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Abstract

The hypothesis that ice-sheet evolution is only controlled by the long-term non-Newtonian vis-
cous behavior of ice has been challenged by observations indicating that effects like brittle failure,
stick-slip sliding, tides and wave action may affect ice-sheet evolution on sub-daily timescales.
Over these timescales, the quasi-static-creep approximation is no longer appropriate and elastic
effects become important. Simulating elastic effects in ice-sheet models over relevant timescales,
however, remains challenging. Here, we show that by including a visco-elastic rheology and
reintroducing the oft neglected acceleration term back into the ice-sheet stress balance, we can
create a visco-elastic system where the velocity is locally determined and information propagates
at the elastic wave speed. Crucially, the elastic wave speed can be treated like an adjustable par-
ameter and set to any value to reproduce a range of phenomena, provided the wave speed is large
compared to the viscous velocity. We illustrate the system using three examples. The first two
examples demonstrate that the system converges to the steady-state viscous and elastic limits.
The third example examines ice-shelf rifting and iceberg calving. This final example hints at
the utility of the visco-elastic formulation in treating both long-term evolution and short-term
environmental effects.

1. Introduction

Ice sheets have traditionally been viewed as thin films of non-Newtonian fluids, deforming
slowly over centuries to millennia in response to gravitationally induced pressure gradients
(Cuffey and Paterson, 2010). It is only recently that this view has been replaced with the under-
standing that ice sheets can undergo rapid changes over daily and shorter time scales. This has
been pointedly illustrated by the unexpectedly rapid collapse of the Larsen B ice shelf in
Antarctica and the subsequent acceleration of its tributary glaciers (Rignot and others,
2004; Scambos and others, 2004). Additional examples include the twice daily tidally driven
‘stick-slip’ surges of Whillans Ice Stream (e.g. Bindschadler and others, 2003; Winberry and
others, 2011), the rapid step-like increase in ice velocity following calving events from the
ice front of Helheim glacier (Nettles and others, 2008; Roeoesli and others, 2016) and the sud-
den acceleration of portions of ice sheets following rapid supra-glacial lake drainage (e.g. Das
and others, 2008; Tedesco and others, 2013).

The ice-sheet process most closely associated with short-term elastic effects, however, is ice-
berg calving. Iceberg calving involves processes that range from rapid fracture propagation over
time scales of minutes (or shorter) all the way to rifting and the decadal (or longer) detach-
ment of tabular icebergs from ice shelves (e.g. Fricker and others, 2002; Benn and others, 2007;
Bassis and others, 2008; Walker and others, 2013; Jeong and others, 2016). The challenge in
accurately simulating calving and the response of ice sheets to environmental forcing over a
range of time scales is all the more daunting given increased evidence that short-term atmos-
pheric and oceanic drivers, like atmospheric rivers and ocean swell, play a role in triggering
iceberg detachment (e.g. Massom and others, 2018; Francis and others, 2021; Lipovsky,
2022; Wille and others, 2022). These results hint at the need to simultaneously resolve both
the glaciological effect of short-term processes on ice-sheet dynamics and the mechanical
coupling between ice sheets and the atmosphere/ocean over time scales as short as minutes
to hours.

The dilemma ice-sheet modelers face is that to inspire confidence in their ability to forecast
and project future ice-sheet changes, numerical models must be able to reproduce past ice-
sheet variability over time scales of centuries or longer. At the same time, models must be
able to explain observations that show ice sheets and glaciers exhibit variations on diurnal
and shorter time scales where elastic effects can be important. This points to a simultaneous
need for higher temporal resolution and sufficient efficiency to perform long time scale simu-
lations. At present, these two goals are accomplished using very different modeling
approaches. For example, discrete element models simulate the short-term brittle failure of
ice on time scales of seconds to minutes (Bassis and Jacobs, 2013; Benn and others, 2017;
Åström and Benn, 2019; Benn and others, 2022). These shorter-term effects then enter as
semi-heuristic parameterizations in today’s larger-scale viscous ice-sheet models (e.g.
DeConto and Pollard, 2016; Crawford and others, 2021). On tidal timescales, there is a
long history of applying visco-elastic models, especially in a flowline context, to understand
grounding line flexure and tidally modulated flow of ice streams (e.g. Reeh and others,
2003; Walker and others, 2012; Rosier and others, 2014, 2017; Wild and others, 2017).
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These models provide key insight into shorter timescale dynam-
ics, but they are often too computationally expensive to integrate
into larger-scale ice-sheet–ice-shelf studies.

Here we present a method which unifies the two seemingly
disparate goals of accurate short time scale and long time scale
behavior within a single modeling framework. To this end, we
introduce an elastic component to the rheology of ice while also
re-introducing the often neglected acceleration term into the
stress balance. These subtle changes alter the system of equations
from a set of elliptic equations, where information propagates
instantaneously, to a hyperbolic system. This new system is analo-
gous to the hyperbolic heat equations (Cattaneo, 1958) and, like
the hyperbolic heat equation, a consequence of this change is
that the velocity is locally determined by the wave speed.
However, so long as we are not interested in wave propagation,
by judiciously choosing the elastic wave speed we can use the
same model to simulate phenomena across a range of time scales
where the march to steady state is analogous to the iterations to
convergence associated with solving large systems of non-linear
equations in traditional ice-sheet models. Intriguingly, the hyper-
bolic visco-elastic system that we propose has analogies with the
regularized elasto-visco-plastic rheology conventionally used for
sea ice (Hunke and Dukowicz, 1997), although inertial terms
play a larger role in sea-ice dynamics and sea-ice models use a
very different constitutive relation.

To illustrate the approach, we start by considering a simple,
prototypical problem: that of a one-dimensional ice shelf or ice
stream. We first review the equations of conservation of momen-
tum and the rheology governing the viscous deformation of a
freely floating ice shelf in 1D (the two-dimensional case is treated
in Appendix A). We then show that a change in the constitutive
relationship to include elasticity transforms the system into a fully
hyperbolic system of equations for deviatoric stress and velocity.
We then analyze the various regimes of flow, showing that we
can recover elastic, visco-elastic and viscous limits. Finally, we
present a series of numerical examples illustrating the proposed
method’s ability to resolve both short-term elastic displacements
and longer-term viscous flow. Our final example illustrates the
flexibility of the approach by simulating rifting of ice shelves
and iceberg detachment. This example shows that the hyperbolic
system can be used to simulate both ice-shelf dynamics and ice-
berg drift, hinting that it may be possible to couple ice sheets into
Earth System Models by considering ice sheets as part of the
oceans and co-evolving the ice sheet and ocean system together.
Readers uninterested in the mathematical or historical exposition
may wish to skip directly to the Numerical Examples section.

