ, one gets the desired energy equality, after recalling that η and u do not
change in this subproblem.

6.3 The fluid subproblem

In this subproblem, we keep the structure displacement fixed

ηn+1
N = η

n+ 2
3

N ,

and update the fluid and structure velocities. To define the problem satisfied by the fluid and structure
velocities, we introduce the following notation for the corresponding fixed time function spaces:

V = {(u, v) ∈ VF × L2(Γ) : u|Γ = ver}, Q = {(q, ψ) ∈ VF ×H1
0 (Γ) : q|Γ = ψer},

where VF is defined by (8). Note that the definition of V and Q does not depend on N or n.
Then, the fluid subproblem is to find (un+1

N , vn+1
N ) taking values in V pathwise, such that

ˆ
Ωf

un+1
N − un+ 2

3
N

∆t
· qdx+ 2µ

ˆ
Ωf

D(un+1
N ) : D(q)dx+

ˆ
Γ

vn+1
N − vn+ 2

3
N

∆t
ψdz

= PnN,in

ˆ R

0
(qz)|z=0dr − PnN,out

ˆ R

0
(qz)|z=Ldr, ∀(q, ψ) ∈ Q, (24)

pathwise for each outcome ω ∈ Ω, where PnN,in/out = 1
∆t

´ (n+1)∆t
n∆t Pin/out(t)dt.

Proposition 6.5. Suppose that u
n+ 2

3
N and v

n+ 2
3

N are Ftn+1
N

measurable random variables taking values in VF
and H1(Γ) respectively. Then, the fluid subproblem (24) has a unique solution (un+1

N , vn+1
N ) that is an Ftn+1

N

measurable random variable taking values in V.
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Proof. We establish this result again using the Lax Milgram lemma. We let TnN : VF ×H1(Γ) × R × R → V
denote the deterministic map that sends deterministic data (u

n+ 2
3

N , v
n+ 2

3
N , PnN,in, P

n
N,out) ∈ VF×H1(Γ)×R×R to

the unique solution (un+1
N , vn+1

N ) ∈ V satisfying the deterministic form of the weak formulation (24). We want

to show that the deterministic linear map TnN : (u
n+ 2

3
N , v

n+ 2
3

N , PnN,in, P
n
N,out) → (un+1

N , vn+1
N ) is a continuous

map. We start by showing that the bilinear form B : V × V → R given by

B((u, v), (q, ψ)) =

ˆ
Ωf

u · qdx+ 2µ(∆t)

ˆ
Ωf

D(u) : D(q)dx+

ˆ
Γ
vψdz,

is coercive and continuous. Coercivity follows from the Korn equality (see for example, Lemma 6 on pg. 377
in [8]), applied to

B((u, v), (u, v)) =

ˆ
Ωf

|u|2dx+ 2µ(∆t)

ˆ
Ωf

|D(u)|2dx+

ˆ
Γ
v2dz,

to obtain ||∇u||2L2(Ωf ) = 2||D(u)||2L2(Ωf ). Continuity of the bilinear form B follows from an application of the

Cauchy-Schwarz inequality.
Next, one can verify that the map sending

(q, ψ)→
ˆ

Ωf

u
n+ 2

3
N · qdx+

ˆ
Γ
v
n+ 2

3
N ψdz + (∆t)

(
PnN,in

ˆ R

0
(qz)|z=0dr − PnN,out

ˆ R

0
(qz)|z=Ldr

)
,

is a continuous linear functional on V. Thus, the existence of a unique (un+1
N , vn+1

N ) ∈ V satisfying (24) with
the larger space of test functions (q, ψ) ∈ V is guaranteed by the Lax-Milgram lemma. Note that V is a larger
space than the space Q required for the test functions in the fluid subproblem (24). However, we still have
the desired uniqueness of the solution in V if we restrict the test functions to Q as in (24) because Q is dense
in V.

Then, using coercivity, the trace inequality for u ∈ H1(Ωf ), and the fact that

B((un+1
N , vn+1

N ), (un+1
N , vn+1

N ))

=

ˆ
Ωf

u
n+ 2

3
N · un+1

N dx+

ˆ
Γ
v
n+ 2

3
N · vn+1

N dz + (∆t)

(
PnN,in

ˆ R

0
(un+1

N )z|z=0dr − PnN,out
ˆ R

0
(un+1

N )z|z=Ldr
)
,

we obtain the continuity of the map Tn.

Thus, since u
n+ 2

3
N and v

n+ 2
3

N are Ftn+1
N

measurable by assumption, the random functions (un+1
N , vn+1

N ) =

TnN ◦ (u
n+ 2

3
N , v

n+ 2
3

N ), which solve the fluid subproblem, are Ftn+1
N

measurable random variables also.

Proposition 6.6. The following discrete energy identity holds pathwise:

En+1
N + 2µ(∆t)

ˆ
Ωf

|D(un+1
N )|2dx+

1

2

(
||un+1

N − un+ 2
3

N ||2L2(Ωf )

)
+

1

2

(
||vn+1

N − vn+ 2
3

N ||2L2(Γ)

)
= E

n+ 2
3

N + (∆t)

(
PnN,in

ˆ R

0
(un+1

N )z|z=0dr − PnN,out
ˆ R

0
(un+1

N )z|z=Ldr
)
.

Proof. We can substitute (q, ψ) = (un+1
N , vn+1

N ) into the weak formulation of the fluid subproblem since we
showed in Proposition 6.5 that (24) holds more generally for test functions in V. We obtain

ˆ
Ωf

un+1
N − un+ 2

3
N

∆t
· un+1

N dx+ 2µ

ˆ
Ωf

|D(un+1
N )|2dx+

ˆ
Γ

vn+1
N − vn+ 2

3
N

∆t
· vn+1
N dz

= PnN,in

ˆ R

0
(un+1

N )z|z=0dr − PnN,out
ˆ R

0
(un+1

N )z|z=Ldr.

The desired equality follows after multiplication by ∆t, and by using the identity (a − b) · a = 1
2(|a|2 + |a −

b|2 − |b|2).
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6.4 The full, coupled semidiscrete problem

By adding the weak formulations of the stochastic and fluid subproblems (23) and (24), and the second
equation in the structure subproblem (18), we have that the solution to the full semidiscrete problem is

(un+1
N , vn+1

N ) ∈ V , and (v
n+ 1

3
N , η

n+ 1
3

N ) ∈ H1
0 (Γ)×H1

0 (Γ), satisfying the following equality pathwise:

ˆ
Ωf

un+1
N − unN

∆t
· qdx+ 2µ

ˆ
Ωf

D(un+1
N ) : D(q)dx+

ˆ
Γ

vn+1
N − vnN

∆t
ψdz +

ˆ
Γ
∇ηn+1

N · ∇ψdz

=

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdz + PnN,in

ˆ R

0
(qz)|z=0dr − PnN,out

ˆ R

0
(qz)|z=Ldr, ∀(q, ψ) ∈ Q,

ˆ
Γ

ηn+1
N − ηnN

∆t
φdz =

ˆ
Γ
v
n+ 1

3
N φdz, ∀φ ∈ L2(Γ),

(25)

where PnN,in/out =
1

∆t

ˆ (n+1)∆t

n∆t
Pin/out(t)dt. Note that ηn+1

N = η
n+ 1

3
N by the way we constructed the splitting

scheme.
The following proposition provides uniform estimates on the expectation of the kinetic and elastic energy

for the full, semidiscrete coupled problem (uniform in the number of time steps N , or equivalently, uniform
in ∆t), as well as uniform estimates on the expectation of the numerical dissipation.

Proposition 6.7. Let N > 0 and let ∆t = T
N . There exists a constant C independent of N and depending

only on the initial data, the parameters of the problem, and ||Pin/out||2L2(0,T ), such that the following uniform
energy estimates hold:

1. Uniform semidiscrete kinetic energy and elastic energy estimates:

E
(

max
n=0,1,...,N−1

E
n+ 1

3
N

)
≤ C, E

(
max

n=0,1,...,N−1
E
n+ 2

3
N

)
≤ C, and E

(
max

n=0,1,...,N−1
En+1
N

)
≤ C.

2. Uniform semidiscrete viscous fluid dissipation estimate:

N∑
j=1

E(Dj
N ) ≤ C.

3. Uniform numerical dissipation estimates:

N−1∑
n=0

(
E
(
||vn+ 1

3
N − vnN ||2L2(Γ)

)
+ E

(
||∇ηn+ 1

3
N −∇ηnN ||2L2(Γ)

))
≤ C.

N−1∑
n=0

E
(
||vn+ 2

3
N − vn+ 1

3
N ||2L2(Γ)

)
≤ C.

N−1∑
n=0

(
E
(
||un+1

N − un+ 2
3

N ||2L2(Ωf )

)
+ E

(
||vn+1

N − vn+ 2
3

N ||2L2(Γ)

))
≤ C.

Proof. First, recall the definitions of the discrete energy E
n+ i

3
N and the discrete fluid dissipation Dn

N from (20)
and (21). We start with the second uniform numerical dissipation estimate. This estimate follows directly
from the stochastic subproblem (22) after integration

ˆ
Γ
|vn+ 2

3
N − vn+ 1

3
N |2dz = L · [W ((n+ 1)∆t)−W (n∆t)]2,
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and summation of the expectations of both sides:

N−1∑
n=0

E
(
||vn+ 2

3
N − vn+ 1

3
N ||2L2(Γ)

)
=

N−1∑
n=0

E
(
L · [W ((n+ 1)∆t)−W (n∆t)]2

)
= LT.

We now verify the remaining uniform energy estimates. By summing the structure, stochastic, and fluid
discrete energy identities, we obtain

En+1
N +

n∑
k=0

(
2µ(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx+

1

2

(
||uk+1

N − uk+ 2
3

N ||2L2(Ωf )

)
+

1

2

(
||vk+1

N − vk+ 2
3

N ||2L2(Γ)

))

+
n∑

k=0

(
1

2

(
||vk+ 1

3

N − vkN ||2L2(Γ)

)
+

1

2

(
||∇ηk+ 1

3

N −∇ηkN ||2L2(Γ)

))

= E0 + (∆t)
n∑

k=0

(
P k
N,in

ˆ R

0

(uk+1
N )z|z=0dr − P k

N,out

ˆ R

0

(uk+1
N )z|z=Ldr

)

+
n∑

k=0

(
[W ((k + 1)∆t)−W (k∆t)]

ˆ
Γ

v
k+ 1

3

N dz +
L

2
[W ((k + 1)∆t)−W (k∆t)]2

)
, (26)

E
n+ 2

3

N +
n−1∑
k=0

(
2µ(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx+

1

2

(
||uk+1

N − uk+ 2
3

N ||2L2(Ωf )

)
+

1

2

(
||vk+1

N − vk+ 2
3

N ||2L2(Γ)

))

+
n∑

k=0

(
1

2

(
||vk+ 1

3

N − vkN ||2L2(Γ)

)
+

1

2

(
||∇ηk+ 1

3

N −∇ηkN ||2L2(Γ)

))

= E0 + (∆t)

n−1∑
k=0

(
P k
N,in

ˆ R

0

(uk+1
N )z|z=0dr − P k

N,out

ˆ R

0

(uk+1
N )z|z=Ldr

)

+
n∑

k=0

(
[W ((k + 1)∆t)−W (k∆t)]

ˆ
Γ

v
k+ 1

3

N dz +
L

2
[W ((k + 1)∆t)−W (k∆t)]2

)
,

and

E
n+ 1

3

N +
n−1∑
k=0

(
2µ(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx+

1

2

(
||uk+1

N − uk+ 2
3

N ||2L2(Ωf )

)
+

1

2

(
||vk+1

N − vk+ 2
3

N ||2L2(Γ)

))

+
n∑

k=0

(
1

2

(
||vk+ 1

3

N − vkN ||2L2(Γ)

)
+

1

2

(
||∇ηk+ 1

3

N −∇ηkN ||2L2(Γ)

))

= E0 + (∆t)
n−1∑
k=0

(
P k
N,in

ˆ R

0

(uk+1
N )z|z=0dr − P k

N,out

ˆ R

0

(uk+1
N )z|z=Ldr

)

+
n−1∑
k=0

(
[W ((k + 1)∆t)−W (k∆t)]

ˆ
Γ

v
k+ 1

3

N dz +
L

2
[W ((k + 1)∆t)−W (k∆t)]2

)
,

for n = 0, 1, ..., N − 1. Therefore,

E
(

max
i=1,2,3

[
max

n=0,1,...,N−1
E

n+ i
3

N

])
+

N−1∑
k=0

[
E

(
2µ(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx

)
+

1

2
E
(
||uk+1

N − uk+ 2
3

N ||2L2(Ωf )

)
+

1

2
E
(
||vk+1

N − vk+ 2
3

N ||2L2(Γ)

)
+

(
1

2
E
(
||vk+ 1

3

N − vkN ||2L2(Γ)

)
+

1

2
E
(
||∇ηk+ 1

3

N −∇ηkN ||2L2(Γ)

))]

≤ 2E0 + 2E

[
max

n=0,1,...,N−1
(∆t)

n∑
k=0

(
P k
N,in

ˆ R

0

(uk+1
N )z|z=0dr − P k

N,out

ˆ R

0

(uk+1
N )z|z=Ldr

)]

+ 2E

[
max

n=0,1,...,N−1

n∑
k=0

(
[W ((k + 1)∆t)−W (k∆t)]

ˆ
Γ

v
k+ 1

3

N dz +
L

2
[W ((k + 1)∆t)−W (k∆t)]2dr

)]
.
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What is left is to bound the quantities

I1 := E

[
max

n=0,1,...,N−1
(∆t)

n∑
k=0

(
P kN,in

ˆ R

0
(uk+1

N )z|z=0dr − P kN,out
ˆ R

0
(uk+1

N )z|z=Ldr
)]

,

and

E

[
max

n=0,1,...,N−1

n∑
k=0

(
[W ((k + 1)∆t)−W (k∆t)]

ˆ
Γ

v
k+ 1

3

N dz +
L

2
[W ((k + 1)∆t)−W (k∆t)]2dr

)]

≤ E

[
max

n=0,1,...,N−1

n∑
k=0

(
[W ((k + 1)∆t)−W (k∆t)]

ˆ
Γ

v
k+ 1

3

N dz

)]
+
L

2
E

(
N−1∑
k=0

[W ((k + 1)∆t)−W (k∆t)]2

)
:= I2 + I3.

Bound for I1: The same argument will work for P kN,in and P kN,out so without loss of generality, we perform the

bounds below for P kN,in. We recall that P kN,in =
1

∆t

ˆ (k+1)∆t

k∆t
Pin(t)dt, where P kN,in is deterministic. Therefore,

we have the following bound, for the term in I1 that involves P kN,in:

E

[
max

n=0,1,...,N−1
(∆t)

n∑
k=0

(
P k
N,in

ˆ R

0

(uk+1
N )z|z=0dr

)]
≤ E

(
N−1∑
k=0

(∆t)|P k
N,in|

∣∣∣∣∣
ˆ R

0

(uk+1
N )z|z=0dr

∣∣∣∣∣
)

≤
N−1∑
k=0

E

(∆t)
1

4ε
|P k

N,in|2 + ε(∆t)

(ˆ R

0

(uk+1
N )z|z=0dr

)2


≤
N−1∑
k=0

E

 1

4ε
· 1

∆t

(ˆ (k+1)∆t

k∆t

Pin(t)dt

)2

+ Cε(∆t)

ˆ R

0

(uk+1
N )2

z|z=0dr


≤

N−1∑
k=0

E

[
1

4ε
||Pin||2L2(k∆t,(k+1)∆t) + Cε(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx

]
=

1

4ε
||Pin||2L2(0,T )+

N−1∑
k=0

E

(
Cε(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx

)
,

where we used Korn’s inequality in the last line. Therefore,

I1 ≤
1

4ε
||Pin||2L2(0,T ) +

1

4ε
||Pout||2L2(0,T ) +

N−1∑
k=0

E

(
2Cε(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx

)
.

Note that the constant C is independent of ∆t and N . It is the geometric constant arising from the application
of the Poincaré inequality on the fluid domain Ωf .

Bound for I2: Next, we examine I2 and start with an estimate involving the absolute values:

I2 ≤ E

(
max

n=0,1,...,N−1

∣∣∣∣∣
n∑
k=0

(ˆ L

0
v
k+ 1

3
N dz

)
· [W ((k + 1)∆t)−W (k∆t)]

∣∣∣∣∣
)
.

Next, we consider the expression under the absolute value sign, and consider it as the following stochastic
integral :

n∑
k=0

(ˆ L

0
v
k+ 1

3
N dz

)
· [W ((k + 1)∆t)−W (k∆t)] =

ˆ (n+1)∆t

0
f(t)dW (t),

where f(t) is the random function on [0, T ] defined by:

f(t) =

N−1∑
k=0

(ˆ L

0
v
k+ 1

3
N dz

)
· 1(k∆t,(k+1)∆t](t). (27)
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Because v
k+ 1

3
N is FtkN measurable, this integrand is predictable. This is a direct consequence of how we split

the stochastic part of the problem from the structure subproblem. Without such a splitting, we would not be
able to make the same conclusion. Hence, since the stochastic integral is a continuous process in time, we
have

I2 ≤ E
(

max
0≤s≤T

∣∣∣∣ˆ s

0
f(t)dW

∣∣∣∣) .
Using the BDG inequality, we obtain that

I2 ≤ E

(ˆ T

0

|f(t)|2dt

)1/2
 = E

(∆t)1/2

N−1∑
k=0

(ˆ L

0

v
k+ 1

3

N dz

)2
1/2

 ≤ ε(∆t)EN−1∑
k=0

(ˆ L

0

v
k+ 1

3

N dz

)2

+
1

4ε

≤ εL(∆t)E
N−1∑
k=0

||vk+ 1
3

N ||2L2(Γ)+
1

4ε
≤ εLN(∆t)E

(
max

k=0,1,...,N−1
||vk+ 1

3

N ||2L2(Γ)

)
+

1

4ε
≤ 2εLN(∆t)E

(
max

n=0,1,...,N−1
E

n+ 1
3

N

)
+

1

4ε
.

Bound for I3: Finally, by using the properties of Brownian motion, we immediately deduce that

I3 :=
L

2
E

(
N−1∑
k=0

[W ((k + 1)∆t)−W (k∆t)]2

)
=
LT

2
.

Conclusion: From the above estimates, we conclude that

E
(

max
i=1,2,3

[
max

n=0,1,...,N−1
E

n+ i
3

N

])
+

N−1∑
k=0

[
E

(
2µ(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx

)
+

1

2
E
(
||uk+1

N − uk+ 2
3

N ||2L2(Ωf )

)
+

1

2
E
(
||vk+1

N − vk+ 2
3

N ||2L2(Γ)

)
+

(
1

2
E
(
||vk+ 1

3

N − vkN ||2L2(Γ)

)
+

1

2
E
(
||∇ηk+ 1

3

N −∇ηkN ||2L2(Γ)

))]

≤ 2E0+
1

2ε
||Pin||2L2(0,T )+

1

2ε
||Pout||2L2(0,T )+

N−1∑
k=0

E

(
4Cε(∆t)

ˆ
Ωf

|D(uk+1
N )|2dx

)
+4εLT ·E

(
max

n=0,1,...,N−1
E

n+ 1
3

N

)
+

1

2ε
+LT.

We note that the constant C depends only on the fluid domain Ωf and not on ∆t or N . The result follows
once we fix ε > 0, independent of ∆t, such that 4Cε < µ and 4εLT < 1

2 , and move the associated terms from
the right hand side to the left hand side. We emphasize that this gives a uniform energy estimate because the
choice of ε is independent of ∆t and hence N .

Remark 6.1. We remark that the specific form of the splitting scheme enabled us to directly estimate
the terms involving the white noise as stochastic integrals, such as the second to last term in estimate

(26), as a result of measurability considerations. Because v
k+ 1

3
N is FtkN measurable, the stochastic increment

[W ((k+ 1)∆t)−W (k∆t)] is independent of the integral of v
k+ 1

3
N , and hence, we were able to rewrite this term

as a stochastic integral, see (27).