2. Governing equations for an ice shelf

2.1. Conservation of momentum

We begin by considering the governing equations for a one-
dimensional ice shelf. We focus on the one-dimensional case
here to simplify the exposition, but include the fully two-
dimensional case in Appendix A. Denoting the depth averaged
deviatoric stress by τxx and the thickness of the ice shelf by
h(x, t), conservation of momentum can be written as follows
(e.g. MacAyeal, 1989; Weis and others, 1999):

D
Dt

rhu
( )

+ ∂

∂x
−2 htxx +

1
2
rg ′h2

( )
= F (1)

In the above equations D/Dt denotes the material derivative,
u(x, t) is the horizontal velocity, ρ is the (assumed constant)
density of ice and F(u, x, t) is an additional forcing (e.g. friction
from the ice bed, lateral drag from embayment walls, ocean drag,

Coriolis force, etc.). We have also defined the ‘reduced’ acceler-
ation due to gravity,

g ′ = 1− r

rw

( )
g, (2)

with ρw the density of water and g = 9.81 m/s2 the acceleration due
to gravity. Unlike previous studies, we have explicitly retained the
material derivative. The above approximation relies on two
assumptions: (1) the ice is assumed to be shallow, i.e. the ratio
of a characteristic thickness to relevant horizontal length scales
is small compared to unity and; (2) vertical shear along the ice
shelf base is assumed to be sufficiently small that horizontal vel-
ocity is nearly independent of depth. Where the ice shelf termi-
nates in a cliff in the ocean, we require continuity with ocean
pressure, where for a freely floating ice shelf τxx = ρg′h/4 at the
calving front.

Because ice is a very viscous fluid, the material time derivative
in Eqn (1) is typically neglected leading to the ‘shallow shelf
approximation’ (SSA) (MacAyeal, 1989; Weis and others, 1999).

∂

∂x
−2 htxx +

1
2
rg ′h2

( )
= F, (3)

where F could represent drag from the walls or bed if the ice is
grounded. By contrast, when τxx is small and F is the Coriolis
force, Eqn (1) is analogous to the shallow water equations, sug-
gesting a connection between ocean and ice-shelf dynamics that
we will eventually return to in the Discussion (Pedlosky, 1987).

2.2. Viscous constitutive relationship

Over long time scales, deviatoric stresses are often related to vel-
ocities using a power-law quasi-viscous rheology of the form:

txx = 2h
∂u
∂x

(4)

where η is the effective viscosity, given by

h = B
2

∂u
∂x

∣∣∣∣

∣∣∣∣
1/n−1

, (5)

with flow law exponent n∼ 3 (Cuffey and Paterson, 2010). The
rate parameter B is a function of the depth-averaged temperature.
For simplicity and because it does not impact the treatment that
follows, we assume B is constant and neglect the possible thermo-
mechanical variations of B in our analysis. It is also possible to
write the rheology in terms of the effective deviatoric stress:

h = Bn

2
txx| |1−n. (6)

This later form of the rheology will be more convenient when we
consider the strain and strain rate associated with both viscous
and elastic deformation.

2.3. The shallow shelf approximation

Substituting Eqn (4) into Eqn (3) we arrive at the SSA:

∂

∂x
−2 hh

∂u
∂x

+ 1
2
rg ′h2

( )
= F. (7)

The SSA is a non-linear elliptic equation for the velocity.
Although the ice-shelf model is simpler than higher-order or

2 Jeremy N. Bassis and Samuel B. Kachuck

0::7�
  ��1���/ ������	 2�/������	�����31�0.���5315.�� ������1�/.�
51�.��1: ���.��

https://doi.org/10.1017/jog.2023.75


full Stokes models, the non-local nature of the velocity is shared
with its more complicated brethren. The key feature of Eqn (7)
is that, as a consequence of dropping the material derivative,
information propagates throughout the system infinitely fast
and we now need to solve systems of non-linear equations to
determine the velocity field. Numerically, discretizing the elliptic
system results in systems of non-linear equations that need to be
solved using iterative methods. Few modelers have escaped quietly
weeping in despair when applying an existing model to a new
situation and witnessing the solver fail to converge. Moreover,
the elliptic system requires a combination of deviatoric stress
and velocity boundary conditions along some portion of the
domain to render the problem well posed. For a freely floating ice-
berg with stress boundaries and no inflow velocity specified, the
problem is actually ill-posed unless additional conditions are
imposed to eliminate arbitrary rigid body translation and rotation
(Zarrinderakht and others, 2022).

2.4. Momentum diffusion, the parabolic limit

To avoid the problem of a non-local velocity field, it is tempting
to simply re-introduce the time derivative of velocity back into
Eqn (7) and solve the time dependent parabolic problem:

u̇+ 1
rh

∂

∂x
−2 hh

∂u
∂x

+ 1
2
rg ′h2

( )
= 0. (8)

Here we have retained the time derivative, denoted with the dot
decoration, but have dropped the advective part of the material
derivative. This is essentially the strategy used by Berg and
Bassis (2022), although applied to a full Stokes system. It is, how-
ever, illustrative to estimate the time scale of momentum diffusion
implied by Eqn (8). Dimensional analysis shows that the diffusion
time scale is approximately given by:

tD = L2r
h0

, (9)

where L is a characteristic horizontal dimension and η0 a refer-
ence characteristic viscosity. For L=100 km, ρ=910 kg m−3 and
η0 = 1012− 1015 Pa s we find tD < 10 s. This should be contrasted
with the 50 s it takes a seismic p-wave with a velocity 2000 m s−1

to traverse the domain. Compressional waves are amongst the
fastest of several classes of seismic waves with the slower modes
providing an even larger contrast in characteristic time scales
between elastic wave propagation and momentum diffusion.

Moreover, information in the parabolic limit still propagates at
infinite speed (Cattaneo, 1958). Of course, if we are only interested
in the steady state, we can scale the time derivatives in various ways
and simply march Eqn (8) forward in time until it reaches steady
state. Variations of this trick of re-introducing acceleration terms
are frequently used as numerical methods that apply various
mass weighting and other parameterization to accelerate conver-
gence of the integration in ‘pseudo time’ (Logan and others,
2017; Räss and others, 2020). However, as we show next, we can
transform the (parabolic) diffusion equation into a hyperbolic sys-
tem of equations that limits information to a characteristic wave
speed of the system by including a visco-elastic rheology, allowing
us to resolve processes at a greater range of time scales.