7 Approximate solutions

We use the solutions at fixed times of our semidiscrete scheme, u
n+ i

3
N , η

n+ i
3

N , and v
n+ i

3
N for i = 1, 2, 3, to create

approximate solutions for the given stochastic FSI problem in time on the time interval [0, T ], for each N ,
which we will need to pass to the limit as ∆t → 0. The approximate solutions will be defined as piecewise
functions in time. However, we must be careful in this construction of approximate solutions to make sure
that they are adapted to the given filtration {Ft}t≥0 associated to the given Brownian motion.
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7.1 Definition of approximate solutions

We start with the fluid. We define the approximate random function uN on [0, T ] × Ωf to be the piecewise
constant function

uN (t, ·) = un−1
N , for t ∈ ((n− 1)∆t, n∆t].

Note that because unN is FtnN measurable, the choice of un−1
N instead of unN above is used so that the resulting

process uN is adapted to the filtration {Ft}t≥0.

Next, we consider the functions associated with the structure. Note that ηnN , η
n+ 1

3
N , and v

n+ 1
3

N are FtnN
measurable while v

n+ 2
3

N is Ftn+1
N

measurable. It turns out that we will not need to keep track of v
n+ 2

3
N when

passing to the limit, since it does not appear in (25). So it suffices to define

ηN (t, ·) = ηn−1
N , vN (t, ·) = vn−1

N , v∗N (t, ·) = v
n− 2

3
N , for t ∈ ((n− 1)∆t, n∆t],

and these are all adapted to the given filtration {Ft}t≥0. Note that vN defined on [0, T ] × Γ is pathwise the
trace of the fluid velocity uN defined on [0, T ] × Ωf for all t ∈ [0, T ], but this is not true for v∗N , since v∗N
is the structure velocity obtained after the structure subproblem in the semidiscrete scheme, which does not
update the fluid velocity directly.

We also introduce a piecewise linear interpolation ηN of ηN to add additional regularity to the structure
displacement, since we will want the structure displacement to be in W 1,∞(0, T ;L2(Γ)) almost surely in the
limit as ∆t→ 0. Thus, ηN is piecewise linear such that

ηN (n∆t) = ηnN , for n = 0, 1, ..., N. (28)

Note that ηN has Lipschitz continuous paths in time, and furthermore,

∂tηN = v∗N . (29)

Because both ηnN and ηn+1
N are FtnN adapted, ηN is adapted to the filtration {Ft}t≥0. We will also introduce

a piecewise constant function η∆t
N for the structure displacement, given by

η∆t
N (t, ·) = ηnN , for t ∈ ((n− 1)∆t, n∆t]. (30)

Note that η∆t
N is adapted to the filtration {Ft}t≥0 and is a time-shifted version of ηN , which is emphasized in

the notation by the superscript of ∆t. This time-shifted structure displacement will be useful for passing to
the limit in Section 8.4.

We will also consider the corresponding piecewise linear interpolations for the fluid velocity and structure
velocity, which satisfy

uN (n∆t) = unN , vN (n∆t) = vnN , for n = 0, 1, ..., N. (31)

We will need to consider uN and vN because we will express the discrete time derivatives
un+1
N −un

N
∆t and

vn+1
N −vnN

∆t in the semidiscrete formulation (25) in terms of the time derivatives of uN and vN . We will also
need to consider piecewise constant time-shifted functions u∆t

N and v∆t
N for the fluid velocity and the structure

velocity, defined by

u∆t
N (t, ·) = unN , v∆t

N (t, ·) = vnN , for t ∈ ((n− 1)∆t, n∆t]. (32)

We note that u∆t
N and v∆t

N are time-shifted versions of uN and vN . We will need these time-shifted functions
because the fluid dissipation estimate in Proposition 6.7 implies that u∆t

N , rather than uN , is uniformly
bounded in L2(Ω;L2(0, T ;H1(Ωf ))). See Proposition 7.2.

We make the following important observation. Unlike ηN , we note that uN and vN are not necessarily
adapted to the filtration {Ft}t≥0, even though they can still be considered as random variables taking values
in their appropriate path spaces. Similarly, u∆t

N and v∆t
N , unlike uN and vN , are not necessarily adapted to
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the filtration {Ft}t≥0. However, this will not be an issue, because we will see later in Lemma 8.3 that uN ,
u∆t
N , vN , and v∆t

N are almost surely “close to” the random processes uN and vN , which are adapted to the
filtration {Ft}t≥0, as N →∞ along a subsequence.

We summarize some of the previously discussed measure theoretic properties of the stochastic approximate
solutions in the following proposition, for future reference.

Proposition 7.1. Recall that W is a one dimensional Brownian motion with respect to the probability space
with complete filtration, (Ω,F , {Ft}t≥0,P). For all N ∈ N, uN , vN , v∗N , ηN , and ηN are adapted to the
filtration {Ft}t≥0 with left continuous paths, with ηN having continuous paths. In addition, for some fixed
t > 0 and for each N , define n0 = b t∆tc + 1. Then, Wτ −Wt is independent of each of the random variables
in the following collection of random variables for each N and for each τ > t:

{un−1
N , vn−1

N , v
n− 2

3
N : 1 ≤ n ≤ n0}, {ηnN : 0 ≤ n ≤ n0}, {ηN (s) : s ∈ [0, n0∆t]}.

7.2 Uniform boundedness of approximate solutions

Using the previous discrete energy estimates, we establish uniform boundedness of the approximate solutions in
the following proposition. We note that in contrast to the case of deterministic FSI, the uniform boundedness
of these (random) approximate solutions is only in expectation.

Proposition 7.2. The following uniform boundedness results hold:

• (ηN )N∈N is uniformly bounded in L2(Ω;L∞(0, T ;H1
0 (Γ))).

• (vN )N∈N is uniformly bounded in L2(Ω;L∞(0, T ;L2(Γ))).

• (v∆t
N )N∈N is uniformly bounded in L2(Ω;L2(0, T ;H1/2(Γ))).

• (v∗N )N∈N is uniformly bounded in L2(Ω;L∞(0, T ;L2(Γ))).

• (uN )N∈N is uniformly bounded in L2(Ω;L∞(0, T ;L2(Ωf ))).

• (u∆t
N )N∈N is uniformly bounded in L2(Ω;L2(0, T ;H1(Ωf ))).

Proof. The only part of this result that does not follow directly from Proposition 6.7 is to show that (u∆t
N )N∈N

is uniformly bounded in L2(Ω;L2(0, T ;H1(Ωf ))). We compute

||u∆t
N ||2L2(Ω;L2(0,T ;H1(Ωf ))) = E

(ˆ T

0
||u∆t

N ||2H1(Ωf )dt

)
= (∆t)E

(
N∑
k=1

||ukN ||2H1(Ωf )

)

≤ C(∆t)E

(
N∑
k=1

||ukN ||L2(Ωf ) +
N∑
k=1

||D(ukN )||2L2(Ωf )

)
,

where we used Korn’s inequality (see [33] and Theorem 6.3-3 in [11]). The result follows from the uniform
boundedness of the sum of the dissipation terms and the uniform boundedness of the kinetic energy of the
fluid, stated in Proposition 6.7. By taking the trace of the r component of the fluid velocity unN , which is in
H1/2(Γ), we get the corresponding boundedness of (v∆t

N )N∈N in L2(Ω;L2(0, T ;H1/2(Γ))).

We also state the corresponding uniform boundedness property for the linear interpolations (ηN )N∈N.
Note that in terms of distributional derivatives, ∂tηN = v∗N holds pathwise for ω ∈ Ω.

Therefore, we have:

Proposition 7.3. The sequence of linear interpolations of the structure displacements (ηN )N∈N is uniformly
bounded in L2(Ω;L∞(0, T ;H1

0 (Γ))) ∩ L2(Ω;W 1,∞(0, T ;L2(Γ))).
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Remark 7.1. To be very precise, one must check that the stochastic approximate solutions are measurable, as
random variables taking values in a given path space. The measurability of these stochastic processes is easy

to see by using the measurability properties of the functions unN , v
n+ i

3
N , and ηnN . For example, ηN is measurable

as a map from the probability space Ω to L∞(0, T ;H1
0 (Γ)) because ηN can be considered as the composition

of a measurable map F1 with a continuous map F2. F1 is the map from ω ∈ Ω to the space of bounded
sequences of length N with values in H1

0 (Γ), given by F1 : ω → (η0
N , η

1
N , ..., η

N−1
N ), which is measurable by the

measurability properties of each ηnN . F2 is the map from the space of bounded sequences of length N with

values in H1
0 (Γ) to L∞(0, T ;H1

0 (Γ)), given by F2 : (η0
N , η

1
N , ..., η

N−1
N ) →

∑N−1
k=0 ηkN · 1(k∆t,(k+1)∆t](t), which is

continuous.

8 Passage to the limit

We would like to show that our approximate solution sequences converge in a certain sense, to a weak
solution of the original problem. While uniform boundedness results give weak convergence of the random
approximate solutions in probabilistic function spaces, which can be used to pass to the limit in the semidiscrete
formulation, as discussed in the Appendix in Section 11, our goal will be to develop a methodology that will
extend more generally to stochastic FSI problems with nonlinearities, such as linearly coupled FSI models
with nonlinear dependence of the random noise on the solution itself and nonlinearly coupled FSI models
with geometric nonlinearities arising from the fact that the fluid equations are posed on a random moving
fluid domain. For this reason, we will develop a mathematical framework for strengthening the convergence
of the random approximate solutions from weak convergence in probabilistic function spaces to almost sure
convergence, which is a strong enough convergence to pass to the limit in this linear problem and more
generally in nonlinear stochastic FSI problems also. To do this, we will use a compactness argument, which
will first imply the existence of a convergent subsequence of the probability measures which describe the laws
or equivalently, the distributions of the approximate solutions. From here, we will eventually be able to get
to almost sure convergence of the stochastic approximate solutions themselves.

We start by designing compactness arguments that will provide weak convergence of the probability
measures describing the laws of our random approximate solutions.

8.1 Weak convergence of measures

We first show that along subsequences, the probability measures, or the laws describing the distributions of
our stochastic approximate solutions constructed earlier, converge to a probability measure, as the time step
∆t→ 0, or N →∞. For this purpose, we recall that we are given a probability space with complete filtration
(Ω,F , {Ft}t≥0,P), with a one dimensional Brownian motion W with respect to the given filtration. For each
N , we define the probability measure (or the law) µN :

µN = µηN × µηN × µη∆t
N
× µuN × µvN × µuN × µv∗N × µuN × µvN × µu∆t

N
× µv∆t

N
× µW , (33)

defined on the phase space X :

X = [L2(0, T ;L2(Γ))]3 × [L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ))]4 × C(0, T ;R). (34)

Here, µηN denotes the law of ηN on L2(0, T ;L2(Γ)), µuN denotes the law of uN on L2(0, T ;L2(Ωf )), µW
denotes the law of W on C(0, T ;R), and so on. Thus, µN is the joint law of the random variables ηN , ηN , η∆t

N ,
uN , vN , uN ,v∗N , uN , vN , u∆t

N , v∆t
N , and W . As we shall see below, it is easier to work with the fluid velocity

and the structure velocity in pairs, which is the reason why in (33) above, we consider (µuN , µvN ), (µuN , µv∗N ),
(µuN , µvN ), and (µu∆t

N
, µv∆t

N
). The main result of this subsection is the following.

Theorem 8.1. Along a subsequence (which we will continue to denote by N), µN converges weakly as
probability measures to a probability measure µ on X .

To show weak convergence of these probability measures along a subsequence, stated in Theorem 8.1, we
must show that the probability measures are tight.
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Definition 8.1. The probability measures µN are tight if for every ε > 0, there exists a compact set Aε,
compact in X , such that

µN (Aε) > 1− ε, for all N.

To get a hold of the compact subset Aε, we will need the following two deterministic compactness results
for the structure displacements {ηN (ω)} and for the fluid and structure velocities {uN (ω)} and {vN (ω)}. The
two results are obtained in the following two lemmas.

The first lemma, which will be applied to the structure displacements {ηN (ω)}, is a direct consequence of
the classical Aubin-Lions compactness lemma [1,42]:

Lemma 8.1. The following holds: [W 1,∞(0, T ;L2(Γ)) ∩ L∞(0, T ;H1
0 (Γ))] ⊂⊂ L∞(0, T ;L2(Γ)).

The Aubin-Lions compactness lemma actually gives a stronger compact embedding of W 1,∞(0, T ;L2(Γ))∩
L∞(0, T ;H1

0 (Γ)) into C(0, T ;L2(Γ)), but since we want ηN and ηN to take values in the same path space, we
use L∞(0, T ;L2(Γ)) since ηN is not continuous.

To handle the compactness argument for the structure and fluid velocities, we consider the subsets K and
KR in L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ)), defined as follows.

Definition 8.2 (Definition of K and KR). The sets K and KR of paths (or realizations) are defined as
follows:
• For the pathwise left continuous approximate functions uN (ω), vN (ω) on [0, T ], we define:

K = {(u, v) ∈ L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ)) : u = uN (ω) and v = vN (ω) for some ω ∈ Ω and N ∈ N}.

• For any arbitrary positive constant R, define KR to be the subset of paths (uN (ω), vN (ω)) ∈ K where ω
and N satisfy the following properties.

1. Uniform boundedness: ||(u∆t
N , v∆t

N )||L2(0,T ;H1(Ωf ))×L2(0,T ;H1/2(Γ)) ≤ R, ||uN ||L∞(0,T ;L2(Ωf )) ≤ R,

||vN ||L∞(0,T ;L2(Γ)) ≤ R, ||ηN ||L∞(0,T ;H1
0 (Γ)) ≤ R.

2. Boundedness of numerical dissipation:
∑N−1

n=0 ||u
n+1
N −un+ 2

3
N ||2L2(Ωf ) ≤ R,

∑N−1
n=0 ||v

n+ 1
3

N − vnN ||2L2(Γ) ≤ R,∑N−1
n=0 ||v

n+ 2
3

N − vn+ 1
3

N ||2L2(Γ) ≤ R,
∑N−1

n=0 ||v
n+1
N − vn+ 2

3
N ||2L2(Γ) ≤ R.

3. Boundedness of fluid dissipation: (∆t)
∑N

n=1

´
Ωf
|D(unN )|2dx ≤ R.

4. Boundedness of 1/4-Hölder exponent of Brownian motion: sup
s,t∈[0,T ],s6=t

|W (t)−W (s)|
|t− s|1/4

≤ R.

Remark 8.1. In the fourth condition above, any positive Hölder exponent that is strictly less than 1/2 would
suffice, since Brownian motion is “almost” 1/2-Hölder continuous, but we have fixed 1/4 for concreteness.

The following lemma provides the desired compactness result for (uN , vN ).

Lemma 8.2. For any arbitrary positive constant R, the setKR is precompact in L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ)).

Proof. We use the Simon’s compactness theorem [48, 56]. According to Simon’s theorem, it suffices to check
two conditions.

First condition: We must first show that for any 0 < t1 < t2 < T , the collection
{´ t2

t1
f(t)dt : f ∈ KR

}
is rel-

atively compact in L2(Ωf )×L2(Γ). Consider a sequence {fm(t, ·)}∞m=1 inKR, where fm(t, ·) = (um(t, ·), vm(t, ·)).
We want to show that there is a subsequence

{´ t2
t1
fmk

(t)dt
}∞
k=1

that converges in L2(Ωf )× L2(Γ).
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For each m, there exists some Nm and ωm ∈ Ω (both depending on m) such that

um(t) = u0 · 1t∈[0,(∆t)m] +

Nm−1∑
n=1

unNm
(ωm) · 1t∈(n(∆t)m,(n+1)(∆t)m],

vm(t) = v0 · 1t∈[0,(∆t)m] +

Nm−1∑
n=1

vnNm
(ωm) · 1t∈(n(∆t)m,(n+1)(∆t)m],

where (∆t)m = T/Nm. Therefore, we have that

ˆ t2

t1

um(t)dt = amu0 +

ˆ max(t2,(∆t)m)

max(t1,(∆t)m)
um(t)dt,

ˆ t2

t1

vm(t)dt = amv0 +

ˆ max(t2,(∆t)m)

max(t1,(∆t)m)
vm(t)dt,

where am = max(0, (∆t)m − t1). Because am ∈ [0, T ], we can find a subsequence {mk}∞k=1 such that amk
→ a

as k → ∞, for some a ∈ [0, T ]. Because u0 and v0 are the fixed initial data for the fluid velocity and the
structure velocity, amk

u0 and amk
v0 converge along this subsequence in L2(Ωf ) and L2(Γ).

It remains to show that the sequences in k given by

ˆ max(t2,(∆t)mk)

max(t1,(∆t)mk)
umk

(t)dt and

ˆ max(t2,(∆t)mk)

max(t1,(∆t)mk)
vmk

(t)dt (35)

converge in L2(Ωf ) and L2(Γ) respectively along a further subsequence. Because of the compact embedding
H1(Ωf ) × H1/2(Γ) ⊂⊂ L2(Ωf ) × L2(Γ), it suffices to show that the two sequences in k given in (35) are
uniformly bounded in H1(Ωf ) and H1/2(Γ). This can be easily verified by using the uniform boundedness
property of functions in KR in Definition 8.2:∣∣∣∣∣

∣∣∣∣∣
ˆ max(t2,(∆t)mk)

max(t1,(∆t)mk)
umk

(t)dt

∣∣∣∣∣
∣∣∣∣∣
H1(Ωf )

+

∣∣∣∣∣
∣∣∣∣∣
ˆ max(t2,(∆t)mk)

max(t1,(∆t)mk)
vmk

(t)dt

∣∣∣∣∣
∣∣∣∣∣
H1/2(Γ)

≤
ˆ T

(∆t)mk

||umk
(t)||H1(Ωf )dt+

ˆ T

(∆t)mk

||vmk
(t)||H1/2(Γ)dt

≤ T 1/2

(ˆ T

(∆t)mk

||umk
(t)||2H1(Ωf )dt

)1/2

+ T 1/2

(ˆ T

(∆t)mk

||vmk
(t)||2

H1/2(Γ)
dt

)1/2

≤ 2T 1/2R.

Thus, we can further refine the subsequence {mk}∞k=1 to obtain that
{´ t2

t1
(umk

(t), vmk
(t)) dt

}∞
k=1

converges

in L2(Ωf )× L2(Γ), where we continue to denote the refined subsequence by {mk}∞k=1.

Second condition: We must show that ||τhf − f ||L2(h,T ;L2(Ωf )×L2(Γ)) → 0 uniformly for all f = (u, v) ∈ KR,
as h→ 0. Here τh for h > 0 denotes the time shift map (τhf)(t, ·) = f(t− h, ·). Consider an arbitrary ε > 0.
We want to find h > 0 sufficiently small such that

||τhu− u||L2(h,T ;L2(Ωf )) < ε and ||τhv − v||L2(h,T ;L2(Γ)) < ε ∀(u, v) ∈ KR.

To verify this, we can write h = l(∆t) + s, for each ∆t = T
N , where 0 ≤ s < ∆t, so that

||τhu− u||L2(h,T ;L2(Ωf )) ≤ ||τsτl∆tu− τl∆tu||L2(h,T ;L2(Ωf )) + ||τl∆tu− u||L2(h,T ;L2(Ωf )),

||τhv − v||L2(h,T ;L2(Γ)) ≤ ||τsτl∆tv − τl∆tv||L2(h,T ;L2(Γ)) + ||τl∆tv − v||L2(h,T ;L2(Γ)).

The above estimates require one estimate for the small s time shift, and one for the larger l∆t time shift. We
will handle the first time shift estimate using the numerical dissipation estimate holding for KR, specified in
Definition 8.2, and we will handle the second time shift estimate using an Ehrling property.
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Estimate for time shift by s: Consider arbitrary (uN , vN ) ∈ KR. Recalling that 0 ≤ s < ∆t, we compute

||τsτl∆tuN − τl∆tuN ||2L2(h,T ;L2(Ωf )) = s
N−l−2∑
n=0

||un+1
N − un

N ||2L2(Ωf ) ≤ s
N−1∑
n=0

||un+1
N − un

N ||2L2(Ωf ) ≤ sR.

where we used that unN = u
n+ 2

3
N and the numerical dissipation estimate in the last inequality. Similarly,

||τsτl∆tvN − τl∆tvN ||2L2(h,T ;L2(Γ)) = s
N−l−2∑
n=0

||vn+1
N − vnN ||2L2(Γ) ≤ s

N−1∑
n=0

||vn+1
N − vnN ||2L2(Γ)

≤ 3s

(
N−1∑
n=0

||vn+ 1
3

N − vnN ||2L2(Γ) +
N−1∑
n=0

||vn+ 2
3

N − vn+ 1
3

N ||2L2(Γ) +
N−1∑
n=0

||vn+1
N − vn+ 2

3

N ||2L2(Γ)

)
≤ 9sR.

Recalling that h = s + l∆t so that 0 < s ≤ h, we can make these quantities arbitrarily small by taking h
sufficiently small, since R is a fixed arbitrary positive constant.

Estimate for time shift by l∆t: Consider arbitrary (uN , vN ) ∈ KR. We want to estimate

||τl∆tuN − uN ||L2(h,T ;L2(Ωf )) + ||τl∆tvN − vN ||L2(h,T ;L2(Γ)).

This is identically zero if h < ∆t, so we assume for the following estimate that h ≥ ∆t. We use the chain of
embeddings H1(Ωf )×H1/2(Γ) ⊂⊂ L2(Ωf )×L2(Γ) ⊂ Q′, where Q is the test space defined in (14). Applying
the uniform Ehrling property, see e.g., [48, 54], we obtain

||τl∆tuN − uN ||L2(h,T ;L2(Ωf )) + ||τl∆tvN − vN ||L2(h,T ;L2(Γ))

≤ 2||τl∆t(uN , vN )− (uN , vN )||L2(h,(l+1)∆t;L2(Ωf )×L2(Γ)) + 2||τl∆t(uN , vN )− (uN , vN )||L2((l+1)∆t,T ;L2(Ωf )×L2(Γ))

≤ 2||τl∆t(uN , vN )− (uN , vN )||L2(h,(l+1)∆t;L2(Ωf )×L2(Γ)) + δ||τl∆t(uN , vN )− (uN , vN )||L2((l+1)∆t,T ;H1(Ωf )×H1/2(Γ))

+ C(δ)||τl∆t(uN , vN )− (uN , vN )||L2((l+1)∆t,T ;Q′) := I1 + I2 + I3.

To estimate I1, we use the triangle inequality, the assumption that h ≥ ∆t, and the uniform boundedness
property of KR in Definition 8.2:

I1 ≤ 2||τl∆t(uN , vN )||L2(h,(l+1)∆t;L2(Ωf )×L2(Γ)) + 2||(uN , vN )||L2(h,(l+1)∆t;L2(Ωf )×L2(Γ)) ≤ 8(∆t)1/2R ≤ 8h1/2R.

To estimate I2, we use the triangle inequality and the uniform boundedness property of KR in Definition 8.2:

I2 ≤ δ
(
||τl∆t(uN , vN )||L2((l+1)∆t,T ;H1(Ωf )×H1/2(Γ)) + ||(uN , vN )||L2((l+1)∆t,T ;H1(Ωf )×H1/2(Γ))

)
≤ 2δ||(uN , vN )||L2(∆t,T ;H1(Ωf )×H1/2(Γ)) ≤ 2δR.

To estimate I3, we multiply the first equation in the weak formulation (25) by ∆t to obtain:

ˆ
Ωf

(un+l
N −u

n
N )·qdx+

ˆ
Γ
(vn+l
N −vnN )ψdz =

ˆ
Γ
[W ((n+l)∆t)−W (n∆t)]ψdz+(∆t)

l∑
k=1

(
Pn+k−1
N,in

ˆ R

0
(qz)|z=0dr

− Pn+k−1
N,out

ˆ R

0
(qz)|z=Ldr − 2µ

ˆ
Ωf

D(un+k
N ) : D(q)dx−

ˆ
Γ
∇ηn+k

N · ∇ψdz

)
, ∀(q, ψ) ∈ Q.

We estimate the terms on the right hand side as follows. For (q, ψ) ∈ Q, where Q is defined in (14), with
||(q, ψ)||Q ≤ 1, we have the following estimates.

• Using Cauchy-Schwarz and the boundedness of the 1/4-Holder exponent of Brownian motion in the
definition of KR, see Definition 8.2, we obtain∣∣∣∣ˆ

Γ

[W ((n+ l)∆t)−W (n∆t)]ψdz

∣∣∣∣ ≤ (ˆ
Γ

|W ((n+ l)∆t)−W (n∆t)|2dz
)1/2

≤
(ˆ

Γ

∣∣∣R(l∆t)1/4
∣∣∣2 dz)1/2

≤ C(l∆t)1/4.
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• Next, we recall the definition of the discretized pressure PnN,in/out = 1
∆t

´ (n+1)∆t
n∆t Pin/out(t)dt, and use

the trace inequality on the integral involving qz to obtain

(∆t)

∣∣∣∣∣
l∑

k=1

Pn+k−1
N,in

ˆ R

0
(qz)|z=0dr

∣∣∣∣∣ = (∆t)

∣∣∣∣∣
l∑

k=1

Pn+k−1
N,in

∣∣∣∣∣ ·
∣∣∣∣ˆ R

0
(qz)|z=0dr

∣∣∣∣ ≤ C(∆t)

∣∣∣∣∣
l∑

k=1

Pn+k−1
N,in

∣∣∣∣∣
= C

∣∣∣∣∣
ˆ (n+l)∆t

n∆t
Pin(t)dt

∣∣∣∣∣ ≤ C(l∆t)1/2||Pin||L2(n∆t,(n+l)∆t) ≤ C(l∆t)1/2||Pin||L2(0,T ) = C(l∆t)1/2.

The same estimate holds for the outlet pressure term.

• Using Cauchy-Schwarz and the uniform fluid dissipation estimate in Definition 8.2 of KR, we get

(∆t)

∣∣∣∣∣
l∑

k=1

2µ

ˆ
Ωf

D(un+k
N ) : D(q)dx

∣∣∣∣∣ ≤ C(∆t)
l∑

k=1

(ˆ
Ωf

|D(un+k
N )|2dx

)1/2

≤ Cl1/2(∆t)

(
l∑

k=1

ˆ
Ωf

|D(un+k
N )|2dx

)1/2

≤ Cl1/2(∆t)

(
N∑
k=1

ˆ
Ωf

|D(ukN )|2dx

)1/2

≤ C(l∆t)1/2.

• Using Cauchy-Schwarz and the uniform boundedness of ηN in Definition 8.2 of KR, we get:

(∆t)

∣∣∣∣∣
l∑

k=1

ˆ
Γ
∇ηn+k

N · ∇ψdz

∣∣∣∣∣ ≤ (∆t)
l∑

k=1

ˆ
Γ
|∇ηn+k

N · ∇ψ|dz ≤ C(∆t)
l∑

k=1

||ηn+k
N ||H1

0 (Γ) ≤ Cl(∆t).

Here, all constants C are independent of n, l, and ∆t and hence N , but can depend on the fixed, arbitrary
constant R, and on the given parameters of the problem. Combining all of these estimates together, we obtain
that

||(un+l
N , vn+l

N )− (unN , v
n
N )||Q′ ≤ C(l∆t)1/4, (36)

where we use the estimate 0 ≤ l(∆t) ≤ T to reduce all exponents on (l∆t) to the smallest one, which is 1/4.
Hence,

||τl∆t(uN , vN )− (uN , vN )||2L2((l+1)∆t,T ;Q′)

= (∆t)

N−1−l∑
n=1

||(un+l
N , vn+l

N )− (unN , v
n
N )||2Q′ ≤ C(∆t)

N−1∑
n=0

(l∆t)1/2 ≤ C(l∆t)1/2.

and so I3 := C(δ)||τl∆t(uN , vN )− (uN , vN )||L2((l+1)∆t,T ;Q′) ≤ C(δ)(l∆t)1/4.
Combining the estimates for I1, I2, and I3, we obtain

||τl∆tuN − uN ||L2(h,T ;L2(Ωf )) + ||τl∆tvN − vN ||L2(h,T ;L2(Γ)) ≤ 8h1/2R+ 2δR+ C(δ)(l∆t)1/4.

We can now conclude the verification of the second condition of Simon’s compactness result. Namely, we
have shown that

||τhu− u||L2(h,T ;L2(Ωf )) ≤ (sR)1/2 + 8h1/2R+ 2δR+ C(δ)(l∆t)1/4,

||τhv − v||L2(h,T ;L2(Γ)) ≤ 3(sR)1/2 + 8h1/2R+ 2δR+ C(δ)(l∆t)1/4.

Now, since h = s+ l∆t and s, l∆t ∈ [0, h], we get

||τhu− u||L2(h,T ;L2(Ωf )) ≤ (hR)1/2 + 8h1/2R+ 2δR+ C(δ)h1/4,

||τhv − v||L2(h,T ;L2(Γ)) ≤ 3(hR)1/2 + 8h1/2R+ 2δR+ C(δ)h1/4.
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Therefore, given ε > 0, we can first choose δ > 0 so that 2δR < ε
2 , which fixes a value for C(δ). Then, we can

choose h > 0 sufficiently small so that

3(hR)1/2 + 8h1/2R+ C(δ)h1/4 <
ε

2
.

This establishes the desired equicontinuity estimate, and hence Lemma 8.2 follows from Simon’s compactness
theorem.

Finally, we note that we have obtained compactness results only for the velocity approximate function
vN and not v∗N . In addition, when passing to the limit, we will consider the linear interpolations and time-
shifted versions of the fluid velocity and of the structure displacement and velocity. We recall that the linear
interpolations are piecewise linear functions defined by (28), (31), and the time-shifted functions are piecewise
constant functions defined by (30), (32). Hence, we will need the following result.

Lemma 8.3. For an appropriate subsequence, which we continue to denote by N ,

||vN − v∗N ||L2(0,T ;L2(Γ)) → 0, as N →∞, almost surely,

||vN − vN ||L2(0,T ;L2(Γ)) → 0, as N →∞, almost surely,

||vN − v∆t
N ||L2(0,T ;L2(Γ)) → 0, as N →∞, almost surely,

||uN − uN ||L2(0,T ;L2(Ωf )) → 0, as N →∞, almost surely,

||uN − u∆t
N ||L2(0,T ;L2(Ωf )) → 0, as N →∞, almost surely,

||ηN − ηN ||L2(0,T ;L2(Γ)) → 0, as N →∞, almost surely,

||ηN − η∆t
N ||L2(0,T ;L2(Γ)) → 0, as N →∞, almost surely.

Proof. We start by showing the first convergence result. To do that, we introduce the events

Ej,N =

{
||vN − v∗N ||L2(0,T ;L2(Γ)) ≤

1

j

}
, j ≥ 1,

and show that the probability that the complements of Ej,N occur for infinitely many j, is zero. Indeed, by
multiplying by ∆t the uniform numerical dissipation estimate from Proposition 6.7 and keeping only the first
term on the left hand side, we obtain

E

(
∆t

N−1∑
n=0

||vn+ 1
3

N − vnN ||2L2(Γ)

)
= E

(
||vN − v∗N ||2L2(0,T ;L2(Γ))

)
≤ C(∆t). (37)

By Chebychev’s inequality, we get P(Ecj,N ) ≤ C(∆t)j2 = CTN−1j2. Thus, for the events Ej,N=j4 , we have∑∞
j=1 P(Ecj,N=j4) ≤ CT

∑∞
j=1

1
j2
<∞. Therefore, by the Borel-Cantelli lemma,

P
(
Ecj,N=j4 occurs for infinitely many j

)
= 0.

This implies that for almost every ω ∈ Ω, there exists j0(ω) such that ||vNj − v∗Nj
||L2(0,T ;L2(Γ)) ≤ 1

j for all

j ≥ j0(ω), where Nj := j4, which implies the desired result, where our subsequence Nj will continue to be
denoted by N for simplicity of notation.

To show the the remaining convergence results, we use Proposition 6.7 to conclude that there exists a
uniform constant C independent of N such that

N−1∑
n=0

E
(
||vn+1

N − vnN ||2L2(Γ)

)
≤ C,

N−1∑
n=0

E
(
||un+1

N − unN ||2L2(Ωf )

)
≤ C,

N−1∑
n=0

E
(
||∇ηn+1

N −∇ηnN ||2L2(Γ)

)
≤ C,
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where we recall that u
n+ 2

3
N = unN and η

n+ 1
3

N = ηn+1
N , and where we used the triangle inequality to obtain the

first estimate. Then, the same argument as above gives the desired result, once we note that

E
(
||vN − vN ||2L2(0,T ;L2(Γ))

)
≤ (∆t)

N−1∑
n=0

E
(
||vn+1

N − vnN ||2L2(Γ)

)
≤ C(∆t)→ 0, as N →∞, (38)

E
(
||v∆t

N − vN ||2L2(0,T ;L2(Γ))

)
= (∆t)

N−1∑
n=0

E
(
||vn+1

N − vnN ||2L2(Γ)

)
≤ C(∆t)→ 0, as N →∞, (39)

E
(
||uN − uN ||2L2(0,T ;L2(Ωf ))

)
≤ (∆t)

N−1∑
n=0

E
(
||un+1

N − unN ||2L2(Ωf )

)
≤ C(∆t)→ 0, as N →∞, (40)

E
(
||u∆t

N − uN ||2L2(0,T ;L2(Ωf ))

)
= (∆t)

N−1∑
n=0

E
(
||un+1

N − unN ||2L2(Ωf )

)
≤ C(∆t)→ 0, as N →∞, (41)

E
(
||ηN − ηN ||2L2(0,T ;L2(Γ))

)
≤ (∆t)

N−1∑
n=0

E
(
||ηn+1

N − ηnN ||2L2(Γ)

)
≤ C ′(∆t)→ 0, as N →∞, (42)

E
(
||η∆t

N − ηN ||2L2(0,T ;L2(Γ))

)
= (∆t)

N−1∑
n=0

E
(
||ηn+1

N − ηnN ||2L2(Γ)

)
≤ C ′(∆t)→ 0, as N →∞, (43)

where we used Poincaré’s inequality to deduce (42) and (43).

Notice that this result follows from the numerical dissipation estimates in Proposition 6.7, which imply
convergence to zero in expectation, of the numerical dissipation terms, shown in (38), (39), (40), (41), (42),
and (43), from which we were able to deduce the almost sure convergence.

Proof of Theorem 8.1. To show weak convergence of probability measures along a subsequence, we must show
that the probability measures µN are tight, see Definition 8.1. Here, we note that for reasons that will be
clear later (see Step 2 below), we will take N to be the subsequence provided by Lemma 8.3 and begin with
this indexing convention of N .

Step 1: Weak convergence of µηN and µuN × µvN along a subsequence. We show this by showing
that µηN and µuN × µvN are tight. To show the tightness of µηN , we define the set

AR = {η ∈W 1,∞(0, T ;L2(Γ)) ∩ L∞(0, T ;H1
0 (Γ)) : ||η||W 1,∞(0,T ;L2(Γ)) ≤ R, ||η||L∞(0,T ;H1

0 (Γ)) ≤ R}.

By Lemma 8.1, AR is a compact set in L2(0, T ;L2(Γ)) since L∞(0, T ;L2(Γ)) embeds continuously into
L2(0, T ;L2(Γ)), where the closure is taken in the topology of L2(0, T ;L2(Γ)). So by Chebychev’s inequality
and the previous uniform boundedness results, we have that for an arbitrary ε > 0,

µη̄N (AR) > 1− ε,

if R is chosen sufficiently large. So there exists a subsequence, which we continue to denote by N , for which
µηN converges weakly to some probability measure µη on L2(0, T ;L2(Γ)).

To show the tightness of µuN ×µvN , recall the definition of the set KR, and note that by Lemma 8.2, KR is
a compact set in L2(0, T ;L2(Ωf )) × L2(0, T ;L2(Γ)). Furthermore, using the uniform boundedness estimates
from Proposition 7.2 combined with Chebychev’s inequality, we have that for any ε > 0, we can find R
sufficiently large such that

(µuN × µvN )(KR) > 1− ε.

Hence, there exists a subsequence, which we continue to denote by N , for which the measures µuN × µvN
converge weakly to some limiting probability measure on L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ)), which we denote
by µu × µv.
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Step 2: Weak convergence of µuN×µv∗N , µuN×µvN , µu∆t
N
×µv∆t

N
, µηN , and µη∆t

N
along the subsequence

obtained from Step 1. Since µuN × µvN =⇒ µu × µv, by the definition of weak convergence, we have

E[f(uN , vN )]→
ˆ
L2(0,T ;L2(Ωf ))×L2(0,T ;L2(Γ))

fd(µu × µv),

for all bounded, Lipschitz continuous functions f : L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ))→ R. However, because
||vN − v∗N ||L2(0,T ;L2(Γ)) → 0 a.s. due to Lemma 8.3, we have that by the Lipschitz continuity of f ,

|f(uN , vN )− f(uN , v
∗
N )| ≤ Lip(f)||vN − v∗N ||L2(0,T ;L2(Γ)) → 0, a.s. as N →∞.

Hence, by the bounded convergence theorem, E[f(uN , vN )]− E[f(uN , v
∗
N )]→ 0, as N →∞, and hence,

E[f(uN , v
∗
N )]→

ˆ
L2(0,T ;L2(Ωf ))×L2(0,T ;L2(Γ))

fd(µu × µv),

for all bounded, Lipschitz continuous functions f : L2(0, T ;L2(Ωf )) × L2(0, T ;L2(Γ)) → R. Thus, along the
subsequence generated from Step 1, we have that both µuN × µvN and µuN × µv∗N converge weakly to the

same limiting probability measure µu × µv on L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ)).
The same argument can be used to show that µuN × µvN and µu∆t

N
× µv∆t

N
also converge weakly to

µu × µv. This follows from the result on a.s. convergence of ||uN −uN ||L2(0,T ;L2(Ωf )), ||vN − vN ||L2(0,T ;L2(Γ)),

||u∆t
N − uN ||L2(0,T ;L2(Ωf )), and ||v∆t

N − vN ||L2(0,T ;L2(Γ)) in Lemma 8.3.
Finally, we have from Step 1 that µηN converges weakly to some probability measure µη, as probability

measures on L2(0, T ;L2(Γ)). Then, the weak convergence of µηN and µη∆t
N

to this same weak limit µη follows

from the same argument as above, and the result from Lemma 8.3 that ||ηN − ηN ||L2(0,T ;L2(Γ)) → 0 and

||η∆t
N − ηN ||L2(0,T ;L2(Γ)) → 0, as N →∞, a.s.

Step 3: Tightness of full measures µN along the subsequence obtained from Step 1. We now
consider the full probability measures µN specified in (33) on the phase space X specified in (34). We want to
show that these probability measures µN are tight along the subsequence N constructed as a result of Step 1.

Consider ε > 0. We want to construct a compact set in the phase space X for which the probability
measure µN has probability greater than 1− ε on this compact set, for all N . We will construct this compact
set component-wise, using π1, . . . , π12 to denote the projections onto the components 1 through 12 of µN .

By the weak convergence of the measures µηN , µηN , and µη∆t
N

, by Prohorov’s theorem (see for example

Proposition 6.1 in [41]), there exist compact sets B1, B2, and B3 in L2(0, T ;L2(Γ)) such that

π1(µN )(B1) > 1− ε

8
, π2(µN )(B2) > 1− ε

8
, π3(µN )(B3) > 1− ε

8
, for all N.

Similarly, because (uN , vN ), (uN , v
∗
N ), (uN , vN ), and (u∆t

N , v∆t
N ) converge weakly along this subsequence N

by Step 1 and Step 2, there exist compact sets B4,5, B6,7, B8,9, and B10,11 in L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ))
such that

π4,5(µN )(B4,5) > 1− ε

8
, π6,7(µN )(B6,7) > 1− ε

8
,

π8,9(µN )(B8,9) > 1− ε

8
, π10,11(µN )(B10,11) > 1− ε

8
, for all N.

Finally, the last component of µN , which is µW , is constant in N . Hence, the probability measures π12(µN )
defined on C(0, T ;R) are trivially, weakly compact. Therefore, the collection π12(µN ) for all N is tight, and
hence, there exists a compact set B12 ⊂ C(0, T ;R) such that

π12(µN )(B12) > 1− ε

8
, for all N.