3. A visco-elastic ice-shelf model

3.1. Maxwell visco-elasticity

One model for a material that behaves elastically on short time
scales and viscously on long times scales is the Maxwell visco-

elastic rheology, which can be viewed as a viscous dashpot con-
nected in series with an elastic spring. The Maxwell visco-elastic
rheology can be written

D
Dt

tik − pdik
( )

+ m

h
tik = 2m1̇ik + l1̇ jjdik, (10)

where λ and μ are the moduli of elasticity and 1ik represent the com-
ponents of the strain tensor and 1̇ik the strain rate tensor. Einstein
summation convention is assumed and indices (i, j, k) run over
coordinates (x, y, z). The effective viscosity η is most conveniently
defined in terms of the effective stress, as in Eqn (6), because the
strain rate includes both viscous and elastic deformation. The mater-
ial derivative D/Dt of the deviatoric stress takes the form:

D
Dt

tik = ṫik + uj
∂tik
∂xj

−Wijt jk + tijW jk. (11)

with Wik the vorticity or spin tensor (Malvern, 1969) and the dot
decoration represents time derivatives. The rather mysterious three
extra terms that appear on the right-hand side of the above equation
are necessary to ensure the time derivative of the stress deviator
remain frame independent. In the interest of simplicity, we shall
make the a priori assumption that rotational terms and advective
terms are small so that we can replace all material derivatives with
the time derivative and set:

Dtik
Dt

≈ ṫik,
Dp
Dt

≈ ṗ,
Du
Dt

≈ u̇.

This approximation is adequate for the small strain visco-elastic limit
and for the slow, viscous limit, but will become inadequate in the
large strain, visco-elastic limit. The approximation is not necessary
and is made here primarily to simplify the exposition that follows.

Our task is to derive an expression for the Maxwell rheology of
ice appropriate for use in our shallow shelf model. To this end, we
neglect flexural stresses and assume for the one-dimensional flow
geometry that τyy = τxy = 0. From Eqn (10) we conclude that 1̇xy
vanishes. Setting i = k in Eqn (10) and summing the three resulting
equations yields an expression for the time evolution of pressure

ṗ = −k 1̇xx + 1̇yy + 1̇zz
( )

, (12)

where, again, the dot decoration denotes time derivatives and we
have defined the bulk modulus of compression

k = l+ 2
3
m

( )
. (13)

Substituting Eqn (12) into Eqn (10), the longitudinal component
of the Maxwell visco-elastic rheology can be expressed in the form

ṫxx +
l

k
− 1

( )
ṗ+ m

h
txx = 2m1̇xx. (14)

To make further progress, we need to determine an additional evo-
lution equation for pressure. The simplest assumption corresponds
to the incompressible limit, whence from Eqn (12) ṗ ≈ 0. We con-
sider a more general model that includes compressibility in
Appendix A. In either case, we can eliminate ṗ from Eqn (14)
and express the Maxwell visco-elastic rheology solely in terms of
deviatoric stress and horizontal strain rate

ṫxx =
2h1̇xx − txx
( )

Tr
. (15)
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Here we have defined the Maxwell relaxation time

Tr =
h

G.

and the effective shear modulus (see Appendix B):

G =
m Incompressible
m 3l+2m

3l+4m Compressible

{
(16)

Upon depth-integrating Eqn (15), and then replacing all quantities
with their depth-averaged value, including ρ, B and G, we find the
system of equations (along with Eqn (1) with F=0):

u̇ = 1
rh

∂

∂x
2sxx − rg ′

h2

2

( )
(17)

ṡxx =
2hh ∂u

∂x − sxx
( )

Tr
, (18)

where we have introduced the new variable σxx = hτxx, which corre-
sponds to the depth-integrated deviatoric stress.

At first glance, adding a time-dependent term to the rheology
appears to be catastrophic. To solve the visco-elastic system, we
now need to time-step both Eqns (17) and (18) to steady state,
and only once in steady state does it converge to the conventional
SSA Eqns (3) and (4). However, as we show next, this change alters
the structure of the differential equation in a fundamental way: it is
now fully hyperbolic. The advantage of the hyperbolic system is
that, not only does information propagate at finite speeds, but
both σxx and u are entirely locally determined. Crucially, we shall
see that the wave speed can act as a free parameter that is independ-
ent of the quasi-steady viscous velocity solution allowing us to make
the wave speed as large (or small) as we wish to investigate a range
of phenomena. If we are solely concerned with quasi-static ice-sheet
velocities, the only requirement is that the ratio of the ice-sheet vel-
ocity to elastic wave speed – the Mach number – remain small.

3.2. Waves in the visco-elastic system

In the previous section, we asserted that the relaxation systems
correspond to a hyperbolic relaxation system with elastic wave
speed. We now show that this is true. Our approach here follows
the usual approach in linear wave theory. Defining the vectors

u = u
sxx

( )
, q = g ′ ∂h∂x

sxx
Tr

( )
(19)

and the matrix

A =
0 − 2

rh

− 2hh
Tr

0

( )

, (20)

we can express Eqns (17) and (18) in matrix notation:

u̇+ A
∂u
∂x

= −q. (21)

The eigenvalues of A are c = +
)))
4G
r

√
, where c is the elastic wave

speed. To see this, defining the matrix of right eigenvectors,
along with its inverse

R = 1 1
rhc
2 − rhc

2

( )
, R−1 = 1

2

1 2
rhc

1 − 2
rhc

( )

, (22)

we can diagonalize the matrix A

L = R−1AR = −c 0
0 c

( )
. (23)

Consistent with our previous assumptions, we hold ice thickness
constant in time and pre-multiply Eqn (21) with R−1:

R−1u̇
( )

+L
∂

∂x
R−1u
( )

= −R−1q+L
∂R−1

∂x
u, (24)

and then define

w = R−1u, (25)

and

p = −R−1q+L
∂R−1

∂x
u, (26)

so that Eqn (24) can be written in form

ẇ +L
∂

∂x
w = p. (27)

The left-hand side of Eqn (27) now represents a pair of advection
equations for the quantities

w(1) = 1
2

u+ sxx

rhc

( )
,

and

w(2) = 1
2

u− sxx

rhc

( )
.