Based on this construction, we have the set Mε := B1×B2×B3×B4,5×B6,7×B8,9×B10,11×B12, which
is a compact subset of the phase space X , satisfying µN (Mε) > 1− ε, for all N. This establishes the desired
tightness of the probability measures, and completes the proof of Proposition 8.1.
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8.2 Continuity properties of the weak limit

In order to prove certain measure theoretic properties of the limiting solutions, we need to establish continuity
of the limiting solution. This is because many measure theoretic properties are simpler for stochastic processes
with continuous paths in time. This is simple to do for the structure displacements, since the approximate
structure displacements ηN all have Lipschitz continuous paths. However, because the approximate fluid and
structure velocities uN and vN have paths that are not continuous, we want to establish that the limiting
solutions for the fluid and structure velocities have continuous paths in time, with an appropriate notion of
continuity. We first introduce the following definition, which will be used throughout this section.

Definition 8.3. Let B be an arbitrary Banach space and let f, g : [0, T ]→ B. The function g : [0, T ]→ B is
a version of f if f = g a.e. on [0, T ].

The goal is to show that the limit function (u, v) is in C(0, T ;Q′) almost surely. This continuity will later
allow us to show that (u, v) is predictable as a stochastic process. To show this continuity, we will use the
idea of p-variation. The notion of considering total variations of functions is a classical idea [49], [58]. We
remark however that our definition below differs slightly from classical definitions of total p-variation.

Definition 8.4. For any real number p ≥ 1 and any δ > 0, we define the p-variation of length scale δ of a
given function (u, v) : [0, T ]→ Q′ by

V δ
p (u, v) = sup

|P |≤δ

M∑
i=1

||(u(ti), v(ti))− (u(ti−1), v(ti−1))||pQ′ ,

where P denotes a partition 0 ≤ t0 < t1 < ... < tM ≤ T for some positive integer M , and the condition
|P | ≤ δ means that |ti − ti−1| ≤ δ for all i = 1, 2, ...,M .

We introduce this definition of the p-variation of length scale δ because we will invoke estimates on the
time shifts, as in (36), in order to deduce continuity in Q′. The strategy will be to show that almost surely,
the limiting fluid velocity and structure velocity, denoted by the pair (u, v), has a variation that goes to zero
as the length scale δ goes to zero, which would imply that the pair (u, v) cannot have any discontinuities and
is hence continuous in Q′. We hence want to define and examine the subset of functions whose p-variation of
length scale δ is bounded above by a certain parameter ε. We do this in the following lemma.

Lemma 8.4. Let Ap,δ,ε be the set of functions (u, v) : [0, T ]→ Q′ in X = L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ))
such that the following properties hold:

1. (u, v) has a version that is left continuous on [0, T ] as a function of time, taking values in Q′.

2. This version of (u, v) is also right continuous at t = 0 as a function taking values in Q′.

3. For this (necessarily unique) left continuous version, V δ
p (u, v) ≤ ε.

Then, for any p ≥ 1, δ > 0, and ε > 0, Ap,δ,ε is a closed set in X.

Proof. To show that Ap,δ,ε is a closed set in X, we consider a sequence {(un, vn)}∞n=1 in Ap,δ,ε that converges
to some element (u, v) ∈ X in the norm of X. We claim that (u, v) ∈ Ap,δ,ε.

We start by showing Property 3 above, namely V δ
p (u, v) ≤ ε. Because (un, vn)→ (u, v) in L2(0, T ;L2(Ωf )×

L2(Γ)) and L2(Ωf )× L2(Γ) ⊂ Q′, we have that along a subsequence (denoted by the same index),

(un(t), vn(t))→ (u(t), v(t)), in Q′, ∀t ∈ S, (44)

where S is some measurable subset of [0, T ], which consists of almost every t ∈ [0, T ].
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By the convergence (44) and the fact that V δ
p (un, vn) ≤ ε for all n, for any partition P with |P | ≤ δ

consisting only of points in S,

M∑
i=1

||(u(ti), v(ti))− (u(ti−1), v(ti−1))||pQ′ ≤ ε. (45)

We use the inequality (45) to construct a version of (u, v) which satisfies Properties 1 and 2. Then, we will
conclude the proof by verifying Property 3 for this new version. We start with Property 1 above, namely that
(u, v) must have a version that is left continuous. We do this in the following steps.

Step 1: Using the fact that any partition consisting of points in S with |P | ≤ δ satisfies (45), we can conclude
that the left and right limits of (u, v) along points in S exists, where the limit is considered in the norm of
Q′. This is useful, as S is dense in [0, T ]. In addition, the density of S in [0, T ] means that for all t ∈ [0, T ],
the notion of a left and right limit along points in S makes sense. In particular, given any point t0 ∈ [0, T ],
limt→t−0 ,t∈S

(u(t), v(t)) and limt→t+0 ,t∈S
(u(t), v(t)) both exist and are finite, where these are limits in Q′.

Step 2: Next, we show that there can only be countably many points t0 ∈ (0, T ) for which the limits
limt→t−0 ,t∈S

(u(t), v(t)) and limt→t+0 ,t∈S
(u(t), v(t)), which take values in Q′, do not agree. Suppose for contra-

diction that there are uncountably many points in (0, T ) for which these limits do not agree. Then, there
exists ρ > 0 sufficiently small such that there are infinitely many points t0 ∈ (0, T ) for which

|| lim
t→t−0 ,t∈S

(u(t), v(t))− lim
t→t+0 ,t∈S

(u(t), v(t))||Q′ ≥ ρ.

Let M be sufficiently large such that M
(ρ

2

)p
> ε and select t1, ..., tM points of discontinuity in (0, T ) with

|| lim
t→t−n ,t∈S

(u(t), v(t))− lim
t→t+n ,t∈S

(u(t), v(t))||Q′ ≥ ρ, for n = 1, 2, ...,M.

We can order these points as t1 < t2 < ... < tM , and select 2M points {sn,i}1≤n≤M,i=1,2 in S, such that

1. s1,1 < s1,2 < s2,1 < s2,2 < ... < sM,1 < sM,2.

2. For each n = 1, 2, ...,M , tn − δ
2 < sn,1 < tn < sn,2 < tn + δ

2 .

3. For each n = 1, 2, ...,M , ||(u(sn,1), v(sn,1)) − limt→t−n ,t∈S(u(t), v(t))||Q′ < ρ
4 , and ||(u(sn,2), v(sn,2)) −

limt→t+n ,t∈S(u(t), v(t))||Q′ < ρ
4 .

Then, we can form a partition of points in S that interlaces the sequence s1,1 < s1,2 < s2,1 < s2,2 < ... < sM,1 <
sM,2 with additional points so that the resulting partition P has |P | < δ, since S is dense in [0, T ]. We can do
this in a way that keeps the points sn,i for i = 1, 2 consecutive in the partition for each n = 1, 2, ...,M . Since
M
(ρ

2

)p
> ε, we have that the variation for this resulting partition is greater than ε, which is a contradiction.

We conclude that there are only countably many points t0 ∈ S for which lim
t→t−0 ,t∈S

(u(t), v(t)) 6= (u(t0), v(t0)),

by using a similar argument. So let S∗ be the set of points t0 ∈ S such that lim
t→t−0 ,t∈S

(u(t), v(t)) = (u(t0), v(t0)).

Since countable sets have measure zero, [0, T ]− S∗ is of measure zero and S∗ is still dense in [0, T ]. We em-
phasize that now, (u(t), v(t)) has the useful property that it is left continuous on S∗.

Step 3: Because S∗ ⊂ S and is still a dense set in [0, T ], the result from Step 1 implies that:
limt→t−0 ,t∈S∗

(u(t), v(t)) and limt→t+0 ,t∈S∗
(u(t), v(t)) exist for all t0 ∈ [0, T ].

However, these limits are only along points in S∗. By the density of S∗ in [0, T ] and the fact that [0, T ]− S∗
has measure zero, we can redefine (u, v) up to a version, so that

(u(t0), v(t0)) is unchanged if t0 ∈ S∗, and (u(t0), v(t0)) = lim
t→t−0 ,t∈S∗

(u(t), v(t)) if t0 ∈ [0, T ]− S∗. (46)
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For the remainder of this proof, (u, v) will denote this newly defined version in (46). We claim that

lim
t→t−0 ,t∈S∗

(u(t), v(t)) = lim
t→t−0

(u(t), v(t)) and lim
t→t+0 ,t∈S∗

(u(t), v(t)) = lim
t→t+0

(u(t), v(t)), (47)

for all t0 ∈ [0, T ]. We will just prove the first statement in (47), as the second statement is proved analogously.
To see this, note that by the definition of the version and by the definition of S∗ in Step 2,

(u(t0), v(t0)) = lim
t→t−0 ,t∈S∗

(u(t), v(t)), for all t0 ∈ [0, T ]. (48)

Given any tn ↗ t0 where tn is not necessarily in S∗, limn→∞(u(tn), v(tn)) = limt→t−0 ,t∈S∗
(u(t), v(t)) as a result

of (48) and the density of S∗ in [0, T ], which establishes the desired result in (47). Note that this version
(u(t), v(t)) is left continuous by (47) and (48), with only countably many points of discontinuity by Step 2.

Conclusion: We have constructed a left continuous version of (u(t), v(t)) on [0, T ] taking values in Q′ in
Step 3. At the left boundary, t = 0, we can set the version of (u, v) so that (u(0), v(0)) = limt→0+(u(t), v(t)),
so that we have right continuity at t = 0. This is possible since this limit exists by Step 1 and (47). For

the newly defined version of (u(t), v(t)), we have that
N∑
i=1

||(u(xi), v(xi)) − (u(xi−1), v(xi−1))||pQ′ ≤ ε, for all

partitions P consisting of points in S∗ with |P | ≤ δ, since we did not change the original (u(t), v(t)) on points
of S∗, which is a subset of S. We can now show that this p-variation inequality holds more generally for all
partitions P with points in [0, T ] with |P | ≤ δ. To do this, we note that since S∗ is dense in [0, T ], we can
approximate any partition P of arbitrary points in [0, T ] with |P | ≤ δ by a sequence of partitions {Pk}k≥1 of
points in S∗ with |Pk| ≤ δ containing the same number of points as P . We can do this by approaching any
partition points of P in (0, T ] from the left by points in S∗, and approaching t = 0 from the right by points
in S∗ if t = 0 is a partition point in P . We then obtain the desired result by taking the limit in k as the
partitions Pk approach P . This process of taking the limit uses the fact that the version of (u, v) as defined in
Step 3 is left continuous on [0, T ] and right continuous at t = 0. Therefore, we conclude that V δ

p (u, v) ≤ ε.

The next lemma, along with the weak convergence of the laws µN , will allow us to use the result above
to prove almost sure continuity in Q′ of the limiting fluid and structure velocity. In particular, this next
lemma will show that if the length scale δ is chosen appropriately, then eventually, for large enough N (or
equivalently small enough ∆t), the approximate solutions will have p-variation (for p > 4) with length scale δ
bounded above uniformly with high probability. This is to be expected, due to the time shift estimate (36),
which is independent of N .

For the following results, we recall the definition of µN on the phase space X from (33) and (34), and we
denote by π4,5µN the projection onto the fourth and fifth components of X , which gives the law of (uN , vN )
on L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ)).

Lemma 8.5. For any p > 4 and any ε > 0, there exists δ0 > 0 sufficiently small and N0 sufficiently large
such that for all 0 < δ ≤ δ0,

π4,5µN (Ap,δ,ε) > 1− ε, for all N ≥ N0.

Proof. Let KR,N be the collection of paths in KR (introduced in Definition 8.2), corresponding to path
realizations of the random variables (uN , vN ) for fixed N , satisfying the properties in the definition of KR. In
particular, KR =

⋃∞
N=1KR,N . Notice that we can choose R large enough so that

π4,5µN (KR,N ) > 1− ε, for all N,

where the closure is taken in L2(0, T ;L2(Ωf ) × L2(Γ)). Recall the time shift estimate (36), which holds for
all (uN , vN ) ∈ KR, where CR depends only on R. We use this estimate to choose δ0 > 0 and N0 such that
KR,N ⊂ Ap,δ,ε, for all N ≥ N0 and 0 < δ ≤ δ0, from which the result π4,5µN (Ap,δ,ε) > 1 − ε, for all N ≥ N0

and 0 < δ ≤ δ0 will follow. Indeed, for any given partition P with |P | ≤ δ, the following estimate holds:

M∑
i=1

||(u(xi), v(xi))− (u(xi−1), v(xi−1))||pQ′ ≤ CR
l∑

k=1

nk(k∆t)p/4,
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for any (u, v) ∈ KR, where nk is the number of increments that have indices k apart and l is the maximum
integer for which l∆t < δ + ∆t. This is true by the fact that the paths (u, v) in KR are defined as piecewise
constant functions taking values (unN , v

n
N ), and by inequality (36). Because the partition P has |P | ≤ δ, we

have that l must satisfy

l∆t < δ + ∆t = δ +N−1T and
l∑

k=1

nk(k∆t) ≤ (N − 1)∆t = T −∆t. (49)

Therefore, since p > 4, we have that for any partition P with |P | ≤ δ and for any (u, v) ∈ KR,

M∑
i=1

||(u(xi), v(xi))− (u(xi−1), v(xi−1))||pQ′ ≤ CR
l∑

k=1

nk(k∆t)p/4 ≤ CR

(
l∑

k=1

nk(k∆t)

)
(l∆t)

p
4
−1

≤ CRT (l∆t)
p
4
−1 ≤ CRT (δ +N−1T )

p
4
−1,

where we used (49). The proof is complete once we choose δ0 > 0 sufficiently small and N0 sufficiently large
such that CRT (δ0 +N−1

0 T )
p
4
−1 < ε. Therefore, for (uN , vN ) in KR for any N ≥ N0 and 0 < δ ≤ δ0, we have

V δ
p (uN , vN ) ≤ ε. Thus,

KR,N ⊂ Ap,δ,ε, for all N ≥ N0 and 0 < δ ≤ δ0.

Since Ap,δ,ε is closed in L2(0, T ;L2(Ωf ))× L2(0, T ;L2(Γ)) by Lemma 8.4, we conclude that

KR,N ⊂ Ap,δ,ε, for all N ≥ N0 and 0 < δ ≤ δ0,

where the closure is taken with respect to the norm of L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ)). Since π4,5µN (KR,N ) >
1− ε for all positive integers N by the initial choice of R, this implies the result.

Lemma 8.6. For the weak limit µ,
π4,5µ(X ∩ C(0, T ;Q′)) = 1,

where X := L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ)). Furthermore, π4,5µ is supported on a Borel measurable subset
of X such that every function has a version in C(0, T ;Q′) that is equal to (u0, v0) at t = 0.

Remark 8.2. We remark that X∩C(0, T ;Q′) is a Borel measurable subset of X, so the statement above makes
sense. To see this, note that the inclusion map ι : X → L2(0, T ;Q′) is continuous since L2(Ωf )×L2(Γ) embeds
continuously into Q′. Furthermore, C(0, T ;Q′) is a Borel measurable subset of L2(0, T ;Q′), so X∩C(0, T ;Q′)
is measurable in X, as it is the preimage of C(0, T ;Q′) ⊂ L2(0, T ;Q′) under ι.

Proof. Fix p > 4 and set εk = 2−k. Then, by Lemma 8.5, there exists a decreasing sequence of positive real
numbers {δk}∞k=1 and an increasing sequence of positive integers {Nk}∞k=1, such that

π4,5µN (Ap,δk,εk) > 1− εk, for all N ≥ Nk, and k ∈ Z+.

Note that since µN converges weakly to µ, we have that π4,5µN converges weakly to π4,5µ. For each fixed
positive integer k, since Ap,δk,εk is a closed set in X, we have by Portmanteau’s theorem that π4,5µ(Ap,δk,εk) ≥
lim supN→∞ π4,5µN (Ap,δk,εk) ≥ 1 − εk. By the Borel Cantelli lemma, we conclude that π4,5µ takes values in
the set {Ap,δk,εkoccurs for infinitely many k} almost surely. However, one can show that

{Ap,δk,εk occurs for infinitely many k} ⊂ X ∩ C(0, T ;Q′),

which then implies the result. This inclusion follows from the fact that

||(u(t), v(t))− (u(t0), v(t0))||Q′ ≤ ε
1/p
k , for all t ∈ (t0 − δk, t0 + δk) ∩ [0, T ],

for all t0 ∈ [0, T ], for any k such that (u, v) ∈ Ap,δk,εk , and the fact that εk = 2−k → 0 as k →∞. Therefore,
we have shown the first part of the lemma, that π4,5µ(X ∩ C(0, T ;Q′)) = 1.
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It remains to show that π4,5µ is supported more specifically on a Borel measurable subset of X that consists
entirely of functions that have a version that is in C(0, T ;Q′) with value (u0, v0) at time t = 0. Define the set
BR to be the set of functions (u, v) ∈ L2(0, T ;L2(Ωf )× L2(Γ)) such that

||(u(·), v(·))− (u0, v0)||L2(0,h;Q′) ≤ CRh3/4, for all 0 < h ≤ T, (50)

where CR is the constant from the estimate (36).
One can check that for every R > 0, every element of KR satisfies (50) and hence is in BR. This is because

by using (36), we have that for all 0 < h ≤ T and for all (u, v) ∈ KR,

||(u(·), v(·))− (u0, v0)||2L2(0,h;Q′) ≤
ˆ h

0
||(u(s), v(s))− (u0, v0)||2Q′ds ≤ C2

Rh ·
(
h1/4

)2
= C2

Rh
3/2.

Furthermore, one checks easily that BR is closed in L2(0, T ;L2(Ωf )×L2(Γ)) since a sequence that converges
in L2(0, T ;L2(Ωf )× L2(Γ)) also converges in L2(0, T ;Q′), in which case one can take the limit in (50) to get
the corresponding property for the limit function. Since KR ⊂ BR and BR is closed in X, we obtain that

KR ⊂ BR ⊂ X, for all R > 0.

Consider any ε > 0. Choose R sufficiently large so that π4,5µN (KR) > 1 − ε, for all N . Then, by
Portmanteau’s theorem, π4,5µ(BR) ≥ lim supN→∞ π4,5µN (BR) ≥ lim supn→∞ π4,5µN (KR) ≥ 1 − ε. So there

exists an increasing sequence {Rk}∞k=1 such that π4,5µ

( ∞⋃
k=1

BRk

)
= 1. Thus,

π4,5µ

[( ∞⋃
k=1

BRk

)
∩ C(0, T ;Q′)

]
= 1, where

( ∞⋃
k=1

BRk

)
∩ C(0, T ;Q′) =

( ∞⋃
k=1

BRk

)
∩X ∩ C(0, T ;Q′)

is a Borel measurable subset of X. However, we note that any function in (
⋃∞
k=1BRk

)∩C(0, T ;Q′) must have
the property that its (unique) continuous version taking values in Q′ must be equal to (u0, v0) at t = 0. To
see this, if instead, (u(0), v(0)) 6= (u0, v0), let d = ||(u(0), v(0)) − (u0, v0)||Q′ > 0. Then, one can show that

there exists h0 such that for all h ∈ (0, h0], ||(u(·), v(·))− (u0, v0)||L2(0,h;Q′) ≥
d

2
h1/2. Therefore, this function

cannot satisfy an estimate ||(u(·), v(·))− (u0, v0)||L2(0,h;Q′) ≤ Ch3/4, for all h ∈ (0, h0], for any C, and so this
function cannot be in any BR. This completes the proof.

8.3 Skorohod representation theorem

We now use the classical Skorohod representation theorem to translate weak convergence of probability mea-
sures to almost sure convergence of random variables, which will allow us to pass to the limit in the semidiscrete
weak formulation. However, this will be at the expense of working on a different probability space. Namely,
the Skorohod representation theorem provides the existence of a probability space, on which we will have
almost sure convergence of new random variables with the same laws as the original approximate solutions,
to a weak solution with the law µ from Theorem 8.1. This probability space is not necessarily the same as
the original probability space on which our problem is posed. Nevertheless, we can get back to the original
probability space by using another result, known as the Gyöngy-Krylov lemma, see Section 9.2, to show that
along a subsequence, the original approximate solutions on the original probability space converge almost
surely to a limit with the same law µ from Theorem 8.1.

More precisely, showing convergence of our approximate solutions almost surely to a weak solution on the
original probability space, consists of two steps. First, we use the Skorohod representation theorem to show
that there exists a probability space, which we denote by “tilde”, on which a sequence of random variables that
are equal to our approximate solutions in law converges almost surely in X as N →∞, to a weak solution on
the “tilde” probability space, where the law of this weak solution is equal to µ, obtained in Theorem 8.1. Thus,
in this step, we prove the existence of a weak solution in a probabilistically weak sense, see Definition 4.1.
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Then, in step two, we show using the Gyöngy-Krylov lemma, that we can bring that weak solution back to
the original probability space, implying that we will have constructed a weak solution in a probabilistically
strong sense, see Definition 4.2, of the original continuous problem. This will complete the existence proof,
which is the main result of this manuscript.

To achieve these goals, we first obtain almost sure convergence along a subsequence of approximate solu-
tions on a “tilde” probability space using Skorohod’s theorem. A statement of the Skorohod representation
theorem, which holds for probability measures on complete separable metric spaces, can be found in Propo-
sition 6.2 in [41].

Before we state the result, we introduce the notation “=d” to denote random variables that are “equal in
distribution” i.e., the random variables have the same laws as random variables taking values on the same
given phase space X . Namely, we will say that a random variable X is equal in distribution (or equal in law)
to the random variable X̃, and denote

X =d X̃ if µX = µX̃ ,

where µX for example is the probability measure on X describing the law of the random variable X on X .
Recall again the definition of the laws corresponding to the approximate solutions (33), and the definition

of the corresponding phase space (34).

Lemma 8.7. Let µ denote the probability measure obtained as a weak limit of the measures µN from
Theorem 8.1. Then, there exists a probability space (Ω̃, F̃ , P̃) and X -valued random variables on (Ω̃, F̃ , P̃):

(η̃, η̃, η̃∆t, ũ, ṽ, ũ∗, ṽ∗, ũ, ṽ, ũ∆t, ṽ∆t, W̃ ), and (η̃N , η̃N , η̃
∆t
N , ũN , ṽN , ũ

∗
N , ṽ

∗
N , ũN , ṽN , ũ

∆t
N , ṽ∆t

N , W̃N ), for each N,

such that

(η̃N , η̃N , η̃
∆t
N , ũN , ṽN , ũ

∗
N , ṽ

∗
N , ũN , ṽN , ũ

∆t
N , ṽ∆t

N , W̃N ) =d (ηN , ηN , η
∆t
N ,uN , vN ,uN , v

∗
N ,uN , vN ,u

∆t
N , v∆t

N ,W ),

for all N , and

(η̃N , η̃N , η̃
∆t
N , ũN , ṽN , ũ

∗
N , ṽ

∗
N , ũN , ṽN , ũ

∆t
N , ṽ∆t

N , W̃N )→ (η̃, η̃, η̃∆t, ũ, ṽ, ũ∗, ṽ∗, ũ, ṽ, ũ∆t, ṽ∆t, W̃ ), (51)

a.s. in X , as N →∞, where the law of (η̃, η̃, η̃∆t, ũ, ṽ, ũ∗, ṽ∗, ũ, ṽ, ũ∆t, ṽ∆t, W̃ ) is equal to µ.
Furthermore, the following properties hold:

1. ũN = ũ∗N , ũ = ũ∗ = ũ = ũ∆t almost surely, ṽ = ṽ∗ = ṽ = ṽ∆t almost surely, and η̃ = η̃ = η̃∆t almost
surely.

2. η̃ ∈ L2(Ω̃;W 1,∞(0, T ;L2(Γ)) ∩ L∞(0, T ;H1
0 (Γ))), ũ ∈ L2(Ω̃;L2(0, T ;H1(Ωf )) ∩ L∞(0, T ;L2(Ωf ))), and

ṽ ∈ L2(Ω̃;L∞(0, T ;L2(Γ))).

3. η̃(0) = η0 almost surely.

4. ∂tη̃ = ṽ almost surely.

5. (ũ, ṽ) ∈ C(0, T ;Q′) and (ũ, η̃) ∈ W(0, T ) almost surely.

6. Define the filtration
F̃t = σ(η̃(s), ũ(s), ṽ(s) : 0 ≤ s ≤ t). (52)

Then W̃ is a Brownian motion with respect to F̃t.

7. (ũ, η̃, ṽ) is a predictable process with respect to the filtration {F̃t}0≤t≤T .
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Proof. The existence of the probability space (Ω̃, F̃ , P̃) and the given random variables follows from the
previous result on weak convergence in Theorem 8.1 and the Skorohod representation theorem. So it suffices
to prove the given properties.

Property 1: Because (ũN , ũ
∗
N ) =d (uN ,uN ), we have that ũN − ũ∗N =d 0 as random variables taking values

in L2(0, T ;L2(Ωf )), so ũN = ũ∗N a.s. for all N . Hence, by taking the limit as N →∞, we obtain ũ = ũ∗ a.s.,
since ũN → ũ and ũ∗N → ũ∗ in L2(0, T ;L2(Ωf )) a.s.

Because uN and uN actually have different laws from each other, we must use a different argument to
conclude that ũ = ũ a.s. However, we recall the following fact (40) from the proof of Lemma 8.3,

E
(
||uN − uN ||2L2(0,T ;L2(Ωf ))

)
→ 0, as N →∞.

Hence, by the equivalence of laws,

Ẽ
(
||ũN − ũN ||2L2(0,T ;L2(Ωf ))

)
→ 0, as N →∞.

Therefore, along a further subsequence, ||ũN − ũN ||2L2(0,T ;L2(Ωf )) → 0 almost surely, by a standard Borel

Cantelli lemma argument. Since ũN → ũ and ũN → ũ in L2(0, T ;L2(Ωf )), we conclude that ũ = ũ a.s.
The remaining statements follow from the same argument as above. In particular, by using the estimates

(37)–(43) from the proof of Lemma 8.3, the equivalence of laws, and the almost sure convergence of the “tilde”
random variables in (51), we obtain the desired result.

Property 2: These properties will all be handled similarly. By the uniform energy estimates in Lemma 7.2
and Lemma 7.3, we have that

E
(
||ηN ||2W 1,∞(0,T ;L2(Γ))

)
≤ C, E

(
||ηN ||2L∞(0,T ;H1

0 (Γ))

)
≤ C,

E
(
||u∆t

N ||2L2(0,T ;H1(Ωf ))

)
≤ C, E

(
||uN ||2L∞(0,T ;L2(Ωf ))

)
≤ C, E

(
||vN ||2L∞(0,T ;L2(Γ))

)
≤ C,

for a constant C that is independent of N . Therefore, by the equivalence of laws, we have that these uniform
estimates hold for the random variables on the new probability space, so that

Ẽ
(
||η̃N ||2W 1,∞(0,T ;L2(Γ))

)
≤ C, Ẽ

(
||η̃N ||2L∞(0,T ;H1

0 (Γ))

)
≤ C,

Ẽ
(
||ũ∆t

N ||2L2(0,T ;H1(Ωf ))

)
≤ C, Ẽ

(
||ũN ||2L∞(0,T ;L2(Ωf ))

)
≤ C, Ẽ

(
||ṽN ||2L∞(0,T ;L2(Γ))

)
≤ C,

for a constant C that is independent of N . Therefore, by this uniform boundedness, we conclude for example
that η̃N converges weakly star in L2(Ω̃;W 1,∞(0, T ;L2(Γ))) and weakly star in L2(Ω̃;L∞(0, T ;H1

0 (Γ))). Since
we already have that η̃N converges to η̃ almost surely in L2(0, T ;L2(Γ)) and η̃ = η̃ almost surely by Property
1, by the uniqueness of this limit, we conclude that η̃N ⇀ η̃, weakly star in L2(Ω̃;W 1,∞(0, T ;L2(Γ))) and
L2(Ω̃;L∞(0, T ;H1

0 (Γ))).
Similarly, ũ∆t

N ⇀ ũ∆t, weakly L2(Ω̃;L2(0, T ;H1(Ωf ))), ũN ⇀ ũ weakly star in L2(Ω̃;L∞(0, T ;L2(Ωf ))),
and ṽN ⇀ ṽ weakly star in L2(Ω̃;L∞(0, T ;L2(Γ))). This establishes Property 2.

Property 3: Since η̃ = η̃ almost surely, it suffices to show that η̃(0) = η0 almost surely. To do this, we use
a method similar to the method in the proof of Lemma 8.6. We define

DM = {η ∈ L2(0, T ;L2(Γ)) : ||η(·)− η0||L2(0,h,L2(Γ)) ≤Mh3/2, for all 0 < h ≤ T}. (53)

Because of the uniform bound E
(
||ηN ||2W 1,∞(0,T ;L2(Γ))

)
≤ C for all N, from Lemma 7.3, we have that

P(ηN ∈ DM ) ≥ 1− C

M2
for all M and N,
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by using Chebychev’s inequality. This is because if ||ηN ||W 1,∞(0,T ;L2(Γ)) ≤M , then from the fact that ηN (0) =
η0 for all ω ∈ Ω and N , we have that

||η(·)− η0||L2(0,h,L2(Γ)) =

(ˆ h

0
||η(s)− η0||2L2(Γ)ds

)1/2

≤
(ˆ h

0
(Ms)2ds

)1/2

≤Mh3/2.

Then, by equivalence of laws,

P̃(η̃N ∈ DM ) ≥ 1− C

M2
for all M and N.

Because DM is a closed set in L2(0, T ;L2(Γ)) and η̃N → η̃ in L2(0, T ;L2(Γ)) a.s., we conclude that

P̃(η̃ ∈ DM ) ≥ lim sup
N→∞

P̃(η̃N ∈ DM ) ≥ 1− C

M2
for all M, which implies P̃

(
η̃ ∈

∞⋃
M=1

DM

)
= 1.

Because η̃ is almost surely continuous on [0, T ] taking values in L2(Γ) by Property 2, we obtain η̃(0) = η0

almost surely. This is because if a continuous function η on [0, T ] taking values in L2(Γ) has η(0) 6= η0, then

||η(·)− η0||L2(0,h;L2(Γ)) ≥
d

2
h1/2,

for all h sufficiently small where d = ||η(0)− η0||L2(Γ), and hence η cannot belong to
⋃∞
M=1DM .

Property 4: To prove this property, we recall from the second equation in the semidiscrete formulation (25)
that ˆ

Γ

ηn+1
N − ηnN

∆t
φdz =

ˆ
Γ
v
n+ 1

3
N φdz,

almost surely for all φ ∈ L2(Γ). Integrating in time, we obtain for all N that

ˆ T

0

ˆ
Γ
∂tηNφdzdt =

ˆ T

0

ˆ
Γ
v∗Nφdzdt, for all φ ∈ C1([0, T );L2(Γ)),

almost surely. Because each ηN is almost surely a piecewise linear continuous function satisfying η(0) = η0,
we obtain by integration by parts that almost surely, for all φ ∈ C1([0, T );L2(Γ)),

−η0 · φ(0)−
ˆ T

0

ˆ
Γ
ηN∂tφdzdt =

ˆ T

0

ˆ
Γ
v∗Nφdzdt,

and hence, by equivalence of laws,

−η0 · φ(0)−
ˆ T

0

ˆ
Γ
η̃N∂tφdzdt =

ˆ T

0

ˆ
Γ
ṽ∗Nφdzdt.

Passing to the limit, we obtain

−η0 · φ(0)−
ˆ T

0

ˆ
Γ
η̃∂tφdzdt =

ˆ T

0

ˆ
Γ
ṽφdzdt,

for all φ ∈ C1([0, T );L2(Γ)), almost surely. This implies that ∂tη̃ = ṽ holds almost surely for the limiting
solution, since we showed in Property 3 that η̃(0) = η0 almost surely.

Property 5: The fact that (ũ, ṽ) ∈ C(0, T ;Q′) almost surely follows from Lemma 8.6, since the limiting
random variables with the tildes have their law given by the probability measure µ. So it remains to show
that (ũ, ṽ) ∈ W(0, T ), where W(0, T ) is defined in (12).

To establish this result, first notice that we already know from Property 2 that ũ ∈ L2(Ω̃;L∞(0, T ;L2(Ωf )))
and ũ ∈ L2(Ω̃;L2(0, T ;H1(Ωf ))), and Property 2 already gives the desired result for the structure. Thus,
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it remains to show that ũ ∈ L2(0, T ;VF ) almost surely, where VF is defined in (8), and that the kinematic
coupling condition holds. By Property 4, we must show in particular that ũ = ṽer a.s. on Γ.

To do this, define the deterministic function space

H = {(u, v) ∈ L2(0, T ;VF )× L2(0, T ;L2(Γ)) : u = ver for almost every t ∈ [0, T ]}.

One can check that the linear subspace H ⊂ L2(0, T ;H1(Ωf ))×L2(0, T ;L2(Γ)) is closed in the Hilbert space
L2(0, T ;H1(Ωf ))×L2(0, T ;L2(Γ)), and henceH is a Hilbert space with the inner product of L2(0, T ;H1(Ωf ))×
L2(0, T ;L2(Γ)). By equivalence of laws and the uniform boundedness in Lemma 7.2, (ũN , ṽN ) is uniformly
bounded in L2(Ω̃;H), and hence converges weakly to (ũ, ṽ) ∈ L2(Ω̃;H) by uniqueness of the limit, since we
already have that (ũN , ṽN ) converges almost surely to (ũ, ṽ) in L2(0, T ;L2(Ωf ))×L2(0, T ;L2(Γ)). This gives
the desired result.

Property 6: First, we sketch the idea. By construction, we have that on the original probability space,
W (t) −W (s) is independent of σ(uN (τ), vN (τ), ηN (τ), for 0 ≤ τ ≤ s), where we recall that these processes
(uN (τ), vN (τ), ηN (τ)) are piecewise constant on intervals of length ∆t = T/N . This is because for a given
time τ ∈ [0, T ], (uN (τ), vN (τ), ηN (τ)) depends only on the values of the Brownian motion at time b τ∆tc∆t
or earlier, from which the claim follows by the independent increments property of Brownian motion. The
idea will be to transfer this independence property over to the new random variables (ũN , ṽN , η̃N ) on the new
probability space (Ω̃, F̃ , P̃) and then take a limit as N →∞ to get the desired independence in the limit.

Note that the definition of F̃t as

F̃t = σ(ũ(s), ṽ(s), η̃(s), for 0 ≤ s ≤ t)

makes sense, since by the above properties, η̃ and (ũ, ṽ) are continuous on [0, T ] in time, taking values in
L2(Γ) and Q′ respectively. So it makes sense to refer to values pointwise at specific times, for example as in
ũ(τ) for a given τ ∈ [0, T ]. However, it is not clear yet, for example, what ũN (τ) would be, since a priori,
we only know that ũN ∈ L2(0, T ;L2(Ωf )), and hence, each path of ũN is only defined up to a version for
t ∈ [0, T ].

To handle this, define the set KN of all functions in L2(0, T ;L2(Ωf )) that have a version that is piecewise
constant on the intervals of the form [0,∆t] and (n∆t, (n+ 1)∆t] for 1 ≤ n ≤ N − 1, where ∆t = T/N . Note
that KN is a closed subset of L2(0, T ;L2(Ωf )), so by equivalence of laws,

P̃(ũN ∈ KN ) = P(uN ∈ KN ) = 1.

Therefore, ũN is almost surely piecewise constant on [0,∆t] and (n∆t, (n + 1)∆t] for 1 ≤ n ≤ N − 1. The
same argument shows that ṽN and η̃N also almost surely have versions that are piecewise constant on these
same intervals, since vN and ηN on the original probability space almost surely have this property too.

Therefore, for each N , up to taking a version of ũN , ṽN , and η̃N , we can define random variables ũnN , ṽnN ,
and η̃nN for 0 ≤ n ≤ N − 1, satisfying

ũN (t, ω) = ũ0
N (ω), if 0 ≤ t ≤ ∆t and ũN (t, ω) = ũnN (ω), if n∆t < t ≤ (n+ 1)∆t,

ṽN (t, ω) = ṽ0
N (ω), if 0 ≤ t ≤ ∆t and ṽN (t, ω) = ṽnN (ω), if n∆t < t ≤ (n+ 1)∆t,

η̃N (t, ω) = η̃0
N (ω), if 0 ≤ t ≤ ∆t and η̃N (t, ω) = η̃nN (ω), if n∆t < t ≤ (n+ 1)∆t.

Furthermore, by the equivalence of laws, the joint distribution of ũnN , ṽ
n
N , η̃

n
N for 0 ≤ n ≤ N − 1 is the same

as that of unN , v
n
N , η

n
N for 0 ≤ n ≤ N − 1. Therefore, we can now make sense of ũN (τ) for example for any

τ ∈ [0, T ], by considering the piecewise constant versions of these stochastic processes as given above. When
we refer to ũN , ṽN , and η̃N , we will refer to the piecewise constant versions defined above.

We now show the desired independence. We consider τ0 ∈ [0, s] and 0 ≤ s ≤ t, and show that ũ(τ0) and
W̃ (t) − W̃ (s) are independent. The same argument will work for v(τ0) and η(τ0), so it suffices to show the
independence of W̃ (t)− W̃ (s) and ũ(τ0) for arbitrary τ0 ∈ [0, s] and 0 ≤ s ≤ t.

Recall that ũN → ũ almost surely in L2(0, T ;L2(Ωf )). Define the set

EN,n = {(t, ω) ∈ [0, T ]× Ω̃ : ||ũ(t, ω, ·)− ũN (t, ω, ·)||L2(Ωf ) ≥ 2−n}.
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For each positive integer n, we can choose N := N(n) sufficiently large such that N(n) > N(n− 1) for n ≥ 2,
and

(dt× P̃)(EN(n),n) ≤ 2−n. (54)

To see this, one selects N(n) sufficiently large so that

P̃
(
||ũ− ũN(n)||L2(0,T ;L2(Ωf )) ≤ 2−2n

)
≥ 1− 2−2n,

and then apply Chebychev’s inequality in time. Then, by applying the Borel Cantelli lemma to (54), we
obtain that

ũN (t, ω, ·)→ ũ(t, ω, ·) in L2(Ωf ), (55)

for all (t, ω) ∈ S ⊂ [0, T ] × Ω̃ for a set S satisfying (dt × P̃)(S) = T , where we continue to denote the new
subsequence N(n) by N . Thus, ([0, T ]× Ω̃)− S has measure zero with respect to the measure (dt× P̃).

Let S0 ⊂ [0, T ] be the set of all t ∈ [0, T ] such that P̃((t, ω) ∈ S) = 1. By Fubini’s theorem, S0 is a
measurable subset of [0, T ] for which [0, T ]−S0 has measure zero. Note that for each t ∈ S0, ũN (t, ·)→ ũ(t, ·)
almost surely as random variables taking values in L2(Ωf ).

So if τ0 ∈ S0, we deduce the independence of ũ(τ0) and W̃ (t)− W̃ (s) as follows. By the fact that uN (τ0)
and W (t)−W (s) are independent, we have by equivalence of laws that

ũN (τ0) and W̃N (t)− W̃N (s) are independent.

Here, N denotes the subsequence N(n) we used to define S and S0. However, since τ0 ∈ S0, we have that ũ(τ0)
is the almost sure limit of ũN (τ0), and furthermore, W̃ (t)− W̃ (s) is the almost sure limit of W̃N (t)− W̃N (s).
So since the almost sure limits of independent random variables are independent, this gives the desired result.

If τ0 /∈ S0, since [0, T ] − S0 has measure zero in [0, T ], there exists a sequence τi ∈ S0 that converges to
τ0 as i → ∞, where τi ∈ [0, s]. Then, since ũ(τi) and W̃ (t) − W̃ (s) are independent for each i and since
ũ(τi)→ ũ(τ0) almost surely by continuity, the result follows. (For the case of τ0 = 0, we recall from Lemma
8.6, that (ũ(0), ṽ(0)) = (u0, v0) almost surely.)