The two quantities w(1) and w(2) represent waves propagating left-
ward (in the negative x-direction) and rightward (in the positive
x-direction) with velocities ±c superposed on the longer-term vis-
cous state. These two advection equations are coupled together
through the source term on the right-hand side. We could con-
sider more elaborate situations that, e.g. do away with the hydro-
static approximation, permit the ice thickness to vary with waves
and/or include the advective and rotational parts of the material
derivatives to provide a more complete treatment of waves and
the large deformation limit. However, even with these limitations,
we show next that we can consider different limits of flow within
the same model framework simply by considering different limits
of dimensionless variables.

3.3. Non-dimensional groups, limiting behavior and the march
to steady state

We define characteristic scales for ice-sheet thickness H, horizon-
tal length L, time T and horizontal speed U such that

x = Lx̃, h = Hh̃, u = Uũ, t = L
U
t̃.

We scale the deviatoric stress τxx with unit ρg′ H/4. With these
definitions, we can define a characteristic viscosity scale

h0 =
Bn

2
rgH
4

( )1−n

. (28)
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Defining the non-dimensional Froude number,

Fr =

)))))
2U2

g ′H

√

,

the non-dimensional version of Eqns (17) and (18) thus become:

˙̃u− 1

h̃Fr2
∂

∂x̃
s̃xx − h̃

2
( )

= 0 (29)

˙̃sxx =
Fr
M

( )2

h̃
∂ũ
∂x̃

− Ar
s̃xx

h̃

( )
, (30)

where we have introduced the Mach number
M = U/c = U

))))))
r/4G

√
, and the Argand number,

Ar = rg ′H
4B

( )n L
U
.

Equations (29) and (30) appear to be controlled by the set of
three dimensionless parameters (Fr, M, Ar), which in turn depend
on the larger set of material parameters and scales (ρ, g, η0, G,
H, L, U). However, linearizing Eqns (29) and (30) about a
steady-state condition:

ũ(x, t) = U(x)+ du(x, t) (31)

s̃xx(x, t) = S(x)+ S(x, t), (32)

taking h̃ and h̃ constant for the linearized system and defining
Q = h̃du, Ar′ = Ar/h̃ and introducing the Deborah number:

De = M2/(Ar′Fr2),

the linearized system can be written:

M2Q̈ = ∂2Q
∂x̃2

−M2

De
Q̇ (33)

M2S̈ = ∂2S
∂x̃2

−M2

De
Ṡ, . (34)

This makes it clear that the behavior of the system is actually
only controlled by two dimensionless parameters: the Mach
number M and the Deborah number De, which characterizes
the relative importance of the material’s viscosity to elasticity.
The Deborah number can also be expressed as the ratio of the
Maxwell relaxation time to the characteristic time scale De =
Tr/T, so that large De corresponds to elastic materials and
small De corresponds to more viscous materials. We now see
that the parabolic limit corresponds to the case when M2≪ 1
while Ar′ ⋅ Fr2 remains order unity. The hyperbolic limit corre-
sponds to the elastic limit where De≫ 1, or, equivalently, Ar′ ⋅
Fr2≪ 1. The elliptic limit corresponds to M2≪ 1 and De≫M2

(or Ar′ ⋅ Fr2≪ 1). We also see that the last terms on the right-
hand side of Eqns (33)–(34) are proportional to De−1 and
look like dissipation terms, a fact that we demonstrate next.
Values of the non-dimensional numbers depend on the time
scale and velocity scale of interest, a fact that we exploit in the
numerical examples to use the model to simulate both elastic
and viscous behavior.

3.4. Dissipation and relaxation to steady state

To investigate how waves attenuate over time, we consider a
slightly more general relaxation system. This generalized system
includes the possibility of frictional dissipation if there is friction
along the bed or sides of the ice. We write the more general equa-
tion for conservation of momentum (compare with Eqn (1)) as

h̃ ˙̃u− 1
Fr2

∂

∂x̃
s̃xx − h̃

2
( )

− 2
Fr2

h̃
∂b̃
∂x̃

− b̃
2
ũ = 0 (35)

where b̃
2
is a non-dimensional Newtonian friction coefficient and

b̃ represents the (non-dimensional) position of the ice-sheet base
relative to sea level. The b̃

2
coefficient is assumed zero when the

ice is floating. To understand why the term h∂b/∂x appears, note
that if we define the (non-dimensional) position of the ice-sheet
surface as s̃ = b̃+ h̃, then

h̃
∂h̃
∂x̃

+ h̃
∂b̃
∂x̃

= h̃
∂s̃
∂x̃

. (36)

If the ice is freely floating,

s̃ = 1− ri
rw

( )
h̃, (37)

from which we see that for an ice shelf

h̃
∂h̃
∂x̃

+ h̃
∂b̃
∂x̃

= 1
2

1− ri
rw

( )
∂(h̃

2
)

∂x̃
. (38)

This is the form we used in the original momentum balance for
an ice shelf. In what follows we use the more general momentum
balance valid for both grounded and floating ice, with the under-
standing that when the ice is freely floating b̃

2
is zero and b is

related to s via Archimedes principle.
Linearizing Eqns (29) and (30) about constant ũ and η′ and

defining b = b̃/h yields the system of equations:

Q̈ = 1
M2

∂2Q
∂x̃2

− 1
De

Q̇− b2

De
Q− b2Q̇ (39)

S̈ = 1
M2

∂2S
∂x̃2

− 1
De

Ṡ− b2

De
S− b2Ṡ (40)

Resolving Q and S into Fourier modes, the solutions

Q = Q̂ exp −ℓt̃ + ikx̃
( )

, S = Ŝ exp −ℓt̃ + ikx̃
( )

, (41)

satisfy Eqns (39) and (40) provided

ℓ = 1
2

1
De

+ b2
( )

+
1
2

)))))))))))))))))))))))))))))))
1
De

+ b2
( )2

−4
k2

M2 +
b2

De

( )√

, (42)

showing that the real part of ℓ is a damping factor with amplitude
primarily controlled by (De−1 + β2). This makes it clear that both
β and the inverse of De control damping of the system.

In the fully elastic limit De≫ 1 and

ℓ = b2

2
+

1
2

)))))))))))))))
b4 − 4k2/M2

√
, (43)

which shows that attenuation is solely due to friction and ℓ is
purely imaginary when β vanishes. We obtain the same behavior
with large friction (β≫ 1) and De of order unity. In the long
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wavelength limit where k≪ βM/2, dissipation is independent of k
and ℓ = β2.

In the viscous limit (De≪ 1), with β order unity or smaller,

ℓ = 1
2De

1+

)))))))))))))))
1− 4

k2

M2 De
2

√( )

, (44)

which shows that attenuation in the viscous limit is controlled by
the inverse of De and that in the long wavelength limit where k≪
M/(2De), ℓ = 1/De and dissipation is again independent of wave-
length. This analysis shows that in the viscous limit (De≪ 1) or
when bottom friction is large (β2≫ 1), waves will rapidly attenu-
ate and the system will converge quickly to the steady-state vis-
cous solution. If on the other hand friction is small and we are
in the elastic limit (large De), waves will propagate across the
entire domain (perhaps multiple times) before attenuating.

For a fixed geometry and fixed material parameters, the chosen
velocity scale of interest determines the three dimensionless para-
meters. For simulations that target elastic and visco-elastic effects,
we can set all dimensionless numbers to an appropriate value for
ice and step the system forward in time with short time steps to get
both the short time-scale transient visco-elastic effects, and even-
tually, steady-state creep. Alternatively, because the steady state of
the relaxation system in Eqns (17) and (18) corresponds to the vis-
cous Stokes flow problem of Eqns (3) and (4), we may set the
dimensionless numbers to convenient values (e.g. by slowing
down elastic waves and thereby increasing M) and then step the
relaxation system forward with moderate time steps as a means
of iteratively solving for the steady-state creep velocity. In this
case, the elastic wave propagation is less accurate, but serves to
allow the velocity to converge to the same steady flow as more con-
ventional methods. Alternatively, if all we are interested in is the
elastic behavior, we can use an appropriate time scale for elastic
processes and then adjust the Argand number to ‘speed up’ vis-
cous processes to be more comparable to elastic processes.

4. Numerical examples

To make the previous discussion more concrete, we demonstrate
that the relaxation system not only converges to the expected
Stokes flow solution for an ice shelf, but that without modifica-
tion, the same model can be used to study elastic effects. In the
first two examples, we solve Eqns (29) and (30) subject to a vel-
ocity boundary condition at x = 0. We apply a deviatoric stress
boundary condition at x = L that corresponds to continuity of
normal traction between ice and water such that σxx = h2. This
boundary condition reflects elastic waves, but other boundary
conditions (e.g. absorbing) could also be explored. In the third
example, we consider a fully visco-elastic system in two-
dimensions with an elaborate rheology designed to mimic failure
of ice associated with crevassing and rifting.

Many numerical discretization schemes of varying sophistica-
tion have been proposed in the literature as a means of solving the
relaxation system (LeVeque, 2002). For illustrative purposes, we
use the Lax–Wendroff approach (Appendix B). This fully explicit
approach is stable for time steps less than the CFL criterion with-
out the need to ‘upwind’ (LeVeque, 2002). A consequence of this
discretization is additional (and unphysical) numerical dissipa-
tion: the numerical scheme provides its own pseudo friction to
the problem. For most applications, this artificial dissipation
spuriously removes energy and is undesirable. However, if all
we are interested in is steady-state velocity profiles, the additional
dissipation may actually be helpful. For the third example, we also
implemented advection of tracers for ice thickness and plastic
strain. To accommodate sharp gradients in these quantities, we

implemented the superbee flux limiter (LeVeque, 1992). Flux lim-
iters avoid spurious oscillations in hyperbolic problems with
‘shocks’ or discontinuities making them ideal tools to aid in
resolving sharp ice-shelf features, like rifts and calving fronts.

The first two examples are illustrated using the same prototyp-
ical ice-shelf configuration that corresponds to a steady-state ice
shelf with no accumulation/ablation, inflow velocity Uin of 1000
m⋅a−1, inflow ice thickness H0 of 1400 m and ice shelf length
80 km. Under these simplified conditions, the steady-state ice
thickness hs and velocity us can be found analytically (e.g. van
der Veen, 1999, p. 162–163). Material parameters used in all
examples are shown in Table 1 and we used grid size Δx = 500
m in all examples.

4.1. Example 1: convergence of relaxation system to viscous
steady-state solution

The purpose of this example is to demonstrate that the relaxation
system converges to the appropriate viscous Stokes flow limit. A sec-
ondary goal is to examine how many time steps/iterations are
required to do so. As we are interested in steady-state viscous velocity
profiles, we set (Fr, Ar) = 1 and apply a perturbation of the form

du = A exp − x − L
Dx

( )2
[ ]

, (45)

to the steady-state velocity field. In this experiment, we could view
model time steps as analogous to the iterations of more conventional
iterative schemes, albeit potentially less efficient as we model physical
transient behaviors.

Figures (1) and (2) show the ratio of the velocity perturbations
to the steady-state velocities (left panels) and the ratio of the
deviatoric stress perturbations to the steady-state deviatoric stress
(right panels) at three instances of time for two choices of Mach
number; M=1 in Figure (1) and M=0.1 in Figure (2). These two
cases illustrate the decay of the perturbation to steady state for
two different relaxation times. The units of time in both simula-
tions are normalized to the wave velocity so that t = 1 is the time it
takes a wave to propagate across the entire domain (at t = 0.5, the
wave has propagated halfway). Distance has also been non-
dimensionalized to the ice-shelf length. Thus, the CFL criterion
to explicitly propagate a wave across the entire domain requires
N time steps, where N is the number of grid points.

Figure (1) (with M = 1 and De∼ 1), the velocity and stress per-
turbations decrease in amplitude as they propagate across the
domain. Once the perturbation reaches the leftmost boundary at
t = 1, it reflects and begins propagating rightward. After propagat-
ing across the domain once, there is still significant energy in the
pulse. By contrast, Figure (2) shows the same perturbation for M
= 0.1 (De∼ 0.1). With the faster relaxation time, both the velocity
and stress perturbations decay faster so that after the pulse has pro-
pagated across the domain once, the amplitude of the perturbation
has decreased to a relative amplitude of less than 1%.