We use the equivalence of laws to verify the remaining properties of Brownian motion. In particular, we
just need to show that W̃ (t)− W̃ (s) is distributed as N(0, t− s). By the equivalence of laws and the fact that
W is originally a Brownian motion, W̃N (t)− W̃N (s) =d W (t)−W (s), so that W̃N (t)− W̃N (s) is distributed
as N(0, t − s). Since W̃N → W̃ a.s. in C(0, T ;R), we obtain that W̃N (t) − W̃N (s) → W̃ (t) − W̃ (s) almost
surely, so that W̃ (t)− W̃ (s) is the almost sure limit of random variables distributed as N(0, t− s). Thus, we
conclude that W̃ (t)− W̃ (s) must also be distributed as N(0, t− s), which concludes the proof of Property 6.

Property 7: By the definition of F̃t, the process (ũ, ṽ, η̃) is adapted to F̃t. By Property 2, η̃ almost surely
has continuous paths on [0, T ], taking values in L2(Ωf ). By Property 5, (ũ, ṽ) almost surely has continuous
paths on [0, T ], taking values in Q′. Since a continuous adapted process is predictable (see Proposition 5.1 in
Chapter IV of Revuz and Yor [55]), this establishes the desired property.

This completes the proof of Lemma 8.7.

8.4 Passing to the limit

We now consider the approximate solutions defined as random variables on the probability space (Ω̃, F̃ , P̃),
discussed in Lemma 8.7, and show that the almost sure limit obtained in Lemma 8.7, satisfies the weak
formulation stated in Definition 4.1, almost surely on (Ω̃, F̃ , P̃). For this purpose, we recall the semidiscrete
formulation of the problem from (25), given by

ˆ
Ωf

un+1
N − unN

∆t
· qdx+ 2µ

ˆ
Ωf

D(un+1
N ) : D(q)dx+

ˆ
Γ

vn+1
N − vnN

∆t
ψdz +

ˆ
Γ
∇ηn+1

N · ∇ψdz

=

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdz + PnN,in

ˆ R

0
(qz)|z=0dr − PnN,out

ˆ R

0
(qz)|z=Ldr, ∀(q, ψ) ∈ Q,
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ˆ
Γ

ηn+1
N − ηnN

∆t
φdz =

ˆ
Γ
v
n+ 1

3
N φdz, ∀φ ∈ L2(Γ),

where PnN,in/out = 1
∆t

´ (n+1)∆t
n∆t Pin/out(t)dt. Notice that as stated, this semidiscrete formulation refers to the

original variables, defined on the original probability space. Given a general (q, ψ) ∈ Q(0, T ), we use the
semidiscrete formulation at each fixed time and integrate in time from 0 to T to obtain for all (q, ψ) ∈ Q(0, T ),

ˆ T

0

ˆ
Ωf

∂tuN · qdx+ 2µ

ˆ T

0

ˆ
Ωf

D(u∆t
N ) : D(q)dxdt+

ˆ T

0

ˆ
Γ
∂tvNψdzdt

+

ˆ T

0

ˆ
Γ
∇η∆t

N · ∇ψdzdt =
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdzdt

+
N−1∑
n=0

(ˆ (n+1)∆t

n∆t
PnN,in

ˆ R

0
(qz)|z=0drdt−

ˆ (n+1)∆t

n∆t
PnN,out

ˆ R

0
(qz)|z=Ldrdt

)
,

ˆ T

0

ˆ
Γ
∂tηNφdzdt =

ˆ T

0

ˆ
Γ
v∗Nφdzdt, ∀φ ∈ C1(0, T ;L2(Γ)),

where uN , vN and ηN are the piecewise linear approximations, given by (28) and (31), and u∆t
N and η∆t

N are
the piecewise constant time shifted functions, given by (30) and (32). Now, we convert to the new probability
space by noticing that the same identities hold for the new random variables defined on the “tilde” probability
space since the two sets of random variables have the same law on X . So for all (q, ψ) ∈ Q(0, T ), on the new
probability space (Ω̃, F̃ , P̃) with the filtration {F̃t}t≥0 defined in (52), we obtain

ˆ T

0

ˆ
Ωf

∂tũN · qdx+ 2µ

ˆ T

0

ˆ
Ωf

D(ũ∆t
N ) : D(q)dxdt+

ˆ T

0

ˆ
Γ
∂tṽNψdzdt

+

ˆ T

0

ˆ
Γ
∇η̃∆t

N · ∇ψdzdt =
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W̃N ((n+ 1)∆t)− W̃N (n∆t)

∆t
ψdzdt

+
N−1∑
n=0

(ˆ (n+1)∆t

n∆t
PnN,in

ˆ R

0
(qz)|z=0dr −

ˆ (n+1)∆t

n∆t
PnN,out

ˆ R

0
(qz)|z=Ldrdt

)
,

ˆ T

0

ˆ
Γ
∂tη̃Nφdzdt =

ˆ T

0

ˆ
Γ
ṽ∗Nφdzdt ∀φ ∈ C1(0, T ;L2(Γ)).

We can now pass to the limit in all of the integrals, and use the almost sure convergence of the “tilde” random
variables as follows.
First term: For the functions on the original probability space, note that because q(T ) = 0, we can integrate
by parts to obtain

ˆ T

0

ˆ
Ωf

∂tuN · qdxdt = −
ˆ T

0

ˆ
Ωf

uN · ∂tqdxdt−
ˆ

Ωf

u0 · q(0)dx. (56)

By equivalence of laws, this identity also holds with ũN in place of uN . Then, because ũN → ũ almost surely
in L2(0, T ;L2(Ωf )), we can pass to the limit to obtain the desired almost sure convergence,

ˆ T

0

ˆ
Ωf

∂tũN · qdx→ −
ˆ T

0

ˆ
Ωf

ũ · ∂tqdxdt−
ˆ

Ωf

u0 · q(0)dx.

Third term: For the third term, we use an argument similar to that for the first term. Since ψ(T ) = 0, we
can integrate by parts,

ˆ T

0

ˆ
Γ
∂tvNψdzdt = −

ˆ T

0

ˆ
Γ
vN∂tψdzdt−

ˆ
Γ
v0ψ(0)dz.
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This holds with ṽN in place of vN too by equivalence of laws. Because ṽN → ṽ in L2(0, T ;L2(Γ)) almost
surely, we have the desired almost sure convergence,

ˆ T

0

ˆ
Γ
∂tṽNψdzdt = −

ˆ T

0

ˆ
Γ
ṽN∂tψdzdt−

ˆ
Γ
v0ψ(0)dz → −

ˆ T

0

ˆ
Γ
ṽ∂tψdzdt−

ˆ
Γ
v0ψ(0)dz.

Second and fourth term with smooth test function: For the second and fourth term, we have to use
an approximation argument, since we only have estimates of convergence of ũN and ũ∆t

N in L2(0, T ;L2(Ωf ))
and ṽN in L2(0, T ;L2(Γ)).

We will first show the desired convergence under the assumption that (q, ψ) ∈ Q(0, T ) is spatially smooth
at each time in [0, T ]. Then, on the original probability space,

2µ

ˆ T

0

ˆ
Ωf

D(u∆t
N ) : D(q)dxdt = µ

ˆ T

0

ˆ
Ωf

∇u∆t
N : ∇qdxdt = −µ

ˆ T

0

ˆ
Ωf

u∆t
N ·∆qdxdt,

where the last integration by parts has no boundary terms due to the properties of the solution space and test

space for the fluid. Then, by the uniform dissipation estimate in Proposition 6.7,
∑N−1

n=0 E
(
||un+1

N − unN ||2L2(Ωf )

)
≤

C, we have that

E
(
||u∆t

N − uN ||2L2(0,T ;L2(Ωf ))

)
≤ C(∆t)→ 0, as N →∞.

By equivalence of laws, the above identities and estimates hold for ũ∆t
N in place of u∆t

N . By the Borel-Cantelli
lemma, we have that

||ũ∆t
N − ũN ||L2(0,T ;L2(Ωf )) → 0 almost surely as N →∞,

taking a subsequence if needed. Because ũN converges to ũ in L2(0, T ;L2(Ωf )) as N →∞, we also have that

||ũ∆t
N − ũ||L2(0,T ;L2(Ωf )) → 0 almost surely as N →∞

along this subsequence, which allows us to pass to the limit to obtain

2µ

ˆ T

0

ˆ
Ωf

D(ũ∆t
N ) : D(q)dxdt = −µ

ˆ T

0

ˆ
Ωf

ũ∆t
N ·∆qdxdt (57)

→ −µ
ˆ T

0

ˆ
Ωf

ũ ·∆qdxdt = 2µ

ˆ T

0

ˆ
Ωf

D(ũ) : D(q)dxdt.

For the fourth term, one can use a similar argument under the assumption that the test function (q, ψ) is
spatially smooth. On the original probability space,

ˆ T

0

ˆ
Γ
∇η∆t

N · ∇ψdzdt = −
ˆ T

0

ˆ
Γ
η∆t
N ·∆ψdzdt.

By the numerical dissipation estimate from Lemma 6.7,
∑N−1

n=0 E
(
||∇ηn+ 1

3
N −∇ηnN ||2L2(Γ)

)
≤ C, so we obtain,

by Poincaré’s inequality, that

E
(
||η∆t

N − ηN ||2L2(0,T ;L2(Γ))

)
≤ C(∆t)→ 0, as N →∞.

These estimates hold on the new probability space with η̃N in place of ηN . By the Borel-Cantelli lemma and
the convergence of η̃N to η̃ in L2(0, T ;L2(Γ)),

||η̃∆t
N − η̃||L2(0,T ;L2(Γ)) → 0, almost surely as N →∞,

taking a subsequence. This allows us to pass to the limit to obtain the almost sure convergence,
ˆ T

0

ˆ
Γ
∇η̃∆t

N · ∇ψdzdt = −
ˆ T

0

ˆ
Γ
η̃∆t
N ·∆ψdzdt (58)

→ −
ˆ T

0

ˆ
Γ
η̃ ·∆ψdzdt =

ˆ T

0

ˆ
Γ
∇η̃ · ∇ψdzdt, as N →∞.
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Second and fourth term with general test function: To show the almost sure convergence in the
previous step, we assumed that (q, ψ) ∈ Q(0, T ) was spatially smooth. To get the general convergence, we
use an approximation argument. Suppose that (q, ψ) ∈ Q(0, T ) is not smooth spatially. It suffices to show

that
´ T

0

´
Ωf
D(ũ∆t

N ) : D(q)dxdt →
´ T

0

´
Ωf
D(ũ) : D(q)dxdt in probability, and

´ T
0

´
Γ∇η̃

∆t
N · ∇ψdzdt →´ T

0

´
Γ∇η̃ ·∇ψdzdt in probability (see below for the precise definition), as we would get the desired result from

the fact that we then have almost sure convergence along a subsequence. So given any ε > 0 and δ > 0, we
must show that there exists N0 such that for all N ≥ N0,

P̃

(∣∣∣∣∣
ˆ T

0

ˆ
Ωf

D(ũ∆t
N ) : D(q)dxdt−

ˆ T

0

ˆ
Ωf

D(ũ) : D(q)dxdt

∣∣∣∣∣ > δ

)
≤ ε, (59)

P̃
(∣∣∣∣ˆ T

0

ˆ
Γ
∇η̃∆t

N · ∇ψdzdt−
ˆ T

0

ˆ
Γ
∇η̃ · ∇ψdzdt

∣∣∣∣ > δ

)
≤ ε. (60)

To show this, observe that by the uniform dissipation estimate in Proposition 6.7, we have that

E

(
N−1∑
n=0

(∆t)

ˆ
Ωf

|D(un+1
N )|2dx

)
= E

(
||D(u∆t

N )||2L2(0,T ;L2(Ωf ))

)
≤ C.

and hence by equivalence of laws,

Ẽ
(
||D(ũ∆t

N )||2L2(0,T ;L2(Ωf ))

)
≤ C,

for a uniform constant C. Since ũ ∈ L2(Ω;L2(0, T ;H1(Ωf ))) by Property 2 of Lemma 8.7, we conclude that
there exists a sufficiently large positive constant M such that for all N ,

P̃
(
||D(ũ∆t

N )||L2(0,T ;L2(Ωf )) ≥M
)
≤ ε

3
, P̃

(
||D(ũ)||L2(0,T ;L2(Ωf )) ≥M

)
≤ ε

3
. (61)

For the fourth term involving structure displacements, recall from Lemma 6.7 that

E
(
||∇η∆t

N ||2L∞(0,T ;L2(Γ))

)
≤ C,

and by Property 2 in Lemma 8.7, η̃ ∈ L2(Ω̃;L∞(0, T ;H1
0 (Γ))). So using equivalence of laws, M can also be

chosen sufficiently large so that for all N ,

P̃
(
||∇η̃∆t

N ||L∞(0,T ;L2(Γ)) ≥M
)
≤ ε

3
, P̃

(
||∇η̃||L∞(0,T ;L2(Γ)) ≥M

)
≤ ε

3
. (62)

Then, choose (q̂, ψ̂) ∈ Q(0, T ) that are smooth spatially at all times in [0, T ], such that

||D(q)−D(q̂)||L2(0,T ;L2(Ωf )) ≤
δ

3M
, ||∇ψ −∇ψ̂||L1(0,T ;L2(Γ)) ≤

δ

3M
. (63)

Then, the almost sure convergences (57) and (58), which hold for this smoother (q̂, ψ̂), allow us to choose N0

sufficiently large such that for all N ≥ N0,

P̃

(∣∣∣∣∣
ˆ T

0

ˆ
Ωf

D(ũ∆t
N ) : D(q̂)dxdt−

ˆ T

0

ˆ
Ωf

D(ũ) : D(q̂)dxdt

∣∣∣∣∣ > δ

3

)
≤ ε

3
, (64)

P̃
(∣∣∣∣ˆ T

0

ˆ
Γ
∇η̃∆t

N · ∇ψ̂dzdt−
ˆ T

0

ˆ
Γ
∇η̃ · ∇ψ̂dzdt

∣∣∣∣ > δ

3

)
≤ ε

3
. (65)

Furthermore, the choice of (q̂, ψ̂) in (63) and the choice of M in (61) and (62) give that for all N ,

P̃

(∣∣∣∣∣
ˆ T

0

ˆ
Ωf

D(ũ∆t
N ) : D(q)dxdt−

ˆ T

0

ˆ
Ωf

D(ũ∆t
N ) : D(q̂)dxdt

∣∣∣∣∣ > δ

3

)
≤ ε

3
, (66)
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P̃
(∣∣∣∣ˆ T

0

ˆ
Γ
∇η̃∆t

N · ∇ψdzdt−
ˆ T

0

ˆ
Γ
∇η̃∆t

N · ∇ψ̂dzdt
∣∣∣∣ > δ

3

)
≤ ε

3
, (67)

and

P̃

(∣∣∣∣∣
ˆ T

0

ˆ
Ωf

D(ũ) : D(q)dxdt−
ˆ T

0

ˆ
Ωf

D(ũ) : D(q̂)dxdt

∣∣∣∣∣ > δ

3

)
≤ ε

3
, (68)

P̃
(∣∣∣∣ˆ T

0

ˆ
Γ
∇η̃ · ∇ψdzdt−

ˆ T

0

ˆ
Γ
∇η̃ · ∇ψ̂dzdt

∣∣∣∣ > δ

3

)
≤ ε

3
. (69)

Combining the estimates (64), (65), (66), (67), (68), and (69) establishes the desired estimates (59) and (60),
and hence proves the desired convergence in probability.

Passing to the limit in the stochastic integral. We want to pass to the limit in the stochastic integral
and show that for arbitrary ψ such that (q, ψ) ∈ Q(0, T ),

N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W̃N ((n+ 1)∆t)− W̃N (n∆t)

∆t
ψdzdt→

ˆ T

0

(ˆ
Γ
ψdz

)
dW̃ , a.s. as N →∞.

Note that because ψ is deterministic, we can express the right hand side as a stochastic integral,

N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W̃N ((n+ 1)∆t)− W̃N (n∆t)

∆t
ψdzdt

=

ˆ T

0

N−1∑
n=0

(
1

∆t

ˆ (n+1)(∆t)

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1t∈(n∆t,(n+1)∆t](t)dW̃N (t).

Because convergence in probability implies convergence almost surely along a subsequence, it thus suffices to
prove that

ˆ T

0

N−1∑
n=0

(
1

∆t

ˆ (n+1)(∆t)

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1t∈(n∆t,(n+1)∆t](t)dW̃N →

ˆ T

0

(ˆ
Γ
ψdz

)
dW̃ ,

as N → ∞ in probability. So we must show that given any δ > 0 and any ε > 0, there exists N0 sufficiently
large such that for all N ≥ N0

P̃

(∣∣∣∣∣
ˆ T

0

N−1∑
n=0

(
1

∆t

ˆ (n+1)(∆t)

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1t∈(n∆t,(n+1)∆t](t)dW̃N −

ˆ T

0

(ˆ
Γ
ψdz

)
dW̃

∣∣∣∣∣ > δ

)
< ε.

We accomplish this through two estimates. We claim that we can choose N0 sufficiently large such that

P̃

(∣∣∣∣∣
ˆ T

0

N−1∑
n=0

(
1

∆t

ˆ (n+1)(∆t)

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1t∈(n∆t,(n+1)∆t](t)dW̃N −

ˆ T

0

(ˆ
Γ
ψdz

)
dW̃N

∣∣∣∣∣ > δ

2

)
<
ε

2
,

(70)
and

P̃
(∣∣∣∣ˆ T

0

(ˆ
Γ
ψdz

)
dW̃N −

ˆ T

0

(ˆ
Γ
ψdz

)
dW̃

∣∣∣∣ > δ

2

)
<
ε

2
, (71)

for all N ≥ N0.
For the first estimate (70), it suffices to use the It isometry along with the fact that∣∣∣∣∣

∣∣∣∣∣
N−1∑
n=0

(
1

∆t

ˆ (n+1)(∆t)

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1t∈(n∆t,(n+1)∆t](t)−

ˆ
Γ
ψdz

∣∣∣∣∣
∣∣∣∣∣
L2(0,T )

→ 0, as N →∞,
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to conclude that

Ẽ

∣∣∣∣∣
ˆ T

0

N−1∑
n=0

(
1

∆t

ˆ (n+1)(∆t)

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1t∈(n∆t,(n+1)∆t](t)dW̃N −

ˆ T

0

(ˆ
Γ
ψdz

)
dW̃N

∣∣∣∣∣
2
→ 0,

as N → ∞. The first estimate (70) thus follows from taking N0 sufficiently large to make this expectation
sufficiently small, and then using Chebychev’s inequality.

For the second estimate, note that we can approximate
´

Γ ψ(t, z)dz := g(t) by a deterministic step function

gm(t) = g

(
kT

m

)
if
kT

m
< t ≤ (k + 1)T

m
.

By the continuity of g(t), we can select m sufficiently large such that

||g(t)− gm(t)||2L2(0,T ) <
ε

6
·
(
δ

6

)2

.

Then, by the It isometry and Chebychev’s inequality,

P̃
(∣∣∣∣ˆ T

0

(ˆ
Γ
ψdz

)
dW̃N −

ˆ T

0
gm(t)dW̃N

∣∣∣∣ > δ

6

)
<
ε

6
, (72)

for all N , and

P̃
(∣∣∣∣ˆ T

0

(ˆ
Γ
ψdz

)
dW̃ −

ˆ T

0
gm(t)dW̃

∣∣∣∣ > δ

6

)
<
ε

6
. (73)

So it remains to choose N0 sufficiently large such that for all N ≥ N0,

P̃
(∣∣∣∣ˆ T

0
gm(t)dW̃N −

ˆ T

0
gm(t)dW̃

∣∣∣∣ > δ

6

)
<
ε

6
. (74)

We note that |gm(t)| ≤ K for some constant K that is deterministic, as gm(t) is a deterministic function of
time. Also, note that

ˆ T

0
gm(t)dW̃N =

m−1∑
k=0

g

(
kT

m

)
·
(
W̃N

(
(k + 1)T

m

)
− W̃N

(
kT

m

))
,

with an analogous formula for the integration against W̃ . Hence,∣∣∣∣ˆ T

0
gm(t)dW̃N −

ˆ T

0
gm(t)dW̃

∣∣∣∣
≤

m−1∑
k=0

∣∣∣∣g(kTm
)
·
[(
W̃N

(
(k + 1)T

m

)
− W̃N

(
kT

m

))
−
(
W̃

(
(k + 1)T

m

)
− W̃

(
kT

m

))]∣∣∣∣
≤

m−1∑
k=0

2K||W̃ − W̃N ||C(0,T ;R) ≤ 2Km · ||W̃ − W̃N ||C(0,T ;R).