Table 1. List of the parameter values used for the numerical experiments

Parameter Value

ρ 910 kg⋅m−3

ρw 1020 kg⋅m−3

g 9.8 m s−2

B 3.2×108 s1/3 Pa
G 109 Pa
Uin 1000 m a−1

H0 1400 m
L0 80 km
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The above example provides some crude verification of the
numerical method and shows that with a judiciously chosen
relaxation time, the relaxation method does converge to the
appropriate velocity and propagates waves at the expected veloci-
ties. In the next example, we illustrate the versatility of the relax-
ation approach with an example that exploits the ease with which
we can also treat elastic problems.

4.2. Example 2: effect of a pulsating ice stream

In this example, we illustrate the versatility of our method using
the same discretization as the previous example, but we consider
the elastic limit. We impose a smooth acceleration in the velocity
into the ice shelf at the grounding line as might be realized, for
instance, in a stick-slip event, of the form:

uin = Uin + C exp − t − t0
Dt

( )2[ ]
, (46)

where C is the amplitude of the perturbation and Δt is the duration.
This corresponds to a smooth acceleration in flux into the ice shelf,
starting at zero and increasing to a maximum of C before smoothly

and symmetrically decelerating to the initial base velocity. For all
simulations, we used a perturbation velocity C = 25 km⋅ a−1 and
Δt = 90 s. We then choose a velocity scale U0 = 30m s−1 and com-
pute non-dimensional parameters using the values in Table 1,
which results in the choice Fr = 1.1 and M = 0.014 and Ar =
3.7 × 10−6, corresponding to an elastic ice shelf with a small
amount of viscous damping (De∼ 25). Choosing different velocity
scales affects the numerical values of non-dimensional parameters,
but so long as the ratio Fr/M and product Ar ⋅M remain fixed the
results are independent of the velocity scale.

Figures 3(a,b) show the displacement and velocity perturbation
as a function of time at the grounding line whereas Figures 3(c,d)
show displacement and velocity perturbation as a function of time
at the calving front. The displacement and velocity at the calving
front smoothly increases. This is followed by a small amplitude
‘ringing’ motion caused by reflection of the pulse off of the calv-
ing front. This shows that the same model used to predict
steady-state viscous velocities can also be used to simulate ‘seis-
mograms’ for short-time motion. This provides the potential to
examine the response of ice sheets to a suite of forcings with over-
lapping time scales. This should be contrasted with the current
approach that uses different models with different assumptions

Figure 1. Decay of a perturbation in the velocity and stress
for a freely floating ice shelf for Mach number M = 1. Left
panels show the percent difference of the velocity at three
times from the steady-state profile. Right panels show the
percent difference of the stress at three times from the
steady-state profile. Time is non-dimensionalized such that
t = 1 corresponds to the time it takes for the pulse to propa-
gate once across the ice-shelf length.

Figure 2. Decay of a perturbation in the velocity and stress
for a freely floating ice shelf for Mach number M = 0.1. Left
panels show the percent difference of the velocity at three
times from the steady-state profile. Right panels show the
percent difference of the stress at three times from the
steady-state profile. Time is non-dimensionalized such that
t = 1 corresponds to the time it takes for the pulse to propa-
gate once across the ice-shelf length.
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to explore the transient response of ice sheets over different time
scales

4.3. Example 3: ice-shelf failure, rifting and iceberg
detachment

For our final example, we return to the challenges of simulating
failure and fracture of ice over glaciologically relevant time scales.

This time we consider a two-dimensional version of the previous
experiments with W = 40 km. Let (x, y) denote the longitudinal
and transverse coordinates and (u, v) denote the longitudinal
and transverse components of the velocity. We assume no inflow
along the lateral margins and set the shear stress at the margins
assuming a plastic sliding law, whence |σxy| = τm and v = 0 at
y = ±W/2. This is accommodated by applying a Dirichlet bound-
ary condition directly to τxy. We further assume an inflow velocity

Figure 3. Evolution of a perturbation to the displacement
and velocity at the grounding line (left panels) and mar-
gin/calving front (right panels) as a function of time.
Panels (a) and (c) show the displacement and velocity per-
turbations at the grounding line as a function of time and
represent the input signature of the perturbation. Panels
(b) and (d), by contrast, show the displacement and velocity
perturbation as a function of time at the margin/calving
front after the signal has propagated across the ice shelf.

a b

c d

Figure 4. Evolution of rifts in an idealized ice shelf.
Panel a shows a snapshot of the steady state ice thick-
ness and speed at the beginning of the simulation.
Panels b–d show snapshots at different points in time.
Contours show fully failed regions. Supplementary ani-
mation M1 shows an animation over several centuries
illustrating the sporadic detachment of bergs.

a b

c d
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at x = 0 of the form:

u(x = 0, y) = 4Uin(1− f )
y
W

( )2
+ fUin. (47)

Here Uin = 1000 m a−1 represents the peak inflow velocity at the
grounding line and f = 0.7 parameterizes the magnitude of vel-
ocity decrease along the margins.

Following Bassis and others (2022), we adopt a visco-plastic
rheology with a failure strength of the form η =min (ηp, ηv)
where ηv denotes the two-dimensional generalization of the effect-
ive viscous rheology defined by Eqn 6:

hv =
Bn

2
t1−n
e , (48)

with te = h−1
))))))))))))))))))))))))))))
s2
xx + s2

yy + s2
xy + sxxsyy

√
. Writing the effective

viscous strain rate ėe = (te/B)
−n, we define a failure strength τy

and write the plastic viscosity hp =
ty
ėe
. Again, following Bassis

and others (2022), we promote failure localization by tracking
plastic strain ep accumulated in faults and fractures and assuming
the failure strength decreases with plastic strain:

ty = max tc − tc − tmin( )
ep
ecrit

, tmin

{ }
. (49)

Here τc = 261 kPa (0.75 in dimensionless units) is the intact
strength of ice, ecrit = 0.0125 denotes the limit where ice is com-
pletely broken and τmin = 17.4 kPa (0.05 in dimensionless units)
represents any residual strength of failed ice and accounts
for mélange filling rifts. We evolve ep assuming ėp = ėe where
ηp < ηv. We further set ep = 0 within 10 km of the grounding
line, assuming intact ice is flowing into the ice shelf and to
avoid edge effects and artifacts associated specifying the velocity
boundary condition.

We evolve the ice thickness, velocity and a scalar variable ep
that tracks accumulated strain in faults and fractures.
Simulations are conducted with dimensionless parameters M = 0.1,
Ar = 1 and Fr = 1.

Figure 4(a) shows the initial steady-state ice thickness and vel-
ocity obtained by time stepping the system of equations to steady
state without failure. The subsequent panels show snapshots of
the ice thickness and plastic strain ep after failure is permitted,
illustrating the initiation and propagation of rifts. In this example,
rifts episodically initiate from the margins and propagate across
the domain, eventually isolating an iceberg where a low viscosity
and ice thickness effectively uncouple the iceberg from the shelf
(see Supplementary Animation M1). However, the calving front
remains quasi-stable throughout these simulations. Numerically,
however, what is intriguing about these simulations is that we
have used a purely explicit method that completely avoids solving
systems of non-linear equations. Implementing an analogous
elliptical solver for the velocity converged slowly, typically taking
dozens of iterations to converge. Moreover, unlike the simulations
in Bassis and others (2022), we did not need to introduce an arti-
ficial ‘water drag’ to avoid ill-conditioning when icebergs detach
in the aftermath of rift propagation.

5. Discussion

One of the long-standing tenets of ice dynamics is that ice sheets
deform slowly, like highly viscous fluids. The assumption of slow
and steady flow results in the hierarchy of approximations to
Stokes flow currently implemented in numerical ice-sheet models
(e.g. Greve and Blatter, 2009). Here, we have broken with both the

assumption that ice behaves purely like a viscous fluid and the
assumption that flow is slow and steady. Adding visco-elasticity
and re-introducing the acceleration terms into the force balance
transform the equations of motion into a hyperbolic system
where velocity is locally determined and information propagates
at the finite elastic wave speed. The quasi-static viscous limit trea-
ted by traditional ice-sheet models corresponds to the flow in the
visco-elastic system once the transient behaviors have attenuated.
Because of this connection, if we are not interested in the dynamic
elastic behavior at short time scales, we can treat the elastic wave
speed as a numerical parameter with the time steps analogous to
iterations in the non-linear solvers typically used in more trad-
itional methods to find the velocity field.

Although including acceleration into the force balance may
seem radical and, perhaps, ill-advised, recent studies have simi-
larly re-introduced the acceleration term back into Stokes models
as a numerical regularization needed to avoid numerical issues
associated with ill-posedness from applying the flotation condi-
tion to 3D models of ice shelves (Berg and Bassis, 2022) and as
a numerical trick to efficiently solve the non-linear Stokes equa-
tions that can be efficiently implemented on graphical processing
units (GPUs). For example, Räss and others (2020) introduced the
pseudo-inertial terms as a means of creating a matrix-free full
Stokes solver that can be implemented on GPUs. The introduc-
tion of pseudo-time creates a purely viscous parabolic system
that can be marched to steady state as a Stokes solver. This should
be contrasted with our purely hyperbolic visco-elastic system
where the time steps can correspond to transient elastic and visco-
elastic behavior. The steady-state behavior, however, is identical in
both methods.

The number of operations needed for a single time step in our
explicit visco-elastic system scales like the number of degrees of
freedom. This scaling is comparable to state-of-the-art algebraic
multigrid methods. However, multiple time steps – iterations –
are typically needed to converge. Detailed comparisons are
often highly problem – and implementation – dependent. Given
the ability to craft bespoke elliptic solvers, it seems unlikely that
solving an explicit hyperbolic system will be more efficient than
specialized non-linear Stokes solvers that only seek the long-time
viscous flow of the ice. However, when there are fast time scales in
the system or discontinuities, like when fractures are present, the
explicit hyperbolic system may be advantageous and able to
represent a wider range of physical processes. To be clear,
although most ice-sheet modelers eventually confront situations
where the elliptical velocity solvers maddeningly fail to converge,
hyperbolic systems have their own intricacies, including ringing
and spurious oscillations that also need to be managed.

In our treatment, we assumed that the ice thickness was con-
stant over the time scales of wave propagation. This effectively fil-
tered out gravity waves. We could build in more sophisticated
treatments of elasticity in conjunction with more sophisticated
force balances to simulate the full bestiary of waves possible in
the system. Some of these waves, such as flexural gravity waves,
have been implicated in ice-shelf demise (Banwell and MacAyeal,
2015; Lipovsky, 2018; Massom and others, 2018; Aster and others,
2021) and could be incorporated by relaxing the assumption that
the ice is locally hydrostatically compensated. Modeling these effects
may provide an avenue to simulate the effect of short-term environ-
mental drivers on rifting and calving and explosive ice-shelf collapse
(Bassis and others, 2008; Walker and others, 2013, 2015; Banwell
and MacAyeal, 2015; Wille and others, 2022).

Both the promise and obstacles in simulating ice dynamics
using hyperbolic visco-elastic systems are illustrated in our simu-
lations of ice failure and rifting. Numerical accuracy in these
simulations demanded time steps on the order of hours to days.
The time step size of these simulations already pushes into the
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elastic regime. By contrast, in more traditional (elliptical)
approaches (e.g. Bassis and others, 2022), each time step requires
solving large systems of non-linear equations that converge slowly
(if at all). The approach we used here sidestepped the convergence
issue by treating the (highly non-linear) rheology explicitly, with
the added benefit that the elastic component of the rheology
serves as an added regularization (Hunke and Dukowicz, 1997).

Using elasticity to regularize the system and avoid numerical
headaches has analogies in many fields. In fact, Cattaneo (1958)
recognized that information travels at infinite speed in the heat
equation and applied an analogous transformation to Newton’s
law of cooling. But the analogy that is closest in spirit to that of
the one we propose is that of the elastic-visco-plastic sea-ice
model. Here, Hunke and Dukowicz (1997) recognized that intro-
ducing an elastic element to the visco-plastic rheology used for
sea-ice rheology was a numerically efficient trick that avoided
numerical headaches associated with nearly rigid motion when
the effective viscosity becomes large. However, in sea ice, inertial
terms associated with sea-ice drift are part of the dominant bal-
ance, whereas inertial terms play a negligible role in the Stokes
flow that traditional ice-sheet models invoke.

Although speculative, it might be possible to build on the con-
nection between sea-ice and ocean models and simply set the elas-
tic wave speed within the ice to be comparable to that of ocean or
sea-ice dynamics and consider ice sheets and ice shelves as simply
another ‘layer’ or component within an ocean or sea-ice model
and co-evolve the ice and ocean together. Co-evolving the ice
and ocean could potentially allow grounding lines (and the
ocean cavity) to dynamically evolve with both tidal forcing and
basal melting. In this type of framework, we could naturally simu-
late the interaction between the ice and shorter-term environmen-
tal drivers and even the evolution of icebergs as they detach from
the ice shelf, drift and melt, one of the largest current challenges
in coupling ice sheets into climate system models.