Because W̃N → W̃ in C(0, T ;R) almost surely, there exists N0 sufficiently large such that

P̃
(
||W̃ − W̃N ||C(0,T ;R) >

δ

12Km

)
<
ε

6
, for all N ≥ N0.

Therefore,

P̃
(∣∣∣∣ˆ T

0
gm(t)dW̃N −

ˆ T

0
gm(t)dW̃

∣∣∣∣ > δ

6

)
<
ε

6
, for all N ≥ N0.
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The estimates (72), (73), and (74) thus imply the desired estimate in (71).

Convergence of the pressure term. Finally, we show that

N−1∑
n=0

ˆ (n+1)∆t

n∆t
PnN,in

(ˆ R

0
(qz)|z=0dr

)
dt→

ˆ T

0
Pin(t)

(ˆ R

0
(qz)|z=0dr

)
dt, as N →∞. (75)

The same argument will work for the outlet pressure term.
Define the following piecewise approximation of the test function q,

qm(t, ·) = q

(
kT

m
, ·
)
, if

kT

m
< t ≤ (k + 1)T

m
.

For any positive integer N ,

ˆ T

0
Pin(t)

(ˆ R

0
(qNz )|z=0dr

)
dt−

N−1∑
n=0

ˆ (n+1)∆t

n∆t
PnN,in

(ˆ R

0
(qNz )|z=0dr

)
dt

=
N−1∑
n=0

ˆ (n+1)∆t

n∆t
(Pin(t)− PnN,in)

(ˆ R

0
(qNz )|z=0dr

)
dt

=
N−1∑
n=0

(ˆ R

0
(qNz )|z=0dr

) ˆ (n+1)∆t

n∆t
(Pin(t)− PnN,in)dt = 0.

To establish (75), it suffices to show that

ˆ T

0
Pin(t)

(ˆ R

0
(qz)|z=0dr

)
dt−

ˆ T

0
Pin(t)

(ˆ R

0
(qNz )|z=0dr

)
dt→ 0, as N →∞, (76)

N−1∑
n=0

ˆ (n+1)∆t

n∆t
PnN,in

(ˆ R

0
(qz)|z=0dr

)
dt−

N−1∑
n=0

ˆ (n+1)∆t

n∆t
PnN,in

(ˆ R

0
(qNz )|z=0dr

)
dt→ 0, as N →∞.

(77)
For (76), we compute∣∣∣∣ˆ T

0
Pin(t)

(ˆ R

0
(qz)|z=0dr

)
dt−

ˆ T

0
Pin(t)

(ˆ R

0
(qNz )|z=0dr

)
dt

∣∣∣∣
=

∣∣∣∣ˆ T

0
Pin(t)

(ˆ R

0
(qz − qNz )|z=0dr

)
dt

∣∣∣∣ ≤ ||Pin||L2(0,T )

(ˆ T

0

(ˆ R

0
(qz − qNz )|z=0dr

)2

dt

)1/2

≤ C||Pin||L2(0,T )

(ˆ T

0
||q − qN ||2H1(Ωf )dt

)1/2

. (78)

Because q is continuous taking values in VF equipped with the norm of H1(Ωf ), we have that ||q−qN ||H1(Ωf ) →
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0 uniformly on [0, T ] as N →∞, which establishes the desired limit. Similary, to estabish (77) we calculate∣∣∣∣∣
N−1∑
n=0

PnN,in

ˆ (n+1)∆t

n∆t

(ˆ R

0
(qz − qNz )|z=0dr

)
dt

∣∣∣∣∣ ≤
∣∣∣∣∣∣
N−1∑
n=0

(∆t)1/2PnN,in

(ˆ (n+1)∆t

n∆t

(ˆ R

0
(qz − qNz )|z=0dr

)2

dt

)1/2
∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣
N−1∑
n=0

(∆t)1/2PnN,in

(ˆ (n+1)∆t

n∆t
||q − qN ||2H1(Ωf )dt

)1/2
∣∣∣∣∣∣

≤ C

(
N−1∑
n=0

(∆t)1/2|PnN,in|

)
· max

0≤n≤N−1

(ˆ (n+1)∆t

n∆t
||q − qN ||2H1(Ωf )dt

)1/2

≤ C

(
N−1∑
n=0

1

(∆t)1/2

ˆ (n+1)∆t

n∆t
|Pin(t)|dt

)
· max

0≤n≤N−1

(ˆ (n+1)∆t

n∆t
||q − qN ||2H1(Ωf )dt

)1/2

≤ C||Pin||L2(0,T ) · max
0≤n≤N−1

(ˆ (n+1)∆t

n∆t
||q − qN ||2H1(Ωf )dt

)1/2

.

Again, because q is continuous taking values in VF equipped with the norm of H1(Ωf ), we have that ||q −
qN ||H1(Ωf ) → 0 uniformly on [0, T ] as N →∞, which establishes the desired limit.

We have, therefore, established the existence of a weak solution to the stochastic fluid-structure interaction
problem in a probabilistically weak sense, as in Definition 4.1.

9 Return to the original probability space

We have thus constructed a stochastic process (ũ, η̃), which satisfies the weak formulation of the continuous
problem almost surely on the “tilde” probability space determined by the Skorohod representation theorem.
However, we want to bring the solution back to the original probability space. In particular, we must get
convergence of the original approximate solutions (uN , vN , ηN ) on the original probability space (Ω,F ,P) with
the original given complete filtration {Ft}t≥0 and the original Brownian motion W (t).

To do this, we will use a standard Gyöngy-Krylov argument based on the following lemma, see Lemma
1.1 in [28] and Proposition 6.3 in [41].

Lemma 9.1 (Gyöngy-Krylov lemma). Let {Xn}∞n=1 be a sequence of random variables defined on a probability
space (Ω,F ,P) taking values in a separable Banach space B. Then Xn converges in probability to some
B-valued random variable X∗ if and only if for every two subsequences Xlk and Xmk

of Xn, there exists a
further subsequence of xk = (Xlk , Xmk

) whose laws converge weakly to a probability measure ν on B × B
that is supported on the diagonal {(x, y) ∈ B ×B : x = y}.

In other words, the statement of the Gyöngy-Krylov lemma holds if and only if for every two subsequences
Xlk and Xmk

, there exists a further subsequence such that the joint probability measures associated with
xk = (Xlk , Xmk

) on B ×B, defined by

νxk = νXlk
,Xmk

(A1 ×A2) = P(Xlk ∈ A1, Xmk
∈ A2), A1, A2 ∈ B(B),

where B(B) is the Borel sigma algebra on B, converge weakly along this further subsequence to some proba-
bility measure ν, where ν is such that

ν({(x, y) ∈ B ×B : x = y}) = 1. (79)

Thus, the limits of any two convergent subsequences have to be “the same” with probability 1.
Once we show convergence in probability of our original sequence using the Gyöngy-Krylov lemma, we

will have almost sure convergence along a subsequence of our approximate solutions on the original probability
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space. Then, using the fact that our approximate solutions converge almost surely along a subsequence on the
original probability space, we can adapt the arguments in Section 8.4 in order to show that the limiting weak
solution on the original probability space satisfies the weak form of the continuous problem almost surely, so
that the limiting solution is a weak solution in a probabilistically strong sense.

Thus, what remains to be shown is that the diagonal condition in the Gyöngy-Krylov lemma holds. Since
our problem is linear and the stochastic noise is additive, using the Skorohod representation theorem, one
can show that the diagonal condition is equivalent to showing deterministic uniqueness holding pathwise.
To demonstrate this, we first prove deterministic uniqueness, and then use it to show how this implies the
diagonal condition.

9.1 Uniqueness of the deterministic linear problem

Lemma 9.2 (Uniqueness for the deterministic problem). Suppose that u ∈ L∞(0, T ;L2(Ωf ))∩L2(0, T ;VF ),
η ∈ W 1,∞(0, T ;L2(Γ)) ∩ L∞(0, T ;VS), and u|Γ = ∂tηer. Suppose also that (u, ∂tη) ∈ C(0, T ;Q′), with
η(0) = 0. If for all (q, ψ) ∈ Q(0, T ),

−
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(u) : D(q)dxdt−
ˆ T

0

ˆ
Γ
∂tη∂tψdzdt+

ˆ T

0

ˆ
Γ
∇η · ∇ψdzdt = 0,

then (u, η) = 0.

Proof. Observe first that to get the usual energy equality, we would want to formally substitute in (u, ∂tη) for
(q, ψ). However, since (q, ψ) must have ψ(t) ∈ H1

0 (Γ) by the definition of the test space Q(0, T ), we do not
have enough regularity to do this. Therefore, we use a different approach of taking an antiderivative, which
is an approach used for example in establishing uniqueness of weak solutions for general hyperbolic equations
(see Section 7.2 in [20]).

Consider an arbitrary s such that 0 ≤ s ≤ T . We use the following test function,

(q0(t), ψ0(t)) =


(ˆ s

t

(ˆ τ

0
u(σ)dσ

)
dτ,

ˆ s

t
η(τ)dτ

)
if 0 ≤ t ≤ s,

(0, 0) if s ≤ t ≤ T.

Recall that η(0) = 0 by assumption. Note that since

ˆ τ

0
u(σ)dσ

∣∣∣
Γ

=

ˆ τ

0
∂tη(σ)dσ = η(τ)

for all τ ∈ [0, T ], the function (q0, ψ0) satisfies the necessary kinematic coupling condition for Q(0, T ). While
this test function is only piecewise differentiable, it is easy to show by an approximation argument that the
weak formulation should still hold with this test function by approximating it with differentiable functions.
For notational simplicity, we define

U(t) =

ˆ t

0
u(σ)dσ.

Substituting the test function into the weak formulation, we obtain for all s ∈ [0, T ],

ˆ s

0

ˆ
Ωf

u ·Udxdt+ 2µ

ˆ s

0

ˆ
Ωf

D(u) : D(q0)dxdt+

ˆ s

0

ˆ
Γ
∂tη · ηdzdt+

ˆ s

0

ˆ
Γ
∇η · ∇ψ0dzdt = 0,

where we note that ∂tq0(t) = −U(t) and ∂tψ0(t) = −η(t), for t ∈ [0, s). We handle the four terms on the left
hand side as follows.

• First term: We note that u = ∂tU . Hence, using the fact that U(0) = 0, we get

ˆ s

0

ˆ
Ωf

u ·Udxdt =

ˆ s

0

d

dt

(
1

2
||U ||2L2(Ωf )

)
dt =

1

2
||U(s)||2L2(Ωf ) −

1

2
||U(0)||2L2(Ωf ) =

1

2
||U(s)||2L2(Ωf ).
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• Second term: For the second term, we again use that u = ∂tU . Therefore,

2µ

ˆ s

0

ˆ
Ωf

D(u) : D(q0)dxdt = 2µ

ˆ s

0

ˆ
Ωf

D(∂tU) : D(q0)dxdt.

We integrate by parts in time. Note that U(0) = 0 and q0(s) = 0, so there are no boundary terms from
the integration by parts. Hence, using the fact that ∂tq0 = −U , we obtain

2µ

ˆ s

0

ˆ
Ωf

D(u) : D(q0)dxdt = −2µ

ˆ s

0

ˆ
Ωf

D(U) : D(∂tq0)dxdt = 2µ

ˆ s

0

ˆ
Ωf

|D(U)|2dxdt.

• Third term: We immediately have that

ˆ s

0

ˆ
Γ
∂tη · ηdzdt =

1

2
||η(s)||2L2(Γ) −

1

2
||η(0)||2L2(Γ) =

1

2
||η(s)||2L2(Γ).

• Fourth term: Since η = −∂tψ0, we have that

ˆ
Γ
∇η · ∇ψ0dz = −1

2

d

dt

(
||∇ψ0||2L2(Γ)

)
,

and hence, using the fact that ψ0(s) = 0, we get that

ˆ s

0

ˆ
Γ
∇η · ∇ψ0dzdt =

1

2
||∇ψ0(0)||2L2(Γ).

Therefore, for all 0 ≤ s ≤ T , the entire expression (energy) can now be written as

1

2
||U(s)||2L2(Ωf ) + 2µ

ˆ s

0

ˆ
Ωf

|D(U)|2dxdt+
1

2
||η(s)||2L2(Γ) +

1

2
||∇ψ0(0)||2L2(Γ) = 0.

Thus, we conclude that U(s) = 0 and η(s) = 0 for all s ∈ [0, T ]. From the definition of U , we conclude that
u(t) = ∂tU(t) = 0 for all t ∈ [0, T ] also, which completes the proof.

9.2 Verifying the diagonal condition of the Gyöngy-Krylov lemma

Now that we have established a uniqueness result, we can construct a solution on the original probability
space (Ω,F ,P) by invoking a standard argument involving the Gyöngy-Krylov argument (Lemma 9.1), to
show that the random variables (ηN ,uN , vN ) defined on the original probability space converge in probability,
and hence converge almost surely along a subsequence in the original topology.

Because we have already shown deterministic uniqueness in Sec. 9.1, it only remains to demonstrate
how the Skorohod representation theorem can be used to show that the diagonal condition (79) from the
Gyöngy-Krylov lemma is equivalent to showing deterministic uniqueness.

For this purpose, denote by {X1
Mk
}∞k=1 and {X2

Nk
}∞k=1 any two subsequences of our random variables

(approximate solutions) defined on the original probability space (Ω,F ,P):

X1
Mk

= (ηMk
, ηMk

, η∆t
Mk
,uMk

, vMk
,uMk

, v∗Mk
,uMk

, vMk
,u∆t

Mk
, v∆t
Mk
,W ),

X2
Nk

= (ηNk
, ηNk

, η∆t
Nk
,uNk

, vNk
,uNk

, v∗Nk
,uNk

, vNk
,u∆t

Nk
, v∆t
Nk
,W ).

Recall that the laws corresponding to each of these these two sequences of random variables individually
converge to the law µ. However, to verify the diagonal condition in the Gyöngy-Krylov lemma, we must
examine the joint laws of these random variables (X1

Mk
, X2

Nk
).

Hence, we consider the joint probability measures (or joint laws) {νX1
Mk

,X2
Nk

}∞k=1 on X × X , associated

with the subsequence (X1
Mk
, X2

Nk
). By the tightness of the original probability measures µN , established in
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the proof of Theorem 8.1, we have that the collection of joint laws {νX1
Mk

,X2
Nk

}∞k=1 is also tight, and hence

converges weakly to a probability measure ν on X ×X along a further subsequence, which we will continue to
denote by the same indexing for notational simplicity. Then, by the Skorohod representation theorem, there
exists a probability space (Ω̃, F̃ , P̃) and random variables

X̃1
Mk

= (η̃1
Mk
, η̃

1
Mk
, η̃∆t,1
Mk

, ũ1
Mk
, ṽ1
Mk
, ũ∗,1Mk

, ṽ∗,1Mk
, ũ

1
Mk
, ṽ

1
Mk
, ũ∆t,1

Mk
, ṽ∆t,1
Mk

, W̃ 1
Mk

),

X̃2
Nk

= (η̃2
Nk
, η̃

2
Nk
, η̃∆t,2
Nk

, ũ2
Nk
, v2
Nk
, ũ∗,2Nk

, ṽ∗,2Nk
, ũ

2
Nk
, ṽ

2
Nk
, ũ∆t,2

Nk
, ṽ∆t,2
Nk

, W̃ 2
Nk

),

such that
(X̃1

Mk
, X̃2

Nk
) =d (X1

Mk
, X2

Nk
), (80)

and (X̃1
Mk
, X̃2

Nk
)→ (X̃1, X̃2) in X × X almost surely as k →∞, where

X̃1 = (η̃1, η̃
1
, η̃∆t,1, ũ1, ṽ1, ũ∗,1, ṽ∗,1, ũ

1
, ṽ

1
, ũ∆t,1, ṽ∆t,1, W̃ 1),

X̃2 = (η̃2, η̃
2
, η̃∆t,2, ũ2, ṽ2, ũ∗,2, ṽ∗,2, ũ

2
, ṽ

2
, ũ∆t,2, ṽ∆t,2, W̃ 2),

are random variables on (Ω̃, F̃ , P̃), and ν is the law of (X̃1, X̃2).
We want to show that ν is supported on the diagonal. It suffices to show that P̃(X̃1 = X̃2) = 1. We do

this in three steps.
Step 1. First we notice that X̃1 is a weak solution in a probabilistically weak sense with respect to the

stochastic basis (Ω̃, F̃ , {F̃1
t }t≥0, P̃, W̃1) in the sense of Definition 4.1. This follows from the results of Lemma

8.7. Namely, the results of Lemma 8.7 imply that η̃1 = η̃
1

= η̃∆t,1, ũ1 = ũ∗,1 = ũ
1

= ũ∆t,1, ṽ1 = ṽ∗,1 = ṽ
1

=
ṽ∆t,1, and ∂tη̃

1 = ṽ1 almost surely. Furthermore, (ũ1, η̃1) ∈ W(0, T ) and (ũ1, ṽ1) ∈ C(0, T ;Q′), satisfying the
initial condition η̃1(0) = η0 almost surely. Furthermore, X̃1 is a weak solution in a probabilistically weak sense
with respect to the stochastic basis (Ω̃, F̃ , {F̃1

t }t≥0, P̃, W̃1) in the sense of Definition 4.1. The same is true for
the components of X̃2, with respect to (Ω̃, F̃ , {F̃2

t }t≥0, P̃, W̃2). Here, the filtrations {F̃1
t }t≥0 and {F̃2

t }t≥0 are
defined by (52) with the appropriate limiting random variables with superscripts “1” and “2” respectively.

Step 2. Here we notice that the limiting white noise satisfies W̃1 = W̃2. This follows directly from (80),
which implies W̃ 1

Mk
= W̃ 2

Nk
almost surely, since the law of (W̃ 1

Mk
, W̃ 2

Nk
) is the same as that of (W,W ). Thus,

by the convergence of W̃ 1
Mk

and W̃ 2
Nk

in C(0, T ;R) almost surely to W̃ 1 and W̃ 2, we have that W̃ 1 = W̃ 2

almost surely in C(0, T ;R). This will allow us to make sense of the difference of the stochastic integrals with
respect to W̃1 and W̃2 in the weak formulations on the “tilde” probability space.

Step 3. Finally, we use deterministic uniqueness to obtain the diagonal condition. We consider the
difference (η̃1 − η̃2, ũ1 − ũ2). By subtracting the weak formulations defining (ũ1, η̃1) and (ũ2, η̃2) as proba-
bilistically weak solutions, given in Definition 4.1, and by using the result of Step 2 above, we obtain that
(ũ1 − ũ2, η̃1 − η̃2) almost surely satisfies for all (q, ψ) ∈ Q(0, T ),

−
ˆ T

0

ˆ
Ωf

(u1 − u2) · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(u1 − u2) : D(q)dxdt

−
ˆ T

0

ˆ
Γ
∂t(η1 − η2)∂tψdzdt+

ˆ T

0

ˆ
Γ
∇(η1 − η2) · ∇ψdzdt = 0,

with η̃1 − η̃2 = 0 almost surely. Therefore, by using the uniqueness result in Lemma 9.2, we conclude that
η̃1 = η̃2 and ũ1 = ũ2 almost surely. Since ṽ1 = ∂tη̃

1 and ṽ2 = ∂tη̃
2, we also obtain that ṽ1 = ṽ2 almost surely.

This allows us to conclude that P̃(X̃1 = X̃2) = 1, which implies that the limiting joint probability measure
(or law) ν is supported on the diagonal.

This completes the verification of the diagonal condition of the Gyöngy-Krylov lemma.

9.3 Existence of a weak solution in a probabilistically strong sense

The existence of a weak solution in a probabilistically strong sense, given by Definition 4.2, now follows
from the Gyöngy-Krylov lemma in Lemma 9.1. More precisely, by the Gyöngy-Krylov lemma, the original
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sequence (ηN , ηN , η
∆t
N ,uN , vN ,uN , v

∗
N ,uN , vN ,u

∆t
N , v∆t

N ,W ) converges in probability to some random variable
(η, η, η∆t,u, v,u∗, v∗,u, v,u∆t, v∆t,W ), where the last component must be W up to a null set, since the limit
in probability of any constant sequence is almost surely exactly that constant.