6. Conclusions

The challenge that ice-sheet modelers face is that ice-sheet evolu-
tion is controlled by internal and external processes with time
scales that range from seconds to millennia. For example, short-
term atmospheric and oceanic drivers, like atmospheric rivers
and ocean swell, have been hypothesized to play a role driving ice-
shelf collapse (e.g. Massom and others, 2018; Francis and others,
2021; Wille and others, 2022). As computational resources con-
tinue to expand, numerical ice-sheet models have progressed
toward higher spatial and temporal resolution. As the spatial
and temporal resolution of ice-sheet models continues to
improve, the disparity between the fundamental time scales in
an ice-sheet model and environmental forcing will continue to
shrink. However, even in the most optimistic scenario, the dispar-
ity in time scales associated with brittle, elastic failure and longer-
term ice-sheet evolution is likely to remain stark. Here, we argued
that we can bridge this divide by ‘slowing down’ the fast time scale
processes, associated with elastic waves so that these processes are
more comparable to the slower viscous processes that ice-sheet
models traditionally represent. This change allowed us to simulate
short-term elastic and longer-term viscous effects within a single
modeling framework.

Our approach could also be valuable in more regional, process-
based models. For example, discrete element models resolve the
fast elastic brittle failure (Bassis and Jacobs, 2013; Astrom and
others, 2014). Time step restrictions, however, limit these simula-
tions to durations of minutes to hours. So long as the longer term
dynamics is not controlled by elastic wave propagation, by slowing
down the fastest propagating waves it may be possible to extend
simulations to weeks or even years. Similarly, given the vast

disparity in time scales between ice-sheet evolution and ocean for-
cing, leaning into the faster time scales of ice-sheet evolution may
provide a bridge where ice-sheet models are co-evolved with
ocean models to allow finer scale coupling of dynamic ocean cav-
ities and grounding line migration. This latter option, although
speculative, could provide a more direct opportunity to directly
simulate the effect of both short-term and longer-term atmos-
pheric and oceanic forcing on ice-sheet evolution. Although we
have focused on ice shelves and ice sheets, the system we propose
is general and could also be applied to other systems. For example,
we could slow down acoustic waves in the ocean as proposed by
Salmon (2009) for studies of ocean circulation or use a similar
formulation for geodynamics simulations that seek to simulate
both brittle failure and longer term deformation.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.75
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Appendix A. Compressible 2D visco-elastic model

In this section, we derive expressions for visco-elastic deformation of ice
shelves/streams in two dimensions. Conservation of momentum for a two-
dimensional ice shelf is given by:

∂

∂t
rhu
( )

+ ∂

∂x
−h 2txx + tyy

( )
+ 1
2
rg ′h2

( )
+ ∂

∂y
htxy
( )

= F1 (A.1)

∂

∂t
rhv
( )

+ ∂

∂y
−h 2tyy + txx

( )
+ 1
2
rg ′h2

( )
+ ∂

∂x
htxy
( )

= F2 (A.2)

p = rg(s− z)− txx − tyy , (A.3)

where s(x, y, t) is the elevation above sea level. In the above equations (F1, F2)
are components of an additional forcing (e.g. friction from the ice bed).

Using Eqns (10)–(12), we can write the Maxwell visco-elastic rheology in
the form:

ṫxx − 1− l

k

( )
ṗ+ m

h
txx = 2m1̇xx (A.4)

ṫyy − 1− l

k

( )
ṗ+ m

h
tyy = 2m1̇yy (A.5)

ṫxy +
m

h
txy = 2m1̇xy (A.6)

To close the system, we need an evolution equation for pressure.
Differentiating Eqn (A.3) with respect to time and making use of
Archimedes principal to note that gs = g′h, allows us to see that
ṗ = rg ′ḣ− ṫxx − ṫyy . Next, we can eliminate ḣ using the continuity equation
ḣ = −∇ · (hu) to find:

ṗ = −rg ′∇ · (hu)− ṫxx + ṫyy
( )

. (A.7)

Here, because we are focusing on the faster elastic time scale associated with
waves, we have neglected accumulation in the continuity equation over the
time scale that the pressure varies dynamically. Substituting Eqn (A.7) into
Eqns (A.4)–(A.5) results in the equations:

ṫxx =
1
Tr

2h
∂u
∂x

− txx

( )
− G ṫyy + rg ′∇ · (uh)

{ }
(A.8)

ṫyy =
1
Tr

2h
∂v
∂y

− tyy

( )
− G ṫxx + rg ′∇ · (uh)

{ }
, (A.9)
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where G = 2m
3l+4m represents the coupling between stress components asso-

ciated with any assumed compressibility of ice and we have used the identity
κ = λ + 2μ/3 to express the elastic properties in terms of the Lamé parameters λ
and μ. The relaxation time Tr = η/G with G defined by the compressible com-
ponent of Eqn (16). In the 1D case with ḣ = 0 and Γ = 0, we recover the ‘com-
pressible’ limit. We can show that this system also permits elastic waves using
similar methods as before, with the exception that we also need to consider the
polarization of waves in the 2D case.

Appendix B. Numerical discretization

Rather than resolving the relaxation system into its characteristic and using
upwinding, we use the Lax–Wendroff approach and use second-order discre-
tizations for both time and space. Recalling the matrix form of the relaxation
system, Eqn (21):

u̇ = −A
∂u
∂x

+ Bu+ d, (B.1)

where B and d can be derived from q. Denoting the solution at time t + nΔts

by un, we can use a standard Taylor series to find the solution at the n + 1th
time step

un+1 = un + Dts
∂un

∂t
+ Dt2s

2
∂2un

∂t2
+ . . . (B.2)

The Lax–Wendroff proceeds by using Eqn (B.1) to calculate u̇ and ü solely in
terms of u and spatial gradients in u. After doing this calculation, we find the
update formula

un+1 ≈ un + Dts −A
∂un

∂x
+ Bun + c

( )

+ Dt2s
2

A
∂

∂x
−A

∂un

∂x
+ Bun

( )
+ B −A

∂un

∂x
+ Bun

( )[ ]
(B.3)

A similar calculation can be applied to the two-dimensional problem. In
our approach, we use centered derivatives for the spatial derivatives and
used linear extrapolation at the boundaries to calculate gradients in quantities
(LeVeque, 2002).
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