Since convergence in probability implies almost sure convergence along a subsequence, we conclude that
along a subsequence which we continue to denote by N , we have that

(ηN , ηN , η
∆t
N ,uN , vN ,uN , v

∗
N ,uN , vN ,u

∆t
N , v∆t

N ,W )→ (η, η, η∆t,u, v,u∗, v∗,u, v,u∆t, v∆t,W ), a.s. in X .
(81)

To show that this limit is a weak solution in the sense of Definition 4.2, we use the same arguments as in
Lemma 8.7. All of the properties from Definition 4.2 follow from Lemma 8.7, except for uniqueness and
showing that (u, v, η) is Ft-adapted.

Uniqueness follows from the deterministic uniqueness result of Lemma 9.2.
Ft-adaptedness of (u, v, η): Note that this is not provided by Lemma 8.7, as we want to show that this

solution is adapted to the original filtration {Ft}t≥0, while the filtration defined in (52) is not necessarily the
same filtration.

To verify this, we note that by construction, (uN , vN , ηN ) is adapted to the given complete filtration
{Ft}t≥0. We want to pass to the limit as N →∞. By the convergence in (81),

uN → u, almost surely in L2(0, T ;L2(Ωf )),

vN → v, almost surely in L2(0, T ;L2(Γ)),

ηN → η, almost surely in L2(0, T ;L2(Γ)).

By the same argument used to establish (55) for example, we obtain that for a measurable set S ⊂ [0, T ]×Ω
with (dt× P)(S) = T ,

uNk
(t, ω, ·)→ u(t, ω, ·) in L2(Ωf ), vNk

(t, ω, ·)→ v(t, ω, ·), ηNk
(t, ω, ·)→ η(t, ω, ·) in L2(Γ) (82)

along a common subsequence Nk. In particular, ([0, T ]×Ω)−S has measure zero with respect to the product
measure dt× P.

Define S0 ⊂ [0, T ] to be all times t ∈ [0, T ] for which P((t, ω) ∈ S) = 1, so that the time slice at time t
has full measure in probability. S0 is measurable in [0, T ] and contains almost every time in [0, T ] by Fubini’s
theorem. So for all t ∈ S0, the convergences (82) are almost sure convergences.

Because {Ft}t≥0 is a complete filtration by assumption, the almost sure limit of Ft-measurable random
variables must also be Ft-measurable, since Ft contains all null sets of (Ω,F ,P). So for all t ∈ S0, u(t), v(t),
and η(t) are Ft-measurable since uNk

(t), vNk
(t), and ηNk

(t) are Ft-measurable by construction.
To show u(t), v(t), and η(t) are Ft-measurable for t /∈ S0, we use the fact that S0 has full measure in

[0, T ] and is hence dense. We can assume t 6= 0, since at t = 0, (u(0), v(0), η(0)) = (u0, v0, η0) almost surely
so the result holds. So for t /∈ S0 and t 6= 0, we can construct tn ∈ S0 such that tn ↗ t. By the fact that
(u, v) ∈ C(0, T ;Q′) and η is Lipschitz continuous almost surely, we have that (u(t), v(t), η(t)) is the almost
sure limit of (u(tn), v(tn), η(tn)), which are Ft-measurable since Ftn ⊂ Ft, as tn ≤ t. This establishes the
adaptedness of (u, v, η) to the given complete filtration {Ft}t≥0.

In conclusion, we have now shown that (u, v, η) has all of the required properties needed to be a weak
solution in a probabilistically strong sense to the given fluid-structure interaction problem with respect to the
Brownian motion W with complete filtration {Ft}t≥0, as in Definition 4.2. This completes the proof of the
main result, stated in Theorem 4.1, and restated here:

Theorem 9.1 (Main Result). Let u0 ∈ L2(Ωf ), v0 ∈ L2(Γ), and η0 ∈ H1
0 (Γ). Let Pin/out ∈ L2

loc(0,∞) and
let (Ω,F ,P) be a probability space with a Brownian motion W with respect to a given complete filtration
{Ft}t≥0. Then, for any T > 0, there exists a unique weak solution in a probabilistically strong sense to the
given stochastic fluid-structure interaction problem (5)–(7).
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10 Conclusions

In this manuscript, we presented a constructive proof of the existence of a weak solution in a probabilistically
strong sense, to a benchmark stochastic fluid-structure interaction (SFSI) problem (5)–(7). An example of
such a problem is the flow of blood in coronary arteries that sit on the surface of the heart and contract and
expand under the outside forcing due to the heart muscle contraction and expansion. Dynamic patient images
show significant stochastic effects in the heart contractions, which can be captured by an SFSI model such
as the one studied in this work. Our well-posedness result indicates that stochastic FSI models are robust
in the sense that a unique weak solution in the sense of Definition 4.2 will exist even when the problem is
stochastically forced by a rough time-dependent white noise, as considered in this work.

In addition to the importance of this work in terms of modeling real-life fluid structure interaction phe-
nomena with stochastic noise, to the best of our knowledge the results of this work present a first constructive
existence proof of a unique weak solution in a probabilistically strong sense to a stochastically forced and fully
coupled FSI problem, as defined in Definition 4.2.

In contrast to the deterministic case, the proof based on the operator splitting strategy presented in this
work has several new interesting components, which we summarize below.

1. The energy estimates are given in expectation, and do not necessarily hold pathwise. Thus, one cannot
immediately deduce almost sure convergence of the random approximate solutions along a subsequence
immediately from uniform boundedness of the random approximate solutions in the probabilistic finite
energy spaces with norms involving expectations. Having such almost sure convergence is essential for
passing to the limit in semidiscrete formulation, especially for a more general class of complex stochastic
FSI problems involving nonlinearities.

2. The energy estimate has an extra term that accounts for the energy pumped into the problem by the
stochastic forcing in expectation.

3. A constructive splitting scheme can be developed for this multiphysical problem that separates each
of the three different contributions to the fully coupled dynamics of the multiphysical problem into
three separate subproblems: (1) the structure subproblem, (2) the stochastic subproblem, and (3) the
fluid subproblem. This gives rise to a loosely coupled, stable constructive existence scheme for this
stochastic FSI problem that is inherently modular in nature, where each different physical component
of the problem is treated individually in each subproblem.

4. To establish stronger almost sure convergence of the random approximate solutions, one must first show
weak convergence of probability measures, by establishing that the probability measures are tight. This
requires the use of a compactness result alla Aubin-Lions, which form a general framework for construc-
tive existence that generalizes to the well-posedness analysis of more complex nonlinear stochastic FSI
systems. These compactness arguments show that the random approximate solutions generated via the
splitting scheme converge in probability, which suggests that the constructive splitting scheme intro-
duced in this manuscript can be used as a basis for developing numerical methods for stochastic FSI,
which explicitly generate numerical solutions that converge in a probability as the time step goes to
zero.

5. Once weak convergence of the probability measures (laws) associated with the approximate solutions
is established, probabilistic techniques based on the Skorohod representation theorem and the Gyöngy-
Krylov lemma have to be employed to obtain almost sure convergence along a subsequence to a weak
solution.

11 Appendix: An alternative approach to the existence proof

In this appendix, we make some additional comments about an alternative approach to passing to the limit in
the random approximate solutions constructed in Section 7. We would like to thank the anonymous reviewer,
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whose read the manuscript carefully and provided helpful suggestions which inspired the observations stated
in this appendix. In particular, in the exposition presented in the current manuscript, we used compactness
arguments based on showing tightness of the laws of the random approximate solutions, and stochastic PDE
techniques involving the Skorohod representation theorem and the Gyöngy-Krylov lemma to pass to the limit.
As emphasized throughout the manuscript, the rationale for using these compactness arguments, even in the
case of a fully linear stochastic system of PDEs, was to develop a robust framework that is applicable to a
wide variety of stochastic systems of PDEs. In particular, the compactness argument framework presented
in this manuscript extends to the case of linearly coupled FSI with nonlinear dependence of the intensity of
the random noise [35], and nonlinearly coupled stochastic FSI in which the fluid equations are posed on a
time-dependent (random) moving fluid domain which is determined by the displacement of a stochastically
forced elastic membrane [57].

However, we note that in the case of a genuinely fully linear stochastic system of PDEs as in the case
of the current manuscript, having uniform boundedness of the random approximate solutions, even just in
expectation, is sufficient to pass to the limit in the semidiscrete weak formulation, in order to obtain existence
of a probabilistically strong solution directly on the original probability space, hence bypassing the need to use
the Skorohod representation theorem and eliminating the need to transfer the problem to a different probability
space. We illustrate this procedure below, starting from the uniform boundedness of the approximate solutions
generated by the splitting scheme, stated in Proposition 7.2 and Proposition 7.3, where these approximate
solutions satisfy the semidiscrete formulation (25). Though this procedure using weak convergence of the
random approximate solutions in function spaces involving both the probability space and the spacetime
function spaces works well for the case of this fully linear stochastic system, we emphasize that this approach
does not generalize to more complex stochastic systems involving nonlinearities, which require compactness
arguments of the type presented in this manuscript.

We start with the uniform boundedness result stated in Proposition 7.2 and Proposition 7.3, and we
conclude that there exist limiting random variables η, v, and u such that

• ηN converges weakly star to η in L2(Ω;L∞(0, T ;H1
0 (Γ))).

• ηN converges weakly star to η in L2(Ω;W 1,∞(0, T ;L2(Γ))).

• vN converges weakly star to v in L2(Ω;L∞(0, T ;L2(Γ))).

• v∆t
N converge weakly to v in L2(Ω;L2(0, T ;H1/2(Γ))).

• v∗N converges weakly star to v in L2(Ω;L∞(0, T ;L2(Γ))).

• uN converges weakly star to u in L2(Ω;L∞(0, T ;L2(Ωf ))).

• u∆t
N converges weakly to u in L2(Ω;L2(0, T ;H1(Ωf ))).

In addition, by combining the uniform numerical dissipation estimates stated in Proposition 6.7 with the
convergences stated above, we conclude that

• uN converges to u weakly in L2(Ω;L2(0, T ;L2(Ωf ))).

• vN converges to v weakly in L2(Ω;L2(0, T ;L2(Γ))).

We recall that the (random) approximate solutions satisfy the semidiscrete formulation (25) almost surely for
each (deterministic) test function (q, ψ) ∈ Q(0, T ):

ˆ
Ωf

un+1
N − unN

∆t
· qdx+ 2µ

ˆ
Ωf

D(un+1
N ) : D(q)dx+

ˆ
Γ

vn+1
N − vnN

∆t
ψdz +

ˆ
Γ
∇ηn+1

N · ∇ψdz

=

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdz + PnN,in

ˆ R

0
(qz)|z=0dr − PnN,out

ˆ R

0
(qz)|z=Ldr.
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We want to show that the limiting functions (η, v,u) satisfy the continuous weak formulation almost surely
for each (q, ψ) ∈ Q(0, T ):

−
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(u) : D(q)dxdt−
ˆ T

0

ˆ
Γ
v∂tψdzdt+

ˆ T

0

ˆ
Γ
∇η · ∇ψdzdt

=

ˆ T

0
Pin(t)

(ˆ
Γin

qzdr

)
dt−
ˆ T

0
Pout(t)

(ˆ
Γout

qzdr

)
dt+

ˆ
Ωf

u0·q(0)dx+

ˆ
Γ
v0ψ(0)dz+

ˆ T

0

(ˆ
Γ
ψdz

)
dW (t).

We emphasize that the convergence of the approximate solutions to the limiting functions (η, v,u) is only
convergence weakly and weakly star in function spaces involving the probability space itself since the uniform
boundedness of the approximate solutions is only in expectation.

We consider a fixed but arbitrary deterministic test function (q, ψ) ∈ Q(0, T ) where the test space Q(0, T )
is defined in (13), and we associate to this test function the following random variable (defined with the
limiting weak formulation in consideration):

X(q,ψ) := −
ˆ T

0

ˆ
Ωf

u · ∂tqdxdt+ 2µ

ˆ T

0

ˆ
Ωf

D(u) : D(q)dxdt−
ˆ T

0

ˆ
Γ
v∂tψdzdt+

ˆ T

0

ˆ
Γ
∇η · ∇ψdzdt

−
ˆ T

0
Pin(t)

(ˆ
Γin

qzdr

)
dt+

ˆ T

0
Pout(t)

(ˆ
Γout

qzdr

)
dt−
ˆ

Ωf

u0·q(0)dx−
ˆ

Γ
v0ψ(0)dz−

ˆ T

0

(ˆ
Γ
ψdz

)
dW (t).

(83)

Because of the function spaces that the limiting solution (η, v,u) belong to and the regularity of the test
functions in the test space Q(0, T ) which is defined in (13), we conclude that X(q,ψ) ∈ L2(Ω) is a square
integrable real-valued random variable that is hence finite almost surely.

Because the semidiscrete weak formulation holds pathwise as a result of how the splitting scheme constructs
the approximate solutions pathwise outcome by outcome in the probability space, we more generally have
that the approximate solutions satisfy the following generalized semidiscrete formulation almost surely

ˆ
Ωf

un+1
N − unN

∆t
·
(
X(q,ψ)q

)
dx+ 2µ

ˆ
Ωf

D(un+1
N ) : D

(
X(q,ψ)q

)
dx

+

ˆ
Γ

vn+1
N − vnN

∆t

(
X(q,ψ)ψ

)
dz +

ˆ
Γ
∇ηn+1

N · ∇
(
X(q,ψ)ψ

)
dz −

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t

(
X(q,ψ)ψ

)
dz

− PnN,in
ˆ R

0

(
X(q,ψ)qz

)
|z=0dr + PnN,out

ˆ R

0

(
X(q,ψ)qz

)
|z=Ldr = 0, (84)

so that the test function
(
X(q,ψ)q,X(q,ψ)ψ

)
in the semidiscrete weak formulation is now a random test function.

Because all of the weak and weak star convergences that we have involve the probability space and hence
involve convergence of quantities in expectation, we integrate from n∆t to (n+ 1)∆t in time, sum from n = 0
to n = N −1, and take the expectation of both sides of (84), and then pass to the limit as N →∞. We hence
want to pass to the limit as N →∞ in the left hand side of the expression:

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

[ ˆ
Ωf

un+1
N − unN

∆t
·
(
X(q,ψ)q

)
dx+ 2µ

ˆ
Ωf

D(un+1
N ) : D

(
X(q,ψ)q

)
dx

+

ˆ
Γ

vn+1
N − vnN

∆t

(
X(q,ψ)ψ

)
dz +

ˆ
Γ
∇ηn+1

N · ∇
(
X(q,ψ)ψ

)
dz −

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t

(
X(q,ψ)ψ

)
dz

− PnN,in
ˆ R

0

(
X(q,ψ)qz

)
|z=0dr + PnN,out

ˆ R

0

(
X(q,ψ)qz

)
|z=Ldr

]
dt = 0, (85)
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To handle the first term, we use an integration by parts in time as in (56) and the fact that q is compactly
supported in [0, T ) to obtain:

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Ωf

un+1
N − unN

∆t
·
(
X(q,ψ)q

)
dxdt = E

ˆ T

0

ˆ
Ωf

∂tuN ·
(
X(q,ψ)q

)
dxdt

= −E
ˆ T

0

ˆ
Ωf

uN ·
(
X(q,ψ)∂tq

)
dxdt− E

ˆ
Ωf

u0 ·
(
X(q,ψ)q(0)

)
→ −E

ˆ T

0

ˆ
Ωf

u ·
(
X(q,ψ)∂tq

)
dxdt− E

ˆ
Ωf

u0 ·
(
X(q,ψ)q(0)

)
, (86)

by the convergence of uN to u weakly in L2(Ω;L2(0, T ;L2(Ωf ))). Similarly, we have by the weak convergence
of vN to v in L2(Ω;L2(0, T ;L2(Γ))) that

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

vn+1
N − vnN

∆t

(
X(q,ψ)ψ

)
dzdt→ −E

ˆ T

0

ˆ
Γ
v
(
X(q,ψ)∂tψ

)
dzdt− E

ˆ
Ωf

v0

(
X(q,ψ)ψ(0)

)
. (87)

By the weak convergence of u∆t
N to u in L2(Ω;L2(0, T ;H1(Ωf ))), we obtain that

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t
2µ

ˆ
Ωf

D(un+1
N ) : D

(
X(q,ψ)q

)
dxdt = E

(
2µ

ˆ T

0

ˆ
Ωf

D
(
u∆t
N

)
: D

(
X(q,ψ)q

)
dxdt

)

→ E

(
2µ

ˆ T

0

ˆ
Ωf

D (u) : D
(
X(q,ψ)q

)
dxdt

)
. (88)

Similarly, by the weak convergence of η∆t
N to η in L2(Ω;L2(0, T ;H1

0 (Γ))) which follows from the uniform
numerical dissipation estimates in Proposition 6.7, where η∆t

N is defined in (30), we obtain that

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ
∇ηn+1

N · ∇
(
X(q,ψ)ψ

)
dzdt→ E

(ˆ T

0

ˆ
Γ
∇η · ∇

(
X(q,ψ)ψ

)
dzdt

)
. (89)

For the stochastic integral, we claim that

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t

(
X(q,ψ)ψ

)
dzdt

= E

(
X(q,ψ)

N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdzdt

)
→ E

(
X(q,ψ)

ˆ T

0

ˆ
Γ
ψ(t, z)dzdW (t)

)
. (90)

In order to show this, we first observe that

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdzdt

= E

(ˆ T

0

N−1∑
n=0

(
1

∆t

ˆ (n+1)∆t

n∆t

ˆ
Γ
ψ(s, z)dzds

)
1[n∆t,(n+1)∆t)(t)dW (t)

)
, (91)

and note that we have the following deterministic convergence:

ˆ T

0

(ˆ
Γ
ψ(t, z)dz − 1

∆t

N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ
ψ(s, z)dzds1[n∆t,(n+1)∆t)(t)

)2

dt→ 0, as N →∞, (92)
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by the fact that the function

ˆ
Γ
ψ(t, z)dz is a uniformly continuous real-valued (deterministic) function on

[0, T ]. Hence, by Itô’s isometry and (91),

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdzdt→ E

(ˆ T

0

ˆ
Γ
ψ(t, z)dzdW (t)

)
. (93)

Then, because X(q,ψ) ∈ L2(Ω) and in addition,

N−1∑
n=0

ˆ (n+1)∆t

n∆t

ˆ
Γ

W ((n+ 1)∆t)−W (n∆t)

∆t
ψdzdt,

ˆ T

0

ˆ
Γ
ψ(t, z)dzdW (t) ∈ L2(Ω),

we conclude the desired convergence (90) by using (93) and the Cauchy-Schwarz inequality with L2(Ω).
Finally, for the pressure term, we use the deterministic convergence (75) to conclude that

E
N−1∑
n=0

ˆ (n+1)∆t

n∆t

(
PnN,in/out

ˆ R

0

(
X(q,ψ)qz

)
|z=0dr

)

=

(
N−1∑
n=0

ˆ (n+1)∆t

n∆t
PnN,in/out

ˆ R

0
(qz)|z=0drdt

)
E
(
X(q,ψ)

)
→
(ˆ T

0
Pin/out(t)

ˆ R

0
(qz)|z=0drdt

)
E
(
X(q,ψ)

)
.

(94)

Combining the convergences (86), (87), (88), (89), (90), and (94) and applying these convergences to take
the limit in (85) as N →∞, we obtain that

E
(∣∣X(q,ψ)

∣∣2) = 0,

since we can take the real-valued random variable X(q,ψ) out of any integrals involving space or time as
a multiplicative constant. Hence, X(q,ψ) = 0 almost surely for every fixed but arbitrary deterministic test
function (q, ψ) ∈ Q(0, T ), which shows that the limiting functions (η, v,u) satisfy the continuous in time weak
formulation. This is a result of the fact that X(q,ψ) = 0 almost surely, and the definition of the real-valued
random variable X(q,ψ) in (83).
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[47] B. Muha and S. Čanić. Existence of a weak solution to a fluid-elastic structure interaction problem with
the Navier slip boundary condition. J. Differential Equations, 260(12):8550–8589, 2016.
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